CN102698787A - 一种CN/SrTiO3复合光催化剂的合成方法 - Google Patents

一种CN/SrTiO3复合光催化剂的合成方法 Download PDF

Info

Publication number
CN102698787A
CN102698787A CN2012101839857A CN201210183985A CN102698787A CN 102698787 A CN102698787 A CN 102698787A CN 2012101839857 A CN2012101839857 A CN 2012101839857A CN 201210183985 A CN201210183985 A CN 201210183985A CN 102698787 A CN102698787 A CN 102698787A
Authority
CN
China
Prior art keywords
srtio
catalyst
composite photo
synthetic method
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101839857A
Other languages
English (en)
Inventor
陈刚
胡宜栋
于耀光
刘远
郝临星
周彦松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2012101839857A priority Critical patent/CN102698787A/zh
Publication of CN102698787A publication Critical patent/CN102698787A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

一种CN/SrTiO3复合光催化剂的合成方法,它涉及光催化剂的合成方法。本发明要解决现有的固相法制备的催化剂颗粒较大、比表面积较小,催化剂性能较差的问题。方法:将钛酸丁酯、Sr(NO3)3、柠檬酸溶于乙二醇中,混合得溶液;将溶液经超声处理和微波处理后得到溶胶,将溶中脱水形成凝胶,将凝胶烧成粉末,将粉末研磨后,在600~1000℃的温度下焙烧8~15h,得到SrTiO3前驱物;将SrTiO3前驱物和尿素,混合并研磨后,焙烧得到粗产物,将粗产物洗涤、干燥得到复合光催化剂。本发明所得的产物分散性好,使用时不需要酸性条件,50min中内可将罗丹明B完全降解,用于分解水制氢和光降解有机物等方面。

Description

一种CN/SrTiO3复合光催化剂的合成方法
技术领域
本发明涉及光催化剂的合成方法。
背景技术
自1976年Gary等首先应用二氧化钛光催化降解水中的氯代联苯并取得成功以来,有关光催化氧化降解有毒污染物技术迅速受到各国环境研究者的普遍关注。经过三十多年广泛深入地研究,TiO2以外的光催化剂的相继发现,但是大多数光催化剂的研究还主要在紫外光区,在太阳光谱中紫外光(420nm以下)不到5%,而波长为420~750nm的可见光占到43%,因此,为了有效利用太阳光,研究在可见光下具有高效光催化活性的催化材料非常有意义,寻求廉价、具有高性能的可见光光催化材料将是光催化发展进一步走向实用化的必然趋势。
对于当前报道的绝大部分催化剂,均采用传统的固相法制得,不仅合成的催化剂颗粒较大,且比表面积较小,从而限制了该类催化剂性能的进一步提高,因此探索制备高比表面积光催化剂的新方法势在必行。
发明内容
本发明要解决现有的固相法制备的催化剂颗粒较大、比表面积较小,催化剂性能较差的问题,而提供一种CN/SrTiO3复合光催化剂的合成方法。
本发明CN/SrTiO3复合光催化剂的合成方法按以下步骤进行:
一、将钛酸丁酯、Sr(NO3)3、柠檬酸溶于乙二醇中,在温度为60~90℃的条件下,搅拌混合均匀,得到溶液;其中,钛酸丁酯与Sr(NO3)3的物质的量之比为1∶1,钛酸丁酯与柠檬酸的用量比是1mmoL∶(4~8g);钛酸丁酯与乙二醇的用量比是1mmoL∶(4~7mL);
二、将步骤一中得到的溶液经超声处理和微波处理后得到溶胶,将溶胶放入110~150℃烘箱中脱水10~14h,形成凝胶,将凝胶烧成粉末,将所得粉末研磨后,在600~1000℃的温度下焙烧8~15h,得到SrTiO3前驱物;
三、按质量比为1∶(1~8)称取步骤二得到的SrTiO3前驱物和尿素,混合并研磨30~60min后,在300~500℃烘箱中焙烧1~5h,得到粗产物,将粗产物用去离子水洗涤2~5次、再用无水乙醇洗涤2~5次后,在60~90℃下干燥5~10h,得到CN/SrTiO3复合光催化剂。
本发明首次采用聚合物络合法制备出SrTiO3纳米颗粒,并以此为前驱体,再通过尿素煅烧复合制得CN/SrTiO3粉体可见光光催化材料。本发明原料简单易得,对设备要求低,成本低,操作简单,反应易控制,容易制得纯相、结晶度好的SrTiO3,合成过程中没有Sr和Ti的损失,稳定性好、无毒,相对于水热合成SrTiO3,重现性好,有利于扩大生产。
本发明得到的产品分散性好,具有高效的光催化性能,使用时不需要酸性条件。与纯SrTiO3相比,本发明所得的CN/SrTiO3复合光催化剂的初始吸收边向长波方向移动,使SrTiO3的最大吸收边由紫外光区红移至可见光区,禁带宽度由3.35eV降低到2.82eV,从而使SrTiO3具有可见光催化活性,有效利用太阳光降低污染物处理费用,50min中内可将100mL(10mg/L)的罗丹明B完全降解,是一种在分解水制氢和光降解有机物等方面都很有前途的光催化材料。
附图说明
图1是实施例一制备的SrTiO3前驱物放大10000倍的扫描电镜照片;
图2是实施例一制备的SrTiO3前驱物放大50000倍的扫描电镜照片;
图3是实施例一制备的CN/SrTiO3复合光催化剂放大10000倍的扫描电镜照片;
图4是实施例一制备的CN/SrTiO3复合光催化剂放大50000倍的扫描电镜照片;
图5是产物的XRD谱图,其中a是纯实施例一所制备的SrTiO3前驱物的XRD谱图;b是实施例一所制备的CN/SrTiO3复合光催化剂的XRD谱图;c是实施例二所制备的CN/SrTiO3复合光催化剂的XRD谱图;
图6是实施例一所制备的SrTiO3前驱物的高分辨透射电镜(HRTEM)照片;
图7是产物的紫外可见漫反射光谱图,其中a是实施例一所制备的SrTiO3前驱物的紫外可见漫反射光谱图;b是实施例一所制备的CN/SrTiO3复合光催化剂的紫外可见漫反射光谱图;c是实施例二所制备的CN/SrTiO3复合光催化剂的紫外可见漫反射光谱图;
图8是产物的可见光降解Rh-B性能测试图,其中a是实施例一所制备的SrTiO3前驱物的可见光降解Rh-B性能测试曲线;b是实施例一所制备的CN/SrTiO3复合光催化剂的可见光降解Rh-B性能测试曲线;c是实施例二所制备的CN/SrTiO3复合光催化剂的可见光降解Rh-B性能测试曲线;
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式CN/SrTiO3复合光催化剂的合成方法按以下步骤进行:
一、将钛酸丁酯、Sr(NO3)3、柠檬酸溶于乙二醇中,在温度为60~90℃的条件下,搅拌混合均匀,得到溶液;其中,钛酸丁酯与Sr(NO3)3的物质的量之比为1∶1,钛酸丁酯与柠檬酸的用量比是1mmoL∶(4~8g);钛酸丁酯与乙二醇的用量比是1mmoL∶(4~7mL);
二、将步骤一中得到的溶液经超声处理和微波处理后得到溶胶,将溶胶放入110~150℃烘箱中脱水10~14h,形成凝胶,将凝胶烧成粉末,将所得粉末研磨后,在600~1000℃的温度下焙烧8~15h,得到SrTiO3前驱物;
三、按质量比为1∶(1~8)称取步骤二得到的SrTiO3前驱物和尿素,混合并研磨30~60min后,在300~500℃烘箱中焙烧1~5h,得到粗产物,将粗产物用去离子水洗涤2~5次、再用无水乙醇洗涤2~5次后,在60~90℃下干燥5~10h,得到CN/SrTiO3复合光催化剂。
本实施方式首次采用聚合物络合法制备出SrTiO3纳米颗粒,并以此为前驱体,再通过尿素煅烧复合制得CN/SrTiO3粉体可见光光催化材料。本实施方式原料简单易得,对设备要求低,成本低,操作简单,反应易控制,容易制得纯相、结晶度好的SrTiO3,合成过程中没有Sr和Ti的损失,稳定性好、无毒,相对于水热合成SrTiO3,重现性好,有利于扩大生产。
本实施方式得到的产品分散性好,具有高效的光催化性能,使用时不需要酸性条件。与纯SrTiO3相比,本实施方式所得的CN/SrTiO3复合光催化剂的初始吸收边向长波方向移动,使SrTiO3的最大吸收边由紫外光区红移至可见光区,禁带宽度由3.35eV降低到2.82eV,从而使SrTiO3具有可见光催化活性,有效利用太阳光降低污染物处理费用,50min中内可将100mL(10mg/L)的罗丹明B完全降解,是一种在分解水制氢和光降解有机物等方面都很有前途的光催化材料。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中的搅拌是以4000~8000r/min的速度,磁力搅拌30~60min。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中的搅拌是以5000~6000r/min的速度,磁力搅拌40~50min。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中所述超声处理是在超声波频率为40kHz的条件下处理5~10min。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中所述微波处理是在微波功率为800W的条件下处理2~5min。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中将溶胶放入120~140℃烘箱中脱水11~13h,形成凝胶。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中所述将凝胶烧成粉末按以下步骤进行:将凝胶置于400~500℃电炉中保温30~60min,得到粉末。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中将所得粉末研磨,在700~900℃的温度下焙烧12h,得到SrTiO3前驱物。其它与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三中按质量比为1∶(2~4)称取步骤二得到的SrTiO3前驱物和尿素。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤三中在350~450℃烘箱中焙烧2~4h,得到粗产物。其它与具体实施方式一至九之一相同。
采用以下实施例和对比实验验证本发明的有益效果:
实施例一:
本实施例CN/SrTiO3复合光催化剂的合成方法按以下步骤进行:
一、将0.34g钛酸丁酯(C16H36O4Ti)、0.21g Sr(NO3)3、16g柠檬酸溶于20mL乙二醇中,在温度为75℃的条件下,以5000r/min的搅拌速度磁力搅拌40min,得到溶液;
二、将步骤一中得到的溶液用频率为40kHz的超声波处理5min,然后用800W的微波处理3min,得到溶胶,将溶胶放入120℃烘箱中脱水12h,形成凝胶,将凝胶置于500℃电炉中保温30min,得到粉末,将所得粉末研磨,在800℃的温度下焙烧12h,得到SrTiO3前驱物;
三、按质量比为1∶2称取步骤二得到的SrTiO3前驱物和尿素,混合并研磨30min后,在450℃烘箱中焙烧2h,得到粗产物,将粗产物用去离子水洗涤3次、再用无水乙醇洗涤3次后,在70℃下干燥6h,得到CN/SrTiO3复合光催化剂。
实施例二:
本实施例CN/SrTiO3复合光催化剂的合成方法按以下步骤进行:
一、将0.34g钛酸丁酯(C16H36O4Ti)、0.21g Sr(NO3)3、16g柠檬酸溶于20mL乙二醇中,在温度为75℃的条件下,以5000r/min的搅拌速度磁力搅拌40min,得到溶液;
二、将步骤一中得到的溶液用频率为40kHz的超声波处理5min,然后用800W的微波处理3min,得到溶胶,将溶胶放入120℃烘箱中脱水12h,形成凝胶,将凝胶置于500℃电炉中保温30min,得到粉末,将所得粉末研磨,在800℃的温度下焙烧12h,得到SrTiO3前驱物;
三、按质量比为1∶4称取步骤二得到的SrTiO3前驱物和尿素,混合并研磨30min后,在450℃烘箱中焙烧2h,得到粗产物,将粗产物用去离子水洗涤3次、再用无水乙醇洗涤3次后,在70℃下干燥6h,得到CN/SrTiO3复合光催化剂。
对实施例一和实施例二所得产物进行测试,结果如下:
图1是实施例一制备的SrTiO3前驱物放大10000倍的扫描电镜照片;图2是实施例一制备的SrTiO3前驱物放大50000倍的扫描电镜照片;从图中可以看出,经过800℃高温烧结后,样品颗粒比较大,样品有团聚。
图3是实施例一制备的CN/SrTiO3复合光催化剂放大10000倍的扫描电镜照片;图4是实施例一制备的CN/SrTiO3复合光催化剂放大50000倍的扫描电镜照片;与图1和图2相比,经过800℃高温烧结所得的CN/SrTiO3颗粒半径有所减小,混合尿素后的SEM照片比较暗,这是因为SrTiO3表面覆盖了一些CN聚合物的缘故。
图5是产物的XRD谱图,其中a是实施例一所制备的SrTiO3前驱物的XRD谱图;b是实施例一所制备的CN/SrTiO3复合光催化剂的XRD谱图;c是实施例二所制备的CN/SrTiO3复合光催化剂的XRD谱图,
经过与标准谱图的对比,可以看出制备的样品的衍射峰与标准谱图(JCPDS 03-0734)对照后都比较一致,没有杂质峰出现,结晶度比较好。XRD表征结果表明,聚合物络合法制备的SrTiO3为立方结构,空间群为Pm-3m(221)。可以看出混合尿素并没有改变SrTiO3的晶体结构,但是随着掺杂量的增加,衍射峰强逐渐变弱,这是因为有越来越多的CN聚合物附着在SrTiO3的表面。
图6是实施例一所制备的SrTiO3前驱物的高分辨透射电镜(HRTEM)照片,可看出具有明显晶面条纹的主体部分,HRTEM照片显示单晶小颗粒的晶面间距信息,经分析得到晶面间距为0.269nm,与SrTiO3的(110)晶面间距(0.275nm)十分接近,证明基体成分为SrTiO3,验证了XRD谱图的分析结论。
图7是产物的紫外可见漫反射光谱图,其中a是实施例一所制备的SrTiO3前驱物的紫外可见漫反射光谱图;b是实施例一所制备的CN/SrTiO3复合光催化剂的紫外可见漫反射光谱图;c是实施例二所制备的CN/SrTiO3复合光催化剂的紫外可见漫反射光谱图;
由图可知,纯相SrTiO3的最大吸收边在紫外光区,禁带宽度约为3.35eV。随着掺杂比例的增加,SrTiO3的最大吸收边逐渐发生红移至可见光区。当SrTiO3与尿素的比例达到1∶4时,制得的样品的禁带宽度约为2.82eV。
图8是产物的可见光降解Rh-B性能测试图,其中a是实施例一所制备的SrTiO3前驱物的可见光降解Rh-B性能测试曲线;b是实施例一所制备的CN/SrTiO3复合光催化剂的可见光降解Rh-B性能测试曲线;c是实施例二所制备的CN/SrTiO3复合光催化剂的可见光降解Rh-B性能测试曲线;
可见光降解Rh-B的测试中,使用0.2g催化剂降解100mL(10mg/L)的罗丹明B,测试时间是50min,每隔10min取样测试,降解结果如图8所示。
由于纯相SrTiO3的带隙比较宽,其最大吸收边在紫外光区,没有可将光活性,所以在可见灯光照下不能降解Rh-B溶液。SrTiO3与尿素混合烧结后,部分N原子取代O原子的位置掺杂进入SrTiO3的晶格中,产生杂质能级,如紫外可见漫反射光谱分析,使SrTiO3的最大吸收边红移至可见光区,从而在可将光条件下表现出了光催化活性。

Claims (10)

1.一种CN/SrTiO3复合光催化剂的合成方法,其特征在于CN/SrTiO3复合光催化剂的合成方法按以下步骤进行:
一、将钛酸丁酯、Sr(NO3)3、柠檬酸溶于乙二醇中,在温度为60~90℃的条件下,搅拌混合均匀,得到溶液;其中,钛酸丁酯与Sr(NO3)3的物质的量之比为1∶1,钛酸丁酯与柠檬酸的用量比是1mmoL∶(4~8g);钛酸丁酯与乙二醇的用量比是1mmoL∶(4~7mL);
二、将步骤一中得到的溶液经超声处理和微波处理后得到溶胶,将溶胶放入110~150℃烘箱中脱水10~14h,形成凝胶,将凝胶烧成粉末,将所得粉末研磨后,在600~1000℃的温度下焙烧8~15h,得到SrTiO3前驱物;
三、按质量比为1∶(1~8)称取步骤二得到的SrTiO3前驱物和尿素,混合并研磨30~60min后,在300~500℃烘箱中焙烧1~5h,得到粗产物,将粗产物用去离子水洗涤2~5次、再用无水乙醇洗涤2~5次后,在60~90℃下干燥5~10h,得到CN/SrTiO3复合光催化剂。
2.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤一中的搅拌是以4000~8000r/min的速度,磁力搅拌30~60min。
3.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤一中的搅拌是以5000~6000r/min的速度,磁力搅拌40~50min。
4.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤二中所述超声处理是在超声波频率为40kHz的条件下处理5~10min。
5.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤二中所述微波处理是在微波功率为800W的条件下处理2~5min。
6.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤二中将溶胶放入120~140℃烘箱中脱水11~13h,形成凝胶。
7.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤二中所述将凝胶烧成粉末按以下步骤进行:将凝胶置于400~500℃电炉中保温30~60min,得到粉末。
8.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤二中将所得粉末研磨,在700~900℃的温度下焙烧12h,得到SrTiO3前驱物。
9.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤三中按质量比为1∶(2~4)称取步骤二得到的SrTiO3前驱物和尿素。
10.根据权利要求1所述的一种CN/SrTiO3复合光催化剂的合成方法,其特征在于步骤三中在350~450℃烘箱中焙烧2~4h,得到粗产物。
CN2012101839857A 2012-06-06 2012-06-06 一种CN/SrTiO3复合光催化剂的合成方法 Pending CN102698787A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101839857A CN102698787A (zh) 2012-06-06 2012-06-06 一种CN/SrTiO3复合光催化剂的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101839857A CN102698787A (zh) 2012-06-06 2012-06-06 一种CN/SrTiO3复合光催化剂的合成方法

Publications (1)

Publication Number Publication Date
CN102698787A true CN102698787A (zh) 2012-10-03

Family

ID=46892009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101839857A Pending CN102698787A (zh) 2012-06-06 2012-06-06 一种CN/SrTiO3复合光催化剂的合成方法

Country Status (1)

Country Link
CN (1) CN102698787A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930633A (zh) * 2017-11-23 2018-04-20 江苏理工学院 一种新型SrTiO3/Cu2O结复合纳米材料的制备方法及应用
CN108014778A (zh) * 2017-12-12 2018-05-11 浙江绿竹环保科技有限公司 一种改性钛酸锶的制备方法及其产品和应用
CN108906108A (zh) * 2018-07-10 2018-11-30 浙江正洁环境科技有限公司 一种N-SrTiO3/活性炭处理材料的微波法合成工艺及其应用
CN108993527A (zh) * 2018-07-12 2018-12-14 辽宁大学 半导体材料包覆铁酸盐复合催化剂及其制备方法和应用
CN111036188A (zh) * 2019-12-28 2020-04-21 苏州大学 钛酸锶和碳量子点复合材料及其制备方法和应用
CN112479248A (zh) * 2020-11-09 2021-03-12 南昌航空大学 一种锶空位可调的钛酸锶的制备方法及其在光催化制氢领域的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067103A2 (en) * 1999-07-05 2001-01-10 Sumitomo Chemical Company, Limited Process for producing halogenated benzene compound
CN101913865A (zh) * 2010-08-31 2010-12-15 哈尔滨工业大学 一种制备织构化锆钛酸铅陶瓷的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067103A2 (en) * 1999-07-05 2001-01-10 Sumitomo Chemical Company, Limited Process for producing halogenated benzene compound
CN101913865A (zh) * 2010-08-31 2010-12-15 哈尔滨工业大学 一种制备织构化锆钛酸铅陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《international journal of hydrogen energy》 20110831 Xiaoxiang Xu et al "g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation" 第2.1节 1-10 第36卷, *
XIAOXIANG XU ET AL: ""g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation"", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930633A (zh) * 2017-11-23 2018-04-20 江苏理工学院 一种新型SrTiO3/Cu2O结复合纳米材料的制备方法及应用
CN107930633B (zh) * 2017-11-23 2020-11-20 江苏理工学院 一种SrTiO3/Cu2O异质结复合纳米材料的制备方法及应用
CN108014778A (zh) * 2017-12-12 2018-05-11 浙江绿竹环保科技有限公司 一种改性钛酸锶的制备方法及其产品和应用
CN108014778B (zh) * 2017-12-12 2020-08-11 浙江绿竹环保科技有限公司 一种改性钛酸锶的制备方法及其产品和应用
CN108906108A (zh) * 2018-07-10 2018-11-30 浙江正洁环境科技有限公司 一种N-SrTiO3/活性炭处理材料的微波法合成工艺及其应用
CN108906108B (zh) * 2018-07-10 2021-07-13 浙江正洁环境科技有限公司 一种N-SrTiO3/活性炭处理材料的微波法合成工艺及其应用
CN108993527A (zh) * 2018-07-12 2018-12-14 辽宁大学 半导体材料包覆铁酸盐复合催化剂及其制备方法和应用
CN108993527B (zh) * 2018-07-12 2021-03-02 辽宁大学 半导体材料包覆铁酸盐复合催化剂及其制备方法和应用
CN111036188A (zh) * 2019-12-28 2020-04-21 苏州大学 钛酸锶和碳量子点复合材料及其制备方法和应用
CN111036188B (zh) * 2019-12-28 2022-12-30 苏州大学 钛酸锶和碳量子点复合材料及其制备方法和应用
CN112479248A (zh) * 2020-11-09 2021-03-12 南昌航空大学 一种锶空位可调的钛酸锶的制备方法及其在光催化制氢领域的应用
CN112479248B (zh) * 2020-11-09 2022-09-30 南昌航空大学 一种锶空位可调的钛酸锶的制备方法及其在光催化制氢领域的应用

Similar Documents

Publication Publication Date Title
CN103240130B (zh) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
CN106492854B (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN102698787A (zh) 一种CN/SrTiO3复合光催化剂的合成方法
CN105170130B (zh) 高分散CeO2修饰TiO2的介孔光催化剂的制备方法和应用
CN105854863B (zh) 一种C/ZnO/TiO2复合纳米光催化材料的制备方法
CN104108753A (zh) 一种可见光响应的BiVO4催化剂的制备
CN106824247B (zh) 一种钨酸铋/氮化碳/磷酸铋复合光催化剂及其制备方法和应用
CN102351242A (zh) 一种溶剂热法制备单相钛酸铋Bi2Ti2O7的方法
CN103657623B (zh) 微球型二氧化钛光催化剂及其制备方法
CN103073054B (zh) 纳米带状六钛酸钾的制备方法
Wang et al. Sol‐gel preparation of CNT/ZnO nanocomposite and its photocatalytic property
CN105195131B (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催化剂的制备方法
CN113713823B (zh) 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用
CN102380385A (zh) 一种负载型金属掺杂介孔二氧化钛光催化剂及其应用
CN104511293A (zh) 一种氯氧化铋-钛酸铁铋复合光催化剂及其制备方法
CN102060330A (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
CN104069848A (zh) 一种醇热法制备纯相钛酸铋与氧化钛复合材料的方法
Gao et al. Zirconium doping in calcium titanate perovskite oxides with surface nanostep structure for promoting photocatalytic hydrogen evolution
CN106492817B (zh) 一种多孔FeVO4纳米棒类芬顿光催化剂及其制备方法和用途
CN105457656A (zh) 一种异质结光催化剂的制备方法和用途
CN104549222A (zh) 一种可见光催化剂钛酸铬的制备方法及应用
CN105289577A (zh) 一种钒钽/铌酸盐光催化剂及其制备方法和应用
CN103055839A (zh) 锂基岩盐结构复合氧化物光催化剂Li2TiO3及其制备方法
CN103127885A (zh) 氮、稀土元素共掺杂纳米二氧化钛晶体的超声化学制备方法
CN102765758A (zh) 溶胶-凝胶-水热法制备钨酸铋及铟掺杂钨酸铋的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121003