CN102702093B - 一种吡啶硫酮锌的合成方法 - Google Patents

一种吡啶硫酮锌的合成方法 Download PDF

Info

Publication number
CN102702093B
CN102702093B CN201210219748.1A CN201210219748A CN102702093B CN 102702093 B CN102702093 B CN 102702093B CN 201210219748 A CN201210219748 A CN 201210219748A CN 102702093 B CN102702093 B CN 102702093B
Authority
CN
China
Prior art keywords
solution
zinc pyrithione
chloropyridine
synthetic method
catalyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210219748.1A
Other languages
English (en)
Other versions
CN102702093A (zh
Inventor
丁彩峰
林民
朱小刚
刘芳
吴慰祖
舒兴田
周新建
薛建锋
王健华
朱双双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Acetic Acid Chemical Co Ltd
Original Assignee
Nantong Acetic Acid Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Acetic Acid Chemical Co Ltd filed Critical Nantong Acetic Acid Chemical Co Ltd
Priority to CN201210219748.1A priority Critical patent/CN102702093B/zh
Publication of CN102702093A publication Critical patent/CN102702093A/zh
Application granted granted Critical
Publication of CN102702093B publication Critical patent/CN102702093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

本发明涉及一种吡啶硫酮锌的合成方法,其特征在于,包括如下步骤:(1)2-氯吡啶氧化:向容器中加入2-氯吡啶和催化剂,滴加过氧化氢;(2)将步骤(1)中所得溶液进行过滤,抽干滤饼,洗涤滤饼,再次抽干滤饼,此时所得滤饼即为步骤(1)中所用催化剂,滤液即为2-氯吡啶氮氧化物溶液;(3)制备吡啶硫酮锌。本发明所提供的合成方法,使得2-氯吡啶的氧化收率从80%提高到98%,总收率从75%提高到93%,产品质量有原来的95-96%提高到98%以上,而且催化剂经回收后可循环反复利用,使得原料消耗下降,生产成本降低,同时工艺操作简单,废水量和COD明显下降。

Description

一种吡啶硫酮锌的合成方法
技术领域
本发明属于化工领域,涉及一种制备工艺,具体地,涉及一种吡啶硫酮锌的合成方法。
背景技术
吡啶硫酮锌(Pyrithionc Zinc,ZPT),别名:奥麦丁锌,分子式:C10H8N2O2S2Zn,分子量:317.7,外观呈类白色细粉末或乳液,pH值:6.5~7.5。
吡啶硫酮锌属于医药、农药中间体产品,用于香波去头皮屑,可抑制革兰氏阳性、阴性细菌及霉菌的生长。能有效地护理头发,延缓头发的衰老,控制白发和脱发的产生。另外还用作化妆品保存剂,油剂、涂料杀生剂;作为涂料和塑料等产品的杀菌剂,使用也十分广泛。
吡啶硫酮锌的现有合成技术工艺主要有如下3种:
①以2-氨基吡啶为起始原料,经乙酰化、氧化、水解、重氮化、氯化和巯基化,合成2-巯基吡啶-N-氧化物,最后与锌盐螯合(王元祥.洗发膏添加剂“PDX”的研制[J].日用化学工业,1990(3):5—8);
②以吡啶为原料,经氧化后以NaOH为催化剂与硫在在二甲基亚砜(DMSO)溶液中共热制得2-巯基吡啶-N-氧化物,然后与锌盐螯合(郑占淼,张建民,田军.双一(2-巯基吡啶1一氧化物)锌螯合物的合成l-J].化学世界(Chemical World),1993,34(9):437-440.);
③以2-卤代吡啶为原料,经氧化、巯基化和螯合成盐等几步合成得到吡啶硫酮锌。
然而,方法①工艺步骤太长,总收率低;方法②虽说工艺简单,但巯基化收率极低,仅为20%,也不适合工业化;方法③中2-卤代吡啶原料有2-氯代工业品,虽说活泼性不如溴代吡啶,但其价格适中,特别适宜作为生产ZPT的原料。根据国内文献和美国专利均介绍以2-氯代吡啶为原料,在冰醋酸介质中用双氧水来氧化,再与NaSH溶液进行巯基化,最后成盐得到ZPT。
其中,采用方法③的国内文献和美国专利如下:
[1]邓南,蒋忠良,王宇等.吡啶硫酮锌合成方法的改进[J].精细与专用化学品(Fineand Specialty Chemicals),2005,13(6):20—25.
[2]于文国,王桂荣.吡啶硫酮锌盐合成过程中的催化反应[J].河北化工(HebeiChemical Engineering and Industry),2005(6):42—43.
[3]钱进省,朱晓俊.吡啶类N-氧化物的制备[J].中国医药工业杂志,1996。27(9):419—420.
[4]陈煦,李永强,张和,等.2-巯基吡啶的合成及结构测定[J].天津化工,2000(5):26—27.
[5]王长守,黄建良,张志杰,等.催化氧化法制备2-氯吡啶-N-氧化物[J].陕西化工,1996,28(2):23—25.
[6]RALPH A O,COLERAINT,HAMILTON.Process for preparing pyridine N—oxidecarbanion and derivatives[P].US:3773779,1973-11-2O.
[7]DOUGLAS A,FARMOR JR,MADISON,et a1.Process for producing sodium andzinc pyrithione[P].US:4396766,1983—08—02.
[8]LAWRENCE E.KATZ O,RIOHARD H,et a1.Process for oxidizing halopyridinesto halopyridine-N-oxides[P].US:4504667,1985-03—12.
如上所述的这些文献均采用不同催化剂在醋酸介质中双氧水来氧化生成2-氯吡啶-N-氧化物,再与NaHS溶液进行巯基化,最后成盐得到ZPT。都存在同样的问题:一、反应不完全,工艺过程中需要回收2-氯吡啶;二、采用醋酸介质,由于巯基化反应要在碱性条件下进行,在巯基化前必须蒸馏回收醋酸或用大量的碱来中和,操作复杂增加了大量含盐废水;三、催化剂难以回收,回收将造成生产成本增加,不回收将影响后续的反应收率同时影响最终的产品质量;四、双氧水过量较多,过量均在2倍以上,进行后续反应必须要将过量的双氧水破坏掉,不然容易引起冲料等危险。
此外,在文献[郑淑玲,赵增国,张红艳.2-氯吡啶氮氧化物合成方法的研究.天津:天津师范大学学报(自然科学版),2006年3月,第26卷第1期]中提到,以2-氯吡啶为原料、双氧水为氧化剂、钨酸和硫酸为催化剂合成2-氯吡啶-N-氧化物,然而,此方法也同样存在如上反应不完全、催化剂难以回收及双氧水用量较多等的问题。
发明内容
为解决如上存在的问题,本发明的目的在于提供一种吡啶硫酮锌的合成方法,所述方法过程简单、吡啶硫酮锌收率高,所述方法采用一种新型高活性、高选择性的固体分子筛催化剂,在该催化剂作用下,2-氯吡啶可以直接与稍过量的双氧水反应得到2-氯吡啶氮氧化物,2-氯吡啶的反应转化率达到100%,2-氯吡啶氮氧化物的收率达到98%以上,所述催化剂经过滤水洗后可反复套用,过滤后的2-氯吡啶氮氧化物水溶液可与NaHS溶液直接进行巯基化反应,最后成盐得到ZPT。
为达到上述目的,本发明采用如下技术方案:
一种吡啶硫酮锌的合成方法,其特征在于,包括如下步骤:
(1)、2-氯吡啶氧化:向容器中加入2-氯吡啶和催化剂,所述2-氯吡啶和催化剂的质量比为1:0.05~0.5,搅拌,升温至40~90℃,滴加过氧化氢,在该温度条件下反应3~10小时,降至常温,其中,所述催化剂组成如下:
AaBbCcOx
其中,A为Li、Ni、Ti中的一种或几种组合;B为Mn、V、Sn、Bi中的一种或几种组合;C为W、Ge、Ag中的一种或几种组合;0.1≤a≤0.8;0.3≤b≤12;0.15≤c≤11.5;x为A、B、C中金属元素所需要氧原子数;
(2)、将步骤(1)中所得溶液进行过滤,抽干滤饼,洗涤滤饼,再次抽干滤饼,此时所得滤饼即为步骤(1)中所用催化剂,滤液即为2-氯吡啶氮氧化物溶液;
(3)、调节步骤(2)中得到的2-氯吡啶氮氧化物溶液pH值到9~10,升温至60~90℃,加入NaHS溶液,加完后保温50~80min,然后降温,调节pH值到6~7,脱色,加入ZnSO4溶液,得到吡啶硫酮锌溶液,过滤、水洗、烘干后得到所述吡啶硫酮锌。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,所述催化剂以MCM-41介孔分子筛为载体。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,所述过氧化氢的浓度为27.5%,与2-氯吡啶的摩尔比为1.0~2.0:1。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,步骤(2)中所述洗涤滤饼,采用无离子水洗涤,所述无离子水与2-氯吡啶的质量比为1~2:1。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,步骤(3)中采用2~3g、30%NaOH水溶液将pH值调至9~10;采用HCl溶液将pH值调至6~7,所述降温为将温度降至至50℃。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,步骤(3)中所述NaHS溶液为60g、70%NaHS固体和180g水配制而成的17.5%NaHS溶液。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,所述脱色采用0.3~0.6g活性炭进行。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,步骤(3)中所述ZnSO4溶液为155~160g、20%的ZnSO4溶液,所述水洗采用300g无离子水。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,所述步骤(3)中降温完成后,在N2氛围中进行。
根据本发明所提供的一种吡啶硫酮锌的合成方法,采用的是,步骤(1)中所述过氧化氢在2~6小时内滴加完毕。
本发明所提供的一种吡啶硫酮锌的合成方法的有益效果在于:
采用此方法,2-氯吡啶的氧化收率从80%提高到98%,总收率从75%提高到93%,产品质量有原来的95-96%提高到98%以上,而且催化剂经回收后可循环反复利用,使得原料消耗下降,生产成本降低,同时工艺操作简单,废水量和COD明显下降。
具体实施方式
下面给出本发明所提供的一种吡啶硫酮锌的合成方法的具体实施方式。
本发明所提供的合成方法主要针对2-氯吡啶氧化这一步,通常情况下,此步骤反应转化率不高,主要原因在于催化剂催化效果不佳。对此,本发明技术方案中提供一种新型高活性、高选择性的固体分子筛催化剂用于2-氯吡啶的氧化。其中,所用催化剂是以MCM-41介孔分子筛为载体的2-氯吡啶氮氧化物催化剂,所述催化剂组成如下:
AaBbCcOx
其中,A为Li、Ni、Ti中的一种或几种组合;B为Mn、V、Sn、Bi中的一种或几种组合;C为W、Ge、Ag中的一种或几种组合;0.1≤a≤0.8;0.3≤b≤12;0.15≤c≤11.5;x为A、B、C中金属元素所需要氧原子数。
其中,所述x的范围是3≤x≤9.2。
本发明所提供的工艺方法的实施例如下
所述催化剂的制备合成步骤如下:
将十六烷基三甲基溴化铵和硅酸钠溶于热水中得到澄清溶液,调节pH值至8~9,依次将金属A的氯化物水溶液和金属B的B酸盐水溶液滴加到上述溶液中,再调pH至9.0~9.5,最后滴加金属C的C酸盐水溶液,搅拌均匀后,将得到混合溶胶转入高压釜中,在120~180℃水热反应24~48h,使其自然冷却至室温,先用去离子水,再用无水乙醇洗涤,室温干燥得到催化剂原粉,原粉在马弗炉中于550~600℃焙烧,然后自然冷却得到催化剂。
制备所述催化剂的具体实施例如下:
实施例1
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含三氯化钛7.5g的水溶液60ml滴加到上述溶液中,再滴加含三水锡酸钠30.0g的锡酸钠水溶液220ml,用氨水调节pH至9.0~9.5,最后加入含二水钨酸钠19.0的水溶液40ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在120℃水热反应24h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于570℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的钛、锡、钨含量由ICP检测仪确定,其中催化剂中各元素重量比为钛2.2%、锡13.0%、钨10.3%、氧74.5%。
实施例2
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含三氯化钛5g的水溶液40ml滴加到上述溶液中,再滴加含三水锡酸钠20.0g的锡酸钠水溶液150ml,用氨水调节pH至9.0~9.5,最后加入含二水钨酸钠12.7的水溶液25ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在150℃水热反应48h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于560℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的钛、锡、钨含量由ICP检测仪确定,其中催化剂中各元素重量比为钛1.8%、锡10.6%、钨8.4%、氧79.2%。
实施例3
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含三氯化钛2.5g的水溶液20ml滴加到上述溶液中,再滴加含三水锡酸钠13.7g的锡酸钠水溶液50ml,用氨水调节pH至9.0~9.5,最后加入含二水钨酸钠8.5g的水溶液15ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在160℃水热反应30h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于575℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的钛、锡、钨含量由ICP检测仪确定,其中催化剂中各元素重量比为钛1.1%、锡8.6%、钨6.7%、氧83.6%。
实施例4
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含氯化锂7.5g的水溶液60ml滴加到上述溶液中,再滴加含三水高锰酸钠30g的水溶液220ml,用氨水调节pH至9.0~9.5,最后加入含四氯化锗12g的水溶液20ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在150℃水热反应48h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于580℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的锂、锰、锗含量由ICP检测仪确定,其中催化剂中各元素重量比为锂1.1%、锰7.2%、锗3.5%、氧88.2%。
实施例5
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含六水氯化镍5g的水溶液40ml滴加到上述溶液中,再滴加含二水铋酸钠12g的铋酸钠水溶液100ml,用氨水调节pH至9.0~9.5,最后加入含二水钨酸钠10g的水溶液30ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在150℃水热反应36h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于600℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的镍、铋、钨含量由ICP检测仪确定,其中催化剂中各元素重量比为镍1.3%、铋8.2%、钨5.7%、氧84.8%。
实施例6
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含三氯化钛7.5g的水溶液60ml滴加到上述溶液中,再滴加含钒酸钠20g的钒酸钠水溶液150ml,用氨水调节pH至9.0~9.5,最后加入含四氯化锗8g的水溶液25ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在180℃水热反应40h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于580℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的钛、钒、锗含量由ICP检测仪确定,其中催化剂中各元素重量比为钛2.2%、钒5.0%、锗2.5%、氧90.3%。
实施例7
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含氯化锂5g的水溶液40ml滴加到上述溶液中,再滴加含三水锡酸钠30g的锡酸钠水溶液220ml,用氨水调节pH至9.0~9.5,最后加入含二水钨酸钠12g的水溶液30ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在170℃水热反应33h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于575℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的锂、锡、钨含量由ICP检测仪确定,其中催化剂中各元素重量比为锂0.7%、锡11.6%、钨5.8%、氧81.9%。
实施例8
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含氯化锂5g的水溶液和三氯化钛的7.5g水溶液共50ml滴加到上述溶液中,再滴加含三水锡酸钠30g的锡酸钠水溶液和钒酸钠20g的钒酸钠溶液共240ml,用氨水调节pH至9.0~9.5,最后加入含四氯化锗8g的水溶液25ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在160℃水热反应28h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于560℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的锂、钛、锡、钒、锗含量由ICP检测仪确定,其中催化剂中各元素重量比为锂0.7%、钛1.0%、钒10%、锡11.6%、锗6.4%、氧70.3%。
实施例9
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含氯化锂6g的水溶液和六水氯化镍的5g水溶液共45ml滴加到上述溶液中,再滴加含三水高锰酸钠35g的高锰酸钠水溶液和二水铋酸钠25g的铋酸钠溶液共250ml,用氨水调节pH至9.0~9.5,最后加入含四氯化锗10g的水溶液27ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在125℃水热反应25h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于590℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的锂、镍、锰、铋、锗含量由ICP检测仪确定,其中催化剂中各元素重量比为锂1.0%、镍1.2%、锰11%、铋10.3%、锗6.4%、氧70.1%。
实施例10
将25g三甲基十六烷基溴化铵溶于200ml去离子水中,维持20~60℃搅拌30分钟,在其中加入50gNa2SiO3,搅拌均匀,用稀H2SO4将溶液的pH调至8.5,然后在强烈搅拌下将含氯化锂5.5g的水溶液和三氯化钛的7g水溶液共47.5ml滴加到上述溶液中,再滴加含三水锡酸钠37.5g的锡酸钠水溶液和二水铋酸钠25.5g的铋酸钠溶液共255ml,用氨水调节pH至9.0~9.5,最后加入含二水钨酸钠11.5g的水溶液26.5ml。将得到的混合溶胶搅拌2小时后转入不锈钢高压釜中,在120℃水热反应24h,反应结束后,用水冷却至室温,产物过滤,并用无离子水和无水乙醇分别洗涤三次,室温干燥得到催化剂原粉。原粉在马弗炉中于550℃焙烧5h,随后自然冷却,得到所述催化剂,样品中的锂、钛、锡、铋、钨含量由ICP检测仪确定,其中催化剂中各元素重量比为锂1.5%、钛1.3%、锡9.5%、铋10.8%、钨6.5%、氧70.4%。
本发明所提供的一种吡啶硫酮锌的合成方法实施例如下:
实施例11
在开着搅拌的500ml三口烧瓶中加入50g2-氯吡啶和3g实施例1中制得的催化剂,升温到50℃,分批滴加80g27.5%的过氧化氢,过氧化氢在3小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.47:1,反应7小时,降到常温,过滤,滤饼抽干,用50g无离子水洗滤饼,抽干滤饼,所述滤饼即为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液166.5g,经分析,含量为33.88%,收率为98.9%(摩尔收率)。滴加2.2g,30%NaOH溶液,调节pH值到9~10。升温至70℃,慢慢滴加60g 70%NaHS(固体)和180g水配成的17.5%NaHS水溶液,滴完保温1h。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6.5,经0.5g活性炭脱色后,将177.3g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.3g,即为吡啶硫酮锌,收率93.3%,含量98.4%。
实施例12
在开着搅拌的500ml三口烧瓶中加入50g2-氯吡啶和4g实施例2中制得的催化剂,升温到50℃,分批滴加70g27.5%的过氧化氢,过氧化氢在5小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.29:1,反应7小时,降到常温,过滤,滤饼抽干,用50g无离子水洗滤饼,抽干滤饼,所述滤饼即为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液173.0g,经分析,含量为34.47%,收率为98.5%(摩尔收率)。滴加2.7g,30%NaOH溶液,调节pH值到9~10。升温至70℃,慢慢滴加60g 70%NaHS(固体)和180g水配成的17.5%NaHS水溶液,滴完保温1h。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6.5,经0.5g活性炭脱色后,将177.5g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.2g,即为吡啶硫酮锌,收率93.0%,含量98.3%。
实施例13
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和5g实施例3中制得的催化剂,升温到60℃,分批滴加75g27.5%的过氧化氢,过氧化氢6小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.38:1,反应5.5小时,降到常温,过滤,滤饼抽干,用65g无离子水洗滤饼,抽干滤饼,所述滤饼即为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液185.4g,含量为30.33%,收率为98.6%(摩尔收率)。滴加2.4g、30%NaOH溶液,调节pH值到9~10。升温至90℃,慢慢滴加60g、70%NaHS(固体)和180g水配成的17.5%NaHS水溶液,滴完保温1h。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6.5,经0.5g活性炭脱色后,将178.2g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.2g,即为吡啶硫酮锌,收率93.2%,含量98.5%。
实施例14
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和6g实施例4中制得的催化剂,升温到60℃,分批滴加109g27.5%的过氧化氢,过氧化氢在2小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为2.0:1,反应5.5小时,降到常温,过滤,滤饼抽干,用65g无离子水洗滤饼,抽干滤饼,所述滤饼即为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液210.4g,含量为26.84%,收率为99.0%(摩尔收率)。滴加2.8g、30%NaOH溶液,调节pH值到9~10。升温至90℃,慢慢滴加60g、70%NaHS(固体)和180g水配成的17.5%NaHS水溶液,滴完保温1h。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6.5,经0.5g活性炭脱色后,将179.7g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.3g,即为吡啶硫酮锌,收率93.5%,含量98.7%。
实施例15
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和8g实施例5中制得的催化剂,升温到80℃,分批滴加100g 27.5%的过氧化氢,过氧化氢在4小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.84:1,反应3.5小时,降到常温,过滤,滤饼抽干,用75g无离子水洗滤饼,抽干滤饼,为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液218.3g,经分析,含量为25.76%,收率为98.6%(摩尔收率)。滴加2.9g、30%NaOH溶液,调节pH值到9~10。升温至80℃,慢慢滴加60g 70%NaHS固体和282.8g水配成的17.5%NaHS水溶液,滴完保温1h。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6.5,经0.5g活性炭脱色后,将179.3g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.3g,即为吡啶硫酮锌,收率93.1%,含量98.2%。
实施例16
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和5g实施例6中制得的催化剂,升温到70℃,分批滴加92g 27.5%的过氧化氢,过氧化氢在5小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.7:1,反应4小时,降到常温,过滤,滤饼抽干,用65g无离子水洗滤饼,抽干滤饼,为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液201.8g,经分析,含量为27.87%,收率为98.6%(摩尔收率)。滴加2.7g、30%NaOH溶液,调节pH值到9~10。升温至70℃,慢慢滴加60g 70%NaHS固体和282.8g水配成的17.5%NaHS水溶液,滴完保温75min。将上述反应液降温至50℃,通N2,滴加HCl至pH值=7,经0.4g活性炭脱色后,将177.5g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.6g,即为吡啶硫酮锌,收率93.8%,含量98.5%。
实施例17
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和6g实施例7中制得的催化剂,升温到50℃,分批滴加76g 27.5%的过氧化氢,过氧化氢在3小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.4:1,反应10小时,降到常温,过滤,滤饼抽干,用55g无离子水洗滤饼,抽干滤饼,为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液185.5g,经分析,含量为30.38%,收率为98.8%(摩尔收率)。滴加2.1g、30%NaOH溶液,调节pH值到9~10。升温至60℃,慢慢滴加60g 70%NaHS固体和282.8g水配成的17.5%NaHS水溶液,滴完保温50min。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6,经0.3g活性炭脱色后,将178.5g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.7g,即为吡啶硫酮锌,收率93.9%,含量98.4%。
实施例18
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和3g实施例8中制得的催化剂,升温到40℃,分批滴加60g 27.5%的过氧化氢,过氧化氢在6小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.1:1,反应4小时,降到常温,过滤,滤饼抽干,用72g无离子水洗滤饼,抽干滤饼,为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液148.5g,经分析,含量为37.99%,收率为98.9%(摩尔收率)。滴加2.5g、30%NaOH溶液,调节pH值到9~10。升温至80℃,慢慢滴加60g 70%NaHS固体和282.8g水配成的17.5%NaHS水溶液,滴完保温80min。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6,经0.5g活性炭脱色后,将179.5g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.5g,即为吡啶硫酮锌,收率93.3%,含量98.2%。
实施例19
在开着搅拌的500ml三口烧瓶中加入50g 2-氯吡啶和6g实施例9中制得的催化剂,升温到90℃,分批滴加92g 27.5%的过氧化氢,过氧化氢在5小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.7:1,反应8小时,降到常温,过滤,滤饼抽干,用55g无离子水洗滤饼,抽干滤饼,为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液168.5g,经分析,含量为33.31%,收率为98.4%(摩尔收率)。滴加2.8g、30%NaOH溶液,调节pH值到9~10。升温至90℃,慢慢滴加60g 70%NaHS固体和282.8g水配成的17.5%NaHS水溶液,滴完保温75min。将上述反应液降温至50℃,通N2,滴加HCl至pH值=6,经0.5g活性炭脱色后,将179.5g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.4g,即为吡啶硫酮锌,收率93.4%,含量98.3%。
实施例20
在开着搅拌的500ml三口烧瓶中加入50g2-氯吡啶和6.5g实施例10中制得的催化剂,升温到60℃,分批滴加98g27.5%的过氧化氢,过氧化氢在4.5小时内滴加完毕,所述过氧化氢用量和2-氯吡啶的物质的量比为1.8:1,反应6小时,降到常温,过滤,滤饼抽干,用65g无离子水洗滤饼,抽干滤饼,所述滤饼即为催化剂,经活化后套用到下一批次中,滤液为2-氯吡啶氮氧化物水溶液208.6g,经分析,含量为27.02%,收率为98.8%(摩尔收率)。滴加2.5g,30%NaOH溶液,调节pH值到9~10。升温至70℃,慢慢滴加60g 70%NaHS(固体)和180g水配成的17.5%NaHS水溶液,滴完保温75min。将上述反应液降温至50℃,通N2,滴加HCl至pH值=7,经0.5g活性炭脱色后,将178g、20%ZnSO4溶液慢慢滴入其中,搅拌0.5h,抽滤,用300g无离子水洗,烘干,得白色固体66.5g,即为吡啶硫酮锌,收率93.5%,含量98.4%。

Claims (8)

1.一种吡啶硫酮锌的合成方法,其特征在于,包括如下步骤:
(1)、2-氯吡啶氧化:向容器中加入2-氯吡啶和催化剂,所述2-氯吡啶和催化剂的质量比为1:0.05~0.5,搅拌,升温至40~90℃,滴加过氧化氢,在该温度条件下反应3~10小时,降至常温,其中,所述催化剂组成如下:
AaBbCcOx
其中,A为Li、Ni、Ti中的一种或几种组合;B为Mn、V、Sn、Bi中的一种或几种组合;C为W;0.1≤a≤0.8;0.3≤b≤12;0.15≤c≤11.5;x为A、B、C中金属元素所需要氧原子数;
所述催化剂的制备合成步骤如下:
将十六烷基三甲基溴化铵和硅酸钠溶于热水中得到澄清溶液,调节pH值至8~9,依次将金属A的氯化物水溶液和金属B的B酸盐水溶液滴加到上述溶液中,再调pH至9.0~9.5,最后滴加金属C的C酸盐水溶液,搅拌均匀后,将得到混合溶胶转入高压釜中,在120~180℃水热反应24~48h,使其自然冷却至室温,先用去离子水,再用无水乙醇洗涤,室温干燥得到催化剂原粉,原粉在马弗炉中于550~600℃焙烧,然后自然冷却得到催化剂;
所述催化剂以MCM-41介孔分子筛为载体;
所述过氧化氢的浓度为27.5%,与2-氯吡啶的摩尔比为1.0~2.0:1;
(2)、将步骤(1)中所得溶液进行过滤,抽干滤饼,洗涤滤饼,再次抽干滤饼,此时所得滤饼即为步骤(1)中所用催化剂,滤液即为2-氯吡啶氮氧化物溶液;
(3)、调节步骤(2)中得到的2-氯吡啶氮氧化物溶液pH值到9~10,升温至60~90℃,加入NaHS溶液,加完后保温50~80min,然后降温,调节pH值到6~7,脱色,加入ZnSO4溶液,得到吡啶硫酮锌溶液,过滤、水洗、烘干后得到所述吡啶硫酮锌。
2.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,步骤(2)中所述洗涤滤饼,采用无离子水洗涤,所述无离子水与2-氯吡啶的质量比为1~2:1。
3.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,步骤(3)中采用2~3g、30%NaOH水溶液将pH值调至9~10;采用HCl溶液将pH值调至6~7,所述降温为将温度降至50℃。
4.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,步骤(3)中所述NaHS溶液为60g、70%NaHS固体和180g水配制而成的17.5%NaHS溶液。
5.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,所述脱色采用0.3~0.6g活性炭进行。
6.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,步骤(3)中所述ZnSO4溶液为155~160g、20%的ZnSO4溶液,所述水洗采用300g无离子水。
7.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,所述步骤(3)中降温完成后,在N2氛围中进行。
8.根据权利要求1所述的一种吡啶硫酮锌的合成方法,其特征在于,步骤(1)中所述过氧化氢在2~6小时内滴加完毕。
CN201210219748.1A 2012-06-29 2012-06-29 一种吡啶硫酮锌的合成方法 Active CN102702093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210219748.1A CN102702093B (zh) 2012-06-29 2012-06-29 一种吡啶硫酮锌的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210219748.1A CN102702093B (zh) 2012-06-29 2012-06-29 一种吡啶硫酮锌的合成方法

Publications (2)

Publication Number Publication Date
CN102702093A CN102702093A (zh) 2012-10-03
CN102702093B true CN102702093B (zh) 2014-04-30

Family

ID=46895204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210219748.1A Active CN102702093B (zh) 2012-06-29 2012-06-29 一种吡啶硫酮锌的合成方法

Country Status (1)

Country Link
CN (1) CN102702093B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974088B (zh) * 2015-06-29 2017-04-05 周口师范学院 一种吡啶类氮氧化物的高效、多相催化的制备方法
CN105820116A (zh) * 2016-04-27 2016-08-03 滨海明鸿精细化工有限公司 一种2-氯吡啶氮氧化物巯基化的新工艺
CN105906560B (zh) * 2016-04-27 2019-05-10 滨海明鸿精细化工有限公司 一种生产均匀片晶吡啶硫酮锌的方法
CN106749000A (zh) * 2017-01-04 2017-05-31 安徽国星生物化学有限公司 一种3‑甲基吡啶氮氧化物的催化合成方法
CN106588762A (zh) * 2017-01-05 2017-04-26 江苏中邦制药有限公司 一种吡啶硫酮锌的合成方法
CN113749984B (zh) * 2021-10-09 2023-06-02 戴云 一种洗发水组合物的制备方法
CN113832484B (zh) * 2021-10-09 2023-12-08 广州唯我美日用品有限公司 一种洗发水去屑止痒剂的制备方法
CN115784977A (zh) * 2023-02-06 2023-03-14 淄博新农基作物科学有限公司 2-氯-3-三氟甲基吡啶的合成工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396766A (en) * 1982-04-28 1983-08-02 Olin Corporation Process for producing sodium and zinc pyrithione

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396766A (en) * 1982-04-28 1983-08-02 Olin Corporation Process for producing sodium and zinc pyrithione

Also Published As

Publication number Publication date
CN102702093A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102702093B (zh) 一种吡啶硫酮锌的合成方法
CN102702094B (zh) 一种吡啶硫酮铜的合成方法
CN106588762A (zh) 一种吡啶硫酮锌的合成方法
CN100357361C (zh) 钛白粉副产物硫酸亚铁制备氧化铁黄及氧化铁红的方法
CN109666789B (zh) 一种利用钒铬渣和碳酸锰制备五氧化二钒的方法
CN102010004A (zh) 一种制备二硫化钒纳米粉体的方法
CN102718705B (zh) 一种甲基吡啶氮氧化物的制备方法
CN107117654B (zh) 一种从含钒溶液制备二氧化钒的方法
CN109136537A (zh) 钒钛磁铁矿制备液体提钒合格原料及直接提钒的工艺
CN109776412B (zh) 一种n氧化物的合成方法
CN102070181A (zh) 一种氧化亚铜的制备方法
CN102718704B (zh) 一种2-氯吡啶氮氧化物的制备方法
CN107628995A (zh) 一种吡啶硫酮锌的合成方法
CN103831094B (zh) 一种以钇掺杂诱导氧化铋晶型转变以提高其光催化效果的方法
US4537971A (en) Process for preparing quinolinic acid
CN100566826C (zh) 一种钛铁矿精矿湿化学法制备光催化材料的方法
CN102101678A (zh) 天然沸石液固相置换改性制备钛硅分子筛的方法
CN111285800A (zh) 一种氨氯吡啶酸废渣的处理方法
CN102249993A (zh) 对生产3-氰基吡啶所产生的废水处理及回收烟酸的方法
CN104495930A (zh) 一种制备高品质三氧化二铬的方法
CN105906560B (zh) 一种生产均匀片晶吡啶硫酮锌的方法
CN101774651B (zh) 一种试剂级六水合氯化钴的制备方法
US10703720B2 (en) Method for preparing chromium(III) pyridine-2-carboxylate using 2-OP rectification residues
CN114011439A (zh) 一种Anderson型多酸与过渡金属铜形成的3D结构化合物,制备方法以及催化应用
CN104045109A (zh) 一种生产酸解钛液的方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant