CN102711828B - 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体 - Google Patents

使用蛋白a亲和色谱法分离和纯化抗-il-13抗体 Download PDF

Info

Publication number
CN102711828B
CN102711828B CN201080057917.5A CN201080057917A CN102711828B CN 102711828 B CN102711828 B CN 102711828B CN 201080057917 A CN201080057917 A CN 201080057917A CN 102711828 B CN102711828 B CN 102711828B
Authority
CN
China
Prior art keywords
antibody
sample
people
protein
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080057917.5A
Other languages
English (en)
Other versions
CN102711828A (zh
Inventor
R.K.希克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Inc
Original Assignee
AbbVie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AbbVie Inc filed Critical AbbVie Inc
Priority to CN201510208066.4A priority Critical patent/CN104744560A/zh
Publication of CN102711828A publication Critical patent/CN102711828A/zh
Application granted granted Critical
Publication of CN102711828B publication Critical patent/CN102711828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39516Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum from serum, plasma
    • A61K39/39525Purification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/165Extraction; Separation; Purification by chromatography mixed-mode chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本文公开了用于分离和纯化抗-IL-13抗体的方法,其中亲和色谱步骤的使用会产生对于药用而言足够纯的抗体组合物。本文描述的方法包括pH病毒减少/灭活、超滤/渗滤、亲和色谱法(例如,蛋白A亲和色谱法)、离子交换色谱法和疏水色谱法。此外,本发明涉及包含一种或多种本发明的抗体的药物组合物。

Description

使用蛋白A亲和色谱法分离和纯化抗-IL-13抗体
相关申请的交叉引用
本申请要求2009年10月20日提交的美国临时申请系列号61/253,411的权益,该申请通过引用整体并入本文。
背景技术
人IL-13是从活化的T细胞克隆出的一种17-kDa糖蛋白,并由Th2谱系的活化T细胞、ThO和ThI CD4+ T细胞、CD8+ T细胞和几种非-T细胞群体(诸如肥大细胞)生成(Zurawski和de Vries, 1994 Immunol Today, 15, 19-26)。IL-13会促进人B细胞中的免疫球蛋白同种型转换成IgE(Punnonen, Aversa等人1993 Proc Natl Acad Sci U S A 90 3730-4),并抑制人和小鼠中的炎症性细胞因子生产(de Waal Malefyt等人, 1993, J Immunol, 151, 6370- 81; Doherty等人, 1993, J Immunol, 151, 7151-60)。IL-13会结合它的细胞表面受体IL-13Rαl和IL-13Rα2。IL-13Rαl以低亲和力(KD ~ 10nM)与IL-13相互作用,随后被IL-4R募集,以形成高亲和力(KD ~ 0.4 nM)信号传递异源二聚受体复合物(Aman等人, 1996, J Biol Chem, 271, 29265-70; Hilton等人, 1996, Proc Natl Acad Sci USA, 93, 497-501)。所述IL-4R/IL-13Rαl复合物在诸如B细胞、单核细胞/巨噬细胞、树突细胞、嗜酸性粒细胞、嗜碱性粒细胞、成纤维细胞、内皮细胞、气道上皮细胞和气道平滑肌细胞等许多细胞类型上表达(Graber等人, 1998, Eur J Immunol, 28, 4286-98; Murata等人, 1998, Int Immunol, 10, 1103-10; Akaiwa等人, 2001, Cytokine, 13, 75-84)。IL-13Rαl/IL-4R受体复合物的连接会导致多种信号转导途径的活化,包括信号传导子及转录激活子(ST AT6)和胰岛素受体底物-2(IRS-2)途径(Wang等人, 1995, Blood, 864218-27; Takeda等人, 1996, J Immunol, 157, 3220-2)。单独的IL-13Rα2链对IL-13具有高亲和力(KD ~ 0.25-0.4 nM),并起下述两种作用:负调节IL-13结合的诱饵受体(Donaldson等人, 1998, J Immunol, 161, 2317-24),和在巨噬细胞和可能的其它细胞类型中通过AP-I途径诱导TGF-β合成和纤维化的信号传递受体(Fichtner-Feigl, Strober等人2006 Nat Med 12 99-106)。
在哮喘的临床前动物模型中进行的几项研究指示,IL-13在哮喘中起重要作用。这些数据包括:IL-13敲除的小鼠对哮喘的抗性,以及IL-13拮抗剂(可溶性的IL-13受体、抗-IL-13 mAb等)在不同的小鼠模型中对哮喘表型的抑制(Wills- Karp和Chiaramonte, 2003, Curr Opin Pulm Med, 9 21-7; Wills-Karp, 2004, Immunol Rev, 202 175-90)。多项研究已经证实,重组IL-13向小鼠以及豚鼠的肺的药理学施用会诱导气道粘液分泌过多、嗜酸粒细胞增多和气道高反应性(“AHR”; Grunig等人, 1998, Science, 282, 2261-3; Wills-Karp等人, 1998, Science, 282, 2258-61; Kibe等人, 2003, Am J Respir Crit Care Med, 167, 50-6; Vargaftig和Singer, 2003, Am J Physiol Lung Cell Mol Physiol, 284, L260-9; Vargaftig和Singer, 2003, Am J Respir Cell Mol Biol, 28, 410-9)。在组成性地或诱导性地表达IL-13的转基因小鼠系统中,再现了IL-13的这些效应(Zhu等人, 1999, J Clin Invest, 103, 779-88; Zhu等人, 2001, Am J Respir Crit Care Med, 164, S67- 70; Lanone等人, 2002, J Clin Invest, 110463-74)。IL-13的慢性转基因过表达也会诱导上皮下纤维化和肺气肿。具有IL-13(和IL-4)信号传递分子STAT6缺陷的小鼠不会形成变应原诱导的AHR和粘液过度生成(Kuperman等人, 2002, Nat Med, 8, 885-9)。使用可溶性的IL-13受体融合蛋白(sIL-13Rα2Fc)的研究已经证实了该细胞因子在实验性变应原卵白蛋白(OVA)诱导的气道疾病中的关键作用(Grunig等人, 1998, Science, 282, 2261-3; Wills-Karp等人, 1998, Science, 282, 2258-61; Taube等人, 2002, J Immunol, 169, 6482-9)。还在鼠哮喘的慢性模型中,证实了抗-IL-13治疗的效力。除了表现出粘液分泌过多和AHR的特征以外,该慢性哮喘模型表现出人疾病的几种标志,所述标志在更急性模型中不存在。这些标志包括:位于上皮之间的间隙中的肺组织的嗜酸粒细胞增多以及通过胶原沉积的增加测得的平滑肌纤维化。通过含有OVA的气雾剂的重复激发(每周1次,持续共4周),在OVA-敏化的小鼠中诱导慢性哮喘模型。为最后2周的OVA激发(从第36天开始,在研究的第53天评估效力读出)施用的抗-IL-13抗体显著抑制了AHR、肺炎、杯形细胞增生、粘液分泌过多和气道纤维化(Yang等人, 2005, J Pharmacol Exp Ther, 313, 8-15)。IL-13涉入人哮喘的发病机制中,因为在哮喘患者的肺中已经检测到高水平的IL-13 mRNA和蛋白,这与该疾病的严重性相关联(Huang等人, 1995, J Immunol, 155, 2688-94)。另外,已经鉴别了人IL-3遗传多态性(它们导致升高的IL-13水平),并与哮喘和特应性相关联(Heinzmann等人, 2000, Hum Mol Genet, 9, 549-59; Hoerauf等人, 2002, Microbes Infect, 4, 37-42; Vercelli, 2002, Curr Opin Allergy Clin Immunol, 2, 389-93; Heinzmann等人, 2003, J Allergy Clin Immunol, 112, 735-9; Chen等人, 2004, J Allergy Clin Immunol, 114, 553-60; Vladich等人, 2005, J Clin Invest, 115, 747-54),并且已经在哮喘患者的肺中检测到升高的IL-13水平(Huang等人, 1995, J Immunol, 155, 2688-94; Arima等人, 2002, J Allergy Clin Immunol, 109, 980-7; Berry等人, 2004, J Allergy Clin Immunol, 114, 1106-9)。还已经证实了IL-13和哮喘之间的遗传联系,因为具有IL-13基因的多态性(这造成更高的血浆IL-13水平)的个体具有增加的特应性和哮喘的风险(Wills-Karp, 2000, Respir Res, 1, 19-23)。
由于人IL-13在多种人病症中的作用,已设计治疗策略以抑制或抵消IL-13活性。具体地,已寻求与IL-13结合且中和IL-13的抗体作为抑制IL-13活性的方法。但是,本领域需要改良的用于生产和纯化这种用于药用的抗体的方法。本发明解决了这个需要。
发明内容
在某些实施方案中,本发明涉及与IL-13结合的纯化、分离的抗体和抗体片段,以及包括这样的抗体和片段的药物组合物。在某些实施方案中,本发明涉及与人IL-13结合的分离的抗体或其抗原结合部分。本发明的分离的抗-IL-13抗体可以用于临床情况以及研究和开发中。在某些实施方案中,本发明涉及包括在图1中鉴定的重链和轻链序列的抗-IL-13抗体。
本发明的某些实施方案涉及从样品基质中纯化抗-IL-13抗体或其抗原结合部分、以使所述抗体基本上不含有宿主细胞蛋白(“HCP”)和漏掉的蛋白A的方法。在某些方面,样品基质(或简称“样品”)包括用于产生本发明的抗-IL-13抗体的细胞系。在具体方面,样品包括用于生产人抗-IL-13抗体的细胞系。
在某些实施方案中,本发明提供了纯化IL-13抗体的方法,其包括初步回收步骤,以尤其去除细胞和细胞碎片。在上述方法的某些实施方案中,初步回收步骤包括一个或多个离心或深度过滤(depth filtration)步骤。例如,并且非限制性地,这样的离心步骤可以以约7000 x g至约11,000 x g执行。此外,上述方法的某些实施方案将包括深度过滤步骤,例如去脂质(delipid)深度过滤步骤。
在某些实施方案中,对初步回收的样品实施亲和色谱步骤。所述亲和色谱步骤包括:将初步回收的样品上柱,所述柱包括合适的亲和色谱载体(chromatographic support)。这样的色谱载体的非限制性实例包括,但不限于:蛋白A树脂、蛋白G树脂、包括产生的目标抗体所针对的抗原的亲和载体以及包括Fc结合蛋白的亲和载体。蛋白A树脂可用于抗体(IgG)的亲和纯化和分离。在一个方面,在样品加载之前,用合适的缓冲液平衡蛋白A柱。合适的缓冲液的一个实例是Tris/NaCl缓冲液(pH约7.2)。在该平衡以后,可以将样品加载到柱上。在加载柱以后,可以使用例如平衡缓冲液,洗涤柱一次或多次。在洗脱柱之前,可以使用其它洗涤,包括采用不同缓冲液的洗涤。然后可以使用适当的洗脱缓冲液,洗脱蛋白A柱。合适的洗脱缓冲液的一个实例是醋酸/NaCl缓冲液(pH约3.5)。使用本领域技术人员众所周知的技术,可以监测洗脱液。例如,可以跟踪在OD280的吸光度。然后可以制备洗脱的目标级分,用于进一步处理。
在本发明的某些实施方案中,在蛋白A亲和色谱法之后进行低pH调节步骤。在这样的实施方案中,对包含假定的抗-IL-13抗体或其抗原结合部分的蛋白A洗脱液进行pH调节,达到约3至约4的pH。在某些方面,将pH调节至约3.5。除了别的以外,所述低pH会促进可能污染样品的pH-敏感的病毒的减少和/或灭活。在合适的时间段以后,将pH调节至约4.5至约6.0之间,包括、但不限于约5.0,并对样品进行其它纯化步骤。
在某些实施方案中,在蛋白A亲和色谱法或低pH调节步骤以后,进行离子交换步骤。该离子交换步骤可以是阳离子或阴离子交换或两者的序贯组合。该步骤可以是单个离子交换操作,或可以包括多个离子交换步骤,例如阳离子交换步骤之后为阴离子交换步骤,或反之亦然。在一个方面,离子交换步骤涉及单步操作。在另一个方面,离子交换步骤涉及两步离子交换过程。合适的阳离子交换柱是其固定相包括阴离子基团的柱。这样的柱的一个实例是Fractogel™ SO3 -。该离子交换捕获色谱步骤会促进从样品中分离抗体。合适的阴离子交换柱是其固定相包括阳离子基团的柱。这样的柱的一个实例是Q Sepharose™柱。一个替代方案是Pall Mustang Q膜筒。一个或多个离子交换步骤通过减少杂质进一步分离抗体,所述杂质如宿主细胞蛋白和DNA以及在可适用时的亲和基质蛋白。该阴离子交换操作是色谱的流通(flow through)模式,其中目标抗体不与阴离子交换树脂(或固相)相互作用或结合。然而,许多杂质的确与阴离子交换树脂相互作用且结合。在一个具体方面,所述离子交换步骤是阴离子交换色谱法。
通过调节样品缓冲液的pH和离子强度,为离子交换色谱法制备亲和色谱洗脱液。例如,可以在1 M Tris缓冲液中调节亲和洗脱液至约4.5至约8.5的pH。在将样品(亲和洗脱液)加载上离子交换柱之前,可以使用合适的缓冲液平衡该柱。合适的缓冲液的一个实例是Tris/NaCl缓冲液,其具有约4.5至约8的pH。在平衡以后,可以给该柱加载亲和洗脱液。在加载以后,可以用合适的缓冲液洗涤该柱一次或多次。合适的缓冲液的一个实例是平衡缓冲液本身。例如,随着吸光度(OD280)升高至超过约0.2 AU,流通收集可以开始。
在某些实施方案中,在初步回收以后,或在其它方面在没有亲和色谱步骤存在下,执行第一个和第二个离子交换步骤。在特定这样的实施方案中,对离子交换样品实施中间过滤步骤,这是在第一个离子交换步骤之前,在2个离子交换步骤之间,或两者。在某些方面,该过滤步骤包括捕获超滤/渗滤(“UF/DF”)。除了别的以外, 这样的过滤会促进抗-IL-13抗体及其抗原结合部分的浓缩和缓冲液更换。
本发明的某些实施方案提供了包括一个或多个疏水相互作用色谱(“HIC”)步骤的方法。合适的HIC柱是其固定相包括疏水基团的那种。这样的柱的非限制性实例是Phenyl HP Sepharose™柱。在特定情况下,抗-IL-13抗体在分离/纯化过程期间将形成聚集体。一个或多个HIC步骤的包括,会促进这样的聚集的减少或消除。HIC还帮助去除杂质。在某些实施方案中,HIC步骤采用高盐缓冲液,以促进抗-IL-13抗体(或其聚集)与疏水柱的相互作用。抗-IL-13抗体随后可以使用更低浓度的盐进行洗脱。
在某些实施方案中,使用病毒去除滤器过滤HIC洗脱液,例如、但不限于Ultipor DV50™滤器(Pall Corporation,East Hills,N.Y.)。可替代滤器例如Viresolve™滤器(Millipore,Billerica,Mass.);Zeta Plus VR™滤器(CUNO;Meriden,Conn.);和Planova™滤器(Asahi Kasei Pharma,Planova Division,Buffalo Grove,Ill.),也可以在这样的实施方案中使用。
在某些实施方案中,本发明涉及一种或多种药物组合物,其包括分离的抗-IL-13抗体或其抗原结合部分和可接受载体。在一个方面,所述组合物另外包括除抗-IL-13抗体外的一种或多种抗体或其抗原结合部分。在另一个方面,所述组合物另外包括一种或多种药剂。
使用本领域技术人员众所周知的方法,例如,尺寸排阻色谱法、Poros™ A HPLC试验、HCP ELISA、蛋白A ELISA和蛋白印迹分析,可以分析得到的样品产物中的目标抗体的纯度。
附图说明
图1公开了抗-IL-13抗体的非限制性实例的重链和轻链可变区序列。
图2公开了一个示例性的细胞培养过程流程图,包括设定点、过程控制测试和动作限度。
图3公开了替代细胞培养过程流程策略的对比。
图4公开了一个初步回收捕获色谱过程流程图,包括设定点、过程控制测试和动作限度。
图5公开了替代初步回收和捕获流程策略的对比。
图6公开了一个精制纯化过程流程图,包括设定点、过程控制测试和动作限度。
图7公开了替代精制纯化流程策略的对比。
具体实施方式
本发明涉及与IL-13结合的抗体。在一个方面,本发明涉及与人IL-13结合的分离的抗体或其抗原结合部分。本发明的分离的抗-IL-13抗体可以用于临床情况以及研究和开发中。本发明还涉及用于纯化抗-IL-13抗体或其抗原结合部分的方法。可以在本发明的背景下纯化的合适抗-IL-13抗体公开于PCT申请号PCT/US2007/019660(其通过引用整体并入本文)中,包括:随后被鉴定为ABT-308的抗体。示例性的抗-IL-13抗体的重链和轻链序列显示在图1中。本发明还涉及药物组合物,其包括本文描述的抗-IL-13抗体或其抗原结合部分。
为了清楚起见,且非限制性地,该详述分成下述子部分:
1. 定义;
2. 抗体制备;
3. 抗体生产;
4. 抗体纯化;
5. 测定样品纯度的方法;
6. 进一步修饰;
7. 药物组合物;和
8. 抗体用途。
1. 定义
为了本发明可以更容易理解,首先定义了特定术语。
术语“抗体”包括免疫球蛋白分子,其包含通过二硫键互连的4条多肽链——2条重(H)链和2条轻(L)链。每条重链包括重链可变区(本文缩写为HCVR或VH)和重链恒定区(CH)。重链恒定区包括3个结构域——CH1、CH2和CH3。每条轻链包括轻链可变区(本文缩写为LCVR或VL)和轻链恒定区。轻链恒定区包括一个结构域——CL。VH和VL区可以进一步再分成称为互补性决定区(CDR)的高变区,由称为构架区(FR)的更保守区域点缀。每个VH和VL由3个CDR和4个FRs组成,从氨基末端到羧基末端以下述次序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。
术语抗体的“抗原结合部分”(或“抗体部分”)包括抗体的片段,其保留与抗原(例如,hIL-13)特异性结合的能力。已显示抗体的抗原结合功能可以通过全长抗体的片段执行。在术语抗体的“抗原结合部分”内包含的结合片段实例包括(i)Fab片段,包括VL、VH、CL和CH1结构域的单价片段;(ii)F(ab')2片段,包括在铰链区通过二硫键连接的2个Fab片段的二价片段;(iii)包括VH和CH1结构域的Fd片段;(iv)包括抗体单臂的VL和VH结构域的Fv片段,(v)包括VH结构域的dAb片段(Ward等人,(1989)Nature 341:544-546,其完整教导通过引用并入本文);和(vi)分离的互补性决定区(CDR)。此外,尽管Fv片段的2个结构域VL和VH由分开的基因编码,但它们可以使用重组法通过合成接头进行连接,所述合成接头使得它们能够制备为单条蛋白链,其中VL和VH区配对以形成单价分子(称为单链Fv(scFv);参见例如,Bird等人(1988)Science 242:423-426;和Huston等人(1988)Proc. Natl. Acad. Sci. USA 85:5879-5883,其完整教导通过引用并入本文)。这样的单链抗体也意欲包含在术语抗体的“抗原结合部分”内。还包含其它形式的单链抗体,例如双体。双体是二价、双特异性抗体,其中VH和VL结构域在单条多肽链上表达,但使用太短而不允许相同链上的2个结构域之间配对的接头,从而迫使结构域与另一条链的互补结构域配对,并且产生2个抗原结合部位(参见例如,Holliger,P.,等人(1993)Proc. Natl. Acad. Sci. USA 90:6444-6448;Poljak,R. J.,等人(1994)Structure 2:1121-1123,其完整教导通过引用并入本文)。再进一步地,抗体或其抗原结合部分可以是通过抗体或抗体部分与一种或多种其它蛋白或肽的共价或非共价结合形成的较大免疫粘附分子的部分。这样的免疫粘附分子的实例包括使用抗生蛋白链菌素核心区,以制备四聚scFv分子(Kipriyanov,S. M.,等人(1995)Human Antibodies and Hybridomas 6:93-101,其完整教导通过引用并入本文),以及使用半胱氨酸残基、标记肽和C末端多组氨酸标签,以制备二价和生物素化的scFv分子(Kipriyanov,S. M.,等人(1994)Mol. Immunol. 31:1047-1058,其完整教导通过引用并入本文)。抗体部分例如Fab和F(ab')2片段可以使用常规技术由完整抗体制备,例如完整抗体分别地用木瓜蛋白酶或胃蛋白酶消化。此外,抗体、抗体部分和免疫粘附分子可以使用标准重组DNA技术获得,如本文描述的。在一个方面,抗原结合部分是完整结构域或完整结构域对。
本文使用的短语“人白介素13”(在本文中缩写为hIL-13或IL-13)表示从活化的T细胞克隆出的一种17-kDa糖蛋白(Zurawski和de Vries, 1994 Immunol Today 15 19-26),并由Th2谱系的活化T细胞生成。ThO和ThI CD4+ T细胞、CD8+ T细胞和几种非-T细胞群体(诸如肥大细胞)也生产IL-13(Zurawski和de Vries, 1994 Immunol Today 15 19-26)。IL-13功能包括:促进人B细胞中的免疫球蛋白同种型转换成IgE(Punnonen, Aversa等人1993 Proc Natl Acad Sci U S A 90 3730-4),和抑制人和小鼠中的炎症性细胞因子生产(de Waal等人, 1993 J Immunol 151 6370- 81; Doherty等人, 1993 J Immunol 151 7151-60)。IL-13会结合被鉴定为IL-13Rαl和IL-13Rα2的细胞表面受体。IL-13Rαl以低亲和力(KD ~ 10nM)与IL-13相互作用,随后被IL-4R募集,以形成高亲和力(KD ~ 0.4 nM)信号传递异源二聚受体复合物(Aman等人, 1996 J Biol Chem 271 29265-70; Hilton等人, 1996 Proc Natl Acad Sci U S A 93 497-501)。所述IL-4R/IL-13Rαl复合物在诸如B细胞、单核细胞/巨噬细胞、树突细胞、嗜酸性粒细胞、嗜碱性粒细胞、成纤维细胞、内皮细胞、气道上皮细胞和气道平滑肌细胞等许多细胞类型上表达(Graber等人, 1998, Eur J Immunol, 28, 4286-98; Murata等人, 1998, Int Immunol, 10, 1103-10; Akaiwa等人, 2001, Cytokine, 13, 75-84)。IL-13Rαl/IL-4R受体复合物的连接会导致多种信号转导途径的活化,包括信号传导子及转录激活子(ST AT6)和胰岛素受体底物-2(IRS-2)途径(Wang等人, 1995, Blood, 864218-27; Takeda等人, 1996, J Immunol, 157, 3220-2)。单独的IL-13Rα2链对IL-13具有高亲和力(KD ~ 0.25-0.4 nM),并起下述两种作用:负调节IL-13结合的诱饵受体(Donaldson等人, 1998, J Immunol, 161, 2317-24),和在巨噬细胞和可能的其它细胞类型中通过AP-I途径诱导TGF-β合成和纤维化的信号传递受体(Fichtner-Feigl, Strober等人2006 Nat Med 12 99-106)。编码IL-13的核酸可作为GenBank登记号NM_002188获得,并且多肽序列可作为GenBank登记号NP_002179获得。术语人IL-13意欲包括重组人IL-13(rh IL-13),这可以通过标准重组表达方法进行制备。
术语“Kabat编号”、“Kabat定义”和“Kabat标记”在本文中可互换使用。本领域公认的这些术语指编号氨基酸残基的系统,所述氨基酸残基比抗体或其抗原结合部分的重链和轻链可变区中的其它氨基酸残基更可变(即高变)(Kabat等人(1971)Ann. NY Acad,Sci. 190:382-391和Kabat,E. A.,等人(1991)Sequences of Proteins of Immunological Interest,第5版,U.S. Department of Health and Human Services,NIH公开号91-3242,其完整教导通过引用并入本文)。对于重链可变区,高变区范围为关于CDR1的氨基酸位置31 - 35、关于CDR2的氨基酸位置50-65、和关于CDR3的氨基酸位置95-102。对于轻链可变区,高变区范围为关于CDR1的氨基酸位置24 - 34、关于CDR2的氨基酸位置50-56、和关于CDR3的氨基酸位置89-97。
术语“人抗体”包括具有与人种系免疫球蛋白序列对应的可变和恒定区的抗体,如由Kabat等人描述的(参见Kabat,等人(1991)Sequences of proteins of Immunological Interest,第5版,U.S. Department of Health and Human Services,NIH公开号91-3242)。本发明的人抗体可以包括例如在CDR且特别是CDR3中不由人种系免疫球蛋白序列编码的氨基酸残基(例如,通过体外随机或位点专一诱变或通过体内体细胞突变引入的突变)。突变可以使用“选择性诱变方法”引入。人抗体可以具有由氨基酸残基替换的至少一个位置,所述氨基酸残基例如不由人种系免疫球蛋白序列编码的活性增强氨基酸残基。人抗体可以具有由并非人种系免疫球蛋白序列的部分的氨基酸残基替换的最高达20个位置。在其它实施方案中,替换最高达10个、最高达5个、最高达3个或最高达2个位置。在一个实施方案中,这些替换在CDR区内。然而,本文使用的术语“人抗体”不意欲包括这样的抗体,其中衍生自另一个哺乳动物物种例如小鼠种系的CDR序列已嫁接到人构架序列上。
短语“选择性诱变方法”包括改善抗体活性的方法,其通过选择且个别突变在至少一个适当的选择性诱变位置、高变和/或接触位置的CDR氨基酸来实现。“选择性突变的”人抗体是包括在使用选择性诱变方法选择的位置上的突变的抗体。在另一个方面,选择性诱变方法意欲提供优先突变所选择的个别氨基酸残基的方法,所述氨基酸残基在抗体重链可变区的CDR1、CDR2或CDR3(下文分别为H1、H2和H3),或轻链可变区的CDR1、CDR2或CDR3(下文分别为L1、L2和L3)中。氨基酸残基可以选自选择性诱变位置、接触位置或高变位置。个别氨基酸基于其在轻或重链可变区中的位置进行选择。应当理解高变位置还可以是接触位置。在一个方面,选择性诱变方法是“靶向的方法”。语言“靶向的方法”意欲包括以靶向的方式例如“逐组(Group-wise)靶向的方法”或“逐CDR(CDR-wise)靶向的方法”,突变抗体重链可变区的CDR1、CDR2或CDR3或轻链可变区的CDR1、CDR2或CDR3中所选的个别氨基酸残基的方法。在“逐组靶向的方法”中,特定组中的个别氨基酸残基被靶向用于选择性突变,包括组I(包括L3和H3)、II(包括H2和L1)和III(包括L2和H1),所述组以用于靶向的优先次序列出。在“逐CDR靶向的方法”中,特定CDR中的个别氨基酸残基被靶向用于选择性突变,其中用于靶向的优先次序如下:H3、L3、H2、L1、H1和L2。所选择的氨基酸残基例如突变为至少2个其它氨基酸残基,并且测定突变对抗体活性的作用。活性测量为抗体结合特异性/亲和力,和/或抗体中和能力中的改变。应当理解选择性诱变方法可以用于最优化衍生自任何来源的任何抗体,所述任何来源包括噬菌体展示、具有人IgG种系基因的转基因动物、从人B细胞中分离的人抗体。选择性诱变方法可以在不可使用噬菌体展示技术进一步最优化的抗体上使用。应当理解可以在选择性诱变方法前或后对来自任何来源的抗体实施回复突变,所述任何来源包括噬菌体展示、具有人IgG种系基因的转基因动物、从人B细胞中分离的人抗体。
短语“重组人抗体”包括通过重组方法制备、表达、产生或分离的人抗体,例如使用转染到宿主细胞内的重组表达载体表达的抗体,从重组、组合人抗体文库中分离的抗体,从对于人免疫球蛋白基因是转基因的动物(例如小鼠)中分离的抗体(参见例如,Taylor,L. D.,等人(1992)Nucl. Acids Res. 20:6287-6295,其完整教导通过引用并入本文),或通过任何其它方法制备、表达、产生或分离的抗体,所述任何其它方法涉及人免疫球蛋白基因序列与其它DNA序列的剪接。这样的重组人抗体具有衍生自人种系免疫球蛋白序列的可变和恒定区(参见,Kabat,E. A. 等人(1991)Sequences of Proteins of Immunological Interest,第5版,U.S. Department of Health and Human Services,NIH公开号91-3242)。然而,在某些实施方案中,对这样的重组人抗体实施体外诱变(或当使用对于人Ig序列是转基因的动物时,体内体细胞诱变),并且因此重组抗体的VH和VL区的氨基酸序列是这样的序列,其虽然衍生自且涉及人种系VH和VL序列,但可能不天然存在于体内人抗体种系谱(repertoire)内。然而,在某些实施方案中,这样的重组抗体是选择性诱变方法或回复突变或两者的结果。
“分离的抗体”包括基本上不含具有不同抗原特异性的其它抗体的抗体(例如,与hIL-13特异性结合的分离的抗体基本上不含特异性结合除hIL-13外的抗原的抗体)。特异性结合hIL-13的分离的抗体可以结合来自其它物种的IL-13分子。此外,分离的抗体可以基本上不含其它细胞材料和/或化学试剂。
“中和抗体”(或“中和hIL-13活性的抗体”)包括其与hIL-13的结合导致hIL-13的生物学活性的抑制的抗体。通过测量hIL-13生物学活性的一种或多种指标,可以评估hIL-13的生物学活性的这种抑制。通过本领域已知的几种标准体外或体内测定中的一种或多种,可以评估hIL-13生物学活性的这些指标。
术语“活性”包括这样的活性,例如抗体对于抗原的结合特异性/亲和力,例如与IL-13抗原结合的抗-hIL-13抗体,和/或抗体的中和能力,例如其与hIL-13的结合抑制hIL-13的生物学活性的抗-hIL-13抗体。
短语“表面等离子体共振”包括允许通过检测在生物传感器基质内的蛋白浓度中的改变分析实时生物特异性相互作用的光学现象,例如使用BIAcore系统(Pharmacia Biosensor AB,Uppsala,瑞典和Piscataway,N.J.)。关于进一步描述,参见Jonsson,U.,等人(1993)Ann. Biol. Clin. 51:19-26;Jonsson,U.,等人(1991)Biotechniques 11:620-627;Johnsson,B.,等人(1995)J. Mol. Recognit. 8:125-131;和Johnnson,B.,等人(1991)Anal. Biochem. 198:268-277,其完整教导引入本文。
本文使用的术语“Koff”意指抗体从抗体/抗原复合物中解离的解离速率常数。
本文使用的术语“Kd”意指特定抗体-抗原相互作用的解离常数。
短语“核酸分子”包括DNA分子和RNA分子。核酸分子可以是单链或双链的,但在一个方面,是双链DNA。
本文提及编码抗体或抗体部分(例如,VH、VL、CDR3)(例如结合hIL-13的那些)的核酸所使用的短语“分离的核酸分子”包括这样的核酸分子,其中编码抗体或抗体部分的核苷酸序列不含编码结合除hIL-13外的抗原的抗体或抗体部分的其它核苷酸序列,所述其它序列可以在人基因组DNA中天然位于所述核酸侧面。因此,例如,编码抗-hIL-13抗体的VH区的本发明的分离的核酸不包含编码结合除例如IL-13外的抗原的其它VH区的其它序列。短语“分离的核酸分子”还意欲包括编码二价、双特异性抗体的序列,例如其中VH和VL区不包含除双体序列外的其它序列的双体。
短语“重组宿主细胞”(或简单地“宿主细胞”)包括重组表达载体已引入其内的细胞。应当理解这样的术语不仅意指具体主题细胞还指这样的细胞的后代。因为特定修饰可以由于突变或环境影响而在随后世代中发生,所以这样的后代事实上可以不等同于亲本细胞,但仍包括在如本文使用的术语“宿主细胞”的范围内。
本文使用的术语“修饰”意指改变抗体或其抗原结合部分中的一个或多个氨基酸。改变可以通过在一个或多个位置上添加、取代或缺失氨基酸而产生。改变可以使用已知技术例如PCR诱变而产生。
本文使用的术语“约”意指大于或小于参考值约10-20%的范围。在特定情况下,本领域技术人员将认识到由于参考值的性质,术语“约”可以意指距离所述值多于或小于10-20%的偏差。
本文使用的短语“病毒减少/灭活”意指特定样品中病毒颗粒数目中的降低(“减少”),以及活性的降低(“灭活”),所述活性例如但不限于特定样品中病毒颗粒的感染性或复制能力。病毒颗粒的数目和/或活性的这种降低,可以是在约1%至约99%的量级,包括约20%至约99%,包括约30%至约99%,包括约40%至约99%,包括约50%至约99%,包括约60%至约99%,包括约70%至约99%,包括约80%至99%,和包括约90%至约99%。在特定非限制性实施方案中,那么纯化的抗体产物中的病毒量(如果存在)小于关于那种病毒的ID50(将感染50%靶群体的病毒量),它是关于那种病毒的ID50的至多1/10,或关于那种病毒的ID50的至多1/100,或关于那种病毒的ID50的至多1/1000。
短语“接触位置”包括在抗体重链可变区或轻链可变区的CDR1、CDR2或CDR3中的氨基酸位置,其由在26种已知抗体-抗原结构之一中接触抗原的氨基酸占据。如果26种已知抗体-抗原复合物解决的结构的任何一种中的CDR氨基酸接触抗原,那么那个氨基酸可以被视为占据接触位置。接触位置具有比非接触位置中由接触抗原的氨基酸占据的更高可能性。在一个方面,接触位置是包含在26种结构的超过3种(>1.5%)中接触抗原的氨基酸的CDR位置。在另一个方面,接触位置是包含在25种结构的超过8种(>32%)中接触抗原的氨基酸的CDR位置。
2. 抗体制备
如该章节中使用的,术语“抗体”指完整抗体或其抗原结合片段。
本公开内容的抗体可以通过多种技术生成,包括用目的抗原免疫接种动物随后为常规单克隆抗体方法,例如Kohler和Milstein(1975)Nature 256:495的标准体细胞杂交技术。尽管体细胞杂交程序是优选的,但原则上可以采用用于生产单克隆抗体的其它技术,例如B淋巴细胞的病毒或致癌性转化。
用于制备杂交瘤的一种动物系统是鼠系统。杂交瘤生产是非常良好确立的程序。用于分离免疫接种的脾细胞用于融合的免疫接种规程和技术是本领域已知的。融合配偶体(例如,鼠骨髓瘤细胞)和融合程序也是已知的。
抗体可以是人、嵌合或人源化抗体。本公开内容的嵌合或人源化抗体可以基于如上所述制备的非人单克隆抗体序列进行制备。编码重链和轻链免疫球蛋白的DNA可以得自目的非人杂交瘤,并且使用标准分子生物学技术工程改造为包含非鼠(例如,人)免疫球蛋白序列。例如,为了产生嵌合抗体,鼠可变区可以使用本领域已知的方法与人恒定区连接(参见例如授予Cabilly等人的美国专利号4,816,567)。为了产生人源化抗体,可以使用本领域已知的方法将鼠CDR区插入人构架内(参见例如授予Winter的美国专利号5,225,539,和授予Queen等人的美国专利号5,530,101;5,585,089;5,693,762和6,180,370)。
在一个非限制性实施方案中,本公开内容的抗体是人单克隆抗体。针对IL-13的这样的人单克隆抗体可以使用转基因或转染色体(transchromosomic)小鼠生成,所述转基因或转染色体小鼠携带人免疫系统而不是小鼠系统的部分。这些转基因和转染色体小鼠包括在本文中被称为HuMAb Mouse®(Medarex,Inc.)、KM Mouse®(Medarex,Inc.)和XenoMouse®(Amgen)的小鼠。
此外,表达人免疫球蛋白基因的可替代转染色体动物系统是本领域可获得的,并且可以用于产生本公开内容的抗体,诸如抗-IL-13抗体。例如,可以使用被称为“TC小鼠”的携带人重链转染色体和人轻链转染色体的小鼠;这样的小鼠在Tomizuka等人(2000)Proc. Natl. Acad. Sci. USA 97:722-727中描述。此外,携带人重链和轻链转染色体的牛已在本领域中得到描述(例如,Kuroiwa等人(2002)Nature Biotechnology 20:889-894和PCT申请号WO 2002/092812),并且可以用于产生本公开内容的抗-IL-13抗体。
本发明的重组人抗体,包括、但不限于抗-IL-13抗体、其抗原结合部分或本文公开的抗-IL-13相关的抗体,可以通过筛选重组组合抗体文库进行分离,例如使用由衍生自人淋巴细胞的mRNA制备的人VL和VH cDNAs制备的scFv噬菌体展示文库。用于制备且筛选这样的文库的方法是本领域已知的。除用于生成噬菌体展示文库的商购可得的试剂盒外(例如,Pharmacia Recombinant Phage Antibody System,目录号27-9400-01;和Stratagene SurfZAPTM噬菌体展示试剂盒,目录号240612,其完整教导引入本文),特别适合于在生成和筛选抗体展示文库中使用的方法和试剂的实例可以在例如下述中找到:Ladner等人美国专利号5,223,409;Kang等人PCT公开号WO 92/18619;Dower等人PCT公开号WO 91/17271;Winter等人PCT公开号WO 92/20791;Markland等人PCT公开号WO 92/15679;Breitling等人PCT公开号WO 93/01288;McCafferty等人PCT公开号WO 92/01047;Garrard等人PCT公开号WO 92/09690;Fuchs等人(1991)Bio/Technology 9:1370-1372;Hay等人(1992)Hum Antibod Hybridomas 3:81-85;Huse等人(1989)Science 246:1275-1281;McCafferty等人,Nature(1990)348:552-554;Griffiths等人(1993)EMBO J 12:725-734;Hawkins等人(1992)J Mol Biol 226:889-896;Clackson等人(1991)Nature 352:624-628;Gram等人(1992)PNAS 89:3576-3580;Garrard等人(1991)Bio/Technology 9:1373-1377;Hoogenboom等人(1991)Nuc Acid Res 19:4133-4137;和Barbas等人(1991)PNAS 88:7978-7982;其完整教导引入本文。
本公开内容的人单克隆抗体还可以使用人免疫细胞已重构到其内,从而使得人抗体应答可以在免疫接种后生成的SCID小鼠进行制备。这样的小鼠在例如授予Wilson等人的美国专利号5,476,996和5,698,767中描述。
在某些实施方案中,本发明的方法包括抗-IL-13抗体和抗体部分、抗-IL-13相关的抗体和抗体部分、以及具有与抗-IL-13抗体等价性质的人抗体和抗体部分,例如具有低解离动力学和高中和能力的与hIL-13的高亲和力结合。在一个方面,本发明提供了用分离的人抗体或其抗原结合部分的治疗,其以约1 x 10-8 M或更少的Kd和1 x 10-3 s-1或更少的Koff速率常数与hIL-13解离,两者都通过表面等离子体共振进行测定。在特定非限制性实施方案中,根据本发明纯化的抗-IL-13抗体在生理条件下竞争性抑制ABT-308与IL-13的结合。
在本发明的另一个实施方案中,可以改变抗体或其片段,诸如但不限于抗-IL-13抗体或其片段,其中修饰抗体的恒定区,以相对于未修饰抗体减少至少一种恒定区介导的生物学效应子功能。为了修饰本发明的抗体,从而使得它显示出与Fc受体减少的结合,抗体的免疫球蛋白恒定区区段可以在Fc受体(FcR)相互作用所必需的特定区域上进行突变(参见例如,Canfield和Morrison(1991)J. Exp. Med. 173:1483-1491;和Lund等人(1991)J. of Immunol. 147:2657-2662,其完整教导引入本文)。抗体的FcR结合能力中的减少还可以减少依赖于FcR相互作用的其它效应子功能,例如调理作用和吞噬作用和抗原依赖性细胞毒性。
3. 抗体生产
3.1 一般生产策略
为了表达本发明的抗体,将编码部分或全长轻和重链的DNAs插入一种或多种表达载体内,从而使得基因与转录和翻译控制序列可操作地连接。(参见例如,美国专利号6,914,128,其完整教导通过引用并入本文)。在该背景下,术语“可操作地连接”意指抗体基因这样连接到载体内,从而使得载体内的转录和翻译控制序列发挥其调节抗体基因转录和翻译的预期功能。表达载体和表达控制序列选择为与所使用的表达宿主细胞相容。抗体轻链基因和抗体重链基因可以插入分开的载体内,或更一般地,2种基因都插入到相同表达载体内。抗体基因通过标准方法插入表达载体内(例如,在抗体基因片段和载体上的互补限制位点的连接,或如果不存在限制位点,那么平端连接)。在插入抗体或抗体相关的轻或重链序列前,表达载体可以已携带抗体恒定区序列。例如,将抗-IL-13抗体或抗-IL-13抗体相关的VH和VL序列转变为全长抗体基因的一种方法是将其分别插入已编码重链恒定区和轻链恒定区的表达载体内,从而使得VH区段与载体内的一个或多个CH区段可操作地连接,并且VL区段与载体内的CL区段可操作地连接。另外或可替代地,重组表达载体可以编码促进抗体链从宿主细胞中分泌的信号肽。抗体链基因可以克隆到载体内,从而使得信号肽与抗体链基因的氨基末端符合读框地连接。信号肽可以是免疫球蛋白信号肽或异源信号肽(即,来自非免疫球蛋白蛋白的信号肽)。
除抗体链基因外,本发明的重组表达载体可以携带一种或多种调节序列,其控制抗体链基因在宿主细胞中的表达。术语“调节序列”意欲包括控制抗体链基因转录或翻译的启动子、增强子和其它表达控制元件(例如,多腺苷酸化信号)。这样的调节序列例如在Goeddel;Gene Expression Technology Methods in Enzymology 185,Academic Press,San Diego,CA(1990)中描述,其完整教导通过引用并入本文。本领域技术人员将认识到,表达载体的设计包括调节序列的选择可以依赖于这样的因素,如待转化的宿主细胞的选择、所需蛋白表达水平等。用于哺乳动物宿主细胞表达的合适调节序列包括指导在哺乳动物细胞中的高水平蛋白表达的病毒元件,例如衍生自巨细胞病毒(CMV)(例如CMV启动子/增强子)、猿猴病毒40(SV40)(例如SV40启动子/增强子)、腺病毒(例如腺病毒主要晚期启动子(AdMLP))和多瘤的启动子和/或增强子。关于病毒调节元件及其序列的进一步描述,参见例如,Stinski的美国专利号5,168,062、Bell等人的美国专利号4,510,245、和Schaffner等人的美国专利号4,968,615,其完整教导通过引用并入本文。
除抗体链基因和调节序列外,本发明的重组表达载体还可以携带一种或多种另外序列,例如调节载体在宿主细胞中的复制的序列(例如复制起点)和/或选择标记基因。选择标记基因促进载体已引入其内的宿主细胞的选择(参见例如,全部为Axel等人的美国专利号4,399,216、4,634,665和5,179,017,其完整教导通过引用并入本文)。例如,通常,选择标记基因对载体已引入其内的宿主细胞赋予针对药物的抗性,所述药物例如G418、潮霉素或甲氨蝶呤。合适的选择标记基因包括二氢叶酸还原酶(DHFR)基因(用于与甲氨蝶呤选择/扩增一起在dhfr-宿主细胞中使用)和neo基因(用于G418选择)。
本发明的抗体或抗体部分可以通过免疫球蛋白轻和重链基因在宿主细胞中的重组表达进行制备。为了重组表达抗体,用携带编码抗体的免疫球蛋白轻和重链的DNA片段的一种或多种重组表达载体转染宿主细胞,从而使得轻和重链在宿主细胞中表达且分泌到宿主细胞在其中培养的培养基内,从所述培养基中可以回收抗体。标准重组DNA方法用于获得抗体重链和轻链基因,将这些基因掺入重组表达载体内,并且将载体引入宿主细胞内,例如Sambrook,Fritsch和Maniatis(eds),Molecular Cloning A Laboratory ManualSecond Edition,Cold Spring Harbor,N.Y.,(1989),Ausubel等人(eds.)Current Protocols in Molecular Biology,Greene Publishing Associates,(1989)以及美国专利号4,816,397和6,914,128中描述的那些,其完整教导引入本文。
为了表达轻和重链,通过标准技术将编码重链和轻链的一种或多种表达载体转染到宿主细胞内。各种形式的术语“转染”意欲包含通常用于将外源DNA引入原核或真核宿主细胞内的广泛多样的技术,例如电穿孔、磷酸钙沉淀、DEAE-葡聚糖转染等。尽管理论上可能在原核或真核宿主细胞中表达本发明的抗体,但在真核细胞例如哺乳动物宿主细胞中表达抗体是合适的,因为这样的真核细胞且特别是哺乳动物细胞比原核细胞更可能装配且分泌正确折叠且免疫学活性的抗体。已报道抗体基因的原核表达对于生产高得率的活性抗体是无效的(Boss和Wood(1985)Immunology Today 6:12-13,其完整教导通过引用并入本文)。
用于在本文载体中克隆或表达DNA的合适宿主细胞是上文描述的原核生物、酵母或高等真核生物细胞。用于该目的的合适原核生物包括真细菌,例如革兰氏阴性或革兰氏阳性生物,例如肠杆菌科(Enterobacteriaceae),例如埃希氏菌属(Escherichia)例如大肠杆菌(E. coli)、肠杆菌属(Enterobacter)、欧文氏菌属(Erwinia)、克雷伯氏菌属(Klebsiella)、变形菌属(Proteus)、沙门氏菌属(Salmonella)例如鼠伤寒沙门氏菌(Salmonella typhimurium)、沙雷氏菌属(Serratia)例如粘质沙雷氏菌(Serratia marcescans)、和志贺氏菌属(Shigella)、以及杆菌(Bacilli)例如枯草芽孢杆菌(B. subtilis)和地衣芽孢杆菌(B. licheniformis)(例如于1989年4月12日公开的DD 266,710中公开的地衣芽孢杆菌41P)、假单胞菌属(Pseudomonas)例如铜绿假单胞菌(P. aeruginosa)、和链霉菌属(Streptomyces)。一种合适的大肠杆菌克隆宿主是大肠杆菌294(ATCC 31,446),尽管其它菌株例如大肠杆菌B、大肠杆菌X1776(ATCC 31,537)、和大肠杆菌W3110(ATCC 27,325)也是合适的。这些实例是举例说明性而不是限制性的。
除原核生物外,真核微生物例如丝状真菌或酵母是用于多肽编码载体的合适克隆或表达宿主。啤酒糖酵母(Saccharomyces cerevisiae)或通常的面包酵母是低等真核宿主微生物中最常用的。然而,许多其它属、物种和菌株是通常可得且在本文中有用的,例如粟酒裂殖糖酵母(Schizosaccharomyces pombe);克鲁维氏酵母属(Kluyveromyces)宿主例如乳克鲁维氏酵母(K. lactis)、脆壁克鲁维氏酵母(K. fragilis)(ATCC 12,424)、保加利亚克鲁维氏酵母(K. bulgaricus)(ATCC 16,045)、威克曼氏克鲁维氏酵母(K. wickeramii)(ATCC 24,178)、瓦尔特克鲁维氏酵母(K. waltii)(ATCC 56,500)、果蝇克鲁维氏酵母(K. drosophilarum)(ATCC 36,906)、耐热克鲁维氏酵母(K. thermotolerans)、和马克斯克鲁维氏酵母(K. marxianus);耶氏酵母属(yarrowia)(EP 402,226);巴斯德毕赤氏酵母(Pichia pastoris)(EP 183,070);假丝酵母属(Candida);里氏木霉(Trichoderma reesia)(EP 244,234);粗糙链孢霉(Neurospora crassa);许旺氏酵母属(Schwanniomyces)例如西方许旺氏酵母(Schwanniomyces occidentalis);和丝状真菌例如链孢霉属(Neurospora)、青霉属(Penicillium)、弯颈霉属(Tolypocladium)、和曲霉属(Aspergillus)宿主例如构巢曲霉(A. nidulans)和黑色曲霉(A. niger)。
用于表达糖基化抗体的合适宿主细胞衍生自多细胞生物。无脊椎动物细胞的实例包括植物和昆虫细胞。已鉴定了众多杆状病毒毒株和变体以及来自宿主的相应允许昆虫宿主细胞,例如草地夜蛾(Spodoptera frugiperda)(毛虫)、埃及伊蚊(Aedes aegypti)(蚊子)、白纹伊蚊(Aedes albopictus)(蚊子)、黑腹果蝇(Drosophila melanogaster)(果蝇)、和家蚕(Bombyx mori)。用于转染的多种病毒毒株是可公开获得的,例如苜蓿丫纹夜蛾(Autographa californica)NPV的L-1变体和家蚕NPV的Bm-5毒株,并且这样的病毒可以根据本发明在本文中用作病毒,特别是用于转染草地夜蛾细胞。棉花、玉米、马铃薯、大豆、矮牵牛、番茄和烟草的植物细胞培养物也可以用作宿主。
用于表达本发明的重组抗体的合适哺乳动物宿主细胞包括中国仓鼠卵巢(CHO细胞)(包括在Urlaub和Chasin,(1980)PNAS USA 77:4216-4220中描述的dhfr- CHO细胞,与DHFR选择标记一起使用,例如如Kaufman和Sharp(1982)Mol. Biol. 159:601-621中描述的,其完整教导通过引用并入本文)、NS0骨髓瘤细胞、COS细胞和SP2细胞。当编码抗体基因的重组表达载体引入哺乳动物宿主细胞内时,通过使宿主细胞培养足以允许抗体在宿主细胞中表达或抗体分泌到宿主细胞在其中生长的培养基内的一段时间,产生抗体。有用的哺乳动物宿主细胞系的其它实例是通过SV40转化的猴肾CV1系(COS-7,ATCC CRL 1651);人胚肾系(亚克隆用于在悬浮培养中生长的293或293细胞,Graham等人,J. Gen Virol. 36:59(1977));幼仓鼠肾细胞(BHK,ATCC CCL 10);中国仓鼠卵巢细胞/-DHFR(CHO,Urlaub等人,Proc. Natl. Acad. Sci. USA 77:4216(1980));小鼠支持细胞(sertoli cell)(TM4,Mather,Biol. Reprod. 23:243-251(1980));猴肾细胞(CV1 ATCC CCL 70);非洲绿猴肾细胞(VERO-76,ATCC CRL-1587);人子宫颈癌细胞(HELA,ATCC CCL 2);犬肾细胞(MDCK,ATCC CCL 34);水牛大鼠肝细胞(BRL 3A,ATCC CRL 1442);人肺细胞(W138,ATCC CCL 75);人肝细胞(Hep G2,HB 8065);小鼠乳房肿瘤(MMT 060562,ATCC CCL51);TRI细胞(Mather等人,Annals N.Y. Acad. Sci. 383:44-68(1982));MRC 5细胞;FS4细胞;和人肝癌系(Hep G2),其完整教导通过引用并入本文。
宿主细胞用上述表达或克隆载体转化用于抗体生产,并且在适当修饰的常规营养培养基中培养,用于诱导启动子、选择转化体、或扩增编码所需序列的基因。
用于生产抗体的宿主细胞可以在多种培养基中进行培养。商购可得的培养基例如Ham's F10™(Sigma)、Minimal Essential Medium™((MEM)、(Sigma)、RPMI-1640(Sigma)、和Dulbecco's Modified Eagle's Medium™((DMEM),Sigma)适合于培养宿主细胞。此外,Ham等人,Meth. Enz. 58:44(1979),Barnes等人,Anal. Biochem. 102:255(1980),美国专利号4,767,704;4,657,866;4,927,762;4,560,655;或5,122,469;WO 90/03430;WO 87/00195;或美国专利号Re. 30,985中描述的任何一种培养基都可以用作用于宿主细胞的培养基,其完整教导通过引用并入本文。这些培养基中的任何一种都可以根据需要补加有激素和/或其它生长因子(例如胰岛素、运铁蛋白或表皮生长因子)、盐(例如氯化钠、钙、镁和磷酸盐)、缓冲液(例如HEPES)、核苷酸(例如腺苷和胸苷)、抗生素(例如庆大霉素药物)、痕量元素(定义为通常以微摩尔范围的最终浓度存在的无机化合物)、和葡萄糖或等价能源。任何其它必需的补充物也可以以本领域技术人员已知的合适浓度包括。培养条件例如温度、pH等是先前由选择用于表达的宿主细胞使用的那些,并且对于普通技术人员将是显而易见的。
宿主细胞还可以用于产生完整抗体的部分,例如Fab片段或scFv分子。应当理解关于上述程序的变化在本发明的范围内。例如,在某些实施方案中,可能希望用编码本发明抗体的轻链或重链(但并非两者)的DNA转染宿主细胞。重组DNA技术也可以用于去除编码轻和重链中任一或两者的一些或全部DNA,其并非是对于与IL-13特别是hIL-13结合所必需的。由这样的截短的DNA分子表达的分子也由本发明的抗体包含。此外,通过经由标准化学交联方法使本发明的抗体与第二种抗体交联,可以生产双功能抗体,其中一条重链和一条轻链是本发明的抗体,并且另一条重链和轻链对于除IL-13外的抗原是特异性的。
在用于重组表达本发明的抗体或其抗原结合部分的合适系统中,通过磷酸钙介导的转染,将编码抗体重链和抗体轻链的重组表达载体引入dhfr-CHO细胞内。在重组表达载体内,抗体重链和轻链基因各自与CMV增强子/ AdMLP启动子调节元件可操作地连接,以驱动基因的高水平转录。重组表达载体还携带DHFR基因,这允许使用甲氨蝶呤选择/扩增选择已用载体转染的CHO细胞。培养所选择的转化体宿主细胞,以允许抗体重链和轻链表达,并且从培养基中回收完整抗体。标准分子生物学技术用于制备重组表达载体,转染宿主细胞,选择转化体,培养宿主细胞且从培养基中回收抗体。
当使用重组技术时,抗体可以在细胞内、在周质间隙中产生、或直接分泌到培养基内。在一个方面,如果抗体在细胞内产生,那么作为第一个步骤,可以例如通过离心或超滤去除颗粒碎片,或者宿主细胞或者裂解的细胞(例如,起因于匀浆)。当抗体分泌到培养基内时,来自这样的表达系统的上清液可以首先使用商购可得的蛋白浓缩滤器进行浓缩,例如Amicon™ 或Millipore Pellicon™ 超滤单元。
在本发明的方法前,用于从细胞碎片中纯化抗体的程序最初依赖于抗体的表达部位。一些抗体可以从细胞直接分泌到周围生长培养基内;其它在细胞内制备。对于后面一种抗体,纯化方法的第一个步骤一般涉及:使细胞裂解,这可以通过多种方法完成,包括机械剪切、渗压震扰或酶促处理。这样的破坏将细胞的完整内容物释放到匀浆内,并且另外产生由于其小尺寸难以去除的亚细胞片段。这些一般通过差速离心或通过过滤去除。当抗体被分泌时,来自这样的表达系统的上清液一般首先使用商购可得的蛋白浓缩滤器进行浓缩,例如Amicon™ 或Millipore Pellicon™ 超滤单元。当抗体被分泌到培养基内时,重组宿主细胞还可以例如通过切向流过滤与细胞培养基分离。抗体可以使用本发明的抗体纯化方法从培养基中进一步回收。
3.2. 示例性的生产策略
在某些实施方案中,抗-IL-13抗体生产的起始步骤包括:使用自旋烧瓶和Biowave袋操作,以从单个冷冻瓶繁殖表达抗-IL-13抗体的CHO细胞至希望的生物量,用于接种110 L种子生物反应器。融化原始细胞库CHO细胞的冷冻瓶,并放入生长培养基(SR-512)中,进行离心。将细胞重新悬浮于生长培养基中,并在37 ℃和5% CO2下在递增体积的一次用弃的自旋烧瓶、摇瓶和/或Biowave袋中繁殖。使用双份20 L wave袋,使最终细胞团繁殖最大化,然后接种进种子生物反应器中。当在大约15 - 17天时在2个20 L wave袋中的细胞密度达到≥2.0 x 106活细胞/mL时,将培养物转移进装有生长培养基SR-520的110 L种子生物反应器中,用于进一步繁殖。在接种以后,目标温度是37 ℃,将目标pH设定为7.1,并通过加入NaOH和CO2鼓泡进行控制。通过用空气和氧鼓泡,将生物反应器中的溶解氧(DO)控制在40%的目标值。在大约2 - 4天以后细胞密度达到≥2.6 x 106活细胞/mL后,将培养物转移进3000 L生产生物反应器中。
在某些实施方案中,使用3000 L生产生物反应器的部分填充,进一步繁殖细胞培养物。最初,给该反应器装入生长培养基(SR-520),并接种来自110 L种子生物反应器的批次。在该短填充阶段期间,将温度、溶解氧和pH分别控制在37 ℃、40%和7.1。通过CO2鼓泡和NaOH添加,控制培养pH。通常,细胞生长2 - 4天后,达到≥1.6 x 106活细胞/mL的生产阶段密度。
将生产培养基SR-521(1950 L)加给在3000 L生物反应器中的细胞培养物,以开始生产阶段。加入消泡剂C,以减少泡沫。通过开关CO2鼓泡和NaOH添加,将培养pH控制在6.9的目标值。将温度和溶解氧分别控制在35 ℃和40%的目标值。通过空气鼓泡,并根据需要补充纯氧,最初将生物反应器中的DO控制在希望的值。在某些实施方案中,当活细胞密度达到≥3.0 x 106细胞/mL时,将温度降低至33 ℃的目标值,并分别将pH和DO维持在6.9和40%的目标值,而在其它实施方案中,维持35 ℃目标值。根据需要,加入葡萄糖(SR−334)。当细胞生存下降至≤50%时,如下所述收获和纯化培养物。
4. 抗体纯化
4.1 一般抗体纯化
本发明提供了用于从混合物中生产纯化的(或“HCP减少的”)抗体制品的方法,所述混合物包括抗体和至少一种HCP。本发明也提供了这样的方法,其中最终的纯化的制品含有减少的漏掉的蛋白A。当抗体已使用上文描述的方法和本领域的常规方法生产时,本发明的纯化方法从分离步骤开始。表1概括了纯化方案的一个实施方案。设想了该方案的变化,并且在本发明的范围内,所述变化包括、但不限于这样的变化,其中蛋白A亲和色谱步骤被省略,或离子交换步骤的次序被颠倒。
表1纯化步骤与其相关目的
纯化步骤 目的
初步回收 样品基质的澄清
亲和色谱法 抗体捕获、宿主细胞蛋白和相关杂质减少
低pH温育 病毒减少/灭活
阴离子交换色谱法 抗体捕获、宿主细胞蛋白和相关杂质减少
疏水相互作用色谱法 抗体聚集体和宿主细胞蛋白的减少
病毒过滤 如果存在的话,大病毒的去除
超滤/渗滤 浓度和缓冲液更换
最后过滤 浓缩和配制抗体
一旦已获得包括抗体的澄清的溶液或混合物,就使用不同纯化技术的组合执行抗体与由细胞生产的其它蛋白例如HCP的分离,包括一个或多个离子交换分离步骤和一个或多个疏水作用分离步骤。分离步骤基于其电荷、疏水性程度或大小分离蛋白的混合物。在本发明的一个方面,分离使用色谱执行,包括阳离子、阴离子和疏水作用。几种不同的色谱树脂可用于这些技术中的每种,从而允许纯化方案准确适合于所涉及的具体蛋白。每种分离方法的本质是可以引起蛋白以不同速率向下穿过柱,从而达到当它们进一步向下经过柱时增加的物理分离,或与分离介质选择性粘附,随后通过不同溶剂差异性洗脱。在一些情况下,当杂质与柱特异性粘附,并且抗体则不是时,即抗体存在于流通物中,抗体与杂质分离。
如上面所指出的,纯化方案的准确适合依赖于待纯化蛋白的考虑。在某些实施方案中,本发明的分离步骤用于使抗体与一种或多种HCP分离。可以使用本文描述的方法成功地纯化的抗体包括、但不限于:人IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4和IgM抗体。在某些实施方案中,本发明的纯化策略排除蛋白A亲和色谱法的使用,例如,在纯化IgG3抗体的背景下,因为IgG3抗体与蛋白A无效率地结合。允许纯化方案特异性定制的其它因素包括、但不限于:Fc区的存在或不存在(例如,在全长抗体的背景下,与其Fab片段相比较),因为蛋白A与Fc区结合;在生成目标抗体中采用的具体种系序列;和抗体的氨基酸组成(例如,抗体的一级序列以及分子的总电荷/疏水性)。共享一种或多种特征的抗体可以使用适合于利用那种特征的纯化策略进行纯化。
4.2初步回收
本发明的纯化方法的起始步骤涉及从样品基质中澄清和初步回收抗-IL-13抗体的第一个阶段。此外,初步回收过程还可以是在其下减少或灭活可以存在于样品基质中的病毒的点。例如,在纯化的初步回收阶段过程中可以使用多种病毒减少/灭活方法中的任何一种或多种,包括热灭活(巴斯德消毒法)、pH灭活、溶剂/去污剂处理、UV和γ-射线照射和特定化学灭活试剂例如β-丙酸内酯或例如铜菲咯啉的添加,如美国专利号4,534,972中,其完整教导通过引用并入本文。在本发明的某些实施方案中,在初步回收阶段过程中使样品基质暴露于pH病毒减少/灭活。
pH病毒减少/灭活的方法包括、但不限于:使混合物在低pH温育一段时间,并且随后中和pH,并且通过过滤取出颗粒。在某些实施方案中,混合物将在约2至5的pH温育,在约3至4的pH(包括、但不限于在约3.5的pH)温育。样品混合物的pH可以用任何合适的酸降低,包括、但不限于:柠檬酸、乙酸、辛酸或其它合适的酸。pH水平的选择在很大程度上依赖于抗体产物的稳定性概况和缓冲液组分。已知靶抗体在低pH病毒减少/灭活过程中的质量受pH和低pH温育持续时间影响。在某些实施方案中,低pH温育持续时间将是0.5小时至2小时,包括、但不限于0.5小时至1.5小时,包括、但不限于约1小时的持续时间。除了蛋白浓度,病毒减少/灭活还依赖于这些相同参数,这可以限制在高浓度的减少/灭活。因此,可以选择蛋白浓度、pH和减少/灭活持续时间的正确参数,以达到所需病毒减少/灭活水平。
在某些实施方案中,病毒减少/灭活可以经由使用合适滤器来达到。合适滤器的非限制性实例是来自Pall Corporation的Ultipor DV50™滤器。尽管本发明的某些实施方案在初步回收阶段过程中采用这样的过滤,但在其它实施方案中,它在纯化过程的其它阶段时采用,包括作为纯化的倒数第二个或最后一个步骤。在某些实施方案中,采用可替代滤器用于病毒减少/灭活,例如,但不构成限制,Viresolve™滤器(Millipore,Billerica,Mass.);Zeta Plus VR™滤器(CUNO;Meriden,Conn.);和Planova™滤器(Asahi Kasei Pharma,Planova Division,Buffalo Grove,Ill.)。
在其中采用病毒减少/灭活的这些实施方案中,样品混合物可以根据需要进行调整,用于进一步的纯化步骤。例如,在低pH病毒减少/灭活后,在继续纯化过程前,样品混合物的pH一般调整至更中性的pH,例如约4.5至约8.5,包括、但不限于约4.9。此外,混合物可以用注射用水(WFI)冲洗,以获得所需导电性。
在某些实施方案中,初步回收将包括一个或多个离心步骤,以进一步澄清样品基质且从而帮助纯化抗-IL-13抗体。样品的离心可以在例如但不限于7,000 x g-约12,750 x g运行。在大规模纯化的背景下,这样的离心可以在线(on-line)发生,其流速设为达到例如但不限于在所得到的上清液中150 NTU的浊度水平。这样的上清液随后可以收集用于进一步纯化。
在某些实施方案中,初步回收将包括一个或多个深度过滤步骤的使用,以进一步澄清样品基质,且从而帮助纯化本发明的抗体。深度滤器包含具有分级密度的过滤介质。这样的分级密度允许较大颗粒接近滤器表面被截留,而较小颗粒穿透滤器表面上的较大开放区域,仅在更接近于滤器中心的较小开口中被截留。在某些实施方案中,深度过滤步骤可以是去脂质深度过滤步骤。尽管某些实施方案仅在初步回收阶段过程中采用深度过滤步骤,但其它实施方案在一个或多个另外纯化阶段过程中采用深度滤器,包括去脂质深度滤器。可以在本发明的背景下使用的深度滤器的非限制性实例包括Cuno™ 型号30/60ZA深度滤器(3M Corp.)和0.45/0.2 μm Sartopore™双层过滤筒。
4.3 亲和色谱法
在某些实施方案中,对初步回收的样品实施亲和色谱法,以从HCP中进一步纯化目标抗体。在某些实施方案中,色谱材料能够选择性地或特异性地结合目标抗体。这样的色谱材料的非限制性实例包括:蛋白A、蛋白G、包括目标抗体结合的抗原的色谱材料以及包括Fc结合蛋白的色谱材料。在具体实施方案中,所述亲和色谱步骤包括:将初步回收的样品上柱,所述柱包括合适的蛋白A树脂。蛋白A树脂可用于亲和纯化和分离多种抗体同种型,特别是IgG1、IgG2和IgG4。蛋白A是一种细菌细胞壁蛋白,其主要通过它们的Fc区结合哺乳动物IgG。在它的天然状态,蛋白A具有5个IgG结合域以及未知功能的其它结构域。
蛋白A树脂存在几种商业来源。合适的树脂包括、但不限于:来自GE Healthcare的MabSelect™ 和来自Millipore的ProSep Ultra Plus™ 。填充了MabSelect™的合适柱的一个非限制性实例是约1.0 cm直径x约21.6 cm长的柱(~17 mL柱床体积)。该尺寸的柱可以用于小规模纯化,且可以与用于放大的其它柱进行对比。例如,20 cm x 21 cm柱(其柱床体积是约6.6 L)可以用于更大的纯化。不论柱如何,可以使用合适的树脂(诸如MabSelect™ 或ProSep Ultra Plus™ )填充柱。
在某些实施方案中,为了为特定目标抗体定制纯化,鉴定蛋白A树脂的动态结合容量(DBC)将是有利的。例如,但不构成限制,通过单一流速加载或双流速加载策略,可以测定MabSelect™ 或ProSept Ultra Plus™ 柱的DBC。可以在整个加载期间以约300 cm/小时的速度评价单一流速加载。可以如下测定双流速加载策略:以约300 cm/小时的线性速度,加载柱直到约35 mg蛋白/mL树脂,然后将线性速度减半,以允许在剩余的加载部分中更长的停留时间。
在某些实施方案中,在样品加载之前,可以用合适的缓冲液平衡蛋白A柱。合适的缓冲液的一个非限制性实例是Tris/NaCl缓冲液,其pH为约7.2。合适的平衡条件的一个非限制性实例是25 mM Tris、100 mM NaCl,其pH为约7.2。在该平衡以后,可以将样品加载到柱上。在加载柱以后,可以使用例如平衡缓冲液,洗涤柱一次或多次。在洗脱柱之前,可以使用其它洗涤,包括采用不同缓冲液的洗涤。例如,可以使用一个或多个柱体积的20 mM柠檬酸/柠檬酸钠、0.5 M NaCl(pH为约6.0)洗涤柱。该洗涤之后,可以任选地使用平衡缓冲液洗涤一次或多次。然后可以使用适当的洗脱缓冲液,洗脱蛋白A柱。合适的洗脱缓冲液的一个非限制性实例是醋酸/NaCl缓冲液,其pH为约3.5。合适的条件是,例如,0.1 M醋酸,其pH为约3.5。使用本领域技术人员众所周知的技术,可以监测洗脱液。例如,可以跟踪在OD280的吸光度。可以从约0.5 AU的初始偏转开始,至在洗脱峰的后缘处的约0.5 AU读数,收集柱洗脱液。然后可以制备目标洗脱级分,用于进一步处理。例如,使用pH为约10的Tris(例如,1.0 M),可以将收集的样品滴定至约5.0的pH。任选地,可以过滤该滴定的样品,并进一步处理。
4.4 离子交换色谱法
在某些实施方案中,本发明提供了用于从包括抗体和至少一种HCP的混合物中生产HCP减少的抗体制品的方法,其通过对混合物实施至少一个离子交换分离步骤,从而使得获得包括抗体的洗脱液来实现。离子交换分离包括基于其各自离子电荷中的差异通过其分离2种物质的任何方法,并且可以采用阳离子交换材料或阴离子交换材料。
阳离子交换材料与阴离子交换材料比较的使用基于蛋白的总电荷。因此,在使用阳离子交换步骤前采用阴离子交换步骤,或在使用阴离子交换步骤前采用阳离子交换步骤,这在本发明的范围内。此外,采用仅阳离子交换步骤、仅阴离子交换步骤或两者的任何系列组合,这在本发明的范围内。
在执行分离中,通过使用多种技术中的任何一种,例如使用分批纯化技术或色谱技术,可以使起始抗体混合物与离子交换材料接触。
例如,在分批纯化的背景下,离子交换材料在所需起始缓冲液中进行制备,或平衡至所需起始缓冲液。在制备或平衡后,获得离子交换材料的浆(悬浮液)。使抗体溶液与浆接触,以吸附要被分离到离子交换材料的抗体。例如通过允许浆沉降且去除上清液,使包括不与离子交换材料结合的一种或多种HCP的溶液与浆分离。可以对浆实施一个或多个洗涤步骤。如果需要,则可以使浆与更高导电性的溶液接触,以使已与离子交换材料结合的HCP解吸。为了洗脱结合的多肽,可以增加缓冲液的盐浓度。
离子交换色谱法也可以用作离子交换分离技术。离子交换色谱法基于分子总电荷之间的差异分离分子。对于抗体的纯化,抗体必须具有与和离子交换材料例如树脂附着的官能团的那种相反的电荷,以便结合。例如,一般在pH低于其pI的缓冲液中具有总正电荷的抗体将与阳离子交换材料良好结合,所述阳离子交换材料包含带负电荷的官能团。
在离子交换色谱法中,在溶质表面上的荷电小块通过与色谱基质附着的相反电荷吸引,条件是周围缓冲液的离子强度低。洗脱一般通过增加缓冲液的离子强度(即导电性)以与溶质竞争离子交换基质的荷电位点来达到。改变pH且从而改变溶质的电荷是达到溶质洗脱的另一种方法。导电性或pH中的改变可以是逐渐的(梯度洗脱)或分级的(分级洗脱)。
阴离子或阳离子取代基可以与基质附着,以形成阴离子或阳离子支持体用于色谱。阴离子交换取代基的非限制性实例包括二乙氨乙基(DEAE)、季氨乙基(QAE)和季胺(Q)基团。阳离子取代基包括羧甲基(CM)、磺乙基(SE)、磺丙基(SP)、磷酸盐(P)和磺酸盐(S)。纤维素离子交换树脂例如DE23™、DE32™、DE52™、CM-23™、CM-32™和CM-52™ 可从Whatman Ltd. Maidstone,Kent,U.K获得。基于SEPHADEX®的和交联的离子交换剂也是已知的。例如,DEAE-、QAE-、CM-和SP- SEPHADEX®以及DEAE-、Q-、CM-和S-SEPHAROSE®和SEPHAROSE®Fast Flow都可从Pharmacia AB获得。进一步地,DEAE和CM衍生的乙二醇-甲基丙烯酸酯共聚物,例如TOYOPEARL™ DEAE-650S或M和TOYOPEARL™ CM-650S或M可从Toso Haas Co.,Philadelphia,Pa获得。在某些实施方案中,使用Pall Mustang Q膜筒完成阴离子交换步骤。
将包括抗体和杂质例如一种或多种HCP的混合物装载到离子交换柱例如阳离子交换柱上。例如,但不构成限制,依赖于所使用的柱,混合物可以以约80 g蛋白/L树脂的负载装载。合适阳离子交换柱的实例是80 cm直径x 23 cm长的柱,其柱床体积是约116 L。装载到该阳离子柱上的混合物可以随后用洗涤缓冲液(平衡缓冲液)洗涤。随后从柱中洗脱抗体,且获得第一种洗脱液。
该离子交换步骤促进目标抗体的捕获,同时减少杂质例如HCP。在某些方面,离子交换柱是阳离子交换柱。例如,但不构成限制,用于这样的阳离子交换柱的合适树脂是CM HyperDF™ 树脂。这些树脂可从商业来源例如Pall Corporation获得。这种阳离子交换程序可以在室温或在室温左右进行。
4.5 超滤/渗滤
本发明的某些实施方案采用超滤和/或渗滤步骤,以进一步纯化且浓缩抗体样品。超滤详细描述在Microfiltration and Ultrafiltration:Principles and Applications,L. Zeman和A. Zydney(Marcel Dekker,Inc.,New York,N.Y.,1996);以及Ultrafiltration Handbook,Munir Cheryan(Technomic Publishing,1986;ISBN No. 87762-456-9)中。一种过滤方法是如名称为"Pharmaceutical Process Filtration Catalogue"第177-202页的Millipore目录(Bedford,Mass.,1995/96)中描述的切向流过滤。通常认为超滤是指使用具有小于0.1 μm孔径的滤器的过滤。通过采用具有这样的小孔径的滤器,可以通过使样品缓冲液渗透穿过滤器,同时将抗体保留在滤器后面来减小样品体积。
渗滤是这样的方法,其使用超滤器来去除和更换盐、糖、非水性溶剂,使游离物质与结合的物质分离,去除低分子量材料,和/或造成离子和/或pH环境的快速改变。通过以大约等于超滤速率的速率将溶剂添加到被超滤的溶液中,最有效地去除微溶质(microsolutes)。这以恒定体积从溶液中洗涤微物质(microspecies),从而有效纯化所保留的抗体。在本发明的某些实施方案中,渗滤步骤用于任选在进一步色谱或其它纯化步骤前,更换与本发明结合使用的各种缓冲液,以及去除来自抗体制品的杂质。
4.6 疏水相互作用色谱法
本发明的特征还在于用于从包括抗体和至少一种HCP的混合物中生产HCP减少的抗体制品的方法,其进一步包括疏水作用分离步骤。例如,可以使得自离子交换柱的第一种洗脱液经历疏水相互作用材料的处理,从而使得获得具有减少水平的HCP的第二种洗脱液。一般执行疏水相互作用色谱步骤,例如本文公开的那些,以去除蛋白聚集体,例如抗体聚集体,和过程相关的杂质。
在执行分离中,使样品混合物与HIC材料接触,例如使用分批纯化技术或使用柱。在HIC纯化前,可能希望去除任何离液剂或非常疏水的物质,例如通过使混合物经过前置柱。
例如,在分批纯化的背景下,HIC材料在所需平衡缓冲液中进行制备,或平衡至所需平衡缓冲液。获得HIC材料的浆。使抗体溶液与浆接触,以吸附要被分离到HIC材料的抗体。例如通过允许浆沉降且去除上清液,使包括不与HIC材料结合的HCP的溶液与浆分离。可以对浆实施一个或多个洗涤步骤。若需要,则可以使浆与更低导电性的溶液接触,以使已与HIC材料结合的抗体解吸。为了洗脱结合的抗体,可以降低盐浓度。
虽然离子交换色谱法依赖于抗体的电荷以分离它们,但疏水相互作用色谱使用抗体的疏水性质。在抗体上的疏水基团与在柱上的疏水基团相互作用。蛋白越疏水,它将与柱的相互作用越强。因此,HIC步骤去除宿主细胞衍生的杂质(例如,DNA以及其它高和低分子量产物相关的物质)。
疏水相互作用在高离子强度下是最强的,因此,这种形式的分离方便地在盐沉淀或离子交换程序后执行。高盐浓度有利于抗体与HIC柱的吸附,但实际浓度可以在广泛范围上改变,这依赖于抗体的性质和所选择的具体HIC配体。各种离子可以以所谓的憎溶(soluphobic)系列排列,这依赖于其是促进疏水相互作用(盐析效应)还是破坏水的结构(离液效应),并且导致疏水相互作用的减弱。阳离子按照渐增的盐析效应而言排序为Ba++;Ca++;Mg++;Li+;Cs+;Na+;K+;Rb+;NH4 +,而阴离子可以就渐增的离液效应而言排序为PO---;SO4 --;CH3CO3 -;Cl-;Br-;NO3 -;ClO4 -;I-;SCN-
一般而言,Na、K或NH4硫酸盐有效促进HIC中的配体-蛋白相互作用。可以配制影响相互作用强度的盐,如由下述关系给出的:(NH42SO4 > Na2SO4 > NaCl > NH4Cl > NaBr > NaSCN。一般而言,约0.75-约2 M硫酸铵或约1-4 M NaCl的盐浓度是有用的。
HIC柱正常包括疏水配体(例如,烷基或芳基)与之偶联的基本基质(例如,交联琼脂糖或合成共聚物材料)。合适的HIC柱包括由苯基基团取代的琼脂糖树脂(例如,Phenyl Sepharose™柱)。许多HIC柱是商购可得的。实例包括、但不限于:具有低或高取代的Phenyl Sepharose™6 Fast Flow柱(Pharmacia LKB Biotechnology,AB,瑞典);Phenyl Sepharose™High Performance柱(Pharmacia LKB Biotechnology,AB,瑞典);Octyl Sepharose™High Performance柱(Pharmacia LKB Biotechnology,AB,瑞典);Fractogel™EMD Propyl或Fractogel™EMD Phenyl柱(E. Merck,德国);Macro-Prep™Mehyl或Macro-Prep™t-Butyl Supports(Bio-Rad,California);WP HI-Propyl(C3)™柱(J. T. Baker,New Jersey);和Toyopearl™醚、苯基或丁基柱(TosoHaas,PA)。
4.7 示例性的纯化策略
在某些实施方案中,如下进行初步回收:最初采用离心和过滤步骤,以去除来自生产生物反应器收获物的细胞和细胞碎片(包括HCP)。例如,但不构成限制,可以对包括抗体、培养基和细胞的培养物实施在大约7000 x g至大约11,000 x g的离心。在某些实施方案中,所得到的样品上清液随后经过包括多个深度滤器的滤器列(train)。在某些实施方案中,滤器列包括约12个16英寸Cuno™ 型号30/60ZA深度滤器(3M Corp.)和约3个圆形滤器外壳,所述外壳配备有3个30英寸0.45/0.2 μm Sartopore™ 2过滤筒(Sartorius)。在容器例如预灭菌的收获容器中收集澄清的上清液,并且保持在约8 ℃。随后在下文概述的一个或多个捕获色谱步骤前,将该温度调整至约20 ℃。应当指出,本领域技术人员可以改变上文描述的条件,并且仍在本发明的范围内。
在某些实施方案中,在初步回收之后,使用蛋白A树脂进行亲和色谱法。蛋白A树脂存在几种商业来源。一种合适的树脂是来自GE Healthcare的MabSelect™ 。用MabSelect™ 填充的合适柱的一个实例是约1.0 cm直径x约21.6 cm长的柱(~17 mL柱床体积)。该尺寸柱可以用于小试规模。这可以与用于放大的其它柱进行对比。例如,20 cm x 21 cm柱(其柱床体积是约6.6 L)可以用于商业生产。不论柱如何,可以使用合适的树脂(诸如MabSelect™ )填充柱。
在某些方面,在样品加载之前,可以用合适的缓冲液平衡蛋白A柱。合适的缓冲液的一个实例是Tris/NaCl缓冲液,其pH为约6-8,包括、但不限于约7.2。合适的条件的一个具体实例是25 mM Tris、100 mM NaCl,pH 7.2。在该平衡以后,可以将样品加载到柱上。在加载柱以后,可以使用例如平衡缓冲液,洗涤柱一次或多次。在洗脱柱之前,可以使用其它洗涤,包括采用不同缓冲液的洗涤。例如,使用一个或多个柱体积的20 mM柠檬酸/柠檬酸钠、0.5 M NaCl(pH为约6.0),可以洗涤柱。该洗涤以后,可以任选地使用平衡缓冲液洗涤一次或多次。然后可以使用适当的洗脱缓冲液,洗脱蛋白A柱。合适的洗脱缓冲液的一个实例是醋酸/NaCl缓冲液(pH约3.5)。合适的条件是,例如,0.1 M醋酸,pH 3.5。使用本领域技术人员众所周知的技术,可以监测洗脱液。例如,可以跟踪在OD280的吸光度。可以从约0.5 AU的初始偏转开始,至在洗脱峰的后缘处的约0.5 AU读数,收集柱洗脱液。然后可以制备目标洗脱级分,用于进一步处理。例如,使用pH为约10的Tris(例如,1.0 M),可以将收集的样品滴定至约5.0的pH。任选地,可以过滤该滴定的样品,并进一步处理。
通过单一流速加载或双流速加载策略,可以测定MabSelect™ 柱的动态结合容量(DBC)。可以在整个加载期间以约300 cm/小时的速度评价单一流速加载。可以如下测定双流速加载策略:以约300 cm/小时的线性速度,加载柱直到约35 mg蛋白/mL树脂,然后将线性速度减半,以允许在剩余的加载部分中更长的停留时间。
然后可以通过采用pH-介导的病毒减少/灭活步骤,进一步纯化蛋白A洗脱液。在某些实施方案中,该步骤包括:将洗脱液的pH调节至约3至约5之间,包括、但不限于约3.5,维持大约1小时。使用已知的酸制品(诸如柠檬酸,例如,3 M柠檬酸),可以促进pH降低。暴露于酸性pH会减少(如果没有完全消除)pH敏感的病毒污染物,并沉淀出一些培养基/细胞污染物。在该病毒减少/灭活步骤以后,使用碱(诸如氢氧化钠,例如,3 M氢氧化钠),将pH调节至约4.9或5.0,维持约20至约40分钟。该调节可以在约20 ℃进行。
在某些实施方案中,使用阴离子交换柱进一步纯化调过pH的培养物。用于该步骤的合适柱的一个非限制性实例是60 cm直径x 30 cm长的柱,其柱床体积是约85 L。给柱装填阴离子交换树脂,例如来自GE Healthcare的Q Sepharose™ Fast Flow。柱可以使用约7柱体积的合适缓冲液(例如Tris/氯化钠)进行平衡。合适条件的一个实例是,25 mM Tris、50 mM氯化钠,pH 8.0。技术人员可以改变条件,但仍在本发明的范围内。给柱装载从上文概述的蛋白A纯化步骤收集的样品。在另一个方面,给柱装载在阳离子交换过程中收集的洗脱液。在柱装载后,用平衡缓冲液(例如Tris/氯化钠缓冲液)洗涤柱。可以使用UV分光光度计在OD280nm监测包括抗体的流通物。该阴离子交换步骤会减少过程相关的杂质,例如核酸如DNA和宿主细胞蛋白。分离由于下述事实而发生:目标抗体基本上不与柱的固相(例如Q Sepharose™)相互作用也不与之结合,但许多杂质的确与柱的固相相互作用且结合。阴离子交换可以在约12 ℃执行。
在某些实施方案中,然后使用阳离子交换柱进一步纯化调过pH的培养物。在某些实施方案中,在阳离子交换柱中使用的平衡缓冲液是具有约5.0的pH的缓冲液。合适的缓冲液的一个实例是约210 mM醋酸钠,pH 5.0。在平衡以后,给柱装载从上述初步回收步骤制备的样品。给柱装填阳离子交换树脂,例如来自GE Healthcare的CM Sepharose™ Fast Flow。随后使用平衡缓冲液洗涤柱。接下来使用缓冲液对柱实施洗脱步骤,所述缓冲液具有比平衡或洗涤缓冲液更大的离子强度。例如,合适的洗脱缓冲液可以是约790 mM醋酸钠,pH 5.0。洗脱所述抗体,并可以使用设定在OD280nm的UV分光光度计进行监测。在一个具体实施例中,洗脱收集可以是从上侧3 OD280nm到下侧8 OD280nm。应当理解,本领域技术人员可以改变条件,且仍在本发明的范围内。
在某些实施方案中,使用例如16英寸Cuno™ 去脂质滤器,过滤调过pH的培养物、阳离子交换洗脱液或阴离子交换洗脱液。使用去脂质滤器的这种过滤之后可以是例如30英寸0.45/0.2 μm Sartopore™ 双层过滤筒。离子交换洗脱缓冲液可以用于冲洗在滤器中保留的剩余体积,并且准备用于超滤/渗滤。
为了完成超滤/渗滤步骤,在合适缓冲液例如20 mM磷酸钠,pH 7.0中制备过滤介质。可以添加盐例如氯化钠以增加离子强度,例如100 mM氯化钠。该超滤/渗滤步骤用来浓缩抗-IL-13抗体,去除醋酸钠且调整pH。商业滤器可用于实行该步骤。例如,Millipore制造了30 kD分子量截止(MWCO)纤维素超滤器膜盒。该过滤程序可以在室温或室温左右执行。
在某些实施方案中,对来自上文捕获过滤步骤的样品实施第二个离子交换分离步骤。在某些实施方案中,该第二个离子交换分离将包括:基于第一个离子交换分离的相反电荷的分离。例如,如果在初步回收后采用阴离子交换步骤,那么第二个离子交换色谱步骤可以是阳离子交换步骤。相反,如果初步回收步骤之后为阳离子交换步骤,那么该步骤之后为阴离子交换步骤。在某些实施方案中,可以直接对第一次离子交换洗脱液实施第二个离子交换色谱步骤,其中将第一次离子交换洗脱液调整至合适缓冲条件。合适的阴离子和阳离子分离材料和条件在上文描述。
在本发明的某些实施方案中,包含抗体的样品将使用疏水相互作用分离步骤进一步加工。用于这样的步骤的合适柱的非限制性实例是80 cm直径x 15 cm长的柱,其柱床体积是约75 L,其装填用于HIC的合适树脂,例如但不限于来自Amersham Biosciences,Upsala,瑞典的Phenyl HP Sepharose™。得自先前阴离子交换色谱步骤的包括目标抗体的流通物制剂可以用等体积的约1.7 M硫酸铵、50 mM磷酸钠,pH 7.0进行稀释。随后可以使用0.45/0.2 μm Sartopore™ 2双层滤器或其等价物对这实施过滤。在某些实施方案中,疏水色谱程序涉及2个或更多个循环。
在某些实施方案中,HIC柱首先用合适缓冲液进行平衡。合适缓冲液的非限制性实例是0.85 M硫酸铵、50 mM磷酸钠,pH 7.0。通过改变缓冲试剂的浓度和/或置换等价缓冲液,本领域技术人员可以改变平衡缓冲液,且仍在本发明的范围内。在某些实施方案中,随后给柱装载阴离子交换流通物样品,并且用合适缓冲系统例如硫酸铵/磷酸钠洗涤多次,例如3次。合适缓冲系统的实例包括具有约7.0的pH的1.1 M硫酸铵、50 mM磷酸钠缓冲液。任选地,柱可以经历进一步的洗涤循环。例如,第二个洗涤循环可以包括使用合适缓冲系统的多次柱洗涤,例如1 - 7次。合适缓冲系统的非限制性实例包括0.85 M硫酸铵、50 mM磷酸钠,pH 7.0。在一个方面,装载的柱经历使用合适缓冲系统的第三次洗涤。柱可以使用缓冲系统例如在pH约7.0的1.1 M硫酸铵、50 mM磷酸钠洗涤多次,例如1 - 3次。再次,本领域技术人员可以改变缓冲条件,但仍在本发明的范围内。
柱使用合适的洗脱缓冲液进行洗脱。这样的洗脱缓冲液的合适实例是在pH约7.0的0.5 M硫酸铵、15 mM磷酸钠。目标抗体可以使用常规分光光度计进行检测且收集,从在3 OD280 nm的上侧到在3 OD280 nm的峰的下侧。
在本发明的某些方面,对来自疏水色谱步骤的洗脱液实施过滤用于去除病毒颗粒,包括完整病毒,如果存在的话。合适滤器的非限制性实例是来自Pall Corporation的Ultipor DV50™滤器。其它病毒滤器可以用于该过滤步骤,并且是本领域技术人员众所周知的。使HIC洗脱液以约34磅/英寸2(psig)经过约0.1 μm的预湿润滤器和2 x 30英寸Ultipor DV50™滤器列。在某些实施方案中,在过滤过程后,使用例如HIC洗脱缓冲液洗涤滤器,以去除滤器外壳中保留的任何抗体。滤液可以贮存于在约12 ℃的预灭菌的容器中。
在某些实施方案中,对来自上文的滤液再次实施超滤/渗滤。该步骤是重要的,如果专业人员的终点是在例如药物制剂中使用抗体的话。如果采用,那么该过程可以促进抗体的浓缩、先前使用的缓冲盐的去除,并且用特定配制缓冲液替换其。在某些实施方案中,执行用多个体积例如2体积的配制缓冲液的连续渗滤。合适配制缓冲液的非限制性实例是5 mM甲硫氨酸、2%甘露糖醇、0.5%蔗糖、pH 5.9缓冲液(无吐温)。在该渗滤体积倍数(diavolume)交换完成后,使抗体浓缩。一旦已达到抗体的预定浓缩,专业人员随后就可以计算应添加的10%吐温量,以达到约0.005%(v/v)的最终吐温浓度。
本发明的某些实施方案将包括进一步的纯化步骤。可以在离子交换色谱方法之前、期间或之后执行的另外纯化程序的实例包括乙醇沉淀、等电聚焦、反相HPLC、在二氧化硅上的色谱法、在肝素Sepharose™上的色谱法、进一步的阴离子交换色谱法和/或进一步的阳离子交换色谱法、色谱聚焦、SDS-PAGE、硫酸铵沉淀、羟磷灰石色谱法、凝胶电泳、透析和亲和色谱法(例如使用蛋白G、抗体、特异性底物、配体或抗原作为捕获试剂)。
在本发明的某些实施方案中,抗-IL-13抗体是包括图1中概述的重链和轻链可变区序列的IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4或IgM同种型抗体。在某些实施方案中,抗-IL-13抗体是包括图1中概述的重链和轻链可变区序列的IgG1、IgG2、IgG3或IgG4同种型抗体。
5. 测定样品纯度的方法
5.1 测定宿主细胞蛋白
本发明还提供了用于测定分离/纯化的抗体组合物中的宿主细胞蛋白(HCP)浓度的残留水平的方法。如上所述,希望从最终靶物质产物(例如,抗-IL-13抗体)中排除HCP。示例性HCP包括源于抗体生产来源的蛋白。无法鉴定且从靶抗体中充分去除HCP可以导致减少的功效和/或不利的受试者反应。
本文使用的术语“HCP ELISA”指这样的ELISA:其中在测定中使用的第二种抗体对于由细胞(例如CHO细胞)生产的HCP是特异性的,所述细胞用于生成抗体(例如,抗-IL-13抗体)。第二种抗体可以根据本领域技术人员已知的常规方法进行生产。例如,第二种抗体可以使用通过假生产和纯化运行获得的HCP进行生产,即使用用于生产目标抗体的相同细胞系,但不用抗体DNA转染该细胞系。在示例性实施方案中,使用类似于在选择的细胞表达系统(即用于生产靶抗体的细胞表达系统)中表达的那些的HCP生产第二种抗体。
通常,HCP ELISA包括:使包括HCP的液体样品夹心在2层抗体即第一种抗体和第二种抗体之间。使样品温育,在这时间期间通过第一种抗体捕获在样品中的HCP,所述第一种抗体例如但不限于亲和纯化的山羊抗CHO(Cygnus)。添加对由用于生成抗体的细胞生产的HCP特异的、标记的第二种抗体,或抗体的掺合物,例如抗CHO HCP Biotinylated,并且与样品内的HCP结合。在某些实施方案中,第一种和第二种抗体是多克隆抗体。在某些方面,第一种和第二种抗体是针对HCP生产的多克隆抗体的掺合物,例如但不限于生物素化的山羊抗宿主细胞蛋白混合物599/626/748。使用基于第二种抗体的标记的合适测试,测定在样品中包含的HCP量。
HCP ELISA可以用于测定抗体组合物中的HCP水平,所述抗体组合物例如使用上文描述的方法获得的洗脱液或流通物。本发明还提供了包括抗体的组合物,其中所述组合物不具有如通过HCP酶联免疫吸附测定(Enzyme Linked Immunosorbent Assay)(“ELISA”)测定的可检测水平的HCP。
5.2 测定亲和色谱材料
在某些实施方案中,本发明也提供了用于测定分离的/纯化的抗体组合物中的亲和色谱材料的残留水平的方法。在某些背景下,这样的材料会在纯化过程中提取到抗体组合物中。在某些实施方案中,采用用于鉴定分离的/纯化的抗体组合物中的蛋白A的浓度的试验。本文使用的术语“蛋白A ELISA”表示这样的ELISA:其中在试验中试验的第二种抗体对用于目标抗体(例如,抗-IL-13抗体)的蛋白A是特异性的。根据本领域技术人员已知的常规方法,可以生产第二种抗体。例如,在用于抗体制备和生产的常规方法的背景下,可以使用天然存在的或重组的蛋白A来生产第二种抗体。
通常,蛋白A ELISA包括:使包括蛋白A(或可能含有蛋白A)的液体样品夹心在2层抗-蛋白A抗体即第一种抗-蛋白A抗体和第二种抗-蛋白A抗体之间。将样品暴露于第一层抗-蛋白A抗体(例如,但不限于多克隆抗体或多克隆抗体的掺合物),并温育足以使样品中的蛋白A被第一种抗体捕获的时间。然后加入对蛋白A特异性的、标记的第二种抗体(例如,但不限于多克隆抗体或多克隆抗体的掺合物),并结合样品内捕获的蛋白A。在本发明的背景下有用的抗-蛋白A抗体的其它非限制性实例包括鸡抗-蛋白A和生物素化的抗-蛋白A抗体。使用适当的实验,基于第二种抗体的标记,测定在样品中包含的蛋白A的量。可以采用类似的试验来鉴定替代性亲和色谱材料的浓度。
蛋白A ELISA可以用于测定抗体组合物(诸如使用上述方法得到的洗脱液或流通物)中的蛋白A的水平。本发明也提供了包含抗体的组合物,其中所述组合物具有可检测水平的蛋白A,这通过蛋白A酶联免疫吸附测定(“ELISA”)测得。
6. 进一步修饰
本发明的抗体可以进行修饰。在一些实施方案中,抗体或其抗原结合片段进行化学修饰,以提供所需效应。例如,通过本领域已知的任何聚乙二醇化反应,可以进行本发明的抗体或抗体片段的聚乙二醇化,所述反应描述在例如下述参考文献中:Focus on Growth Factors 3:4-10(1992);EP 0 154 316;和EP 0 401 384,其各自通过引用整体并入本文。在一个方面,经由与反应性聚乙二醇分子(或类似的反应性水溶性聚合物)的酰化反应或烷基化反应,进行聚乙二醇化。用于本发明的抗体和抗体片段的聚乙二醇化的合适水溶性聚合物是聚乙二醇(PEG)。本文使用的“聚乙二醇”意欲包含已用于衍生其它蛋白的任何形式的PEG,例如单(Cl-ClO)烷氧基-或芳氧基-聚乙二醇。
用于制备本发明的聚乙二醇化的抗体和抗体片段的方法一般包括下述步骤:(a)在由此抗体或抗体片段变得与一个或多个PEG基团附着的合适条件下,使抗体或抗体片段与聚乙二醇反应,例如PEG的反应性酯或醛衍生物,和(b)获得反应产物。基于已知参数和所需结果选择最佳反应条件或酰化反应,对于本领域普通技术人员将是显而易见的。
对IL-13特异性的聚乙二醇化的抗体和抗体片段一般可以用于治疗本发明的IL-13相关的病症,其通过施用本文描述的抗-IL-13抗体和抗体片段来实现。通常,与未聚乙二醇化的抗体和抗体片段相比较,聚乙二醇化的抗体和抗体片段具有增加的半衰期。聚乙二醇化的抗体和抗体片段可以单独、一起或与其它药物组合物组合使用。
本发明的抗体或抗体部分可以由另一种功能分子(例如,另一种肽或蛋白)衍生或连接。因此,本发明的抗体和抗体部分意欲包括衍生化且以其它方式修饰形式的本文描述的人抗-hIL-13抗体,包括免疫粘附分子。例如,本发明的抗体或抗体部分可以与一种或多种其它分子实体在功能上连接(通过化学偶联、遗传融合、非共价结合或其它方式),所述其它分子实体例如另一种抗体(例如,双特异性抗体或双体)、可检测试剂、细胞毒剂、药剂和/或蛋白或肽,其可以介导抗体或抗体部分与另一种分子(例如抗生蛋白链菌素核心区或多组氨酸标签)的结合。
一类衍生化抗体通过使2种或更多种抗体(具有相同类型或不同类型,例如以生产双特异性抗体)交联而生产。合适交联剂包括其为异双功能或同双功能(例如,二琥珀酰亚胺基辛二酸酯)的那些,所述异双功能的那些具有由合适间隔基分开的2种不同的反应基团(例如,m-马来酰亚胺基苯甲酰-N-羟基琥珀酰亚胺酯)。这样的接头可从Pierce Chemical Company,Rockford,IL获得。
本发明的抗体或抗体部分可以由其衍生的有用可检测试剂包括荧光化合物。示例性荧光可检测试剂包括荧光素、异硫氰酸荧光素、罗丹明、5-二甲胺-1-萘磺酰氯、藻红蛋白等。抗体还可以由可检测酶衍生,例如碱性磷酸酶、辣根过氧化物酶、葡糖氧化酶等。当抗体由可检测酶衍生化时,通过添加额外试剂来检测它,所述酶使用所述额外试剂来生成可检测的反应产物。例如,当存在可检测试剂辣根过氧化物酶时,过氧化氢和二氨基联苯胺的添加会产生可检测的有色反应产物。抗体还可以由生物素衍生化,并且通过抗生物素蛋白或抗生蛋白链菌素结合的间接测量进行检测。
7. 药物组合物
本发明的抗体和抗体部分可以掺入适合于给受试者施用的药物组合物内。通常,药物组合物包含本发明的抗体或抗体部分和药学可接受的载体。本文使用的“药学可接受的载体”包括生理学相容的任何和所有溶剂、分散介质、包衣、抗细菌剂和抗真菌剂、等渗和吸收延迟剂等。药学可接受的载体的实例包括下述一种或多种:水、盐水、磷酸缓冲盐水、葡萄糖、甘油、乙醇等,及其组合。在许多情况中,需要在组合物中包括等渗剂,例如糖、多元醇例如甘露糖醇、山梨糖醇、或氯化钠。药学可接受的载体可以进一步包含少量辅助物质,例如湿润剂或乳化剂、防腐剂或缓冲液,所述辅助物质增强抗体或抗体部分的保存期限或效力。
本发明的抗体和抗体部分可以掺入适用于肠胃外施用的药物组合物内。抗体或抗体部分可制备为包含例如0.1-250 mg/mL抗体的可注射溶液。可注射溶液可以由在燧石或琥珀色小瓶、安瓿或预装注射器中的液体或冷冻干燥剂型组成。缓冲液可以是约1-50 mM的L-组氨酸(最佳5-10 mM),pH 5.0-7.0(最佳pH 6.0)。其它合适的缓冲液包括、但不限于:琥珀酸钠、柠檬酸钠、磷酸钠或磷酸钾。氯化钠可以用于修饰浓度0-300 mM(对于液体剂型最佳150 mM)的溶液的毒性。对于冷冻干燥剂型可以包括冷冻保护剂,主要为0-10%蔗糖(最佳0.5-1.0%)。其它合适的冷冻保护剂包括海藻糖和乳糖。对于冷冻干燥剂型可以包括膨胀剂,主要为1-10%甘露糖醇(最佳24%)。稳定剂可以在液体和冷冻干燥剂型中使用,主要为1-50 mM L-甲硫氨酸(最佳5-10 mM)。其它合适的膨胀剂包括甘氨酸、精氨酸,可以作为0-0.05%聚山梨醇酯80(最佳0.005-0.01%)包括。另外的表面活性剂包括、但不限于:聚山梨醇酯20和BRIJ表面活性剂。
在一个方面,药物组合物包括约0.01 mg/kg-10 mg/kg剂量的抗体。在另一个方面,抗体的剂量包括每隔一周施用的约1 mg/kg,或每周一次施用的约0.3 mg/kg。熟练专业人员可以确定用于施用于受试者的正确剂量和方案。
本发明的组合物可以为多种形式。这些包括例如,液体、半固体和固体剂型,例如液体溶液(例如,可注射和可输注溶液)、分散体或悬浮液、片剂、丸剂、粉末、脂质体和栓剂。形式取决于例如预期施用方式和治疗应用。一般的组合物为可注射或可输注溶液形式,例如类似于由其它抗体被动免疫接种人使用的那些的组合物。一种施用方式是肠胃外的(例如,静脉内、皮下、腹膜内、肌内)。在一个方面,抗体通过静脉内输注或注射来施用。在另一个方面,抗体通过肌内或皮下注射来施用。
治疗组合物一般必须是无菌的且在制备和贮存条件下是稳定的。组合物可以配制为溶液、微乳剂、分散体、脂质体、或适合于高药物浓度的其它有序结构。无菌可注射溶液可以通过下述制备:将需要量的活性化合物(即,抗体或抗体部分)与上文列举的一种成分或成分组合一起掺入合适的溶剂中,必要时随后进行过滤灭菌。通常,分散体通过将活性化合物掺入无菌载体内来制备,所述无菌载体包含基本分散介质和来自上文列举那些的必需的其它成分。在用于制备无菌可注射溶液的无菌、冷冻干燥粉末的情况下,制备方法是真空干燥和喷雾干燥,从其先前无菌过滤的溶液生产活性成分和任何另外所需成分的粉末。溶液的正确流动性可以通过下述来维持,例如利用包衣例如卵磷脂,在分散体的情况下维持所需颗粒大小和利用表面活性剂。可注射组合物的延长吸收可以通过在组合物中包括延迟吸收的试剂来引起,所述试剂例如单硬脂酸盐和明胶。
本发明的抗体和抗体部分可以通过本领域已知的多种方法来施用,一种施用途径/模式是皮下注射、静脉内注射或输注。如技术人员将认识到的,施用途径和/或模式将依所需结果而变。在某些实施方案中,活性化合物可以与载体一起制备,所述载体将保护化合物免于快速释放,例如控释制剂,包括植入物、经皮贴剂、和微囊化递送系统。可以使用生物可降解的、生物相容的聚合物,例如乙烯乙酸乙烯酯、聚酐、聚乙醇酸、胶原、聚原酸酯和聚乳酸。用于制备这样的制剂的许多方法是获得专利保护的或是本领域技术人员一般已知的。参见,例如,Sustained and Controlled Release Drug Delivery Systems,J.R. Robinson,ed.,Marcel Dekker,Inc.,New York,1978,其完整教导通过引用并入本文。
在某些方面,本发明的抗体或抗体部分可以例如,与惰性稀释剂或可同化食用载体一起经口施用。化合物(和若需要,其它成分)也可以装入硬或软壳明胶胶囊中,压缩成片剂,或直接掺入受试者的饮食内。对于经口治疗施用,化合物可以与赋形剂掺合,且以可摄食片剂、口腔含化片剂、锭剂、胶囊、酏剂、悬浮液、糖浆、薄片(wafer)等的形式使用。为了通过除肠胃外施用外施用本发明的化合物,可能必须用材料包被化合物、或将化合物与材料共施用,以防止其失活。
补充性活性化合物也可以掺入组合物内。在某些方面,本发明的抗体或抗体部分与一种或多种另外的治疗剂共配制和/或共施用,所述治疗剂可用于治疗其中IL-13活性有害的病症。例如,本发明的抗-hIL-13抗体或抗体部分可以与结合其它靶的一种或多种另外的抗体(例如,结合其它细胞因子或结合细胞表面分子的抗体)共配制和/或共施用。此外,本发明的一种或多种抗体可以与2种或更多前述治疗剂组合使用。这样的组合疗法可以有利地利用较低剂量的施用的治疗剂,从而避免与各种单一疗法相关的可能毒性或并发症。熟练专业人员将认识到,当本发明的抗体用作联合治疗的部分时,可能需要比抗体单独施用于受试者时更低剂量的抗体(例如,协同疗效可以通过使用联合治疗来达到,其反过来又允许使用较低剂量的抗体以达到所需疗效)。
应当理解,本发明的抗体或其抗原结合部分可以单独或与另外的试剂例如治疗剂组合使用,所述另外的试剂由技术人员根据其预期目的进行选择。例如,另外的试剂可以是领域公认为治疗由本发明的抗体治疗的疾病或病症有用的治疗剂。另外的试剂也可以是赋予治疗组合物有利属性的试剂,例如影响组合物粘度的试剂。
应进一步理解,将包括在本发明内的组合是对其预期目的有用的那些组合。下文所述试剂是举例说明性的且不希望是限制性的。作为本发明部分的组合可以是本发明的抗体和选自下列的至少一种另外的试剂。组合还可以包括超过一种另外的试剂,例如,2种或3种另外的试剂,如果组合是这样的,从而使得形成的组合物可以执行其预期功能的话。
一些组合是非类固醇消炎药,也称为NSAIDS,它包括药物如布洛芬。其它组合是皮质类固醇,包括强的松龙;当与本发明的抗体组合治疗患者时,通过逐渐减少所需的类固醇剂量,可以减少或甚至消除类固醇使用的众所周知的副作用。本发明的抗体或抗体部分可以与之组合用于类风湿性关节炎的治疗剂的非限制性实例包括下述:细胞因子抑制性消炎药(CSAIDs);针对其它人细胞因子或生长因子的抗体或拮抗剂,例如,TNF、LT、IL-1、IL-2、IL-6、IL-7、IL-8、IL-15、IL-16、IL-18、EMAP-II、GM-CSF、FGF、和PDGF。本发明的抗体或其抗原结合部分可以与针对细胞表面分子或其配体(包括CD154(gp39或CD40L))的抗体组合,所述细胞表面分子例如CD2、CD3、CD4、CD8、CD25、CD28、CD30、CD40、CD45、CD69、CD80(B7.1)、CD86(B7.2)、CD90。
治疗剂的一些组合可以在自身免疫和后续炎症级联中的不同点上进行干扰;实例包括TNF拮抗剂,如嵌合、人源化或人TNF抗体,D2E7(于1996年2月9日提交的美国申请系列号08/599,226,其完整教导通过引用并入本文),cA2(Remicade™),CDP 571,抗TNF抗体片段(例如CDP870),和可溶性p55或p75 TNF受体,其衍生物(p75TNFRIgG(EnbrelTM)或p55TNFR1gG(Lenercept),可溶性IL-13受体(sIL-13),以及TNFα转换酶(TACE)抑制剂;类似地由于相同原因IL-1抑制剂(例如,白细胞介素-1转换酶抑制剂,例如Vx740或IL-1RA等)可以是有效的。其它组合包括白细胞介素11、抗-P7s和p-选择蛋白糖蛋白配体(PSGL)。另外的组合包括自身免疫应答的其它关键参与物(player),所述关键参与物与IL-13功能平行作用,依赖于IL-13功能或与IL-13功能协作。另外一种组合包括非耗尽性抗-CD4抑制剂。另外一种组合包括共刺激途径CD80(B7.1)或CD86(B7.2)的拮抗剂,包括抗体、可溶性受体或拮抗性配体。
本发明的抗体或其抗原结合部分还可以与试剂组合,所述试剂例如甲氨蝶呤、6-MP、硫唑嘌呤柳氮磺吡啶、美沙拉秦、奥沙拉嗪氯喹(chloroquinine)/羟氯喹、青霉胺、硫化苹果酸金(肌内和经口)、硫唑嘌呤、秋水仙碱、皮质类固醇(经口、吸入和局部注射)、β2肾上腺素受体激动剂(沙丁胺醇、特布他林、沙美特罗)、黄嘌呤(茶碱、氨茶碱)、色甘酸盐、萘多罗米、酮替芬、异丙托铵和乙东碱、环孢菌素、FK506、雷帕霉素、霉酚酸酯、来氟米特、NSAIDs例如布洛芬、皮质类固醇例如强的松龙、磷酸二酯酶抑制剂、腺苷激动剂、抗凝剂、补体抑制剂、肾上腺素能药、干扰经由促炎细胞因子例如TNFα或IL-1的信号传递的试剂(例如IRAK、NIK、IKK、p38或MAP激酶抑制剂)、IL-1β转换酶抑制剂(例如Vx740)、抗-P7s、p-选择蛋白糖蛋白配体(PGSL)、TNFα转换酶(TACE)抑制剂、T细胞信号传递抑制剂例如激酶抑制剂、金属蛋白酶抑制剂、柳氮磺吡啶、硫唑嘌呤、6-巯基嘌呤、血管紧张素转换酶抑制剂、可溶性细胞因子受体及其衍生物(例如,可溶性p55或p75 TNF受体和衍生物p75TNFRIgG(Enbrel.TM.)和p55TNFRIgG(Lenercept)、sIL-1RI、sIL-1RII、sIL-6R、可溶性IL-13受体(sIL-13))和抗炎细胞因子(例如,IL-4、IL-10、IL-11、IL-13和TGFβ)。一些组合包括甲氨蝶呤或来氟米特,并且在中等或重度类风湿性关节炎的情况下,包括环孢菌素。
本发明的药物组合物可以包括“治疗有效量”或“预防有效量”的本发明的抗体或抗体部分。“治疗有效量”指在所需剂量和时间段有效达到所需治疗结果的量。抗体或抗体部分的治疗有效量可以根据下述因素而变,例如个体疾病状态、年龄、性别、和重量,以及抗体或抗体部分在个体中引起所需应答的能力。治疗有效量也是其中治疗有利作用大于抗体或抗体部分的任何毒性或有害作用的量。“预防有效量”指在所需剂量和时间段有效达到所需预防结果的量。通常,因为预防剂量在疾病前或疾病早期时在受试者中使用,所以预防有效量将小于治疗有效量。
剂量方案可以进行调整以提供最佳所需应答(例如,治疗或预防应答)。例如,可以施用快速灌注方式,可以随着时间过去而施用几个分份剂量,或可以如治疗情形的紧急状态所指示的按比例减少或增加剂量。在某些实施方案中,为了易于施用和剂量一致,以单位剂型配制肠胃外组合物是尤其有利的。本文使用的单位剂型指适合作为单一剂量用于待治疗的哺乳动物受试者的物理上不连续单位;每个单位包含与所需药学载体结合的计算为生产所需疗效的预定量的活性化合物。关于本发明的单位剂型的详细说明由下述指示且直接取决于下述:(a)活性化合物的独特特征和待达到的具体治疗或预防作用,和(b)配合这种用于治疗个体中敏感性的活性化合物的领域固有的局限性。
关于本发明的抗体或抗体部分的治疗或预防有效量的示例性、非限制性范围是0.01-20 mg/kg,或1-10 mg/kg,或0.3-1 mg/kg。应当指出剂量值可以依待减轻的病症类型和严重性而变。应进一步理解,对于任何特定受试者,根据个体需要和施用或监督组合物施用的人的专业判断,具体剂量方案应当随着时间过去进行调整,并且本文所述的剂量范围仅是示例性的,且不意欲限制要求保护的组合物的范围或实践。
8. 本发明抗体的用途
8.1. 抗-IL-13抗体的一般用途
鉴于它们与IL-13结合的能力,本发明的抗-IL-13抗体或其抗原结合部分可以用于检测IL-13,在一个方面,hIL-13(例如在样品基质中,在一个方面,生物学样品,例如血清或血浆),其中使用常规免疫测定,例如酶联免疫吸附测定(ELISA)、放射免疫测定(RIA)或组织免疫组织化学。本发明提供了用于检测生物学样品中的IL-13的方法,其包括使样品与本发明的抗体或抗体部分接触,并且检测与IL-13结合的抗体或未结合的抗体,以从而检测样品中的IL-13。抗体用可检测物质直接或间接进行标记,以促进结合或未结合的抗体的检测。合适的可检测物质包括各种酶、辅基、荧光材料、发光材料和放射性材料。合适酶的实例包括辣根过氧化物酶、碱性磷酸酶、β-半乳糖苷酶或乙酰胆碱酯酶;合适辅基复合物的实例包括抗生蛋白链菌素/生物素和抗生物素蛋白/生物素;合适荧光材料的实例包括伞形酮、荧光素、异硫氰酸荧光素、罗丹明、二氯三嗪基胺(dichlorotriazinylamine)荧光素、丹磺酰氯或藻红蛋白;发光材料的实例包括鲁米诺;并且合适放射性材料的实例包括125 I、131 I、35 S或3 H。样品中IL-13的检测可以用于诊断背景下,例如在与增加的IL-13相关病症诊断中,和/或可以用于鉴定可能获益于用抗-IL-13抗体治疗的受试者中。
作为涉及标记的抗-IL-13抗体的检测试验的替代方案,可以通过竞争免疫测定来测定样品中的IL-13,其中利用例如用可检测物质标记的rhIL-13标准和未标记的抗-IL-13抗体,例如抗-hIL-13抗体。在该测定中,使样品、标记的rhIL-13标准和抗-hIL-13抗体组合,并且测定与未标记的抗体结合的标记的rhIL-13标准的量。样品中的hIL-13的量与和抗-hIL-13抗体结合的标记的rhIL-13标准的量成反比。
本发明的抗体和抗体部分能够在体外和体内中和IL-13活性,在一个方面,hIL-13活性。因此,本发明的抗体和抗体部分可以用于抑制IL-13活性,例如在包含IL-13的细胞培养中、在人受试者中或在具有本发明的抗体与之交叉反应的IL-13的其它哺乳动物受试者中(例如灵长类动物,例如狒狒、食蟹猴和猕猴)。在一个方面,本发明提供了分离的人抗体或其抗原结合部分,其中和人IL-13和选自下述的至少一种另外灵长类动物IL-13的活性:狒狒IL-13、狨猴IL-13、黑猩猩IL-13、食蟹猴IL-13和猕猴IL-13,但不中和小鼠IL-13的活性。在一个方面,IL-13是人IL-13。例如,在包含或怀疑包含hIL-13的细胞培养中,本发明的抗体或抗体部分可以添加到培养基中,以抑制培养物中的hIL-13活性。
在另一个方面,本发明提供了用于抑制受试者中的IL-13活性的方法,所述受试者患有其中IL-13活性有害的病症。本文使用的短语“其中IL-13活性有害的病症”意欲包括这样的疾病和其它病症,其中在患有病症的受试者中IL-13的存在已显示负责或怀疑负责病症的病理生理学,或者是或怀疑是促成病症恶化的因素。因此,其中IL-13活性有害的病症是其中IL-13活性的抑制预期减轻病症的征状和/或进展的病症。这样的病症可以例如通过患有病症的受试者的生物学流体中IL-13浓度中的增加(例如,在受试者的血清、血浆、滑液等中IL-13浓度中的增加)得以证明,这可以例如使用如上所述的抗-IL-13抗体进行检测。在一个方面,抗体或其抗原结合部分可以在疗法中用于治疗本文描述的疾病或病症。在另一个方面,抗体或其抗原结合部分可以用于制造用于治疗本文描述的疾病或病症的药物。存在其中IL-13活性有害的病症的众多实例。例如,IL-13在与多种疾病(它们涉及免疫和炎症性组分)有关的病理学中起关键作用,所述疾病包括、但不限于呼吸道障碍,诸如哮喘和慢性阻塞性肺疾病。其它IL-13有关的病症包括,但不限于:特应性障碍(例如,特应性皮炎和变应性鼻炎);皮肤、胃肠道器官(例如,炎性肠病(IBD),诸如溃疡性结肠炎和/或克罗恩氏病)和肝(例如,硬化、纤维化)的炎症性和/或自身免疫性病症;硬皮病;肿瘤或癌症,例如,霍奇金淋巴瘤。
因此,抗-IL-13抗体或其抗原结合部分或在体内表达它们的载体适用于治疗疾病,诸如哮喘或这样的其它炎症性和/或自身免疫性病症:其中存在IL-13的异常表达,导致过量的IL-13,或在并发症的情况下,由于外源地施用的IL-13。
8.2抗-IL-13抗体在呼吸道障碍中的用途
在本发明的某些实施方案中,使用抗-IL-13抗体或其抗原结合部分来治疗一种或多种IL-13相关病症,包括、但不限于呼吸道障碍(例如,哮喘(例如,变应性和非变应性哮喘(例如,由例如呼吸道合胞病毒(RSV)感染引起的哮喘,例如,在幼儿中))、慢性阻塞性肺疾病(COPD)和涉及气道炎症、嗜酸粒细胞增多、纤维化和过量粘液生成的其它病症,例如,囊性纤维化和肺纤维化。
在某些实施方案中,本申请提供了治疗(例如,减轻、改善)或预防与呼吸道障碍有关的一种或多种征状的方法,例如,哮喘(例如,变应性和非变应性哮喘);变态反应;慢性阻塞性肺疾病(COPD);涉及气道炎症、嗜酸粒细胞增多、纤维化和过量粘液生成的病症,例如,囊性纤维化和肺纤维化。例如,哮喘的征状包括、但不限于:哮鸣、呼吸短促、支气管收缩、气道高反应性、肺容量降低、纤维化、气道炎症和粘液生成。所述方法包括:给受试者施用IL-13抗体或其片段,其量足以治疗(例如,减轻、改善)或预防一种或多种征状。所述IL-13抗体可以治疗性地或预防性地或二者兼有地施用。可以将IL-13拮抗剂(例如,抗-IL-13抗体或其片段)单独地或与本文所述的其它治疗方式组合地施用给受试者。在某些实施方案中,所述受试者是遭受本文所述的IL-13相关病症的哺乳动物,例如,人。
如上面所指出的,IL-13已经涉入在造成与哮喘有关的病理性应答中起关键作用。但是,不同免疫学途径的其它介质也涉入哮喘发病机制,并且阻断这些介质(除了IL-13以外)可能提供额外的治疗益处。因而,可以将本发明结合蛋白掺入双特异性抗体中,其中所述双特异性抗体能够结合靶物对,包括、但不限于IL-13和促炎症性细胞因子,诸如肿瘤坏死因子-α(TNF-α)。TNF-α可能放大哮喘中的炎症应答,并可能与疾病严重性相关联(McDonnell等人, Progress in Respiratory Research (2001), 31(New Drugs for Asthma, Allergy and COPD), 247-250.)。这提示,阻断IL-13和TNF-α二者可能具有有益作用,特别是在严重的气道疾病中。在一个非限制性实施方案中,本发明的双特异性抗体会结合靶物IL-13和TNF-α,并被用于治疗哮喘。
在另一个实施方案中,本发明的结合蛋白可以用于制备双特异性抗体分子,其结合:IL-13和IL-lβ、IL-13和IL-9;IL-13和IL-4;IL-13和IL-5;IL-13和DL-25;IL-13和TARC;EL-13和MDC;IL-13和MlF;IL-13和TGF-β;EL-13和LHR激动剂;DL-13和CL25;IL-13和SPRR2a;EL-13和SPRR2b;和DL-13和ADAM8。本发明也提供了能够结合IL-13和一种或多种涉入哮喘中的靶物的双特异性抗体,所述靶物选自:CSFl(MCSF)、CSF2(GM-CSF)、CSF3(GCSF)、FGF2、IFNAl、IFNBl;IFNG、组胺和组胺受体、ELlA、DLlB、BL2、IL3、EL4、IL5、IL6、IL7、IL8、IL9、ILlO、ELI l、IL12A、IL12B、IL14、IL15、IL16、IL17、IL18、EL19、IL-20、IL-21、IL-22、EL-23、EL-24、EL-25、IL-26、IL-27、EL-28、IL-30、EL-31、EL-32、IL-33、KtTLG、PDGFB、IL2RA、EL4R、IL5RA、IL8RA、DL8RB、IL12RB1、IL12RB2、EL13RA1、IL13RA2、IL18R1、TSLP、CCLl、CCL2、CCL3、CCL4、CCL5、CCL7、CCL8、CCL13、CCL17、CCL18、CCL19、CCL20、CCL22、CCL24、CX3CL1、CXCLl、CXCL2、CXCL3、XCLl、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CX3CR1、GPR2、XCRl、FOS、GATA3、JAKl、JAK3、STAT6、TBX21、TGFBl、TNFSF6、YYl、CYSLTRl、FCERlA、FCER2、LTB4R、TB4R2、LTBR和壳多糖酶。
实施例
1. 抗-IL-13抗体的生产
药用物质的生产批是如下得到的ABT-308单克隆抗体的溶液:种子培养,生产源自生产反应器的单个循环的药用物质,初步回收和捕获,并精制纯化。
1.1 培养基制备
根据GMP溶液记录,使用满足USP/EP/JP标准的净化水制备溶液。使用0.1 μm滤器,将配制的培养基溶液过滤进适当尺寸的预灭菌的容器、袋或生物反应器中。在使用后,对0.1 μm滤器进行完整性测试。生长和生产培养基的组成如表2所示。
表2. 细胞培养基组合物
原料 生长培养基SR-512 生长培养基SR-520 生产培养基SR-521
PFCHO(A)-S1 - + +
PFCHO部分A(经改良),含有谷氨酰胺,没有NaHCO3 + - -
PFCHO部分B(柠檬酸铁储备溶液) + + +
重组人胰岛素 + + +
葡萄糖,无水 - + +
L-谷氨酰胺 + + +
L-天冬酰胺一水合物 - + -
碳酸氢钠 + + +
HEPES,游离酸 - + +
NaCl - + +
Pluronic F-68(泊洛沙姆188, NF) - + +
NaH2PO4·H2O - + +
Na2HPO4·7H2O - + +
Bacto TC酵母粉 + + +
植物蛋白胨 - + +
甲氨蝶呤 + + +
2N NaOH - + +
2N HCl - + +
1.2 接种物繁殖
使用自旋烧瓶和Biowave袋操作,将来自单个冷冻瓶的MCB的CHO细胞繁殖至希望的生物量,用于接种110 L种子生物反应器。融化原始细胞库的冷冻瓶,并放入生长培养基(SR-512)中,进行离心。将细胞重新悬浮于生长培养基中,并在37 ℃和5% CO2下在递增体积的一次用弃的自旋烧瓶或Biowave袋中繁殖。使用双份20 L wave袋,使最终细胞团繁殖最大化,然后接种进种子生物反应器中。当在大约15 - 17天时在2个20 L wave袋中的细胞密度达到≥2.0 x 106活细胞/mL时,将培养物转移进装有生长培养基SR-520的110 L种子生物反应器中,用于进一步繁殖。在接种以后,目标温度是37 ℃,将目标pH设定为7.1,并通过加入NaOH和CO2鼓泡进行控制。通过用空气和氧鼓泡,将生物反应器中的溶解氧(DO)控制在40%的目标值。在大约2 - 4天以后细胞密度达到≥2.6 x 106活细胞/mL后,将培养物转移进3000 L生产生物反应器中。
1.3 短填充生物反应器
使用3000 L生产生物反应器的部分填充,进一步繁殖细胞培养物。最初,给该反应器装入生长培养基(SR-520),并接种来自110 L种子生物反应器的批次。
在该短填充阶段期间,将温度、溶解氧和pH分别控制在37 ℃、40%和7.1。通过CO2鼓泡和NaOH添加,控制培养pH。通常,细胞生长2 - 4天后,达到≥1.6 x 106活细胞/mL的所需密度。
1.4生产生物反应器
将生产培养基SR-521(1950 L)加给在3000 L生物反应器中的细胞培养物,以开始生产阶段。加入消泡剂C,以减少泡沫。通过开关CO2鼓泡和NaOH添加,将培养pH控制在6.9的目标值。将温度和溶解氧分别控制在35 ℃和40%的目标值。通过空气鼓泡,并根据需要补充纯氧,最初将生物反应器中的DO控制在希望的值。当活细胞密度达到≥3.0 x 106细胞/mL时,将温度降低至33 ℃的目标值,并分别将pH和DO维持在6.9和40%的目标值,根据需要,加入葡萄糖(SR−334)。当细胞存活率下降至≤50%时,收获培养物。
1.5过程性能
过程性能和过程中检验结果分别如表3和表4所示。
表3. 用于ABT-308生产的细胞培养过程性能
表4. 细胞培养过程的过程中检验结果
a. 规范。
2. 抗-IL-13抗体的分离和纯化
初步回收和捕获操作包括:通过过滤来澄清收获物,通过蛋白A亲和色谱法来捕获抗体,低pH病毒灭活,以及随后的深度过滤。精制纯化操作包括:阴离子交换色谱法、疏水相互作用色谱法、病毒过滤、超滤/渗滤和最终的过滤、装瓶和冷冻。
2.1溶液的制备
根据GMP溶液记录,使用USP净化水(USP-PW)或注射用水(WFI)制备溶液。使用0.2 μm滤器,将大部分溶液过滤进辐照过的袋、高压灭菌的或在原位蒸汽灭菌的容器中。
2.2初步回收和澄清
通过过滤进行初步回收的目的是,从生产生物反应器收获物中去除细胞和细胞碎片。使未处理的收获物穿过由深度滤器、去脂质深度滤器和膜滤器组成的滤器列。将澄清的上清液收集在收获罐中,并维持在2 - 8 ℃。澄清的收获物的过程中控制包括:通过Poros A色谱法测定ABT-308浓度,生物负荷量和内毒素测试。
2.3蛋白A亲和色谱法
蛋白A亲和色谱法的目的是,从澄清的收获物中捕获ABT-308,并减少过程相关的杂质。通常进行3个色谱循环,以处理整个收获物。合并来自3个循环的产物库,用于进一步处理。
给45 cm直径x 22 cm长度的柱(35 L)填充MabSelect®蛋白A树脂(GE Healthcare)或ProSep Ultra PlusTM(Millipore),并测试合格备用。使用USP净化水(USP-PW)、随后用0.2 M醋酸、最后用USP PW冲洗,从柱去除贮存缓冲液。用25 mM Tris、100 mM NaCl(pH 7.2)平衡柱,然后装载澄清的收获物至最大值32 g蛋白/L树脂(对于MabSelect®蛋白A树脂(GE Healthcare))或45 g蛋白/L树脂(对于ProSep Ultra PlusTM(Millipore)树脂)。用25 mM Tris、100 mM NaCl(pH 7.2)洗涤柱,然后用20 mM柠檬酸钠、0.5 M NaCl(pH 6.0)洗涤,最后再用25 mM Tris、100 mM NaCl(pH 7.2)洗涤。用0.1 M醋酸(pH 3.5),从柱洗脱抗体。在每个循环以后,如果需要的话,将洗脱液库的pH调节至4.1的目标值。过程中控制包括:通过A280测定蛋白浓度、SE-HPLC、生物负荷量和内毒素测试。
在第1个循环以后,用0.2 M醋酸再生柱,并用USP-PW冲洗。在第2个循环以后,用0.2 M醋酸再生柱,用USP-PW冲洗,然后用0.1 M醋酸、20% 乙醇消毒,随后洗涤,并在50 mM醋酸钠、20% 乙醇(pH 5)中短期贮存。在第3个循环以后,用0.2 M醋酸再生柱,并用USP-PW冲洗。然后用0.4 M醋酸、0.5 M NaCl、0.1% 吐温80清洁,随后用USP-PW清洁,再用50 mM NaOH、1.0 M NaCl、然后用USP-PW清洁。最后,用0.1 M醋酸、20% 乙醇消毒,随后洗涤,并在50 mM醋酸钠、20% 乙醇(pH 5)中贮存。
2.4低pH温育和过滤
低pH温育是专用的病毒减少步骤,其通过灭活在蛋白A洗脱液中可能存在的具有外膜的外来病毒,额外地确保病毒安全性。在低pH温育以后进行过滤的目的是,去除在低pH处理过程中可能形成的任何沉淀物。
使用0.5 M磷酸,将组合的蛋白A色谱洗脱液的pH调节至3.5的目标值,并在18 - 25 ℃保持60 - 70分钟。然后用1 M Tris(pH 10)调节混合物至pH 5,通过深度滤器和膜滤器的组合进行澄清,然后冷却至10 - 14 ℃。低pH处理和过滤步骤的过程中控制包括:通过A280测定蛋白浓度、SE-HPLC、生物负荷量和内毒素测试。
2.5 初步回收和捕获过程性能
初步回收和捕获操作的过程性能如表5所示,过程中控制的结果如表6所示。
表5. 初步回收和捕获过程性能
a. 由于低pH灭活以后的取样误差,组合的产率
b. 在批次56136BI中的深度滤器面积是在批次57058BI和58207BI中的3倍。在批次56136BI中的更大滤器面积导致降低的产率。
表6. 初步回收和捕获过程的过程中检验结果
a. 在下一个单元操作开始时采集的生物负荷量和内毒素样品。
b. 没有采样。
2.6强阴离子交换色谱法
强阴离子交换色谱步骤的目的是,减少过程相关的杂质,诸如宿主细胞蛋白、DNA和内毒素。它也可以充当病毒清除步骤。在某些实施方案中,以流通模式操作Q Sepharose™ FF树脂柱,其中使抗体流过该柱,杂质保持结合在树脂上,在替代实施方案中,使用Mustang QTM膜(Pall Corp.)替代Q Sepharose™ FF树脂柱。所述操作在10-14 ℃进行。
给45 cm直径x 22 cm长度的柱(35 L)填充Q Sepharose™ FF树脂(GE Healthcare),并测试合格备用。使用25 mM Tris、50 mM NaCl(pH 8.0)平衡该柱。使用1 M Tris(pH 10),将中和的且过滤的灭活溶液的pH调节至8.0,调节电导率至5.0 - 6.5,通过去脂质和膜滤器过滤溶液。以80 g蛋白/L树脂的最大负荷,使Q Sepharose™ 装载泵入柱中。装载以后,用25 mM Tris、50 mM NaCl(pH 8.0)洗涤该柱,组合流通物和洗液。这是Q Sepharose™ 流通物和洗液(QFTW)库。Q Sepharose™ 步骤的过程中控制包括:通过A280测定浓度、SE-HPLC、生物负荷量和内毒素测试。
用25 mM磷酸钠、1.0 M NaCl(pH 7.0)再生该柱,随后用WFI冲洗,并用1.0 M NaOH消毒,随后用WFI冲洗。然后用25 mM磷酸钠、1.0 M NaCl(pH 7.0)中和该柱,并在25 mM磷酸钠、20% 异丙醇(pH 7.0)中储存。
2.7 疏水相互作用色谱法
Phenyl Sepharose™ 步骤的目的是,去除ABT-308聚集体、片段和过程相关的杂质。所述操作在10-14 ℃进行。
给60 cm直径x 15 cm长度的柱(42 L)填充Phenyl Sepharose™ HP树脂(GE Healthcare),并测试合格备用。用WFI、然后用20 mM磷酸钠、1.1 M硫酸铵(pH 7.0)平衡该柱。
用40 mM磷酸钠、2.2 M硫酸铵(pH 7.0)1:1(v/v)稀释Q Sepharose™ 流通物和洗液。通过0.2 μm滤器,过滤该溶液(Phenyl Sepharose™ 加载物),并以64 g蛋白/L树脂的最大负荷,加载到该柱上。用25 mM磷酸钠、1.4 M硫酸铵(pH 7.0)洗涤该柱,并使用11 mM磷酸钠、0.625 M硫酸铵(pH 7.0)从该柱洗脱ABT-308。Phenyl Sepharose™ 步骤的过程中控制包括:通过A280测定浓度、SE-HPLC、生物负荷量和内毒素测试。
用WFI再生该柱,然后用1 M NaOH消毒,用WFI冲洗,并在25 mM磷酸钠、20% 异丙醇(pH 7)中储存。
2.8 纳米过滤
纳米过滤是专用的病毒清除步骤,其通过物理地去除在Phenyl Sepharose™ HP柱洗脱液中可能存在的直径≥20 nm的外来病毒,额外地确保病毒安全性。所述操作在10-14 ℃进行。
使Phenyl Sepharose™ HP柱洗脱液穿过0.1 μm滤器和用15 mM组氨酸(pH 5.6)预润湿的Ultipor DV20滤器列。过滤以后,用15 mM组氨酸(pH 5.6)冲洗滤器列,以回收任何保留的ABT-308。在使用以后,对DV20滤器进行完整性测试,并丢弃滤器。如果滤器没有通过完整性测试,可以如上所述重新过滤溶液。纳米过滤步骤的过程中控制包括:通过A280测定蛋白浓度、SE−HPLC、生物负荷量和内毒素测试。
2.9通过超滤/ 渗滤制备ABT-308药用物质制剂
UF/DF步骤的目的是,将药用物质渗滤进最终的制剂缓冲液15 mM组氨酸(pH 5.6)中,并浓缩ABT-308。这些操作在10-14 ℃进行。
使用30 kDa MWCO聚醚砜膜,将纳米滤液浓缩至大约50 g/L,用制剂缓冲液渗滤,然后浓缩至大约180 g/L。从UF系统排出产物,并用渗滤缓冲液冲洗,以回收在系统中保留的任何产物。组合浓缩物和洗液,以生成渗滤的ABT-308,其浓度为大约120 - 160 g/L。通过膜滤器,过滤浓缩的ABT-308。超滤/渗滤步骤的过程中控制包括:通过A280测定浓度、SE-HPLC、生物负荷量和内毒素测试。
在每次运行以后,用WFI冲洗超滤系统,用250 ppm次氯酸钠溶液清洁,然后消毒,并在0.1 M氢氧化钠中储存。
2.10 最终的过滤、装瓶和冷冻
在2-8 ℃,在100级层流洁净工作台中的100级区域中进行过滤和装瓶操作。通过0.2 μm滤器,将配制的ABT-308过滤进预灭菌的、无热原的PETG瓶子中。将带有标签的瓶子放入空的-80 ℃(标称)冰箱中冷冻,然后转移至维持在-80 ℃(标称)的贮存冰箱中。最终的过滤和装瓶步骤的过程中控制包括A280、生物负荷量和内毒素测试(药用物质测试结果)。
2.11精制纯化过程性能
初步回收和捕获操作的过程性能如表7所示,过程中控制的结果如表8所示。
表7. 精制纯化过程性能
表8. 精制纯化过程中检验结果
a. 在下一个单元操作开始时,采取生物负荷量和内毒素样品。
b. 认为6 EU/mL的内毒素结果不是显著的,因为足够的药用物质满足≤0.2 EU/mg的规范。另外,批次56003BF是工程运行,没有释放出用于人用。
c. 药用物质释放规范。
d. 药用物质释放结果。
3. 抗体组合物中宿主细胞蛋白浓度的测定
该程序描述了用于测定抗体样品中的残留宿主细胞蛋白浓度的测试方法。酶联免疫吸附测定(ELISA)用于使宿主细胞蛋白(抗原)夹心在2层特异性抗体之间。这随后为用酪蛋白封闭非特异性位点。宿主细胞蛋白随后进行温育,在这期间通过第一种抗体(包被抗体)捕获抗原分子。随后添加与抗原(宿主细胞蛋白)固定的第二种抗体(生物素化的抗宿主细胞蛋白)。添加HRP缀合的中性抗生物素蛋白(Neutravidin),其与生物素化的抗宿主细胞蛋白结合。这随后为K-Blue底物的添加。通过结合的酶缀合的抗体水解生色底物,从而生产蓝色。反应用2M H3PO4终止,从而使颜色变成黄色。颜色强度与孔中结合的抗原量成正比。
50 mM碳酸氢钠(包被缓冲液),pH 9.4的制备。向1 L烧杯中添加:900 mL Milli-Q水;4.20 g±0.01 g碳酸氢钠。搅拌直至完全溶解。用1 N NaOH将pH调整至9.4。转移至1 L容量瓶且用Milli-Q水补足体积。通过倒置混合直至均质。通过0.22 µm无菌过滤单元进行过滤。从制备日期起贮存于标称的4 ℃最多7天。
0.104 M Na2HPO4 * 7H2O、1.37 M NaCl、0.027 M KCl、0.0176 M KH2PO4,pH = 6.8 - 6.9(10X PBS)的制备。将约400 mL的Milli-Q水添加到玻璃烧杯中。添加13.94 g±0.01 g Na2HPO4 x 7H2O。添加40.0 g±0.1 g NaCl。添加1.00 g±0.01 g KCl。添加1.20 g±0.01 g KH2PO4。搅拌直至均质。转移至500 mL容量瓶。用Milli-Q水定容至500 mL体积。通过倒置混合。通过0.2 µm无菌过滤单元进行过滤。贮存于室温最多7天。
1X PBS + 0.1%Triton X-100,pH 7.40:(板洗涤缓冲液)的制备。在4 L量筒中,使400 mL 10 X PBS(步骤5.2)与3500 mL Milli-Q水混合。检查pH,并且若需要则用1 N HCl或1 N NaOH调整至7.40±0.05。用Milli-Q水补足体积。紧紧用石蜡膜封口量筒,并且通过倒置混合直至均质。转移至4 L瓶。取出4 mL 1 X PBS且弃去。将4 mL triton X-100添加到3996 mL 1 X PBS中。置于搅拌板上,并搅拌至完全溶解。通过0.22 µm无菌过滤单元进行过滤用于稀释缓冲液制剂所需的板洗涤缓冲液量。贮存于室温最多7天。
包被抗体混合物的制备:山羊抗CHO 599/626/748(批次#G11201,1.534 mg/mL),亲和纯化的:注:原液贮存于标称的-80 ℃在小瓶中。制备等分试样。在使用时拿出一个等分试样/板。在即将使用前:如下在冷50 mM碳酸氢钠中稀释抗体混合物,以具有4 µg/mL的最终浓度。例如:将31 µL包被抗体混合物添加到11969 µL冷包被缓冲液中。通过倒置轻轻混合。
生物素化的山羊抗宿主细胞蛋白混合物,599/626/748(批号G11202 @ 0.822 mg/mL)的制备:注:原液贮存于标称的-80 ℃在小瓶中。制备等分试样。在使用时拿出一个等分试样/板。在即将使用前:如下在37 ℃±2 ℃酪蛋白中稀释生物素化的抗体混合物,以具有1 µg/mL的最终浓度。例如:将14.6 µL生物素化的抗体混合物添加到11985 µL 37 ℃±2 ℃酪蛋白。通过倒置轻轻混合。
中性抗生物素蛋白-HRP的制备。如下重构新批次(2 mg/小瓶)至1 mg/mL:将400 µL Milli-Q水添加到小瓶中,随后添加1600 µL 1X PBS,总共2 mL。轻轻涡旋以混合。贮存于标称的-20 ℃。制备具有所需体积的等分试样,从而使得使用1个等分试样/板。在聚丙烯管中制备。定量新批次以测定工作浓度。指定从制备日期起6个月到期。例如,如果工作浓度测定为0.2 µg/mL,那么如下制备。在即将使用前,使中性抗生物素蛋白-HRP的等分试样在室温解冻。用37 ℃±2 ℃酪蛋白将1 mg/mL中性抗生物素蛋白溶液稀释至0.1 mg/mL(100 µg/mL)。例如:稀释X10,将50 µL中性抗生物素蛋白添加到450 µL酪蛋白中。轻轻涡旋以混合。用37 ℃±2 ℃酪蛋白将100 µg/mL溶液进一步稀释至0.2 µg/mL。例如,稀释X500,将24 µL中性抗生物素蛋白(100 µg/mL)添加到11976 µL酪蛋白中。轻轻涡旋以混合。
5.7 2M的磷酸(终止液)的制备。如下由浓磷酸制备2 M磷酸溶液。根据标签上所述的磷酸%、密度(1.685g/mL)和式量(98 g/摩尔),计算制备500 mL 2M磷酸所需的浓磷酸体积。将上述计算的浓磷酸体积添加到瓶中。用Milli-Q水补足体积,并且通过倒置混合直至均质。从制备日期起在环境温度贮存最多6个月。
稀释缓冲液(在1X PBS + 0.1%Triton X100,pH 7.4中稀释X100的酪蛋白)的制备。在0.22 µm无菌过滤的1X PBS + 0.1%Triton X100,pH 7.4(来自上文)中,将37 ℃±2 ℃酪蛋白稀释X100。例如:将1 mL 37 ℃±2 ℃酪蛋白添加到99 mL 0.22 µm无菌过滤的1X PBS + 0.1%Triton X100,pH 7.4。充分混合。对于每次使用新鲜制备。
标准的制备。宿主细胞蛋白标准(抗原标准)(批次#G11203 @ 1.218 mg/mL):注:原液在标称的-80 ℃,以70 µL等分试样贮存。在室温解冻等分试样。使用稀释缓冲液在聚丙烯管中执行连续稀释。
样品的制备。在聚丙烯管中,在稀释缓冲液中将最终总试样稀释至24 mg/mL。记录浓度。注:使用下文溶液以制备掺料样品且制备下文提及的12 mg/mL溶液。在聚丙烯微量离心管(microtube)中,在稀释缓冲液中将24 mg/mL溶液进一步稀释至12 mg/mL。在板上对于12 mg/mL溶液各自装载一式三份的孔,总共6个孔。
掺料的制备。在聚丙烯微量离心管中,通过用稀释缓冲液将其稀释2 X,由上文制备的20 ng/mL标准制备10 ng/mL宿主细胞蛋白掺料。在板上装载对于10 ng/mL掺料溶液的3个孔。使用来自步骤6.1的20 ng/mL标准溶液用于掺料样品。
掺料样品的制备。在聚丙烯微量离心管中,用300 µL 20 ng/mL掺料溶液(6.1)掺料300 µL各24 mg/mL的最终本体溶液。对于每种掺料样品溶液装载一式三份的孔,总共6个孔。
对照的制备。在常规测试中使用前,对于每一种新对照母液必须设定对照范围。对照原液:制备ABT-308药物物质浓缩物分批的150 µL等分试样,且冷冻贮存于标称的-80 ℃最多3年。
工作对照的制备。使对照的等分试样在室温解冻。在聚丙烯管中,用稀释缓冲液将对照稀释至24 mg/mL。在聚丙烯微量离心管中,用稀释缓冲液将24 mg/mL对照溶液进一步稀释至12 mg/mL。制备单一稀释度且将对照装载到板的3个孔内。
ELISA程序。用板洗涤缓冲液(参考步骤5.3,1X PBS + 0.1%Triton X-100)装满板洗涤瓶。起动板洗涤器。检查下述参数:参数应设为:板类型:对于每个循环1(总共5个循环):体积:400 µls;浸泡时间:10秒;抽吸时间(Asp. Time):4秒。
测定程序。用100 µL/孔在冷50 mM碳酸氢钠中的4 µg/mL山羊包被抗体混合物包被板。轻敲板的侧面,直至包被溶液均匀地覆盖孔底部,用封条覆盖并且在标称的4 ℃温育,同时在板振荡器(或等效物)上以速度3振荡18小时±1小时。在过夜温育后,从冰箱中取出板,并且允许平衡至室温。抖开包衣。在纸巾上吸干板。用300 µL/孔37 ℃±2 ℃酪蛋白封闭,用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡1小时。在封闭温育过程中制备标准、样品、对照、掺料和掺料样品。用洗涤缓冲液将板洗涤5次。在纸巾上将板吸干。使用8道移液器,将100 µL/孔的标准、样品、掺料、掺料样品和对照移液到板的一式三份孔内。将100 µL/孔的稀释缓冲液移液到板的所有空孔内,以充当空白。用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡1小时。填满模板以用作在装载板时的指导。
板阅读器设置。设置模板,输入关于标准的浓度。不输入关于样品、对照、掺料或掺料样品的稀释因子。将包含稀释剂的孔指定为空白,以从所有孔中扣除。用洗涤缓冲液将板洗涤5次。在纸巾上将板吸干。添加100 µL/孔生物素化的山羊抗体。用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡1小时。用洗涤缓冲液将板洗涤5次。在纸巾上将板吸干。添加100 µL/孔中性抗生物素蛋白-HRP缀合物溶液。用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡1小时。用洗涤缓冲液将板洗涤5次。在纸巾上将板吸干。添加100 µL/孔冷K-Blue底物,用封条覆盖,并在室温温育10分钟(一将底物添加到第一行中就起动计时器),同时在Lab-line滴定板振荡器(或等效物)上在速度3振荡。通过添加100 µL/孔2M磷酸(步骤5.7)停止反应。将板置于以速度3的板振荡器上进行3-5分钟。在450 nm读出板。
数据分析和计算。注:仅接受这样的样品、掺料、掺料样品和对照,其光密度属于标准曲线的实际定量限度(2.5 ng/mL标准)且满足下文陈述的%CV或%差异标准。如果样品OD降到2.5 ng/mL标准之下,那么结果应报告为小于2.5 ng/mL。该值随后应除以稀释的样品浓度(12 mg/mL),以报告ng/mg的值。如果样品在宿主细胞浓度中是高的,从而引起未掺料和/或掺料样品超过标准曲线,那么将值报告为> 100 ng/mL。该值随后应除以稀释的样品浓度(12 mg/mL),以报告ng/mg的值。当样品低于2.5 ng/mL标准时,对于掺料回收计算将样品值视为零。
标准曲线。标准浓度应输入规程模板内。使用二次曲线拟合。决定系数必须是= 0.99,并且在一式三份孔之间的%CV必须是= 20%。如果该标准不满足:那么可以放弃一个标准(1个水平,3个孔)。如果放弃1.25 ng/mL,那么仅具有光密度属于2.5 ng/mL和100 ng/mL(剩余的标准曲线点)光密度的样品和掺料样品是可接受的。另外,对于一式三份的每个标准水平,如果单个孔被明确污染或显示低结合,那么它可以被放弃。如果孔从标准水平中放弃,那么剩余的重复必须具有%差异= 20%。关于显示接近于板本底(空白)的OD值的最低标准的%CV应是= 30%。如果放弃一个孔,那么关于剩余的重复的%差异必须是= 35%。如果放弃最低标准,那么仅具有光密度属于剩余的标准曲线水平光密度的样品和掺料样品是可接受的。
样品。%CV在一式三份孔之间应是= 20%。报告在一式三份孔之间的%CV。可以放弃来自每个样品稀释度的一个孔。剩余的重复必须具有= 20%的%差异。注:如果未掺料样品OD低于2.5 ng/mL标准OD,那么%差异标准不应用于未掺料结果。参考上文计算。
如下根据平均(ng/mL)值计算以ng/mg表示的实际宿主细胞浓度:CHO宿主细胞蛋白(ng/mg)= 平均“未掺料样品结果(ng/mL)”_稀释的样品浓度(12 mg/mL)。
掺料。%CV在一式三份孔之间应是= 20%。记录%CV。可以放弃来自掺料的一个孔。剩余的点必须具有= 20%的%差异。参考上文中的计算。以ng/mL报告宿主细胞浓度。该结果将在掺料回收计算中使用。关于掺料所得到的浓度(ng/mL)必须是理论掺料浓度的±20%。记录结果且指出通过(Pass)或失败(Fail)。如果掺料结果未在理论的20%内,那么必须重复测定。平均掺料浓度(ng/mL)x 100 =必须是100%±20%10 ng/mL。
掺料样品。%CV在一式三份孔之间应是= 20%。记录在一式三份孔之间的%CV。可以放弃来自每个掺料样品稀释度的一个孔。剩余的重复必须具有= 20%的%差异。参考上文计算。对于每个稀释度以ng/mL报告“掺料样品结果”。记录一式两份稀释度之间的%差异。稀释度之间的%差异应是= 25%。这些结果将在掺料回收计算中使用。
使用下式对于每个稀释设置计算%掺料回收:%掺料回收= 掺料样品值-未掺料样品值X 100掺料值。注:(1)如果未掺料样品值OD降到2.5 ng/mL标准之下,那么在%掺料回收计算中将值视为零。对于每个样品的每个稀释度,%掺料回收必须是100%±50%(50%- 150%)。记录结果和通过/失败。
对照。%CV在一式三份孔之间应是= 20%。记录%CV结果。可以放弃来自对照的一个孔。剩余的重复必须具有= 20%的%差异。参考上文计算。以ng/mL报告对照中的宿主细胞浓度。如下以ng/mg计算宿主细胞浓度:宿主细胞蛋白(ng/mg)= 以ng/mL表示的对照宿主细胞蛋白结果。
4. 抗体组合物中蛋白A浓度的测定
在该ELISA中,用鸡抗-蛋白A包被板,并温育。用在PBS中的酪蛋白封闭非特异性位点。在1X PBS + 0.1% Triton X-100中洗涤板,以去除未结合的物质。在1X PBS + 4.1% Triton X + 10% 酪蛋白中稀释样品和Cys-rprotein A标准品。通过在95 ℃±2 ℃加热,使溶液变性,使蛋白A与抗体分离。在某些实施方案中,例如,如果蛋白A亲和步骤包括使用MabSelect™ (GE Healthcare),则将溶液加入板中,并温育。在替代实施方案中,例如,如果蛋白A亲和步骤包括使用ProSep Ultra PlusTM(Milipore),则冷却溶液,并将0.85% NaCl + 12.5% 1 N醋酸+ 0.1% 吐温20加入每个试管(1:1)中,以进一步辅助蛋白A与样品蛋白的分离。将所述试管剧烈地涡旋,温育,并离心。去除上清液,并进一步处理。用1X PBS + 0.1% Triton X-100,洗掉未结合的物质。将生物素化的鸡抗-蛋白A加入微孔滴定板中,并温育。洗涤该板,以去除未结合的物质,并加入中性抗生物素蛋白-过氧化物酶缀合物。
中性抗生物素蛋白会结合生物素化的鸡抗-蛋白A,后者已经结合在孔上。再次洗涤板,以去除未结合的中性抗生物素蛋白,并将K-Blue(四甲基联苯胺(TMB))底物加入板中。所述底物会被结合的中性抗生物素蛋白水解,生成蓝色。用磷酸终止该反应,颜色变成黄色。孔中黄色的强度与在孔中存在的蛋白A的浓度直接成比例。
试剂和溶液的制备。必须将酪蛋白瓶子温热至37 ℃±2 ℃;超声处理2分钟,并制备等分试样。将等分试样保藏在标称的4 ℃。当要运行试验时,将需要数目的酪蛋白等分试样置于37 ℃±2 ℃。使用冷的包被缓冲液和底物(在即将使用时从标称的4 ℃取出)。
50 mM碳酸氢钠(包被缓冲液)(pH 9.4)的制备。向1 L烧杯中添加:900 mL Milli-Q水;4.20 g±0.01 g碳酸氢钠。搅拌直至完全溶解。用1 N NaOH将pH调整至9.4。转移至1 L容量瓶,且用Milli-Q水补足体积。通过倒置混合直至均质。通过0.22 CA µm无菌过滤单元进行过滤。从制备日期起贮存于标称的4 ℃最多7天。
0.104 M Na2HPO4 * 7H2O、1.37 M NaCl、0.027 M KCl、0.0176 M KH2PO4(pH = 6.8 - 6.9)(10 X PBS)的制备。将大约400 mL Milli-Q水添加到玻璃烧杯中。添加13.94 g±0.01 g Na2HPO4 x 7H2O。添加40.0 g±0.1 g NaCl。添加1.00 g±0.01 g KCl。添加1.20 g±0.01 g KH2PO4。搅拌直至均质。转移至500 mL容量瓶。用Milli-Q水定容至500 mL体积。通过倒置混合。通过0.2 CA µm无菌过滤单元进行过滤。贮存于室温最多7天。
1X PBS + 0.1% Triton X-100(pH 7.40)(板洗涤缓冲液)的制备。在4 L刻度量筒中,使400 mL 10 X PBS(参见上面)与3500 mL Milli-Q水混合。检查pH,并且若需要则用1 N HCl或1 N NaOH调整至7.40±0.05。用Milli-Q水补足体积。用石蜡膜紧密地封口量筒,并且通过倒置混合直至均质。转移至4 L瓶。取出4 mL 1 X PBS且弃去。将4 mL triton X-100添加到3996 mL 1 X PBS中。置于搅拌板上,并搅拌至完全溶解。贮存于室温最多7天。
鸡抗-蛋白A包被抗体。在使用时,取出每个板的一个抗体等分试样。为了鉴定新批次的鸡抗-蛋白A,可能必须使用和鉴定缀合到一起的鸡抗-蛋白A-生物素(从相同的包被批次制备)。在即将使用前:在冷的50 mM碳酸氢钠中稀释抗体混合物至在包被鉴定过程中测得的浓度。例如:如果在鉴定过程中测得加载在板上的包被层的浓度是6 µg/mL,且如果储备物浓度是3000 µg/mL,那么将24 µL包被抗体加入11976 µL冷的包被缓冲液中。通过轻轻倒置进行混合。
生物素化的鸡抗蛋白A。在使用时,取出每个板的一个抗体等分试样。为了鉴定新批次的缀合的鸡抗-蛋白A-生物素,可能必须使用和鉴定它(从相同批次的鸡抗-蛋白A制备)。在即将使用前:在37 ℃±2 ℃酪蛋白中稀释生物素化的抗体至在生物素化的抗体鉴定过程中测得的浓度。例如:如果在鉴定过程中测得加载在板上的生物素化的抗体的浓度是4 µg/mL,且如果储备物浓度是1000 µg/mL,那么将48 µL生物素化的抗体加入11952 µL 37 ℃±2 ℃酪蛋白中。通过轻轻倒置进行混合。
中性抗生物素蛋白-HRP。如下重构新批次(2 mg/小瓶)至1 mg/mL:将400 µL Milli-Q水添加到小瓶中,随后添加1600 µL 1X PBS,总共2 mL。轻轻涡旋以混合。贮存于标称的-80 ℃。制备具有所需体积的等分试样,使得使用1个等分试样/板。在聚丙烯管中制备。指定从制备日期起6个月的失效期。例如,如果工作浓度测定为0.1 µg/mL,那么如下制备。在即将使用前,使中性抗生物素蛋白-HRP的等分试样在室温解冻。用37 ℃±2 ℃酪蛋白,将1 mg/mL中性抗生物素蛋白溶液稀释至0.01 mg/mL(10 µg/mL)。例如:稀释X10,将50 µL中性抗生物素蛋白添加到450 µL酪蛋白中。轻轻涡旋以混合,再次X10,将100 µL X10中性抗生物素蛋白加入900 µL酪蛋白中。轻轻涡旋以混合。用37 ℃±2 ℃酪蛋白将10 µg/mL溶液进一步稀释至0.1 µg/mL。例如,稀释X100,将120 µL中性抗生物素蛋白(10 µg/mL)添加到11880 µL酪蛋白中。轻轻倒置几次以混合。
终止液(使用购买的1 N磷酸)。从接收日期起,在环境温度储存最多1年。稀释缓冲液(1X PBS + 4.1% Triton X100 + 10% 酪蛋白,pH 7.4)。将86 mL 1X PBS + 0.1% Triton X100(pH 7.4)(来自步骤5.3)加入烧杯或烧瓶中,加入4 mL Triton X-100和10 mL在PBS中的阻滞剂酪蛋白,并搅拌以溶解/混合。溶解triton可能需要20-30分钟。这等于1X PBS + 4.1% Triton X100 + 10% 酪蛋白(pH 7.4溶液)。通过0.22 CA µm无菌过滤单元进行过滤。为每次使用新鲜制备。这对于1个板而言是足够的。
蛋白A标准品(抗原标准品)。注:在标称的-20 ℃在70 µL等分试样中保存储备物。在冰上融化等分试样。使用在生产商的COA上标明的浓度,使用稀释缓冲液(参见上面),根据下表中的实施例在聚丙烯试管中执行系列稀释:例如,如果COA标明储备物浓度是2.1 mg/mL(2100000 ng/mL),那么:在冰上融化样品。在聚丙烯微量离心管中,在稀释缓冲液(上面)中稀释最终的主样品至20 mg/mL。执行2次单独稀释。记录浓度。使用下述的溶液来制备掺料样品,和制备10 mg/mL溶液。例如: 浓度(mg/mL)体积 µL X mg/mL,来自120个储备样品的稀释剂系列稀释的溶液体积( µL)。在聚丙烯微量离心管中,在稀释缓冲液中进一步稀释20 mg/mL溶液至10 mg/mL。
掺料的制备。在聚丙烯微量离心管中,通过用稀释缓冲液将其稀释2倍,从上文在步骤6.1中制备的0.593 ng/mL标准品,制备0.296 ng/mL蛋白A掺料。进行单次稀释。在板上装载用于0.296 ng/mL掺料溶液的一式三份孔。使用来自步骤6.1的0.593 ng/mL标准溶液用于掺料样品。
掺料样品的制备。在聚丙烯微量离心管中,用500 µL 0.593 ng/mL掺料溶液掺料500 µL各20 mg/mL最终的本体溶液。保持进行变性。对于每种掺料样品溶液,在板上装载一式三份的孔,总共6个孔。
对照的制备。得到一批ABT-308药用物质。制备150 µL等分试样,且冷冻贮存于标称的-80 ℃从等分试样之日起3年。
工作对照。使对照的等分试样在冰上解冻。在聚丙烯微量离心管中,用稀释缓冲液将对照稀释至10 mg/mL并且1000 µL的终体积。进行单次稀释。保持进行变性。在板上装载对照的一式三份孔。
变性。对于板空白,将1000 µL稀释缓冲液加入微量离心管中,所述微量离心管的数目等于要在板上运行的空白的数目。可以用石蜡膜密封试管帽,以防止它们在加热过程中弹开,或可以将第二个架子放在它们上面,以保持帽封闭。将标准品、未掺料样品、掺料样品、掺料、空白和对照在95 ℃±2 ℃加热15分钟。如果使用的话,在冷却过程中从试管去除石蜡膜。允许冷却15分钟,并在大约10000 rpm离心5分钟。将700 µL上清液转移进微量离心管,以加载上板。小心地不要扰乱triton/蛋白沉淀物。
板洗涤器指令和恒温槽设置。用板洗涤缓冲液(参考步骤5.3,1X PBS + 0.1% Triton X-100)装满板洗涤瓶。起动板洗涤器。检查下述参数:参数应设为:板类型:对于每个循环1(总共4个循环):抽吸速度(Asp speed):10 mm/s;体积:400 µl;浸泡时间:5秒;抽吸时间(Asp. Time):6秒。开启恒温槽,并设定为95 ℃。允许恒温槽温度平衡至95 ℃±2 ℃至少30分钟。
测定程序:随着它们的完成,可以使用清单作为核对步骤的指导。另外,记录在测定过程中使用的所有设备。为要运行测定的每天使用的酪蛋白等分试样的量必须置于37 ℃±2 ℃。使用冷的包被缓冲液和底物。在封闭温育之前和过程中,制备标准品、样品、对照、掺料和掺料样品。下述过程可能需要超过1小时:封闭温育,制备稀释液,转移至埃彭道夫管,变性15分钟,冷却15分钟,离心5分钟,并转移至微量离心管。在封闭板之前,允许至少40分钟。使用12通道移液器,将样品、掺料样品、标准品、对照、试验掺料和空白加载上板,水平地从B行至G行。加载从高至低浓度的标准品。从第2列至第11列,垂直地进行板包被、生物素添加、中性抗生物素蛋白添加、底物添加和终止液添加。
用在冷50 mM碳酸氢钠中的100 µL/孔的包被抗体包被板。轻敲板的侧面,直至包被溶液均匀地覆盖孔底部,用封条覆盖,并且在标称的4 ℃温育,同时在板振荡器(或等效物)上以速度3振荡。
在过夜温育后,从冰箱中取出板,并且允许平衡至室温。抖开包衣。在纸巾上吸干板。用300 µL/孔的37 ℃±2 ℃酪蛋白封闭,用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡1小时±10分钟。
在封闭温育之前和过程中,制备标准品、样品、对照、掺料和掺料样品。用洗涤缓冲液将板洗涤4次。在纸巾上将板吸干。使用8道移液器,将100 µL/孔的变性的标准品、样品、掺料、掺料样品、空白和对照移液到板的一式三份孔内。没有使用板的外侧孔,向这些孔中加入未处理的稀释缓冲液。用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡2小时。填满模板,以用作在装载板时的指导。
板读数器设置。用洗涤缓冲液将板洗涤4次。在纸巾上吸干板。加入100 µL/孔生物素化的抗体。用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡1小时。
用洗涤缓冲液将板洗涤4次。在纸巾上吸干板。添加100 µL/孔中性抗生物素蛋白-HRP缀合物溶液。一旦将中性抗生物素蛋白加入最后一行中,立即开启计时器。用封条覆盖,并在37 ℃±2 ℃温育,同时在Lab-line Environ板振荡器(或等效物)上以80 rpm±5 rpm振荡30分钟。用洗涤缓冲液将板洗涤4次。在纸巾上将板吸干。添加100 µL/孔的冷K-Blue底物,用封条覆盖,并在室温温育10分钟(一旦将底物添加到第一行中,立即开启计时器),同时在Lab-line滴定板振荡器(或等效物)上在速度3振荡。通过添加100 µL/孔的1 N磷酸磷酸,停止反应。将板置于速度3的板振荡器上3分钟。在450 nm读出板。
数据分析和计算。注:仅接受这样的样品、掺料、掺料样品和对照,其光密度在标准曲线的实际定量限度内,且满足下文陈述的%CV或%差异标准。如果样品OD降到标准曲线之下,那么结果应报告为小于0.18 ng/mL(测定LOQ)。该值随后应除以稀释的样品浓度(10 mg/mL),报告以ng/mg为单位的值。如果样品含有高蛋白A浓度,从而引起未掺料和/或掺料样品超过标准曲线(2 ng/mL),那么进一步稀释至在标准曲线以内。该值随后应除以稀释的样品浓度,报告以ng/mg为单位的值。对于掺料回收计算,从掺料样品值(ng/mL)减去未掺料样品值(ng/mL),甚至当未掺料样品值(ng/mL)低于曲线时。如果值是负值或得到‘范围’,那么在掺料回收计算时将未掺料样品视作零。
标准曲线。标准浓度应输入规程模板内。使用二次曲线拟合。决定系数必须是= 0.99,并且在一式三份孔之间的%CV必须是= 20%。如果该标准不满足:那么可以放弃一个标准(1个水平,3个孔)。如果放弃0.18 ng/mL,那么仅具有落入0.26 ng/mL至2 ng/mL(剩余的标准曲线点)光密度内的光密度的样品和掺料样品是可接受的。另外,对于一式三份的每个标准水平,如果单个孔被明确污染或显示低结合,那么它可以被放弃。如果孔从标准水平中放弃,那么剩余的重复必须具有%差异= 20%。关于显示接近于板本底(空白)的OD值的最低标准的%CV应是= 30%。如果放弃一个孔,那么关于剩余的重复的%差异必须是= 35%。如果放弃最低标准,那么仅具有光密度属于剩余的标准曲线水平光密度的样品和掺料样品是可接受的。
如下计算%差异:%差异= ((结果稀释1 - 结果稀释2)绝对值/平均值) X 100%。如果标准品不满足上述标准,必须重复测定。报告% CV和/或%差异值和标准曲线系数的测定结果。
样品。%CV在一式三份孔之间应是= 20%。报告在一式三份孔之间的%CV。可以放弃来自每个样品稀释度的一个孔。剩余的重复必须具有= 20%的%差异。注:如果未掺料样品OD低于最低标准OD,那么%差异标准不应用于未掺料结果。参考上文计算。
以ng/mL为单位,报告每个稀释液的“未掺料样品结果”。这些值将用于掺料回收计算中。计算平均“未掺料样品结果(ng/mL)”和稀释液之间的%差异。报告结果。稀释液之间的%差异必须是= 25%。如下从平均(ng/mL)值计算实际蛋白A浓度(ng/mg):蛋白A(ng/mg)= 平均“未掺料样品结果(ng/mL)”的稀释的样品浓度(10 mg/mL)(Mean “Non-spiked sample result(ng/mL)” Diluted sample concentration(10 mg/mL))。
记录结果。
掺料。%CV在一式三份孔之间应是= 20%。记录%CV。可以放弃来自掺料的一个孔。剩余的点必须具有= 20%的%差异。参考上文中的计算。以ng/mL报告蛋白A浓度。该结果将在掺料回收计算中使用。关于掺料所得到的浓度(ng/mL)必须是理论掺料浓度的±20%。记录结果,并指出通过(Pass)或失败(Fail)。如果掺料结果未在理论值的20%内,那么必须重复测定。平均掺料浓度(ng/mL)x 100 =必须是100%±20%0.296 ng/mL。
掺料样品。%CV在一式三份孔之间应是= 20%。记录在一式三份孔之间的%CV。可以放弃来自每个掺料样品稀释度的一个孔。剩余的重复必须具有= 20%的%差异。参考上文计算。对于每个稀释度以ng/mL报告“掺料样品结果”。记录一式两份稀释度之间的%差异。稀释度之间的%差异应是= 25%。这些结果将在掺料回收计算中使用。使用下式对于每个稀释设置计算%掺料回收:%掺料回收= 掺料样品值-未掺料样品值X 100。掺料值。注:对于掺料回收计算,从掺料样品值(ng/mL)减去未掺料样品值(ng/mL),甚至当未掺料样品值(ng/mL)低于曲线时。如果值是负值或得到‘范围’,那么在掺料回收计算时将未掺料样品视作零。对于每个样品的每个稀释度,%掺料回收必须是100%±50%(50%- 150%)。记录结果和通过/失败。
对照。%CV在一式三份孔之间应是= 20%。记录%CV结果。可以放弃来自对照的一个孔。剩余的重复必须具有= 20%的%差异。
表9. 残余的宿主细胞蛋白和蛋白A试验结果
表10. 残余的宿主细胞蛋白和蛋白A试验结果:过程中样品
本文引用了不同的出版物,它们的内容通过引用整体并入本文中。
序列表
<110> Abbott Laboratories
<120> 使用蛋白A亲和色谱法分离和纯化抗-IL-13抗体
<130> 003168.1008
<140> PCT/US2010/053388
<141> 2010-10-20
<150> 61/253,411
<151> 2009-10-20
<160> 2
<170> PatentIn 3.5版
<210> 1
<211> 123
<212> PRT
<213> 人工序列
<220>
<223> 抗-IL-13抗体重链可变区
<400> 1
Glu Val Thr Leu Arg Glu Ser Gly Pro Gly Leu Val Lys Pro Thr Gln
1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Leu Tyr Gly Phe Ser Leu Ser Thr Ser
20 25 30
Asp Met Gly Val Asp Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu
35 40 45
Trp Leu Ala His Ile Trp Trp Asp Asp Val Lys Arg Tyr Asn Pro Ala
50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val
65 70 75 80
Val Leu Lys Leu Thr Ser Val Asp Pro Val Asp Thr Ala Thr Tyr Tyr
85 90 95
Cys Ala Arg Thr Val Ser Ser Gly Tyr Ile Tyr Tyr Ala Met Asp Tyr
100 105 110
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120
<210> 2
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> 抗-IL-13抗体轻链可变区
<400> 2
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Arg Asn Tyr
20 25 30
Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Phe Tyr Thr Ser Lys Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Leu
85 90 95
Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105

Claims (15)

1.一种从样品混合物中生产宿主细胞蛋白(HCP)减少的抗-IL-13抗体或其抗原结合部分制品的方法,所述样品混合物包括抗-IL-13抗体或其抗原结合片段和至少一种HCP,所述方法包括:
(a) 使所述样品混合物接触蛋白A亲和色谱树脂,用包含25 mM Tris、100 mM NaCl、pH 7.2的缓冲液,随后用包含0.5 M NaCl、20 mM柠檬酸钠、pH 6的缓冲液以及包含25 mM Tris、100 mM NaCl,pH 7.2的缓冲液洗涤所述亲和色谱树脂,并收集亲和色谱样品;
(b) 将所述亲和色谱样品的pH降低,从而形成pH降低的样品,其中所述pH的降低是约3至约4;
(c) 调节所述pH降低的样品至约4.5至约6.5的pH,使所述调节的pH样品接触离子交换树脂,并收集离子交换样品;
(d) 使所述离子交换样品接触疏水相互作用色谱(HIC)树脂,收集HIC样品,其中所述HIC样品包括所述HCP减少的抗体或其抗原结合部分制品。
2.根据权利要求1所述的方法,其中所述pH的降低通过使合适的酸与所述样品混合物混合来完成,并且其中所述合适的酸选自柠檬酸、醋酸和辛酸。
3.根据权利要求1所述的方法,其中所述蛋白A树脂包含与交联琼脂糖珠偶联的蛋白A。
4.根据权利要求1所述的方法,其中所述离子交换样品应用于阳离子交换树脂,并且在应用于疏水相互作用色谱树脂之前收集阳离子交换样品。
5.根据权利要求1所述的方法,其中所述离子交换树脂是阳离子交换树脂。
6.根据权利要求5所述的方法,其中所述阳离子交换树脂包含取代的基质,其中所述取代基选自:SO3 -、羧甲基、磺乙基、磺丙基、磷酸盐和磺酸盐。
7.根据权利要求1所述的方法,其中所述离子交换树脂是阴离子交换树脂。
8.根据权利要求7所述的方法,其中所述阴离子交换树脂包含取代的基质,其中所述取代基选自:二乙氨基乙基、季氨基乙基和季胺基团。
9.根据权利要求1所述的方法,其中所述HIC树脂包含取代的基质,其中所述取代基由一种或多种疏水基团组成。
10.根据权利要求9所述的方法,其中所述取代基选自烷基、芳基基团及其组合。
11.根据权利要求10所述的方法,其中所述取代基选自:苯基、3-辛氧基丙烷-1,2-二醇、醚、丙基、甲基和丁基基团。
12.根据权利要求9所述的方法,其中所述树脂包括包含苯基取代基的琼脂糖基质。
13.根据权利要求1所述的方法,其进一步包括过滤步骤,其中对所述HIC样品实施过滤,以去除病毒颗粒和促进缓冲液更换。
14.根据权利要求1所述的方法,其中所述抗-IL-13抗体或其抗原结合部分是人源化的抗体、嵌合的抗体或多价抗体。
15.根据权利要求1所述的方法,其另外包括深度过滤步骤。
CN201080057917.5A 2009-10-20 2010-10-20 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体 Active CN102711828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510208066.4A CN104744560A (zh) 2009-10-20 2010-10-20 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US25341109P 2009-10-20 2009-10-20
US61/253,411 2009-10-20
US61/253411 2009-10-20
PCT/US2010/053388 WO2011050071A2 (en) 2009-10-20 2010-10-20 Isolation and purification of anti-il-13 antibodies using protein a affinity chromatography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510208066.4A Division CN104744560A (zh) 2009-10-20 2010-10-20 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体

Publications (2)

Publication Number Publication Date
CN102711828A CN102711828A (zh) 2012-10-03
CN102711828B true CN102711828B (zh) 2015-06-17

Family

ID=43900936

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510208066.4A Pending CN104744560A (zh) 2009-10-20 2010-10-20 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体
CN201080057917.5A Active CN102711828B (zh) 2009-10-20 2010-10-20 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510208066.4A Pending CN104744560A (zh) 2009-10-20 2010-10-20 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体

Country Status (27)

Country Link
US (5) US8491904B2 (zh)
EP (2) EP3037104B1 (zh)
JP (1) JP5914342B2 (zh)
KR (2) KR101830596B1 (zh)
CN (2) CN104744560A (zh)
AU (1) AU2010310748C1 (zh)
BR (1) BR112012009289B8 (zh)
CA (1) CA2775595A1 (zh)
CY (1) CY1123952T1 (zh)
DK (1) DK3037104T3 (zh)
ES (1) ES2813398T3 (zh)
HR (1) HRP20201118T1 (zh)
HU (1) HUE053489T2 (zh)
IL (1) IL218897A (zh)
IN (1) IN2012DN02778A (zh)
LT (1) LT3037104T (zh)
MX (2) MX341136B (zh)
NZ (2) NZ627668A (zh)
PL (1) PL3037104T3 (zh)
PT (1) PT3037104T (zh)
RS (1) RS60577B1 (zh)
RU (1) RU2603055C2 (zh)
SG (1) SG10201406713XA (zh)
SI (1) SI3037104T1 (zh)
TW (1) TWI515202B (zh)
WO (1) WO2011050071A2 (zh)
ZA (1) ZA201202720B (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110008345A1 (en) * 2007-11-30 2011-01-13 Claire Ashman Antigen-binding constructs
US9109010B2 (en) 2008-10-20 2015-08-18 Abbvie Inc. Viral inactivation during purification of antibodies cross reference to related applications
CN102257006A (zh) * 2008-10-20 2011-11-23 雅培制药有限公司 使用a蛋白亲和层析分离和纯化抗体
JP5914342B2 (ja) 2009-10-20 2016-05-11 アッヴィ・インコーポレイテッド プロテインaアフィニティークロマトグラフィーを利用した抗il−13抗体の単離精製
KR101847405B1 (ko) 2010-07-30 2018-04-10 이엠디 밀리포어 코포레이션 크로마토그래피 매질 및 방법
JP2014510730A (ja) * 2011-03-16 2014-05-01 サノフイ デュアルv領域抗体様タンパク質の使用
WO2013130604A1 (en) * 2012-02-27 2013-09-06 Biogen Idec Ma Inc. High-throughput method for sialic acid quantitation
EP2970378B1 (en) 2013-03-15 2021-05-26 Biogen MA Inc. Hydrophobic interaction protein chromatography under no-salt conditions
WO2014186350A1 (en) * 2013-05-15 2014-11-20 Medimmune Limited Purification of recombinantly produced polypeptides
AR096713A1 (es) 2013-06-25 2016-01-27 Cadila Healthcare Ltd Proceso de purificación para anticuerpos monoclonales
US10519194B2 (en) 2013-07-12 2019-12-31 Merck Patent Gmbh Removal of fragments from a sample containing a target protein using activated carbon
KR102332302B1 (ko) * 2013-09-13 2021-12-01 제넨테크, 인크. 세포주에서 숙주 세포 단백질 및 재조합 폴리펩티드 생성물을 검출 및 정량화하기 위한 조성물 및 방법
CN105722532A (zh) * 2013-09-13 2016-06-29 豪夫迈·罗氏有限公司 包含纯化的重组多肽的方法和组合物
WO2015041218A1 (ja) 2013-09-17 2015-03-26 株式会社カネカ 新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom)
CN105017418B (zh) * 2014-03-27 2021-02-23 上海药明康德新药开发有限公司 单克隆抗体纯化工艺方法
FR3025515B1 (fr) * 2014-09-05 2016-09-09 Lab Francais Du Fractionnement Procede de purification d'un anticorps monoclonal
TW201628649A (zh) 2014-10-09 2016-08-16 再生元醫藥公司 減少醫藥調配物中微可見顆粒之方法
KR102162753B1 (ko) * 2014-12-08 2020-10-07 이엠디 밀리포어 코포레이션 혼합층 이온 교환 흡착제
HRP20231544T1 (hr) 2015-08-13 2024-03-15 Amgen Inc. Nabijena dubinska filtracija proteina koji vežu antigene
BR112018003127A2 (pt) * 2015-08-20 2018-09-25 Genentech Inc purificação de fkpa e usos do mesmo para produzir polipeptídeos recombinantes
AU2017258097B2 (en) * 2016-04-27 2019-10-24 Abbvie Inc. Methods of treatment of diseases in which IL-13 activity is detrimental using anti-IL-13 antibodies
AU2017312785A1 (en) 2016-08-16 2019-01-24 Regeneron Pharmaceuticals, Inc. Methods for quantitating individual antibodies from a mixture
JP7102401B2 (ja) 2016-10-25 2022-07-19 リジェネロン・ファーマシューティカルズ・インコーポレイテッド クロマトグラフィーデータ解析のための方法およびシステム
EP3551034A1 (en) 2016-12-07 2019-10-16 Progenity, Inc. Gastrointestinal tract detection methods, devices and systems
WO2018183932A1 (en) 2017-03-30 2018-10-04 Progenity Inc. Treatment of a disease of the gastrointestinal tract with a il-13 inhibitor
TWI679209B (zh) * 2017-04-14 2019-12-11 南韓商Cj醫藥健康股份有限公司 使用陽離子交換層析法純化同功抗體之方法
CA3067735A1 (en) * 2017-08-17 2019-02-21 Just Biotherapeutics, Inc. Method of purifying glycosylated protein from host cell galectins and other contaminants
TW202005694A (zh) 2018-07-02 2020-02-01 美商里珍納龍藥品有限公司 自混合物製備多肽之系統及方法
JPWO2020022363A1 (ja) * 2018-07-25 2021-08-02 第一三共株式会社 抗体−薬物コンジュゲートの効果的な製造方法
CN110818789B (zh) * 2018-08-07 2023-02-28 三生国健药业(上海)股份有限公司 一种高纯度食蟹猴白细胞介素17a的纯化方法
WO2020106757A1 (en) 2018-11-19 2020-05-28 Progenity, Inc. Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
AR119097A1 (es) * 2019-06-05 2021-11-24 Seattle Genetics Inc Métodos de purificación de anticuerpos enmascarados
CA3146209A1 (en) * 2019-08-01 2021-02-04 John MATTILA Method for viral inactivation
MX2021014863A (es) * 2019-12-06 2022-09-28 Regeneron Pharma Composiciones de proteina anti-vegf y metodos para producir la misma.
EP3870261B1 (en) 2019-12-13 2024-01-31 Biora Therapeutics, Inc. Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
IL294677A (en) * 2020-01-17 2022-09-01 Regeneron Pharma Hydrophobic interaction chromatography for viral purification
CN112326966A (zh) * 2020-11-02 2021-02-05 杭州昱鼎生物科技有限公司 一种新型冠状病毒抗原的快速检测试剂盒及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117490A2 (en) * 2006-04-05 2007-10-18 Abbott Biotechnology Ltd. Antibody purification

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE266710C (zh)
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4510245A (en) 1982-11-18 1985-04-09 Chiron Corporation Adenovirus promoter system
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4534972A (en) 1983-03-29 1985-08-13 Miles Laboratories, Inc. Protein compositions substantially free from infectious agents
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DD266710A3 (de) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Verfahren zur biotechnischen Herstellung van alkalischer Phosphatase
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
EP0154316B1 (en) 1984-03-06 1989-09-13 Takeda Chemical Industries, Ltd. Chemically modified lymphokine and production thereof
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
US4968615A (en) 1985-12-18 1990-11-06 Ciba-Geigy Corporation Deoxyribonucleic acid segment from a virus
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
US5476996A (en) 1988-06-14 1995-12-19 Lidak Pharmaceuticals Human immune system in non-human animal
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
ATE135397T1 (de) 1988-09-23 1996-03-15 Cetus Oncology Corp Zellenzuchtmedium für erhöhtes zellenwachstum, zur erhöhung der langlebigkeit und expression der produkte
DE68925966T2 (de) 1988-12-22 1996-08-29 Kirin Amgen Inc Chemisch modifizierte granulocytenkolonie erregender faktor
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
CA2109602C (en) 1990-07-10 2002-10-01 Gregory P. Winter Methods for producing members of specific binding pairs
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
ES2113940T3 (es) 1990-12-03 1998-05-16 Genentech Inc Metodo de enriquecimiento para variantes de proteinas con propiedades de union alteradas.
DE4041205A1 (de) 1990-12-21 1992-06-25 Schloemann Siemag Ag Verfahren und anlage zum auswalzen von warmbreitband aus stranggegossenen duennbrammen
DE69233697T2 (de) 1991-03-01 2008-01-24 Dyax Corp., Cambridge Verfahren zur Entwicklung von bindenden Mikroproteinen
EP0580737B1 (en) 1991-04-10 2004-06-16 The Scripps Research Institute Heterodimeric receptor libraries using phagemids
DE4122599C2 (de) 1991-07-08 1993-11-11 Deutsches Krebsforsch Phagemid zum Screenen von Antikörpern
US5457178A (en) * 1993-07-07 1995-10-10 Fmc Corporation Insecticidally effective spider toxin
US5429746A (en) * 1994-02-22 1995-07-04 Smith Kline Beecham Corporation Antibody purification
AU6480796A (en) * 1995-06-30 1997-02-05 Smithkline Beecham Corporation Use of stat 6 sh2 domain specific compounds to treat allergic reactions
US6090382A (en) 1996-02-09 2000-07-18 Basf Aktiengesellschaft Human antibodies that bind human TNFα
US6955917B2 (en) * 1997-06-20 2005-10-18 Bayer Healthcare Llc Chromatographic method for high yield purification and viral inactivation of antibodies
US6914128B1 (en) 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing
CA2508763C (en) 2001-05-11 2012-01-24 Kirin Beer Kabushiki Kaisha Human antibody producing mouse and method for producing human antibody using the same
US7646782B1 (en) 2001-07-30 2010-01-12 Primrose Donald R Data link/physical layer packet buffering and flushing
WO2004026427A2 (en) * 2002-09-17 2004-04-01 Gtc Biotherapeutics, Inc. Isolation of immunoglobulin molecules that lack inter-heavy chain disulfide bonds
GB0304576D0 (en) * 2003-02-28 2003-04-02 Lonza Biologics Plc Protein a chromatography
AU2004215653B2 (en) * 2003-02-28 2011-03-17 Lonza Biologics Plc. Antibody purification by protein A and ion exchange chromatography
CA2543193C (en) * 2003-10-27 2015-08-11 Wyeth Removal of high molecular weight aggregates using hydroxyapatite chromatography
DE102004027816A1 (de) * 2004-06-08 2006-01-05 Bioceuticals Arzneimittel Ag Verfahren zur Reinigung von Erythropoietin
AR049390A1 (es) * 2004-06-09 2006-07-26 Wyeth Corp Anticuerpos contra la interleuquina-13 humana y usos de los mismos
TWI307630B (en) * 2004-07-01 2009-03-21 Glaxo Group Ltd Immunoglobulins
JP2009510046A (ja) 2005-09-30 2009-03-12 メドイミューン・リミテッド インターロイキン−13抗体組成物
GB0600488D0 (en) 2006-01-11 2006-02-22 Glaxo Group Ltd Immunoglobulins
BRPI0710820A2 (pt) * 2006-04-20 2011-08-23 Wyeth Corp processo para a purificação do vìrus da estomatite vesicular (vsv) do fluido de cultura celular de uma cultura de células de mamìferos infectada com vsv; vsv purificado de acordo com o processo; composição farmacêutica; e composição imunogênica
EP2069387A4 (en) * 2006-06-14 2011-02-02 Glaxosmithkline Llc METHODS OF PURIFYING ANTIBODIES USING HYDROXYAPATITE CERAMIC
CN101512008B (zh) * 2006-09-08 2015-04-01 艾伯维巴哈马有限公司 白介素-13结合蛋白
US9109010B2 (en) 2008-10-20 2015-08-18 Abbvie Inc. Viral inactivation during purification of antibodies cross reference to related applications
CA2751000A1 (en) * 2009-03-11 2010-12-23 Wyeth Llc Methods of purifying small modular immunopharmaceutical proteins
JP5914342B2 (ja) 2009-10-20 2016-05-11 アッヴィ・インコーポレイテッド プロテインaアフィニティークロマトグラフィーを利用した抗il−13抗体の単離精製

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117490A2 (en) * 2006-04-05 2007-10-18 Abbott Biotechnology Ltd. Antibody purification

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Guse A H et al..Purification and analytical characterization of an anti-CD4 monoclonal antibody for human therapy.《J. CHROMATOGR.》.1994,第661卷第13-23页. *
Maximizing productivity of chromatography steps for purification of monoclonal antibodies;Tugcu Nihal et al.;《BIOTECH. BIOENG.》;20081231;第99卷;第599-613页 *
Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice;YANG GAOYUN et al.;《J. PHAMACOL. EXP THERAP.》;20051231;第313卷;第8-15页 *

Also Published As

Publication number Publication date
RS60577B1 (sr) 2020-08-31
IL218897A (en) 2016-03-31
HUE053489T2 (hu) 2021-06-28
PL3037104T3 (pl) 2020-11-16
SI3037104T1 (sl) 2020-10-30
TW201125876A (en) 2011-08-01
CN102711828A (zh) 2012-10-03
BR112012009289A2 (pt) 2017-04-04
LT3037104T (lt) 2020-09-10
CY1123952T1 (el) 2022-03-24
EP3037104B1 (en) 2020-05-27
ZA201202720B (en) 2012-12-27
CA2775595A1 (en) 2011-04-28
US9266950B2 (en) 2016-02-23
JP5914342B2 (ja) 2016-05-11
EP2491055A2 (en) 2012-08-29
MX2012004711A (es) 2012-05-23
PT3037104T (pt) 2020-07-07
IN2012DN02778A (zh) 2015-09-18
WO2011050071A2 (en) 2011-04-28
BR112012009289A8 (pt) 2017-12-05
EP3037104A1 (en) 2016-06-29
US20110206687A1 (en) 2011-08-25
NZ627668A (en) 2016-03-31
WO2011050071A3 (en) 2011-09-15
BR112012009289B1 (pt) 2021-01-05
RU2012120751A (ru) 2013-11-27
US20220340656A1 (en) 2022-10-27
US20180230210A1 (en) 2018-08-16
JP2013508387A (ja) 2013-03-07
KR20120101002A (ko) 2012-09-12
KR20170136649A (ko) 2017-12-11
DK3037104T3 (da) 2020-07-20
ES2813398T3 (es) 2021-03-23
MX341136B (es) 2016-08-09
US20130287771A1 (en) 2013-10-31
HRP20201118T1 (hr) 2020-10-30
IL218897A0 (en) 2012-06-28
SG10201406713XA (en) 2014-11-27
BR112012009289B8 (pt) 2021-05-25
US11390668B2 (en) 2022-07-19
AU2010310748C1 (en) 2015-11-26
AU2010310748B2 (en) 2015-05-21
NZ599100A (en) 2014-07-25
US9975948B2 (en) 2018-05-22
KR101830596B1 (ko) 2018-02-22
CN104744560A (zh) 2015-07-01
AU2010310748A1 (en) 2012-04-19
TWI515202B (zh) 2016-01-01
US8491904B2 (en) 2013-07-23
RU2603055C2 (ru) 2016-11-20
US20160130339A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
CN102711828B (zh) 使用蛋白a亲和色谱法分离和纯化抗-il-13抗体
EP2350127B1 (en) Isolation and purification of antibodies using protein a affinity chromatography
AU2009307728B2 (en) Antibodies that bind to IL-18 and methods of purifying the same
US9109010B2 (en) Viral inactivation during purification of antibodies cross reference to related applications
CN102257004A (zh) 与il-12结合的抗体及其纯化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: ABBVIE COMPANY

Free format text: FORMER OWNER: ABBOTT GMBH. + CO. KG

Effective date: 20130620

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130620

Address after: Illinois State

Applicant after: ABBVIE company

Address before: Illinois State

Applicant before: Abbott GmbH. & Co. Kg

C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
CI03 Correction of invention patent

Correction item: Description

Correct: Correct

False: Error

Number: 24

Page: Description

Volume: 31