CN102701772A - 一种碳纤维增强碳化硅复合材料螺钉的制备方法 - Google Patents

一种碳纤维增强碳化硅复合材料螺钉的制备方法 Download PDF

Info

Publication number
CN102701772A
CN102701772A CN2012101867217A CN201210186721A CN102701772A CN 102701772 A CN102701772 A CN 102701772A CN 2012101867217 A CN2012101867217 A CN 2012101867217A CN 201210186721 A CN201210186721 A CN 201210186721A CN 102701772 A CN102701772 A CN 102701772A
Authority
CN
China
Prior art keywords
screw
blank
bolt
composite material
polycarbosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101867217A
Other languages
English (en)
Inventor
胡海峰
张长瑞
李广德
张玉娣
陈思安
梅敏
唐俊华
张长琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN2012101867217A priority Critical patent/CN102701772A/zh
Publication of CN102701772A publication Critical patent/CN102701772A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种碳纤维增强碳化硅复合材料螺钉的制备方法,要解决的技术问题是提供一种能够明显改善C/SiC复合材料螺钉螺纹牙质量,且工艺简单、成本低的C/SiC复合材料螺钉的制备方法。技术方案是先预处理碳纤维预制件;然后制备螺钉毛坯件,选择C/SiC毛坯板相对密度为50~80%时加工螺纹,获得螺钉毛坯件;再采用螺纹改性溶液对螺钉毛坯件进行浸渍、固化和交联,利用金刚石砂轮进行螺纹加工,获得半成品螺钉;最后对半成品螺钉进一步致密化及抗氧化处理,获得成品C/SiC复合材料螺钉。采用本发明制备的C/SiC复合材料螺钉,相比于现有技术明显改善了螺纹牙质量,同时能够改善螺钉力学性能,且提高了螺纹加工效率,制备周期短、成本低。

Description

一种碳纤维增强碳化硅复合材料螺钉的制备方法
技术领域
本发明涉及无机非金属材料螺钉的制备方法,尤其涉及一种碳纤维增强碳化硅复合材料螺钉的制备方法。
背景技术
碳纤维增强碳化硅复合材料(Carbon fiber reinforced silicon carbide matrix composite,C/SiC)具有高温抗氧化、高比强度、高比刚度、高硬度和耐磨性好等优异性能,作为防热结构件被广泛用于航天飞行器的热防护系统。然而,对于大尺寸和复杂形状构件,采用化学气相渗透/沉积(Chemical Vapor Infiltration and Deposition,CVI/CVD)、先驱体浸渍裂解(Precursor Infiltration and Pyrolysis,PIP)、热压烧结及反应熔渗等常用工艺都难以直接成型和制备。因此,高温连接技术成为制约C/SiC复合材料进一步广泛应用的瓶颈。
机械连接作为传统的连接方式,操作简单,性能可靠,但航天飞行器飞行条件十分恶劣,再入大气层时与空气发生摩擦,头锥、机翼前缘和机身襟翼表面最高温度可达到1650℃,传统的高温紧固件材料如高温合金、石墨及C/C复合材料由于耐温性、强度、高温抗氧化性的不足已经难以满足应用需求。C/SiC陶瓷基复合材料具有一系列优异性能,如果制备成螺钉等高温紧固件可以很好地满足航空航天领域对高温防热构件的使用要求。
和金属螺纹加工相比,由于C/SiC复合材料特有的脆性和高硬度,加工难度增大,且容易导致崩牙现象,传统的车削、板牙、搓丝机等加工方式已无法使用,必须寻找适宜陶瓷特性的新的螺纹加工方式。目前,文献“Whale,Eric.Ceramic fasteners for hightemperature application.Materials Technology 2000,15(4):276-281”公布了一种采用化学气相沉积工艺制备二维C/SiC复合材料螺钉的方法,该方法主要包括以下步骤:(1)先用碳纤维进行0/90°正铺和±45°斜铺,再将0/90°正铺纤维和±45°斜铺纤维交替叠层制备碳纤维预制件;(2)采用CVI工艺在预制体上沉积SiC基体,获得致密的C/SiC复合材料板材;(3)将致密的C/SiC复合材料板材切割成螺钉毛坯,并采用金刚石砂轮加工外螺纹。该方法制备的二维C/SiC复合材料螺钉室温拉伸断裂强度为180~190MPa,其不足在于螺纹加工时机是在CVI工艺沉积SiC完成之后进行的,C/SiC复合材料硬度高,加工出来的螺纹牙质量难以保证,同时金刚石砂轮磨损较快,既降低了效率又提高了加工成本。中国发明专利“梅辉,陶瓷基复合材料螺栓的制备方法,西北工业大学,2008,CN101265935A”对C/SiC复合材料螺钉加工方法进行了改进,其主要步骤包括:(1)用1K碳纤维进行0/90°正铺和±θ(0°≤θ≤90°)斜铺,制备二维碳纤维预制件;(2)采用CVI工艺在预制体上沉积热解碳界面层,然后在沉积有热解碳界面层的二维板材上沉积SiC基体,获得未完全致密的半成品C/SiC复合材料板材;(3)将半成品C/SiC复合材料板材切割成螺钉毛坯,利用金刚石砂轮,配合螺母在螺钉毛坯上攻丝,形成半成品螺钉;(4)将半成品螺钉多次浸渍裂解聚碳硅烷后,进行1400~1600℃热处理;(5)采用CVI工艺沉积SiC抗氧化涂层,得到成品C/SiC复合材料螺钉。该方法制备的二维C/SiC复合材料螺钉室温拉伸断裂强度为210~230MPa,但该文献未公布螺钉室温剪切断裂强度,和前一文献相比该发明主要改进之处是在未完全致密的半成品C/SiC复合材料板材上进行螺纹加工,加工出来的螺纹质量有较大提高,同时因为减缓了金刚石砂轮的磨损,提高了加工效率并降低了经济成本。综合这两篇文献,一个显著的共同点是螺纹加工方法都采用金刚石砂轮磨削方式,金刚石砂轮是由很多细小的高硬度金刚石磨粒烧结而成的,在每颗磨粒上都有锋利的刃锋,从而形成整个砂轮有无数切削刃的多刃刀具。在磨削时,砂轮高速旋转,砂轮磨粒的刃口将被磨工件表面不断地切除。由于磨削螺纹时砂轮与工件的挤压力更小,且表面精度要高,所以其螺纹质量和传统的加工方式相比明显要好些。然而,从文献报道的实物照片来看,尽管螺纹质量有一定提高,但螺纹崩牙问题仍没有得到很好地解决,而螺纹牙质量不高势必会影响到螺钉的力学性能及工程应用的可靠性。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种碳纤维增强碳化硅复合材料螺钉的制备方法,该方法能够明显改善C/SiC复合材料螺钉螺纹牙质量,且工艺简单、成本低。
为解决上述技术问题,本发明提出的技术方案包括以下步骤:
第一步,预处理碳纤维预制件:将碳纤维预制件置于高温真空炉中,抽真空后以10℃/分钟速率升温至1200~1800℃,保温0.5~3小时后随炉冷却;碳纤维预制件是碳纤维布与单向纤维布叠层穿刺、三维针刺毡以及碳纤维布叠层穿刺等;
第二步,制备螺钉毛坯件:将预处理后的碳纤维预制件放入浸渍罐,抽真空后加入质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液,浸渍3~10小时后取出自然晾干,再采用石墨模具加压固定,并在惰性气体或氮气保护下于1000~1400℃温度下裂解0.5~2小时,重复浸渍裂解过程直到获得相对密度为50%~80%的C/SiC毛坯板,再将C/SiC毛坯板进行切、磨、车等机械加工,获得螺钉毛坯件;
选择C/SiC毛坯板相对密度为50%~80%时加工螺纹,原因在于:低于50%时,复合材料多孔且强度低,螺纹牙损伤严重甚至无法成型;高于80%时,复合材料较致密且强度和硬度高,螺纹加工困难,容易崩牙,同时砂轮磨损严重;优选的加工时机为复合材料相对密度的50%~80%,此时的复合材料具有适宜的强度和硬度,螺纹牙质量好,螺纹加工效率高。
第三步,螺钉毛坯件改性:将螺钉毛坯件真空浸渍或对螺钉毛坯件表面刷涂螺纹改性溶液,并固化交联;螺纹改性溶液是环氧树脂、丙酮、二乙烯三胺的混合溶液或酚醛树脂与乙醇的混合溶液或聚碳硅烷与二乙烯基苯的混合溶液,选用环氧树脂、丙酮、二乙烯三胺的混合溶液时,三者质量比为1:1~2:0.2~0.8,其中二乙烯三胺为固化剂,室温固化交联。选用酚醛树脂与乙醇的混合溶液时,两者质量比为1:1~4,固化交联温度为100~150℃。选用聚碳硅烷与二乙烯基苯的混合溶液时,两者质量比为1:0.5~2,固化交联温度为150~200℃。
螺纹改性溶液的浸渍(或刷涂)、固化与交联能够明显改善螺纹牙质量,原因在于:螺钉毛坯件多孔且不致密,改性前,纤维与基体连接疏松,螺纹加工时纤维或基体容易剥落或崩牙,导致螺纹牙完整性较差;改性后,纤维与基体通过固化交联的改性溶液紧密连接在一起,加工时纤维或基体不容易剥落或崩牙,螺纹牙完整,且质量好。值得说明的是螺纹改性溶液引入的过程中并没有产生陶瓷基体,因此尽管螺钉毛坯件中纤维与基体连接更为紧密,但其硬度几乎没有变化,相应地螺纹加工难度也没有明显增加。
第四步,螺纹加工:利用金刚石砂轮,配合螺母在螺钉毛坯件上加工螺纹,形成半成品螺钉;
在第二步选用C/SiC复合材料的相对密度50%~80%为螺纹加工时机及第三步对螺钉毛坯件进行改性的基础上,利用金刚石砂轮加工螺纹,进一步改善了螺纹牙质量,同时由于在相对密度为50%~80%的未完全致密的螺钉毛坯件上加工螺纹,大幅度降低了金刚石砂轮的修磨频率,缩短了螺钉加工时间。
第五步,后续致密化及抗氧化处理:将半成品螺钉多次在质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液中浸渍裂解后,采用泥浆法进行抗氧化处理,获得成品C/SiC复合材料螺钉。
采用泥浆法抗氧化处理时,采用质量比为聚碳硅烷:二乙烯基苯:SiC粉=1~3:0.5~1.5:1~2的泥浆代替聚碳硅烷与二甲苯的先驱体溶液,即让半成品螺钉在泥浆中浸渍裂解以继续致密化,直到获得成品螺钉。
与现有技术相比,本发明对C/SiC复合材料螺钉的制备方法进行了改进,其优点突出表现在:
(1)螺纹牙质量好,本发明在第二步中以C/SiC复合材料的相对密度50%~80%为螺纹加工时机,在第三步中对螺钉毛坯件进行了改性,有效降低了加工过程中螺纹崩牙的几率,大幅度改善了螺纹质量(见附图2)。
(2)力学性能有所提高,本发明在第一步中以碳纤维布与单向纤维布叠层穿刺为碳纤维预制件时,制备的C/SiC复合材料螺钉的室温拉伸断裂强度为232~262MPa,室温剪切断裂强度为93~113MPa,相比CN 101265935A所述的C/SiC复合材料螺钉的强度要好。
(3)螺纹加工效率高,本发明在第二步中选择C/SiC复合材料的相对密度为50%~80%的螺钉毛坯件进行螺纹加工,使得第四步修磨金刚石砂轮时间减少,一方面进一步降低了螺纹崩牙的几率,一方面显著提高了加工效率;
(4)制备周期短、成本低,本发明采用先驱体溶液浸渍裂解工艺制备C/SiC复合材料螺钉,制备周期一般不超过30天,且对生产设备要求简单,只有真空浸渍装置和裂解炉,降低了经济成本。
附图说明
图1为本发明总体流程图;
图2为采用本发明和背景技术CN 101265935A所述方法分别制备的C/SiC复合材料螺钉的实物照片。
其中:
图2a是采用本发明制备的螺钉照片,图2b是采用CN 101265935A所述方法制备的螺钉照片。
具体实施方式
如图2所示,图2a是国防科技大学新型陶瓷纤维及其复合材料国防科技重点实验室采用本发明方法制备的螺钉照片,图2b是采用CN 101265935A所述方法制备的螺钉照片。制备时采用的碳纤维预制件均是碳纤维布叠层穿刺预制件。图2a所示的螺钉,螺纹牙质量好,且无明显崩牙现象,而图2b所示的螺钉,螺纹牙完整性较差,存在明显崩牙现象。
聚碳硅烷与二甲苯的先驱体溶液的浸渍时间(3~10小时)以及泥浆各组分配比(聚碳硅烷:二乙烯基苯:SiC粉=1~3:0.5~1.5:1~2)的选择主要影响复合材料致密化效率及每一次浸渍裂解过程后的陶瓷裂解产率,对最终螺钉的力学性能没有明显影响。另外,和碳纤维预制件的预处理温度及先驱体溶液固化交联后的裂解温度相比,预处理时间及裂解时间对最终螺钉的力学性能影响很小。因此,在以下实施例中,先驱体溶液的浸渍时间一律取为6小时,泥浆各组分配比一律取为聚碳硅烷:二乙烯基苯:SiC粉=2:1:1.5,预处理时间及裂解时间一律取为2小时和1小时。
螺纹改性溶液是环氧树脂、丙酮、二乙烯三胺的混合溶液(为方便简称Aqua-1)或酚醛树脂与乙醇的混合溶液(为方便简称Aqua-2)或聚碳硅烷与二乙烯基苯的混合溶液(为方便简称Aqua-3)。由于螺纹改性溶液的配比及固化交联温度在本发明给定的范围内都能保证较好的螺纹牙质量,其参数变化对螺钉最终力学性能无明显影响,因此,选用Aqua-1时,三者质量比一律取为1:1.5:0.4,室温固化交联。选用Aqua-2时,两者质量比一律取为1:2,固化交联温度一律取为120℃。选用Aqua-3时,两者质量比一律取为1:1,固化交联温度一律取为180℃。
本发明中碳纤维预制件对螺钉最终力学性能起决定性作用,螺纹改性溶液、螺纹加工时机、碳纤维预处理温度及裂解温度的选择对螺钉力学性能也有一定程度的影响。本发明中实施例中碳纤维预制件采用三种,分别是3K碳纤维布与单向纤维布依次叠层后沿厚度方向穿刺增强纤维(纤维体积分数约52%,为方便简称Preform-1)、三维针刺毡(纤维体积分数约32%,为方便简称Preform-2)及3K碳纤维布依次叠层后沿厚度方向穿刺增强纤维(纤维体积分数约40%,为方便简称Preform-3)。螺纹加工时机的选择主要考虑C/SiC复合材料相对密度的不同(50%~80%)来进行螺纹加工。
下面结合图1描述实施例中的第14、82和第243实施例,但本发明的内容不仅仅局限于附表中的实施例。
实施例14
一种C/SiC复合材料螺钉的制备方法,如图1所示,包括以下步骤:
1、预处理碳纤维预制件:将3K碳纤维布与单向纤维布依次叠层后,以缝合距离3mm×3mm沿厚度方向穿刺增强纤维,获得纤维体积分数约为52%的碳纤维预制件,再将碳纤维预制件置于高温真空炉中,抽真空后以10℃/分钟速率升温至1500℃,保温2h后降温;
2、制备螺钉毛坯件:将预处理后的碳纤维预制件放入浸渍罐,抽真空后加入质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液,浸渍6小时后取出自然晾干,再采用石墨模具加压固定,并在氮气保护下于1200℃温度下裂解1小时,重复浸渍裂解过程直到获得相对密度为65%(约1.1g/cm3)的C/SiC毛坯板,再对C/SiC毛坯板进行切、磨、车等机械加工,获得螺钉毛坯件;
3、螺钉毛坯件改性:对螺钉毛坯件表面刷涂质量比为1:1.5:0.5的环氧树脂、丙酮及二乙烯三胺的混合溶液,并于室温固化交联;
4、螺纹加工:利用金刚石砂轮,配合螺母在螺钉毛坯件上加工螺纹,形成半成品螺钉;
5、后续致密化及抗氧化处理:将半成品螺钉先在碳硅烷与二甲苯的先驱体溶液中多次浸渍裂解聚,实现进一步致密化,再采用质量比为聚碳硅烷:二乙烯基苯:SiC粉=2:1:1.5的泥浆代替聚碳硅烷与二甲苯的先驱体溶液继续致密化,直到获得成品螺钉。
上述方法制得的C/SiC复合材料螺钉的密度为1.76g/cm3,螺纹牙质量较好,未发现严重崩牙现象,室温拉伸断裂强度为260MPa,室温剪切断裂强度为112MPa。
实施例82
一种C/SiC复合材料螺钉的制备方法,如图1所示,包括以下步骤:
1、预处理碳纤维预制件:将碳纤维预制件(三位针刺毡,购自宜兴天鸟高新技术有限公司,纤维体积分数约32%)置于高温真空炉中,抽真空后以10℃/分钟速率升温至1200℃,保温2小时后降温;
2、制备螺钉毛坯件:将预处理后的碳纤维预制件放入浸渍罐,抽真空后加入质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液,浸渍6小时后取出自然晾干,再采用石墨模具加压固定,并在氩气保护下于1000℃温度下裂解1小时,重复浸渍裂解过程直到获得相对密度为50%(约1.0g/cm3)的C/SiC毛坯板,再对C/SiC毛坯板进行切、磨、车等机械加工,获得螺钉毛坯件;
3、螺钉毛坯件改性:将螺钉毛坯件真空浸渍质量比为1:2的酚醛树脂与乙醇的混合溶液,并于120℃固化交联;
4、螺纹加工:同实施例14;
5、后续致密化及抗氧化处理:同实施例14。
上述方法制得的C/SiC复合材料螺钉的密度为2.06g/cm3,螺纹牙质量较好,未发现严重崩牙现象,室温拉伸断裂强度为120MPa,室温剪切断裂强度为63MPa。
实施例243
一种C/SiC复合材料螺钉的制备方法,包括以下步骤:
1、预处理碳纤维预制件:将3K碳纤维布依次叠层后,以缝合距离3mm×3mm沿厚度方向穿刺增强纤维,获得纤维体积分数约为40%的碳纤维预制件,再将碳纤维预制件置于高温真空炉中,抽真空后以10℃/分钟速率升温至1800℃,保温2h后降温;
2、制备螺钉毛坯件:将预处理后的碳纤维预制件放入浸渍罐,抽真空后加入质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液,浸渍6小时后取出自然晾干,再采用石墨模具加压固定,并在氮气保护下于1400℃温度下裂解1小时,重复浸渍裂解过程直到获得相对密度为80%(约1.5g/cm3)的C/SiC毛坯板,再对C/SiC毛坯板进行切、磨、车等机械加工,获得螺钉毛坯件;
3、螺钉毛坯件改性:对螺钉毛坯件表面刷涂质量比为1:1的聚碳硅烷与二乙烯基苯的混合溶液,并于180℃固化交联;
4、螺纹加工:同实施例14;
5、后续致密化及抗氧化处理:同实施例14。
上述方法制得的C/SiC复合材料螺钉的密度为1.83g/cm3,螺纹牙质量较好,未发现严重崩牙现象,室温拉伸断裂强度为194MPa,室温剪切断裂强度为76MPa。
表1实施例
Figure BDA00001739349600071
Figure BDA00001739349600081
Figure BDA00001739349600091
Figure BDA00001739349600101
Figure BDA00001739349600111
Figure BDA00001739349600121
Figure BDA00001739349600131
从上表可知,螺纹改性溶液种类的选择对螺钉最终力学性能影响很小。螺纹加工时机、碳纤维预处理温度及裂解温度对螺钉最终力学性能有一定影响,但其综合影响不超过30%(纤维预制件相同,其他影响因素变化时,室温拉伸或剪切断裂强度的最大值与最小值的差值与其最小值之比)。碳纤维预制件对螺钉最终力学性能起决定性作用,采用Preform-1时,室温拉伸断裂强度为232~262MPa,室温剪切断裂强度为93~113MPa;采用Preform-2时,室温拉伸断裂强度为111~132MPa,室温剪切断裂强度为57~80MPa;采用Preform-3时,室温拉伸断裂强度为190~214MPa,室温剪切断裂强度为76~91MPa。相比于背景技术中的螺钉室温拉伸断裂强度210~230MPa(剪切强度数据未公布),采用Preform-1时能够获得更为优异的力学性能;采用Preform-2时虽然螺钉的力学性能较低,但其纤维预制件的成本低且制备容易,适用于对螺钉力学性能要求不苛刻的高温领域;采用Preform-3时螺钉的力学性能尽管低于Preform-1制备的螺钉的力学性能,但和Preform-1相比,其单个螺纹牙的承载能力要略高些(原因在于纤维排布方式的差异),因此该种螺钉适用于力学性能要求适中或者更为注重螺纹牙承载能力的场合,如实际应用中与螺钉外螺纹匹配的内螺纹丝扣数量较少时,可能导致螺纹脱扣而非螺钉断裂,此时就必须优先考虑单个螺纹牙的承载能力,从而防止螺纹脱扣现象的发生。

Claims (5)

1.一种碳纤维增强碳化硅复合材料螺钉的制备方法,其特征在于包括以下步骤:
第一步,预处理碳纤维预制件:将碳纤维预制件置于高温真空炉中,抽真空后升温至1200~1800℃,保温0.5~3小时后随炉冷却;碳纤维预制件是碳纤维布与单向纤维布叠层穿刺或三维针刺毡或碳纤维布叠层穿刺;
第二步,制备螺钉毛坯件:将预处理后的碳纤维预制件放入浸渍罐,抽真空后加入质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液,浸渍3~10小时后取出自然晾干,再采用石墨模具加压固定,并在惰性气体或氮气保护下于1000~1400℃温度下裂解0.5~2小时,重复浸渍裂解过程直到获得相对密度为50%~80%的C/SiC毛坯板,再将C/SiC毛坯板进行机械加工,获得螺钉毛坯件;
第三步,螺钉毛坯件改性:将螺钉毛坯件真空浸渍或对螺钉毛坯件表面刷涂螺纹改性溶液,并固化交联;螺纹改性溶液是环氧树脂、丙酮、二乙烯三胺的混合溶液或酚醛树脂与乙醇的混合溶液或聚碳硅烷与二乙烯基苯的混合溶液,选用环氧树脂、丙酮、二乙烯三胺的混合溶液时,环氧树脂、丙酮、二乙烯三胺质量比为1:1~2:0.2~0.8,其中二乙烯三胺为固化剂,室温固化交联;选用酚醛树脂与乙醇的混合溶液时,酚醛树脂与乙醇质量比为1:1~4,固化交联温度为100~150℃;选用聚碳硅烷与二乙烯基苯的混合溶液时,聚碳硅烷与二乙烯基苯质量比为1:0.5~2,固化交联温度为150~200℃;
第四步,螺纹加工:利用金刚石砂轮,配合螺母在螺钉毛坯件上加工螺纹,形成半成品螺钉;
第五步,后续致密化及抗氧化处理:将半成品螺钉多次在质量比1∶1的聚碳硅烷与二甲苯的先驱体溶液中浸渍裂解后,采用泥浆法进行抗氧化处理,即让泥浆代替聚碳硅烷与二甲苯的先驱体溶液,让半成品螺钉在泥浆中浸渍裂解以继续致密化,直到获得成品螺钉获得成品C/SiC复合材料螺钉。
2.如权利要求1所述的一种碳纤维增强碳化硅复合材料螺钉的制备方法,其特征在于所述碳纤维布与单向纤维布叠层穿刺是指3K碳纤维布与单向纤维布依次叠层后沿厚度方向穿刺增强纤维,纤维体积分数为52%;所述三维针刺毡纤维体积分数为32%;所述碳纤维布叠层穿刺是指3K碳纤维布依次叠层后沿厚度方向穿刺增强纤维,纤维体积分数为40%。
3.如权利要求1所述的一种碳纤维增强碳化硅复合材料螺钉的制备方法,其特征在于第一步所述升温的速率为10℃/分钟。
4.如权利要求1所述的一种碳纤维增强碳化硅复合材料螺钉的制备方法,其特征在于第二步中所述机械加工指切、磨、车。
5.如权利要求1所述的一种碳纤维增强碳化硅复合材料螺钉的制备方法,其特征在于第五步中采用泥浆法抗氧化处理时,所述泥浆是质量比为聚碳硅烷:二乙烯基苯:SiC粉=1~3:0.5~1.5:1~2的泥浆。
CN2012101867217A 2012-06-07 2012-06-07 一种碳纤维增强碳化硅复合材料螺钉的制备方法 Pending CN102701772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101867217A CN102701772A (zh) 2012-06-07 2012-06-07 一种碳纤维增强碳化硅复合材料螺钉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101867217A CN102701772A (zh) 2012-06-07 2012-06-07 一种碳纤维增强碳化硅复合材料螺钉的制备方法

Publications (1)

Publication Number Publication Date
CN102701772A true CN102701772A (zh) 2012-10-03

Family

ID=46894902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101867217A Pending CN102701772A (zh) 2012-06-07 2012-06-07 一种碳纤维增强碳化硅复合材料螺钉的制备方法

Country Status (1)

Country Link
CN (1) CN102701772A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102179A (zh) * 2013-01-06 2013-05-15 西北工业大学 碳/碳基或陶瓷基复合材料紧固件的防松方法
CN103557221A (zh) * 2013-10-11 2014-02-05 航天特种材料及工艺技术研究所 一种C/SiC材料在线连接制备方法
CN105108461A (zh) * 2015-09-24 2015-12-02 湖北三江航天江北机械工程有限公司 C/SiC材料产品内螺纹超声振动加工方法
CN106351931A (zh) * 2016-08-17 2017-01-25 宁波市鄞州金本机械有限公司 一种紧定螺钉
CN106986664A (zh) * 2017-05-04 2017-07-28 中国人民解放军国防科学技术大学 碳纤维增强碳化硅复合材料缺陷的修复方法
CN107052476A (zh) * 2017-03-23 2017-08-18 航天材料及工艺研究所 一种连续纤维增强陶瓷基复合材料螺纹低损伤加工工艺方法
CN110194668A (zh) * 2019-05-31 2019-09-03 中国人民解放军国防科技大学 一种陶瓷基复合材料螺钉及其制备方法
CN112759404A (zh) * 2021-01-27 2021-05-07 巩义市泛锐熠辉复合材料有限公司 一种陶瓷基复合材料内螺纹的制备方法
CN113185856A (zh) * 2021-04-25 2021-07-30 仲恺农业工程学院 一种油泥裂解处理用涂层材料的制备方法及其应用
CN113478861A (zh) * 2021-06-18 2021-10-08 中冶建筑研究总院(深圳)有限公司 一种可用于化学植筋的树脂基复合材料螺栓及其制备方法
CN113603495A (zh) * 2021-07-29 2021-11-05 西北工业大学 基于长棒状预制体结构的陶瓷基复合材料螺栓及销钉制备方法
CN114195536A (zh) * 2021-12-06 2022-03-18 胡海峰 一种增强复合材料层间性能的方法
CN114874031A (zh) * 2022-05-09 2022-08-09 西安鑫垚陶瓷复合材料有限公司 一种陶瓷基复材螺纹加工方法
RU222083U1 (ru) * 2023-10-25 2023-12-11 Владимир Васильевич Галайко Винт из композитного углеродного материала

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598280A (zh) * 2004-09-24 2005-03-23 中国人民解放军国防科学技术大学 先驱体浸渍裂解工艺制备复合材料姿轨控推力室的方法
CN1793054A (zh) * 2005-11-11 2006-06-28 中国人民解放军国防科学技术大学 先驱体法制备Cf/SiC耐高温抗冲刷热防护板的方法
CN101224991A (zh) * 2008-01-29 2008-07-23 中国人民解放军国防科学技术大学 碳纤维增强碳化硅复合材料的制备方法
CN101265935A (zh) * 2008-04-25 2008-09-17 西北工业大学 陶瓷基复合材料螺栓的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598280A (zh) * 2004-09-24 2005-03-23 中国人民解放军国防科学技术大学 先驱体浸渍裂解工艺制备复合材料姿轨控推力室的方法
CN1793054A (zh) * 2005-11-11 2006-06-28 中国人民解放军国防科学技术大学 先驱体法制备Cf/SiC耐高温抗冲刷热防护板的方法
CN101224991A (zh) * 2008-01-29 2008-07-23 中国人民解放军国防科学技术大学 碳纤维增强碳化硅复合材料的制备方法
CN101265935A (zh) * 2008-04-25 2008-09-17 西北工业大学 陶瓷基复合材料螺栓的制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102179A (zh) * 2013-01-06 2013-05-15 西北工业大学 碳/碳基或陶瓷基复合材料紧固件的防松方法
CN103102179B (zh) * 2013-01-06 2014-04-02 西北工业大学 碳/碳基或陶瓷基复合材料紧固件的防松方法
CN103557221A (zh) * 2013-10-11 2014-02-05 航天特种材料及工艺技术研究所 一种C/SiC材料在线连接制备方法
CN105108461A (zh) * 2015-09-24 2015-12-02 湖北三江航天江北机械工程有限公司 C/SiC材料产品内螺纹超声振动加工方法
CN105108461B (zh) * 2015-09-24 2017-10-03 湖北三江航天江北机械工程有限公司 C/SiC材料产品内螺纹超声振动加工方法
CN106351931A (zh) * 2016-08-17 2017-01-25 宁波市鄞州金本机械有限公司 一种紧定螺钉
CN107052476A (zh) * 2017-03-23 2017-08-18 航天材料及工艺研究所 一种连续纤维增强陶瓷基复合材料螺纹低损伤加工工艺方法
CN107052476B (zh) * 2017-03-23 2018-12-21 航天材料及工艺研究所 一种连续纤维增强陶瓷基复合材料螺纹低损伤加工工艺方法
CN106986664A (zh) * 2017-05-04 2017-07-28 中国人民解放军国防科学技术大学 碳纤维增强碳化硅复合材料缺陷的修复方法
CN106986664B (zh) * 2017-05-04 2019-06-04 中国人民解放军国防科学技术大学 碳纤维增强碳化硅复合材料缺陷的修复方法
CN110194668A (zh) * 2019-05-31 2019-09-03 中国人民解放军国防科技大学 一种陶瓷基复合材料螺钉及其制备方法
CN112759404A (zh) * 2021-01-27 2021-05-07 巩义市泛锐熠辉复合材料有限公司 一种陶瓷基复合材料内螺纹的制备方法
CN112759404B (zh) * 2021-01-27 2022-06-21 巩义市泛锐熠辉复合材料有限公司 一种陶瓷基复合材料内螺纹的制备方法
CN113185856A (zh) * 2021-04-25 2021-07-30 仲恺农业工程学院 一种油泥裂解处理用涂层材料的制备方法及其应用
CN113185856B (zh) * 2021-04-25 2024-04-09 仲恺农业工程学院 一种油泥裂解处理用涂层材料的制备方法及其应用
CN113478861A (zh) * 2021-06-18 2021-10-08 中冶建筑研究总院(深圳)有限公司 一种可用于化学植筋的树脂基复合材料螺栓及其制备方法
CN113603495A (zh) * 2021-07-29 2021-11-05 西北工业大学 基于长棒状预制体结构的陶瓷基复合材料螺栓及销钉制备方法
CN114195536A (zh) * 2021-12-06 2022-03-18 胡海峰 一种增强复合材料层间性能的方法
CN114874031A (zh) * 2022-05-09 2022-08-09 西安鑫垚陶瓷复合材料有限公司 一种陶瓷基复材螺纹加工方法
RU222083U1 (ru) * 2023-10-25 2023-12-11 Владимир Васильевич Галайко Винт из композитного углеродного материала

Similar Documents

Publication Publication Date Title
CN102701772A (zh) 一种碳纤维增强碳化硅复合材料螺钉的制备方法
CN100588844C (zh) 陶瓷基复合材料螺栓的制备方法
CN105130447A (zh) 一种结合剂、聚晶立方氮化硼刀具及其制备方法
CN107052476B (zh) 一种连续纤维增强陶瓷基复合材料螺纹低损伤加工工艺方法
CN101456167B (zh) 一种氧化铝基全磨料固结磨具的制备方法
CN103223644B (zh) 磨削钛合金用陶瓷结合剂立方氮化硼砂轮
CN105601280A (zh) 一种低成本轻质高防弹性能B4C/SiC复合陶瓷防弹板及制备方法
CN103757452A (zh) 一种Ti2AlC/TiAl 基复合材料及其低温制备方法
CN103192082B (zh) 轻型金属基复合材料产品的制造方法及其浆料
CN112194492A (zh) 氮化硅陶瓷材料及其制备方法与应用、防弹插板
CN103553637A (zh) 一种具有表面包覆结构的立方氮化硼聚晶复合材料及其制备方法
CN103522205A (zh) 一种含金属的高强度陶瓷超薄切割片及其制备方法
CN105198501A (zh) 一种碳/碳复合材料表面金属钨梯度涂层的制备方法
CN104099540B (zh) 用于减振降噪的NiTi纤维增强金属间化合物基层状复合材料的制备方法
CN102310235A (zh) 一种用于切割合金钢的金刚石锯片及其制备工艺
CN104400672A (zh) 金属结合剂金刚石砂轮
CN102373389A (zh) 一种三维编织碳纤维增强镁基复合材料的制备方法
CN102173806A (zh) 含有金刚石的复合材料及其制备方法
CN105329896A (zh) 制备碳化硼和碳化硼元件的新工艺
CN104264083A (zh) 一种碳纤维增强铝锂合金复合材料及其制备方法
CN108129155B (zh) 一种复合结构炭-炭保温筒及其制备方法
CN104531069A (zh) 一种超硬材料颗粒/钛铝核壳结构复合颗粒及其制备方法
CN103086721A (zh) 利用碳化硅固体废料制备碳化硅陶瓷的方法
CN103484702B (zh) 一种Cr2AlC颗粒增强Zn基复合材料及其制备方法
CN104557046A (zh) 一种碳化硼复合材料制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121003

WD01 Invention patent application deemed withdrawn after publication