CN102730770B - 一组海绵状多孔复合氧化物纳微多面体的制备方法 - Google Patents

一组海绵状多孔复合氧化物纳微多面体的制备方法 Download PDF

Info

Publication number
CN102730770B
CN102730770B CN201210181327.4A CN201210181327A CN102730770B CN 102730770 B CN102730770 B CN 102730770B CN 201210181327 A CN201210181327 A CN 201210181327A CN 102730770 B CN102730770 B CN 102730770B
Authority
CN
China
Prior art keywords
composite oxide
nitrate
spongy porous
porous composite
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210181327.4A
Other languages
English (en)
Other versions
CN102730770A (zh
Inventor
童国秀
吴文华
洪咪
赵暄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201210181327.4A priority Critical patent/CN102730770B/zh
Publication of CN102730770A publication Critical patent/CN102730770A/zh
Application granted granted Critical
Publication of CN102730770B publication Critical patent/CN102730770B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及海绵状多孔复合氧化物纳微多面体的制备方法,具体是:以过渡金属的硝酸盐为原料和氧化剂,糖为结构指示剂和还原剂,引导氧化和结晶反应;糖与硝酸盐物质的量之比为0.5-6,然后在常压、50-95℃下经搅拌氧化反应得到黄绿色沉淀物,再经浓缩、洗涤、过滤得到黄绿色的前驱物;该前驱物再经热处理,得到所述海绵状多孔复合氧化物纳微多面体。本发明操作简单,对设备的要求不高,成本低,效率高,易于推广;所合成的物质具有比表面积高,分级介孔模式,尺寸、组成、形貌、质构(比表面、孔径分布)、结晶度可调等特性,将在吸附、催化、磁性存储、磁流体、磁性靶向药物载体、分离细胞和生物医药等领域将具有广泛的应用前景。

Description

一组海绵状多孔复合氧化物纳微多面体的制备方法
技术领域
本发明涉及纳米材料领域,特别是一种利用糖结构指示剂和还原剂的引导氧化结晶反应和热处理工艺,生成海绵状多孔复合氧化物纳微多面体的简易方法。
背景技术
近几年来,海绵状多孔结构材料的制备引起了越来越多的研究人员的关注。由于这种材料综合了微孔/介孔的高比表面积和易扩散的大孔网络通道的优势,引起奇异的声、光、电、热、磁和化学活性等特性,在催化、发光材料、磁性材料、半导体材料、电极材料、高性能结构及功能陶瓷等领域具有广阔的应用前景。特别是金属氧化物(包括,铁氧体、ZnO、Fe2O3等),作为重要的半导体功能材料,具有良好的耐候性、耐光性、无毒、磁性和对紫外线具有良好的吸收和屏蔽效应,已广泛应用于气体贮存、净化、分离、电化学、闪光涂料、油墨、吸附、催化、磁性存储、气敏和湿敏材料、磁流体、磁性靶向药物载体、分离细胞和生物医药等领域。
由于纳米材料的性能强烈地依赖其比表面积、孔径分布、结晶度、形貌、尺寸、取向等,因此调控上述参数具有重要研究意义。目前模板法(以胶体为模板的静电层层自组装、直接吸附或化学沉积、牺牲模板法)、非模板法(相分离技术、发泡法、烧结法、去合金法)等合成工艺已被用来制备不同维度、形貌和结构的多孔材料。一般来说,多孔材料的合成是通过选取适当的模板来控制所需的长度和形貌。例如用四烷基胺来直接合成微孔(<2 nm);用长链表面活性剂、共聚物和胶束用来合成介孔材料(2 nm-50 nm);用聚苯乙烯乳胶和细菌来合成大孔结构(>50 nm)。
然而,在本发明中,以低成本、绿色、环保的化学试剂-糖作还原剂和结构指示剂,采用低温氧化还原-浓缩结晶-热处理工艺制备尺寸、组成、形貌、质构(比表面、孔径分布)结晶度可调的海绵状多面体复合氧化物纳微米材料。
发明内容
本发明所要解决的技术问题是:为克服已有技术之不足,建立一种合成绵状多孔纳微米材料的低成本、绿色、环保的制备方法,并提供高比表面积、海绵状多孔多面体复合氧化物纳微米材料。再一目的是提供一种简便调控纳米材料比表面积、尺寸、形貌和微观结构的方法。
本发明解决其技术问题采用以下的技术方案:
本发明提供的海绵状多孔复合氧化物纳微多面体的制备方法,是采用糖作结构指示剂和还原剂引导氧化-结晶反应和热处理工艺,具体是:以水为溶剂,金属的硝酸盐为原料和氧化剂,糖为结构指示剂和还原剂,引导氧化和结晶浓缩反应,糖与金属硝酸盐的物质的量之比为0.5-6,然后在常压、50-95 ℃下经搅拌氧化反应得到黄绿色沉淀物,再进一步蒸发浓缩,最后洗涤、过滤得到黄绿色的纳微多面体状前驱物,随后将该前驱物在300-900 ℃、时间0.5-5 h进行热处理,得到所述海绵状多孔复合氧化物纳微多面体。
所述的硝酸盐可以采用硝酸铁。
所述的硝酸盐可以采用硝酸铁与硝酸钴、硝酸镍、硝酸锰、硝酸锌、硝酸钡的一种或者多种的混合物。
所述的糖可以采用葡萄糖、麦芽糖、蔗糖中的一种或多种的混合物。
所述的热处理可以采用空气、氮气和氩气中的一种。
所制备的海绵状多孔复合氧化物纳微多面体,可以是由铁,或铁与钴、镍、锰、锌、钡中的一种或几种金属元素组成的复合氧化物。
所制备的海绵状多孔复合氧化物纳微多面体,其由多个纳米粒子或棒组装而成比表面积、尺寸、形貌可调的物质。
所述的海绵状多孔复合氧化物纳微多面体,其边长在0.5-5 μm,长径比1-5,比表面积2.83-135.5 m2/g和分级介孔模式,晶粒尺寸为5-80 nm。
本发明制备的海胆状羟基氧化铁与海胆状氧化铁纳米材料,其在制备催化剂材料中的应用。海胆状氧化铁纳米材料在制备锂电极材料中的应用。
本发明与现有技术相比具有以下的主要优点:
其一、操作简单,对设备的要求不高,易于工业应用推广;
其二、制备流程新颖,形成机理独特;
其三、成本低,效率高;
其四、采用本方法合成的复合氧化物具有分级模式介孔,组成、比表面积和晶粒尺寸可控性好,工艺简单等特点。
附图说明
图1、图2和图3-4是分别为实施例1所得产物的XRD相结构图谱,EDX元素组成分析图谱和在扫描电镜下观测到的形貌。
图5和图1是实施例2所得产物在扫描电镜下观测到的形貌和物相分析的XRD曲线图。
图6和图1是实施例3所得产物扫描电镜下观测到的形貌和物相分析的XRD曲线图。
图7是实施例4所得产物在扫描电镜下观测到的形貌。
图8是实施例5所得产物在扫描电镜下观测到的形貌。
图9和图10是实施例6所得产物物相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图11和图12是实施例7所得产物物相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图13、图14和图15-16是实施例8所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图17、图18和图19是实施例9所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图20、图21和图22是实施例10所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图23、图24和图25-26是实施例11所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图27、图28和图29-30是实施例12所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图31、图32和图33-34是实施例13所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图35、图36和图37-38是实施例14所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
图39、图40和图41-42是实施例15所得产物物EDX元素组成分析图谱、相分析的XRD曲线图和在扫描电镜下观测到的形貌。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
本发明提供了一种由糖作还原剂和结构指示剂引导氧化还原结晶浓缩反应与热处理工艺制备海绵状多孔复合氧化物纳微多面体材料的简易方法。所述的海绵状多孔纳微材料的制备为三步:(1)硝酸盐将糖氧化成酸,并与金属离子生成难溶盐;(2)难溶盐随溶剂蒸发逐渐结晶析出;(3)将难溶盐在不同温度煅烧得到复合氧化物。
本发明的复合氧化物的组成和结构羟基氧化铁和氧化铁外观分别为黄绿色和红色,物相分别为α-FeOOH,α-Fe2O3
下面结合具体实施例及附图对本发明作进一步说明,但不限定本发明。
实施例1:
将29.72 g葡萄糖,13.47 g硝酸铁,4.96 g硝酸锌以及100 mL去离子水加入到250 mL烧杯中[其中,葡萄糖与硝酸盐(硝酸铁:硝酸锌=2:1,此为物质的量之比,下同)的物质的量之比为3:1],在80 ℃搅拌反应,先出现黄绿色沉淀,再浓缩结晶。最后洗涤、过滤、并在80 ℃真空干燥6 h,得到黄绿色的前驱物。随后将所得前驱物在一定温度(如400 ℃)和空气气氛下热处理3 h。其相结构、组成、形貌和孔径分布分别如图1,图2、图3和图4所示,EDX能谱分析表明产物为由Zn,Fe,O三种元素组成,Zn与Fe的原子数之比为26.22:19.12;XRD相结构分析显示产物为ZnO(PDF卡片:65-3411)和ZnFe2O4(PDF卡片:65-3111)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。比表面积为135.5 m2/g,孔容为0.235 cc/g,孔尺寸为3.385 nm成分级介孔模式分布。
实施例2:
采用实施例1中的工艺,当葡萄糖与硝酸盐(物质的量之比,硝酸铁:硝酸锌=2:1)的物质的量之比为6:1,所得前驱物在700 ℃热处理3 h,也可以得到海绵状多孔多面体结构。所得产物的相结构和形貌分别如图1和图5所示。EDX能谱分析表明产物为由Zn, Fe, O三种元素组成,Zn与Fe的原子数之比为22.51:23.44;XRD相结构分析显示产物为ZnO(PDF卡片:65-3411)和ZnFe2O4(PDF卡片:65-3111)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。比表面积为14.356 m2/g,孔径为30.006 nm,孔容为0.191 cc/g。不同的是多面体底面边长增大和长径比减小,比表面和孔容减小,孔径增大。
实施例3:
采用实施例1中的工艺,当热处理温度为900 ℃,也可以得到海绵状多孔多面体结构。所得产物的相结构和形貌分别如图1和图6所示。可见,产物为ZnO(PDF卡片:65-3411)和ZnFe2O4(PDF卡片:65-3111)的复合物,形貌为大量纳米颗粒组装而成的海绵状多孔多面体结构。比表面积为2.83 m2/g,孔尺寸为3.369 nm,孔容为0.160 cc/g。不同的是纳米颗粒和孔的尺寸增大,比表面和孔容减小,孔径增大。
实施例4:
采用实施例1中的工艺,当蔗糖为结构指示剂,氧化和结晶反应温度为95 ℃以及热处理温度为600 ℃,也可以得到海绵状多孔多面体结构。所得产物的形貌分别如图7所示。可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。不同的是多面体的长径比增大。
实施例5:
采用实施例1中的工艺,当葡萄糖与硝酸盐(硝酸铁:硝酸锌=2:1)物质的量之比为1:1时,前驱物氧化和结晶反应温度为60 oC以及热处理温度为700 oC,所得产物的形貌分别如图8所示。可见,也可以得到海绵状多孔多面体结构。不同的是多面体的长径比减小,为片状。
实施例6:
采用实施例1中的工艺,当葡萄糖与硝酸铁的物质量比为4:1,前驱物氧化和结晶反应温度为50 oC,并在氮气保护下500 oC热处理5 h。所得产物的相结构和形貌分别如图9和图10所示。可见,也可以得到海绵状多孔多面体Fe3O4。不同的是多面体的底边边长减小和长径比增大,为棒。比表面积为80.347 m2/g,孔尺寸为4.878 nm,孔容为0.254 cc/g
实施例7:
采用实施例6中的工艺,当葡萄糖与硝酸铁的物质量比为0.5:1,前驱物水热结晶温度为80 oC,并在空气下400 oC热处理3 h。所得产物的相结构和形貌分别如图11和图12所示。可见,也可以得到海绵状多孔多面体Fe2O3。不同的是多面体的底边边长减小和长径比增大,为棒。
实施例8:
采用实施例1中的工艺,当硝酸铁与硝酸钡的物质量比为2:1,前驱物在700 oC热处理0.5 h。其组成、相结构和形貌分别如图13,图14和图15-16所示,EDX能谱分析表明产物为由Ba, Fe, O三种元素组成,Ba与Fe的原子比为4.49:32.77;XRD相结构分析显示产物为Fe2O3(PDF卡片:33-0664)和BaFeO3-x(PDF卡片:23-1023)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。
实施例9:
采用实施例1中的工艺,当硝酸锰,硝酸锌,硝酸铁的物质的量之比为0.5:0.5:2。前驱物在500 oC热处理3 h其组成、相结构和形貌分别如图17,图18和图19所示,EDX能谱分析表明产物由Mn, Zn, Fe, O四种元素组成,Mn, Zn, Fe的原子数之比为3.18:17.40:28.38;XRD相结构分析显示产物为ZnMnO3(PDF卡片:19-1461)和ZnFe2O4(PDF卡片:65-3111)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。比表面积为80.347 m2/g,孔尺寸为4.878 nm,孔容为0.254 cc/g
实施例10:
采用实施例9中的工艺,当硝酸锰与硝酸铁的物质的量之比为1:2,前驱物在500 oC热处理5 h。其形貌、组成、和相结构分别如图20,图21和图22所示,EDX能谱分析表明产物为由Mn, Fe, O三种元素组成,Mn与Fe的原子数之比为11.04:32.53;XRD相结构分析显示产物为[Mn0.983Fe0.017]2O3(PDF卡片:24-0507)和Fe2O3(PDF卡片:33-0664)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。
实施例11:
采用实施例9中的工艺,当硝酸钴,硝酸锌,硝酸铁的物质的量之比为0.5:0.5:2。其组成、相结构和形貌分别如图23,图24和图25-26所示,EDX能谱分析表明产物由Co, Zn, Fe, O四种元素组成,Co, Zn, Fe的原子数之比为8.96:16.46:14.79;XRD相结构分析显示产物为Fe2ZnO4(PDF卡片:65-3111),ZnO(PDF卡片:65-3411)和ZnCo2O4(PDF卡片:23-1390)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。
实施例12:
采用实施例9中的工艺,当麦芽糖为结构指示剂,硝酸钴和硝酸铁的物质的量之比为1:2。其形貌、组成、和相结构分别如图27,图28和图29-30所示,EDX能谱分析表明产物由Co, Fe, O三种元素组成,Co, Fe的原子数之比为26.36:18.10;XRD相结构分析显示产物为CoFe2O4(PDF卡片:03-0864)和Co3O4(PDF卡片:65-3103)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。
实施例13:
采用实施例9中的工艺,当采用葡萄糖与蔗糖按1:1物质的量之比的混合物为结构指示剂,硝酸镍和硝酸铁的物质的量之比为1:2。其形貌、组成、和相结构分别如图31,图32和图33-34所示,EDX能谱分析表明产物由Ni, Fe, O三种元素组成,Ni, Fe的原子数之比为22.00:19.89;XRD相结构分析显示产物为NiFe2O4(PDF卡片:10-0325)和NiO(PDF卡片:47-1049)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。
实施例14:
采用实施例9中的工艺,当硝酸钴,硝酸镍,硝酸铁的物质的量之比为0.5:0.5:2。其组成、相结构和形貌分别如图35、图36和图37-38所示,EDX能谱分析表明产物由Co, Ni, Fe, O四种元素组成,Co, Ni, Fe的原子数之比为11.73:11.97:18.28;XRD相结构分析显示产物为CoFe2O4(PDF卡片:22-1086),Co1.29Ni1.71O4(PDF卡片:40-1191)和NiFe2O4(PDF卡片:10-0325)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。
实施例15:
采用实施例9中的工艺,当硝酸镍,硝酸锌,硝酸铁的物质的量之比为0.5:0.5:2。其组成、相结构和形貌分别如图39,图40和图41-42所示,EDX能谱分析表明产物由Ni, Zn, Fe, O四种元素组成,Ni, Zn, Fe的原子数之比为13.45:12.39:25.06;XRD相结构分析显示产物为NiO(PDF卡片:44-1159)和ZnFe2O4(PDF卡片:65-3111)的复合物,形貌SEM观察可见,产物为大量纳米颗粒组装而成的海绵状多孔多面体结构。

Claims (6)

1. 一种海绵状多孔复合氧化物纳微多面体的制备方法,其特征是采用糖作结构指示剂和还原剂引导氧化-结晶反应和热处理工艺,具体是:以水为溶剂,金属的硝酸盐为原料和氧化剂,糖为结构指示剂和还原剂,引导氧化和结晶浓缩反应,糖与金属的硝酸盐的物质的量之比为0.5-6,所述的硝酸盐采用硝酸铁,或者采用硝酸铁与硝酸钴、硝酸镍、硝酸锰、硝酸锌、硝酸钡的一种或多种的混合物;然后在常压、50-95 ℃下经搅拌氧化反应得到黄绿色沉淀物,再进一步蒸发浓缩,最后洗涤、过滤得到黄绿色的纳微多面体状前驱物,随后将该前驱物在300-900 ℃、时间0.5-5 h进行热处理,得到所述海绵状多孔复合氧化物纳微多面体。
2.如权利要求1所述的海绵状多孔复合氧化物纳微多面体的制备方法,其特征在于所述的糖采用葡萄糖、麦芽糖、蔗糖中的一种或多种的混合物。
3.如权利要求1所述的海绵状多孔复合氧化物纳微多面体的制备方法,其特征在于所述的热处理采用空气、氮气和氩气中的一种。
4.如权利要求1所述的海绵状多孔复合氧化物纳微多面体的制备方法,其特征在于所制备的海绵状多孔复合氧化物纳微多面体,其是由铁,或铁与钴、镍、锰、锌、钡中的一种或几种金属元素组成的复合氧化物。
5.如权利要求1所述的海绵状多孔复合氧化物纳微多面体的制备方法,其特征在于所述的海绵状多孔复合氧化物纳微多面体,其由多个纳米粒子或棒组装而成比表面积、尺寸、形貌可调的物质。
6.如权利要求5所述的海绵状多孔复合氧化物纳微多面体的制备方法,其特征在于所述的海绵状多孔复合氧化物纳微多面体,其边长在0.5-5 μm,长径比1-5,比表面积2.83-135.5 m2/g和分级介孔模式,晶粒尺寸为5-80 nm。
CN201210181327.4A 2012-06-05 2012-06-05 一组海绵状多孔复合氧化物纳微多面体的制备方法 Expired - Fee Related CN102730770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210181327.4A CN102730770B (zh) 2012-06-05 2012-06-05 一组海绵状多孔复合氧化物纳微多面体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210181327.4A CN102730770B (zh) 2012-06-05 2012-06-05 一组海绵状多孔复合氧化物纳微多面体的制备方法

Publications (2)

Publication Number Publication Date
CN102730770A CN102730770A (zh) 2012-10-17
CN102730770B true CN102730770B (zh) 2014-09-03

Family

ID=46987176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210181327.4A Expired - Fee Related CN102730770B (zh) 2012-06-05 2012-06-05 一组海绵状多孔复合氧化物纳微多面体的制备方法

Country Status (1)

Country Link
CN (1) CN102730770B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610940A (zh) * 2017-09-20 2018-01-19 安阳师范学院 空心多面体四氧化三钴‑二氧化铈复合氧化物材料及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910688B (zh) * 2012-11-21 2014-05-07 绥化学院 一种高比表面积纳米铝酸镍电极材料的制备方法
CN104538145B (zh) * 2014-12-08 2017-02-22 浙江师范大学 一种多尺度、均一、单分散磁性微球及其制备方法
CN104437501B (zh) * 2014-12-08 2018-08-07 浙江师范大学 一种钴基催化剂及其制备方法与应用
CN109928432B (zh) * 2017-12-15 2021-08-06 中国石油化工股份有限公司 大孔氧化铁及其合成工艺方法
CN109928431B (zh) * 2017-12-15 2021-08-06 中国石油化工股份有限公司 一种氧化铁及其合成方法
CN109928429B (zh) * 2017-12-15 2021-08-06 中国石油化工股份有限公司 大孔氧化铁及其制备方法
CN109928430B (zh) * 2017-12-15 2021-08-06 中国石油化工股份有限公司 一种氧化铁及其制备工艺方法
JP7454425B2 (ja) * 2019-05-24 2024-03-22 日鉄鉱業株式会社 コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062999A1 (en) * 2004-03-19 2006-03-23 Hitachi Maxell, Ltd. Composite particles
CN101734726A (zh) * 2009-12-15 2010-06-16 浙江师范大学 海胆状羟基氧化铁与海胆状氧化铁纳米材料的制备方法
CN101786171A (zh) * 2010-01-22 2010-07-28 浙江师范大学 八面体镍纳微材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062999A1 (en) * 2004-03-19 2006-03-23 Hitachi Maxell, Ltd. Composite particles
CN101734726A (zh) * 2009-12-15 2010-06-16 浙江师范大学 海胆状羟基氧化铁与海胆状氧化铁纳米材料的制备方法
CN101786171A (zh) * 2010-01-22 2010-07-28 浙江师范大学 八面体镍纳微材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610940A (zh) * 2017-09-20 2018-01-19 安阳师范学院 空心多面体四氧化三钴‑二氧化铈复合氧化物材料及其制备方法和应用

Also Published As

Publication number Publication date
CN102730770A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
CN102730770B (zh) 一组海绵状多孔复合氧化物纳微多面体的制备方法
Qin et al. Zinc ferrite composite material with controllable morphology and its applications
Matinise et al. Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications
Saliba et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives
Zhang et al. Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites
Dubey et al. Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity
Ramachandran et al. Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator
Pal et al. Hierarchically order porous lotus shaped nano-structured MnO 2 through MnCO 3: chelate mediated growth and shape dependent improved catalytic activity
CN103785859B (zh) 一种纳米介孔材料的制备方法
CN107970944B (zh) 一种复合钼酸盐空心微球的制备方法及其应用
CN103413921B (zh) 尖晶石型磁性铁氧体/二硫化钼纳米复合材料及其制备方法和应用
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
Fu et al. Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction
CN102745675A (zh) 一种尖晶石型磁性MFe2O4/石墨烯复合材料的制备方法
CN111545192A (zh) 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
Dargahi et al. Microemulsion-mediated preparation of Ce 2 (MoO 4) 3 nanoparticles for photocatalytic degradation of crystal violet in aqueous solution
Pezeshkpour et al. Synthesis and characterization of nanocrystalline NiO-GDC via sodium alginate-mediated ionic sol-gel method
Ren et al. Novel NiO nanodisks and hollow nanodisks derived from Ni (OH) 2 nanostructures and their catalytic performance in epoxidation of styrene
CN103950969A (zh) 一种多级多孔金属氧化物纳米材料的制备方法
Salavati-Niasari et al. Controlled synthesis of spherical α-Ni (OH) 2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO
Li et al. Synthesis of octahedral and cubic Cu 2 O microcrystals in sub-and super-critical methanol and their photocatalytic performance
Liu et al. Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn (OH) 6 spheres
CN109734056A (zh) 金属氧化物/褶皱rGO复合纳米材料的制备方法及褶皱纳米金属氧化物的制备方法
CN103950985B (zh) 一种中空方球结构的纳米钨酸铋及其制备方法
CN102530976B (zh) 一种多级结构硼酸镁空心微球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140903

Termination date: 20150605

EXPY Termination of patent right or utility model