CN102665612B - 瓣膜假体 - Google Patents

瓣膜假体 Download PDF

Info

Publication number
CN102665612B
CN102665612B CN201080050314.2A CN201080050314A CN102665612B CN 102665612 B CN102665612 B CN 102665612B CN 201080050314 A CN201080050314 A CN 201080050314A CN 102665612 B CN102665612 B CN 102665612B
Authority
CN
China
Prior art keywords
support
mitral valve
valve
annulus
prosthese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080050314.2A
Other languages
English (en)
Other versions
CN102665612A (zh
Inventor
约瑟夫·H·戈尔曼三世
罗伯特·C·戈尔曼
马修·J·吉莱斯皮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pennsylvania Penn
Original Assignee
University of Pennsylvania Penn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pennsylvania Penn filed Critical University of Pennsylvania Penn
Publication of CN102665612A publication Critical patent/CN102665612A/zh
Application granted granted Critical
Publication of CN102665612B publication Critical patent/CN102665612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0069Sealing means

Abstract

本发明涉及可折叠以用于基于导管展开到植入部位的瓣膜置换装置、以及用于递送瓣膜假体的系统,包括具有所公开的瓣膜置换装置的特定特性的假体。该装置包括用于牢固而持久地精确植入的高效附着机构。附着机构可采用独特的密封机构,该密封机构包括缓慢膨胀的套囊,从而在完成植入过程之前不固定装置。植入的装置可选地与套囊一起防止瓣周漏并结合了用于可靠的在原位作用的合适的小叶系统。

Description

瓣膜假体
相关申请的交叉引用
本申请要求提交于2009年11月5日的美国临时申请No.61/241,659的优先权,该临时申请以引用方式全文并入本文中。
技术领域
本公开涉及解剖瓣膜置换装置以及用于置换瓣膜和用于递送带支架的装置的方法及系统。
背景技术
二尖瓣是一个复杂结构,其能力取决于瓣环、小叶、腱索、乳头肌和左心室(LV)的精确相互作用。这些结构的任何一个中的病理改变可导致瓣膜关闭不全。粘液性小叶/腱索变性和继发于慢性心梗后心室重构的扩张型缺血性心肌病是最常见的两种二尖瓣反流(MR)发病机理。这两种疾病过程占所有外科手术处理的MR病例的约78%。
作为弗雷明汉心脏病研究(Framingham Heart Study)的一部分,马萨诸塞州弗雷明汉(Framingham,MA)的二尖瓣脱垂患病率估计为2.4%。典型二尖瓣脱垂(MVP)和非典型二尖瓣脱垂几乎均分,并且没有显著的年龄或性别差异。根据在美国收集的数据,二尖瓣脱垂在尸检中普遍为7%。二尖瓣反流的发病率随年龄增加,并且是在心梗(MI)后人群和COPD患者中频发的临床上显著的医学问题。
已经证明,基于导管的经皮带瓣膜支架(catheter basedpercutaneous valved stent)的使用在置换人体肺瓣膜和主动脉瓣中是可行的。肺瓣膜是最先通过经皮方法置换成功的一种,并且取得最大发展。目前在临床试验中、并且更多地在研发中存在两种主动脉瓣产品。虽然对于经皮置换二尖瓣存在浓厚的兴趣(尤其因为患有心肌梗塞的许多患者不适合通过外科手术置换瓣膜),但二尖瓣的解剖结构和功能阻止了现有主动脉/肺技术的直接应用。然而,最近已经有朝向开发专注于下列方面的二尖瓣置换物努力:经心尖带瓣膜支架植入(参见Lozonschi L等人的“Transapical mitral valved stent implantation”(经心尖带二尖瓣瓣膜的支架的植入),Ann Thorac Surg.2008Sep;86(3):745-8);“双凸面”带瓣膜支架设计(参见Ma L等人的“Double-crownedvalved stents for off-pump mitral valve replacement”(用于非体外循环的二尖瓣置换的双凸面带瓣膜支架),Eur J Cardiothorac Surg.2005Aug;28(2):194-8);和由被圆柱体分开的两个圆盘组成的带瓣膜支架设计(参见Boudjemline Y等人的“Steps toward the percutaneousreplacement of atrioventricular valves an experimental study”(心脏房室瓣膜经皮置换实验性研究的步骤),J Am Coll Cardiol.2005Jul 19;46(2):360-5)。
目前已经发现,成功的经皮放置瓣膜需要四种主要的设计特性。瓣膜必须与可接受的递送模式相容,瓣膜必须锚固到瓣膜环并密封锚固点以防止渗漏,并且瓣膜在就位时必须正常工作。在公开地可用的设计中,目前不存在具有被认为是成功植入、稳定性和长期工作所需特性的经皮带瓣膜支架。具有这样的特性的设计,对于有瓣膜置换新需求的患者以及在目前配备常规瓣膜设计的患者中都具有深远的医学意义。
发明内容
在一个方面,提供了一种瓣膜假体,其包括:自膨胀支架,该自膨胀支架包括外表面、内表面、中间区域、上锚固凸缘和下锚固凸缘,其中支架具有未膨胀状态和膨胀状态;套囊,该套囊包括至少部分地周向围绕支架的外表面设置的吸收材料,其中吸收材料通过吸收流体膨胀以使假体基本上附着在植入部位处,并且其中附着被延迟足够时间以允许将假体定位在植入部位;和瓣膜,该瓣膜包括固定地附接到支架的内表面的至少两个小叶。
在另一方面,公开了用于置换对象内的破损或病变瓣膜的方法,该方法包括:将二尖瓣假体递送至对象的植入部位,该二尖瓣假体包括:自膨胀支架,该自膨胀支架包括外表面、内表面、中间区域、上锚固凸缘和下锚固凸缘,其中支架具有未膨胀状态和膨胀状态;套囊,该套囊包括至少部分地周向围绕支架的外表面设置的吸收材料;和瓣膜,该瓣膜包括固定地附接到支架的内表面的至少两个小叶;以及通过吸收流体使套囊膨胀以将假体基本上附着在植入部位处,其中附着被延迟足够时间以允许将假体定位在植入部位。
还公开了一种瓣膜假体,其包括:至少部分地自膨胀的支架,该支架包括限定外表面和内表面的线骨架以及插入有中间区域的上锚固凸缘和下锚固凸缘,该支架具有未膨胀状态和膨胀状态,并且下锚固凸缘具有至少一个大于上锚固凸缘的对应尺寸的几何尺寸;和瓣膜,该瓣膜包括固定地附接到支架内表面的至少一个小叶。
本公开也包括用于置换对象内的破损或病变瓣膜的方法,该方法包括:将瓣膜假体递送至对象的植入部位,该瓣膜假体包括:至少部分地自膨胀的支架,该支架包括限定外表面和内表面的线骨架以及插入有中间区域的上锚固凸缘和下锚固凸缘,该支架具有未膨胀状态和膨胀状态,并且下锚固凸缘具有大于上锚固凸缘的对应尺寸的至少一个几何尺寸;和瓣膜,该瓣膜包括固定地附接到支架内表面的至少一个小叶;以及使支架膨胀以将假体基本上附着在植入部位处。
在另一方面,提供了用于将包括至少部分地自膨胀的支架的瓣膜假体递送到植入部位的系统,其包括导管,该导管包括:远端和近端,导丝管腔,该导丝管腔允许导管沿导丝转移;操纵管腔,该操纵管腔用于容纳用于操纵该导管的张力线缆;和停放部(dock),该停放部在远端处且其上可以装载支架。本系统还包括:可收回的压缩套管,该可收回的压缩套管用于在支架装载到停放部上的同时压缩支架的至少一部分;引导尖端(leading tip),该引导尖端定位在停放部的远侧,用于在递送期间引导导管;和操纵机构,该操纵机构与张力线缆可操作地关联以用于在至少一个定向平面内偏转引导尖端。
在又一方面,公开了一种套件,该套件包括包括至少部分地自膨胀的支架到植入部位的系统,该系统包括:导管,该导管包括远端和近端,允许导管沿导丝转移的导丝管腔,用于容纳用于操纵该导管的张力线缆(tension cable)的操纵管腔,和在远端处且其上可以装载支架的停放部;可收回的压缩套管,该可收回的压缩套管用于在支架装载到停放部上的同时压缩支架的至少一部分;引导尖端,该引导尖端定位在停放部的远侧,用于在递送期间引导导管;以及,操纵机构,该操纵机构与张力线缆可操作地关联以用于在至少一个定向平面内偏转引导尖端;和至少一个瓣膜假体,该至少一个瓣膜假体包括:至少部分地自膨胀的支架,该支架包括限定外表面和内表面的线骨架以及插入有中间区域的上锚固凸缘和下锚固凸缘,该支架具有未膨胀状态和膨胀状态,并且下锚固凸缘具有至少一个大于上锚固凸缘的对应尺寸的几何尺寸;和瓣膜,该瓣膜包括固定地附接到支架内表面的至少一个小叶。
本公开还涉及用于将包括至少部分地自膨胀的支架的瓣膜假体递送至植入部位的方法,该方法包括:(i)提供一种系统,该系统包括:导管,该导管包括远端和近端,允许导管沿导丝转移的导丝管腔,用于容纳用于操纵该导管的张力线缆的操纵管腔,和在远端处且其上面可装载支架的停放部;可收回的压缩套管,该可收回的压缩套管用于在支架装载到停放部上的同时压缩支架的至少一部分;引导尖端,该引导尖端定位在停放部的远侧,用于在递送期间引导导管;和操纵机构,该操纵机构与张力线缆可操作地关联以用于在至少一个定向平面内偏转引导尖端;(ii)将瓣膜假体装载到停放部上;(iii)将导丝递送到植入部位;(iv)将导管在导丝上转移,以使得装载的瓣膜假体定位在植入部位处;(v)收回可收回的压缩套管以允许支架在植入部位处膨胀并从导管脱离;以及(vi)从植入部位移除导管和导丝。
附图说明
当结合附图考虑时,根据以下详细描述,本发明的前述和其它方面将变得显而易见。为了举例说明本发明的目的,附图中示出了目前优选的实施例,但应当理解,本发明不局限于所公开的具体方面。附图未必按比例绘制。在附图中:
图1示出了根据本公开的示例性假体的三个不同的视图。
图2描述了简化版本的示例性假体,该假体以包括凸起的上凸缘和下凸缘为特征。
图3图示了根据用于经心房递送根据本公开的假体的示例性程序的步骤。
图4描述了根据用于静脉经皮递送根据本公开的假体的示例性程序的步骤。
图5提供了用于在根据本发明的假体中使用的示例性支架的视图。
图6提供了如何表征线编织物(wire weave)密度、以及线编织物密度和线厚度如何分别影响本发明的支架的各种参数的示例性实例。
图7描述了根据本发明的示例性套件的构件。
图8-9图示了可收回的压缩套管如何可以用来在递送到植入部位期间抵靠导管的停放部压缩支架并且允许支架在植入部位处膨胀和从导管脱离的实例。
图10图示了图9所述过程将如何导致在原位(in situ)植入包括线骨架的瓣膜假体。
具体实施方式
通过结合构成本发明一部分的附图和实例参照以下详细描述,可以更容易地理解本发明。应当理解,这些发明不局限于本文所描述和/或示出的具体产品、方法、条件或参数,并且本文所用术语仅为了以举例方式描述特定实施例的目的,而并非意图限制发明要求保护的范围。
在本发明中,单数形式“个”、“种”和“该”包括复数引用,并且提及的特定数值至少包括该特定值,除非上下文清楚地另外指示。因此,例如,提及的“材料”是提及一种或多种这样的材料和本领域的技术人员已知的这些材料的等价物,等等。当数值通过使用先行的“约”来表示近似值时,应当理解,特定值形成另一个实施例。如本文所使用的,“约X”(其中X为数值)优选指所列举值的±10%,包括端值。例如,短语“约8”优选指7.2至8.8,包括端值;作为另一个实例,短语“约8”优选(但未必总是)指7.2至8.8,包括端值。当存在时,所有范围是包括端值和可组合的。例如,当列举“1至5”的范围时,所列举的范围应理解为包括范围“1至4”、“1至3”、“1-2”、“1-2和4-5”、“1-3和5”、“2-5”,等等。此外,当肯定地提供一系列替换值时,这种系列可以解释为表示可例如通过权利要求书中的否定限定而排除该替换值中的任何一个。例如,当陈述范围“1至5”时,所陈述的范围可以理解是包括否定地排除1、2、3、4或5中任何一个的情况;因此,所列举的“1至5”可理解为“1和3-5,但没有2”,或者简单地理解为“其中不包括2”。
除非另外指定,相对于本发明的一个方面(例如,分别为假体、系统、套件和方法)所公开的任何构件、元件、属性或步骤可适用于本文所公开的本发明的任何其它方面(分别为任何其它假体、系统、套件和方法)。
本文中引用或描述的每个专利、专利申请和公开以引用方式全文并入本文中。
此前已经证明,基于导管的经皮带瓣膜支架的使用对于置换人体肺瓣膜和人体主动脉瓣是可行的。肺瓣膜置换是最先使用经皮方法成功进行的,并且是目前取得最大发展的。虽然对于经皮置换二尖瓣存在浓厚的兴趣,但二尖瓣的解剖结构和功能阻止了目前适用于肺瓣膜和主动脉瓣置换的技术的直接应用。目前存在大量患者由于在心肌梗塞之后左心室功能障碍而患有二尖瓣关闭不全症。然而,这些患者中许多人被认为太虚弱而不能接受外科手术二尖瓣置换或修复。用于可靠置换二尖瓣的基于导管技术的发展将允许这类患者被包括到挽救生命的二尖瓣置换治疗的合格手术对象中。目前已经发现,成功经皮递送的瓣膜应具有四个主要设计特点:它必须可折叠或可摺叠以用于递送;它必须锚固到瓣膜环;它必须密封植入点以防止渗漏;而且瓣膜本身必须在原位时正常工作。本公开的瓣膜置换物是可折叠的以用于基于导管展开到植入部位,包括用于可靠和持久的精确植入的高度有效的锚固机构,采用防止瓣周漏的独特的密封机构,并且结合了合适的小叶系统以便在原位时可靠工作。
一般实施例I
以下公开内容涉及本公开的第一一般实施例,该实施例涉及本发明的瓣膜假体和用于置换破损或病变瓣膜的方法。
在一个方面,提供了一种瓣膜假体,其包括:自膨胀支架,该自膨胀支架包括外表面、内表面、中间区域、上锚固凸缘和下锚固凸缘,其中支架具有未膨胀状态和膨胀状态;套囊,该套囊包括至少部分地周向设置在支架的外表面周围的吸收材料,其中吸收材料通过吸收流体膨胀以使假体基本上附着在植入部位处,并且其中锚固被延迟足够的时间,以允许将假体定位在植入部位;和瓣膜,该瓣膜包括固定地附接到支架的内表面的至少两个小叶。在优选实施例中,假体为二尖瓣假体。
支架可以是自膨胀的,或者可被配置成可例如通过球囊而受迫膨胀。在优选实施例中,支架为自膨胀的。自膨胀支架优选地包括显示大弹性应变的形状记忆或“超弹性”材料。示例性的材料为镍钛诺(nitinol),一种镍钛合金。具有类似特性的任何其它材料也可用于自膨胀支架构造,并且更一般地,还可使用合适的生物相容性材料来形成支架,而不论是其否为自膨胀的。示例性材料除别的之外包括不锈钢、钴/铬合金、钴/铬/镍合金、镍/铬合金、铂、铂/铱合金。支架可包括一种或多种其它材料,这些材料本身不是自膨胀的,但不抑制或以其它方式妨碍支架自膨胀的能力。例如,可以包括任何生物相容性材料以将任何其它所需的结构特征添加到支架。示例性生物相容性材料除别的之外包括不锈钢、钽、铂合金、铌合金和钴合金。附加地或替代地,一种或多种生物可吸收(bioabsorbable)材料可用于形成支架。支架的一部分或全部可涂布以含药的复合物,以使得支架能够在原位洗脱药物。支架优选地包括骨架,除了如上所述的任何其它相容材料之外,该骨架由允许支架自膨胀的材料形成。结构骨架可使用诸如卷绕、纺织、编织或针织的常规技术由线形成。线可以在一些或所有交叉点处被焊接或以其它方式接合,从而形成非铰接的结构。支架的形成是本领域的技术人员容易理解的,并且本公开旨在包含任何合适的技术,包括任何功能上可接受的支架几何形状。
支架包括具有各种尺寸的中间区域,这些尺寸包括未膨胀长度、未膨胀外周长、膨胀长度和膨胀外周长。未膨胀长度优选地基本上等于或大于膨胀长度,并且膨胀外周长大于未膨胀外周长。未膨胀外周长可以是使得未膨胀的支架能够穿过导管内部转移的任意大小。例如,未膨胀外周长可具有使得未膨胀的支架能够沿具有约1mm至约8mm的直径的导管的内部转移的尺寸。膨胀长度优选地基本上对应于与手术对象的心脏的左心房和左心室之间的瓣环长度大致相等或更长的长度。优选地,支架的膨胀长度比左心房和左心室之间的瓣环的长度更长。由于二尖瓣环的长度可能因手术对象而异,特定手术对象可与具有适合该手术对象的二尖瓣环的膨胀长度的支架匹配。通常,膨胀长度可以为约0.5cm至约5cm、约1cm至约4cm、约1.5cm至约3.5cm、或约2cm至约3cm。膨胀外周长可以基本上等于或小于手术对象的二尖瓣环的内周长。在优选实施例中,膨胀外周长小于手术对象的二尖瓣环的内周长,并且被加工成合适的大小,使得具有设置为至少部分地周向围绕支架外表面的套囊的支架能定位在二尖瓣环内。如本文更充分地讨论的,套囊具有未膨胀形式和膨胀形式,并且支架优选地被加工成合适的大小,使得具有设置为至少部分地周向围绕支架外表面的、基本上未膨胀的套囊的支架能定位在二尖瓣内。通常,支架的膨胀外周长可以为约2cm至约5cm、约2.5cm至约4cm、或约2.5cm至约3.5cm。
根据本公开的假体可被配置为经心房、经心尖或经皮递送。因此,根据需要,假体的尺寸、用于支架、套囊或其它构件的材料的类型、支架上药物涂层的存在与否、所包括的凸缘的类型、支架的编织图案、流体吸收的延迟长度、以及其它因素都可被操纵,以便将假体配置用于经心房、经心尖或经皮递送。本领域的技术人员将容易理解分别通过经心房、经心尖或经皮途径递送带支架装置所需的特性,并且可以相应地从本文所述大特性范围中选择。
除了中间区域之外,自膨胀支架包括上凸缘和下凸缘。在最简单的实施例中,凸缘中的一个或两者包括中间区域的纵向末端或边缘。例如,凸缘中的一个或两者可以是在中间区域的纵向末端处部分地或完全地围绕支架周围延伸的材料的“唇缘(lip)”。在其它实施例中,凸缘中的一个或两者可被配置成提供将支架基本上固定在二尖瓣环的位置处的锚固功能。具体地,上凸缘或下凸缘中的一个可被配置成锚固到二尖瓣环的心室侧,上凸缘或下凸缘中的另一个可被配置成锚固到二尖瓣环的心房侧。上凸缘、下凸缘或两者可包括多个突出的支架元件。例如,如果支架由线构成,则凸缘可包括多个单独的线或成捆的线组。多条线可包括规则或不规则间隔的阵列,并且线本身可提供为单股线、或两股线、三股线、四股线或更多股线的成组或成束的集。每个凸缘可具有对应于支架的未膨胀状态的配置,以及对应于支架的膨胀状态的配置。当凸缘中的一个或两者包括多个独立的支架元件时,元件可以在支架处于未膨胀状态时大致伸直,并且可以在支架处于未膨胀状态时大致卷绕。在其它实施例中,凸缘可包括限定翼片、叶片或其它凸起的一个或多个元件,翼片、叶片或其它凸起可定向为当支架处于未膨胀状态时大致平行于支架的长轴,并且定向为当支架处于膨胀状态时相对于支架的长轴成基本倾斜的角度(例如,约30°、约45°、约60°、约75°或约90°)。图2提供了这种类型的示例性实施例的简化视图,其具有翼片7,当支架4处于未膨胀状态(图2A)时,该翼片7定向为大致平行于长轴Y;当支架4处于膨胀状态时,该翼片7定向为相对于长轴Y成基本倾斜的角度。可以出于本发明的目的构思任何凸缘设计,而不论其是否由一体结构或多个分立元件组成。
本发明的二尖瓣假体也包括套囊,该套囊包括至少部分地周向围绕支架的外表面设置的吸收材料。术语“套囊(cuff)”旨在包含:在支架的外表面周围形成完整圆周的吸收材料的连续环;涉及吸收材料的邻接部分的任何其它构型,诸如围绕支架的外表面形成螺旋的带;设置在支架的外表面上的吸收材料的一个、两个、三个或更多个不同的小片(patch)或带(或任何其它形状或配置);或者,材料的一个或多个邻接部分和不同的小片、带等的任何组合。在优选的实施例中,套囊包括在支架的外表面周围形成完整圆周的吸收材料的连续环。
套囊包括通过吸收流体而膨胀以使假体基本上附着在植入部位处的吸收材料。当所公开的假体用于置换破损或无功能的二尖瓣时,植入部位为二尖瓣环。如本文所用,“附着(adhere)”可表示将假体基本上固定或锚固在植入部位处、在套囊和二尖瓣环之间产生基本上不可渗透流体的密封、或两者。目前已经发现,套囊可形成这样的密封,该密封可靠地防止在心房和心室之间的瓣周漏,使得当假体就位时,在心房和心室之间穿过的唯一流体是置换瓣膜本身的活动允许通过的流体。
假体的附着被延迟足够的时间,以允许将假体定位在植入部位处。例如,由于用于将假体经由导管定位在植入部位处的程序可能持续40分钟,由流体吸收导致的达到足以使假体附着到植入部位的套囊膨胀可以被延迟,直到该时间期满。因此,套囊包括在流体吸收中产生延迟、或提供足够缓慢的流体吸收速率的一种或多种材料、构件或两者,使得套囊在所需延迟期期满之前不膨胀到使假体附着到植入部位所需的程度。延迟期可以从假体暴露于流体(例如血液)的时间点开始测量。延迟期可以为约1分钟、约2分钟、约5分钟、约7分钟、约10分钟、约15分钟、约20分钟、约30分钟、约45分钟、约1小时、约75分钟、约90分钟、或约2小时。被选择用于假体的套囊的类型可以取决于将假体递送到植入部位的程序的难度。
套囊的吸收材料本身可以以足够缓慢的速率吸收流体,以延迟假体在植入部位处的附着。在其它实施例中,套囊的吸收材料可以以可变的吸收速率为特征,使得吸收速率在开始的时间段低,但随时间推移或在一个时间段之后增加。例如,吸收材料可具有在假体暴露于流体之后的第一时间段内每分钟约0μL至约20μL的流体吸收速率,以及在第一时间段之后每分钟约10至约200μL的流体吸收速率。吸收速率增加之前的时间段可以为约10分钟、约15分钟、约20分钟、约30分钟、约45分钟、约1小时、约90分钟、约2小时、约180分钟、或约2小时。在其它实施例中,套囊的吸收材料吸收流体的能力被延迟。例如,套囊的吸收材料可以完全或部分地覆盖有影响吸收材料吸收流体的能力的材料或被包含在这种材料内。吸收材料可以完全或部分地覆盖有例如膜或织物的覆盖材料或包含在该覆盖材料内,该覆盖材料永久性地不可渗透流体,但是可移除的并在所需延迟期期满时被移除;覆盖材料的移除可以在假体原位处在植入部位处时例如通过使用基于导管的移除工具夹持和移除覆盖材料来进行。可使用基本上不可渗透流体(诸如,水、血液等)并且是生物相容的任何材料来形成覆盖材料。非限制性实例包括聚氨酯、聚乙烯、聚二甲基硅氧烷、有机硅(silicone)、橡胶和聚氯乙烯。在其它实施例中,吸收材料可以完全或部分地覆盖有例如膜或织物的覆盖材料或包含在该覆盖材料内,该覆盖材料是临时不可渗透流体的,但在所需的一段延迟期之后变得可渗透流体。例如,覆盖材料可以随时间推移可降解,或者可包括响应于温度、pH或植入部位存在的一些其它环境诱因而降解或改变的材料。在其它实施例中,吸收材料可以完全或部分地覆盖有覆盖材料或包含在该覆盖材料内,该覆盖材料可渗透流体,但流体迁移穿过这类覆盖材料和/或覆盖材料对流体的饱和足够缓慢,以在吸收材料吸收足够量的流体而附着到植入部位之前提供延迟。由覆盖材料提供的延迟期可以为例如在假体暴露于流体之后约5分钟至约3小时、约10分钟至约3小时、约20分钟至约2小时、约30分钟至约2小时、约45分钟至约90分钟、或约1小时。在另一些实施例中,因为吸收材料自身,或者与吸收材料混合或以其它方式大致散布在吸收材料中或与吸收材料一体化的材料响应于植入部位存在的一个或多个条件(如温度、pH等)而改变,套囊的吸收材料吸收的能力因此被延迟。例如,吸收材料可包括聚合物或与聚合物一起提供,该聚合物响应于暴露于流体或植入部位存在的某些其它环境诱因而随时间推移改变形状,并且这样的形状改变允许引发或加速吸收材料对流体的吸收。
可用于形成吸收材料的示例性物质包括任何交联水凝胶复合物。交联水凝胶复合物可基于共价交联、物理/离子交联,或这两者。非限制性实例包括聚(丙烯酸)、聚(乙二醇)、聚(氧化乙烯)(poly(ethyleneoxide))、聚氧丙烯(poly(propylene oxide))、聚(乙烯醇)、聚乙烯吡咯烷酮、聚(甲基丙烯酸羟乙酯)、聚(氨基酸)、葡聚糖(Dextran)、多糖和蛋白质。可用于形成吸收材料的物质的另外的实例包括聚丙烯酸钠、聚丙烯酰胺共聚物、乙烯-马来酸酐共聚物、羧甲基纤维素聚乙烯醇共聚物、聚氧化乙烯、以及聚丙烯腈。
也可以使用任何“超吸收材料”,例如超吸收聚合物。如本文所用,“超吸收”材料是以体积溶胀率(Qv,溶胀体积除以“干燥”体积或在吸收任何流体之前的体积)从1至约5-1000增加为特征的材料。上面列出了超吸收材料的一些实例。本领域的普通技术人员可容易地识别可以以“超吸收”为特征的其它合适的材料,并且可以使用任何这样的材料。优选地,套囊被配置为使得膨胀主要在单个方向上发生。例如,膨胀可以主要在相对于支架的外表面大致垂直的方向上。如果套囊包括在支架的外表面周围形成完整圆周的吸收材料的连续环,吸收材料的膨胀方向可以表征为径向的。由于处于其膨胀状态的支架将足够刚性,以抵御在朝向支架表面的方向上因吸收材料的任何径向膨胀导致的压缩,因此吸收材料的径向膨胀将是在远离支架表面,即朝向二尖瓣环的内表面的方向上基本上单向的。如上所述,吸收材料的膨胀在套囊和二尖瓣环之间产生防止瓣周漏的密封。
根据本公开的假体可以进一步包括设置在上凸缘、下凸缘或两者处的网状物(webbing)。网状物可包括吸收材料。网状物的存在可以有助于将假体附着(即固定、锚固和/或密封)在植入部位处。因此,网状物可通过吸收流体而膨胀,并且结果的附着可被延迟足够的时间,以允许将假体定位在植入部位处。当上凸缘和下凸缘中的一个或两者包括诸如如上所述的独立支架元件的分立元件时,网状物的一部分可设置在凸缘中的任意一个或两者的至少一对独立的支架元件之间。优选地,网状物设置在上锚固凸缘的多对独立的支架元件之间和下锚固凸缘的多对独立的支架元件之间。当上凸缘和下凸缘中的一个或两者包括翼片、叶片或其它凸起时,凸起中的每一个的部分或全部可配备有网状物。上文关于套囊描述的材料或构件的特性中的每一个可以存在于网状物中。因此,网状物可包括在流体吸收中产生延迟或提供足够缓慢的流体吸收速率的一种或多种材料、构件或两者,使得网状物在所需延迟期期满之前不膨胀到使假体附着到植入部位所需的程度。
本发明的假体也包括瓣膜,该瓣膜包括固定地附接到支架的内表面的至少一个小叶。一个或多个小叶与支架内表面的附接无需是直接的;例如,瓣膜支撑环可固定地附接到支架的内表面,并且(一个或多个)瓣膜可固定地附接到瓣膜支撑环。瓣膜可包括一个小叶、两个小叶或三个小叶。小叶优选地从诸如哺乳动物心包膜的生物来源获得。例如,小叶可由牛、马、绵羊、山羊或猪心包膜制成。在其它实施例中,小叶可从动物瓣膜,优选从哺乳动物瓣膜获得。非限制性实例包括牛颈静脉瓣、猪肺动脉瓣和猪主动脉瓣。本领域的普通技术人员将会理解如何为所需目的选择合适的瓣膜。
图1提供了示例性假体2的三个视图。假体2包括具有上锚固凸缘6和下锚固凸缘8的支架4。如图1A和1C分别示出的,支架4具有膨胀状态和未膨胀状态。图1B提供了示例性假体2的顶部透视图。上凸缘6和下凸缘8包括独立的支架元件,这些支架元件在支架4在膨胀状态(图1A、1B)时为大致卷绕的,并且在支架4在未膨胀状态(图1C)时为大致伸直的。当支架4被压缩和伸长时,支架元件也伸长和伸直以允许假体2折叠并适合通过定位导管。假体2也包括围绕支架4的外表面周向设置的套囊10a、10b。如图1C所示,在假体2定位在植入部位之前,套囊10a将不会通过吸收流体而膨胀。然而,如图1A和1B所描述的,一旦假体2暴露于流体,并且经过用于将假体2定位在植入部位处所需的时间,套囊10b将吸收流体并在大致远离支架4的表面的方向上径向膨胀,以将假体2基本上附着在植入部位处。假体2也包括固定地附接到支架4的内表面的小叶12。图1描述的假体包括三个小叶,这些小叶可在图1B中最清楚地弄清。
在另一方面,公开了用于置换手术对象体内的破损或病变二尖瓣的方法,该方法包括:将二尖瓣假体递送至手术对象的植入部位,该二尖瓣假体包括:自膨胀支架,该自膨胀支架包括外表面、内表面、中间区域、上锚固凸缘和下锚固凸缘,其中支架具有未膨胀状态和膨胀状态;套囊,该套囊包括至少部分地周向围绕支架的外表面设置的吸收材料;和瓣膜,该瓣膜包括固定地附接到支架的内表面的至少两个小叶;并且通过吸收流体使套囊膨胀,以将假体基本上附着在植入部位处,其中附着被延迟足够的时间,以允许将假体定位在植入部位。
根据本发明的方法,可以使用上文对于本发明的二尖瓣假体描述的属性、构件、材料等的每一个。
向植入部位递送二尖瓣假体可经心房、经心尖或经皮实现。紧随假体递送之后可以是一个或多个定位步骤(即,定位和在需要时再定位),由此可调整假体的位置以相对于二尖瓣环最佳地定位。
对于经心房递送,可进行如以下所述和如图3所示的示例性程序。通过肋间空间进行小的(2-3cm)开胸手术(图3A)。展开房间平面。如图3B所示,收缩右心房14,并将荷包缝合(purse strings suture)置入左心房16。右肺静脉示出为标记18。然后,可操纵的导引器导管20通过荷包(图3C)置入左心房。将导管推进通过二尖瓣环(图3D)。其位置可通过超声心动图引导和确认。将假体2导引通过导管20。心室凸缘首先膨胀,然后锚固到瓣环和瓣下结构(小叶、腱索、左心室壁)的心室侧(图3E)。同样在超声心动图引导(未示出)下递送支架的剩余部分和心房凸缘。心房凸缘膨胀并锚固到瓣环和左心房。密封套囊在随后的60分钟期间内保持松弛,以允许通过超声心动图充分记录瓣膜位置和功能。在就位1小时之后,套囊10b完全膨胀以使装置抵靠天然二尖瓣环密封(图3F)。
对于经心尖递送,可进行如下所述示例性程序。进行小的左侧开胸手术,大小类似于经心房递送程序期间使用的大小。将荷包缝合置入左心室顶端。然后,将可操纵的导管导引器通过荷包置入左心室。导引器导管20在超声心动图的引导下被引导通过二尖瓣环。对于该方法,装置可以设计成使得心房凸缘首先展开和定位。借助于套囊和可选的网状物的密封技术可类似于上文关于示例性经心房递送过程所描述的情况。
经皮递送可以是静脉式或动脉式的。当经皮递送为预期程序时,假体被相应地配置成例如可充分折叠,以便经由外周静脉或动脉通路放置。
静脉经皮递送可以如下所述和如图4所示方式进行。通过本领域的技术人员将容易理解的标准技术实现股静脉的进入。然后,将可操纵的导管20引入静脉系统并利用荧光镜引导引导至右心房(图4A)。一旦位于右心房内,则使用标准技术将导管横穿房间隔膜到达左心房(图4B)。然后,如在经心房方法中所述,在超声心动图的引导下展开假体2。
对于动脉经皮递送,可以进行如下示例性程序。通过标准技术实现进入股动脉。然后,将可操纵的导管引入动脉系统并使用荧光镜引导引导至主动脉根和左心室内。一旦位于左心室内,如上文结合经心尖方法所述展开装置。
一般实施例II
下面的描述涉及本公开的第二一般实施例,该实施例涉及本发明的瓣膜假体;用于置换破损或病变的瓣膜的方法;用于递送瓣膜假体的系统;套件;以及用于递送瓣膜假体的方法。
在一个方面,提供了瓣膜假体,其包括:至少部分地自膨胀的支架,该支架包括限定外表面和内表面的线骨架以及插入有中间区域的上和下锚固凸缘,该支架具有未膨胀状态和膨胀状态,并且下锚固凸缘具有至少一个大于上锚固凸缘的对应尺寸的几何尺寸;和瓣膜,该瓣膜包括固定地附接到支架内表面的至少一个小叶。
支架可被配置成至少部分地自膨胀的。例如,支架可以是能够自膨胀至其最大膨胀状态或膨胀至至少一定程度的,支架可被配置成使得它必须例如通过球囊而受迫膨胀。例如,支架可被配置成使得在不借助于除支架自身之外的任何机构的情况下发生其必要膨胀的100%,或者可被配置成使得在不借助于除支架自身之外的任何机构的情况下发生必要膨胀的99%或以下,但大于0%。在某些实施例中,支架为完全自膨胀的。
至少部分地自膨胀的支架可包括显示具有大弹性应变的形状记忆或“超弹性”材料。示例性的材料为镍钛诺,一种镍钛合金。在一个实施例中,支架包括镍钛诺线编织物。具有类似特性的任何其它材料也可用于构造自膨胀支架,并且更一般地,还可使用合适的生物相容性材料来形成支架,而不论是其否为自膨胀的。示例性材料除别的之外包括不锈钢、钴/铬合金、钴/铬/镍合金、镍/铬合金、铂、铂/铱合金。支架可包括一种或多种其它材料,这些材料本身不是自膨胀的,但不抑制或以其它方式妨碍支架自膨胀的能力。例如,可包括任何生物相容性材料以将任何其它所需的结构特征添加到支架。示例性生物相容性材料除别的之外包括不锈钢、钽、铂合金、铌合金和钴合金。附加地或替代地,一种或多种生物可吸收材料可用于形成支架。支架的一部分或全部可涂布以含药的复合物,以使得支架能够在原位洗脱药物。
支架包括线骨架,除了如上所述的任何其它相容材料之外,该骨架由允许支架至少部分地自膨胀的材料形成。骨架可使用诸如卷绕、机织、编织或针织的常规技术由线形成。在一个优选的实施例中,支架包括线编织物。在某些实施例中,线骨架可在一些或所有交叉点处被焊接或以其它方式接合,从而形成至少在一些地方不铰接的结构。线骨架的形成是本领域的技术人员容易理解的,并且本公开旨在包含任何合适的技术,包括任何功能上可接受的骨架几何形状。
本发明人已经发现,对于支架将多好地锚固到植入部位以及在支架和植入部位之间例如在支架和瓣膜环的内壁之间形成的密封的质量这两者,由支架施加的径向力的量可以是重要决定因素。依照本发明,已经发现,至少三个因素有助于支架所施加的向外径向力。首先,用来形成骨架的线的厚度影响支架所施加的径向力的程度。根据本公开,用来形成骨架的线的厚度可以为约0.005英寸至约0.030英寸。例如,线可具有约0.010英寸、约0.015英寸、约0.020英寸、约0.025英寸、或约0.030英寸的厚度。另外,已经发现,线骨架的密度影响由支架施加的径向力。可用来描述线骨架的密度的参数在下文中更全面地限定。第三,相对于支架将植入的瓣环的主要尺寸的直径,支架在膨胀状态下的直径影响由支架施加的径向力。瓣环可以是大致圆形的,但在许多情况下为大致椭圆或鞍形的,使得瓣环将具有主要尺寸和次要尺寸(直径)。在圆形瓣环的情况中,“主要尺寸”将仅仅是瓣环的直径。目前已经发现,当支架在其膨胀状态下的直径为瓣环主要尺寸的约95%至约125%时,支架施加有益量的径向力。例如,具有为瓣环主要尺寸的约95%、约100%、约105%、约110%、约115%、约120%、或约125%的直径的膨胀的支架将有利于施加有益量的径向力。确切地说,这可以意味着膨胀的支架可具有约25至约50mm的直径。
支架包括具有各种尺寸的中间区域,这些尺寸包括未膨胀长度、未膨胀直径、膨胀长度和膨胀直径。未膨胀长度优选地基本上等于或大于膨胀长度,并且膨胀直径大于未膨胀直径。未膨胀直径可以是使得未膨胀支架能够在递送期间通过手术对象脉管转移的任何尺寸。例如,未膨胀直径可具有使得未膨胀支架能够适合导管(或相关构件,诸如本文更充分描述的压缩套管)的内部,该导管具有约1mm至约13mm、优选地约1mm至约8mm的直径。膨胀长度可大致对应于比在手术对象心脏的两个室之间、或者在一个室和相关动脉,诸如左心室和主动脉之间的环长度大致相等或更长的长度。优选地,支架的膨胀长度比这样的环的长度更长。由于诸如二尖瓣环的瓣环的长度可能因手术对象而异,特定手术对象可与具有适合该手术对象的瓣环的膨胀长度的支架匹配。通常,膨胀长度可以为约0.5cm至约5cm、约1cm至约4cm、约1.5cm至约3.5cm、或约2cm至约3cm。如上所述,膨胀直径可以为手术对象瓣环的主要尺寸的约95%至约125%。即使在本文中更充分地讨论的这样的实施例中:其中本发明的假体进一步包括套囊,该套囊包括至少部分地周向围绕支架外表面设置的吸收材料,膨胀直径也优选地落入上文列举的相对于手术对象瓣环的主要尺寸的范围内。
根据本公开的假体可被配置为经心房、经心尖或经皮递送。因此,根据需要,假体的尺寸、用于支架、套囊或其它构件的材料的类型、支架上药物涂层的存在与否、所包括的凸缘的类型、支架的骨架图案(如编织)、流体吸收的延迟长度、以及其它因素都可被操纵,以便将假体配置用于经心房、经心尖或经皮递送。本领域的技术人员将容易理解分别通过经心房、经心尖或经皮途径递送带支架装置所需的特性,并且可以相应地从本文所述大特性范围中选择。
除了中间区域之外,自膨胀支架包括上凸缘和下凸缘。在最简单的实施例中,凸缘中的一个或两者包括中间区域的纵向末端或边缘。例如,凸缘中的一个或两者可以是在中间区域的纵向末端处部分地或完全地围绕支架周围延伸的支架材料的“唇缘”。在其它实施例中,凸缘中的一个或两者可被配置成提供将支架基本上固定在瓣环的位置处的锚固功能。例如,下凸缘可被配置成锚固到二尖瓣环的心室侧,并且上凸缘可被配置成锚固到二尖瓣环的心房侧。上凸缘和下凸缘的相应配置可以但不需要是相同的,因此下凸缘可采用不同于上凸缘的配置。上凸缘、下凸缘或两者可包括多个突出的支架元件。可以出于本发明的目的构思任何凸缘设计,而不论其是否由一体结构或多个分立元件组成。例如,凸缘可包括多个突出的支架元件,这些元件分别包括单独的线或成束的线组。多条线可包括规则或不规则间隔的阵列,并且线本身可提供为单股线、或两股、三股、四股或更多股线的成组或成束的集。在其它实施例中,凸缘可包括多个线环。线环可与支架的线骨架一体化。例如,支架可包括限定(除了支架的其它元件之外)包括多个线环的凸缘的线编织物。线环可包括规则或不规则间隔的阵列。
每个凸缘可具有对应于支架的未膨胀状态的配置,以及对应于支架的膨胀状态的配置。例如,当凸缘中的一个或两者包括多个独立的支架线时,元件可以在支架处于未膨胀状态时大致伸直,并且可以在支架处于未膨胀状态时大致卷绕。在其它情况下,凸缘可包括限定翼片、叶片、套环或其它凸起的一个或多个元件,翼片、叶片、套环或其它凸起可定向为当支架处于未膨胀状态时大致平行于支架的长轴,并且当支架处于膨胀状态时不同地定向。一些实施例是使得上凸缘和下凸缘各自包括多个突出的支架元件,该支架元件当支架处于未膨胀状态时各自大致伸直,并且当支架处于膨胀状态时各自朝向支架的中间区域大致向回弯曲。
目前已经发现,包括具有大于上凸缘的对应尺寸的至少一个几何尺寸的下锚固凸缘的支架能够将假体可靠地附着到植入部位。传统地,破损或病变瓣膜的置换包括移除坏死的瓣膜组织,以便为假体瓣膜装置清理出空间,并且避免对假体功能的不希望的妨碍。本发明的设计不需要移除坏死的瓣膜组织,并且实际上得益于这类组织的存在,因为该设计能够借助于下锚固凸缘而夹持植入部位处存在的组织(不论这类组织是否包括坏死的瓣膜材料),并且能够借助于上锚固凸缘而进行类似的夹持以及“封盖(capping)”。例如,当植入部位为二尖瓣环时,本发明的假体牢固地附着到植入部位,尤其归因于下锚固凸缘夹持心室侧的坏死的瓣膜组织和瓣环组织的动作,以及上锚固凸缘夹持这类组织并同样地在瓣环的心房侧上提供“盖子(cap)”的动作。
如本文所用,术语“下”和“上”仅仅是便利的术语;用于植入例如二尖瓣环的假体将被在原位定位,使得“下”锚固凸缘定向在瓣环的心室侧上,并且从而基本上“朝下”,并且由此产生使用术语“下”来表示心室侧凸缘的惯例,该凸缘具有大于上凸缘上的对应尺寸的几何尺寸。通常,由于术语“上”和“下”的使用仅仅是惯例,当在其它上下文中使用假体时,不要求“下”锚固凸缘定向为基本上或甚至部分地“朝下”。
在下锚固凸缘中与上锚固凸缘相比更大的几何尺寸可以是由相应的凸缘共享的任何尺寸。因此,该几何尺寸可以是长度、宽度、高度或任何其它参数。在一个实例中,下锚固凸缘包括多个具有相等长度的突出的支架元件,其中下锚固凸缘的突出的支架元件比形成上锚固凸缘的一系列突出的支架元件更长。当上和下锚固凸缘分别包括多个突出的支架元件时,当超过50%、超过60%、超过70%、超过75%、超过80%、超过85%、超过90%、超过95%或100%的下凸缘的突出的支架元件具有比上凸缘的突出的支架元件更大的尺寸时,下锚固凸缘可以被称为具有大于上锚固凸缘的对应尺寸的几何尺寸。
图5提供了这种类型的示例性支架21的视图,其具有上凸缘22和下凸缘24,其中每个凸缘各自包括多个突出的支架元件26。突出的支架元件26为大致伸直的,并且定向为当支架21处于未膨胀状态时大致平行于长轴Y(图5A),而当支架21处于膨胀状态时大致朝向中间区域28向回弯曲(图5B)。图5B的支架21相对于图5A的支架竖直地颠倒,即,图5B的上凸缘22出现在支架21的图的底部处,而不是在顶部位置处(如在图5A中那样)。下凸缘24的突出的支架元件26比上凸缘22的突出的支架元件26更长。当支架21处于膨胀状态时,突出的支架元件26在支架主体的方向上施加力,使得在突出的元件26和支架28的中间区域的外表面之间插入的任何材料将被捕获在这两个元件之间。因此,当包括诸如在此所述的支架的假体被递送到植入部位并从其未膨胀状态变换为膨胀状态时,在植入部位处的诸如坏死瓣膜组织的松弛组织将捕获在相应的凸缘和支架的中间区域之间。该动作显著地有助于将假体锚固到植入部位。下面的实例2公开了将根据本公开的示例性瓣膜假体从该假体已植入的部位抽出所需的力的测量。
图5B表示了示例性支架21在其膨胀状态下的各种尺寸。线a表示支架21的直径;线b指示下凸缘24的各个突出的支架元件26的长度;线c表示支架21的高度,包括上凸缘元件22和下凸缘元件24的贡献;线d指示中间区域28的高度;线e指朝向中间区域28向回弯曲的下凸缘元件24的直径;并且线f表示朝向中间区域28向回弯曲的上凸缘元件22的直径。
支架的直径在其膨胀状态下可以为例如约25至约55mm。下凸缘的各个突出的支架元件的长度可以为例如约5至约45mm。支架在其膨胀状态下的、包括上凸缘元件和下凸缘元件的贡献的高度(即,平行于支架管腔延伸的尺寸,用图5B中的线c表示)可以为例如从约15至约55mm。当支架处于其膨胀状态时,中间区域的高度单独地可以为例如约15至45mm。朝向中间区域向回弯曲的下凸缘元件的直径(如图5B的线e表示的)可以为例如约1至约8mm。朝向支架的中间区域向回弯曲的上凸缘元件的直径(如图5B的线f表示的)可以为例如约3至约12mm。
对于图5A所示的压缩的支架,支架的总长度可以为从约4至约15cm,并且压缩的支架在中间区域28处的宽度可以为约5至约15mm,优选约6至约12mm。
如上文指出的,由支架施加的向外径向力的量尤其受线骨架的密度的影响。通常,更高的密度导致施加更大的向外径向力。图6提供了如何表征线编织物密度、以及线编织物密度和线厚度如何分别影响本发明的支架21的各种参数的示例性实例。构造线编织物的过程可以以“步(step)”和“步进(step-over)”描述。
图6A图示了包括线编织物的本发明的支架21的一个实施例,该线编织物包括具有三十一个独立的突出的支架元件的上凸缘22和具有三十一个单独的突出的支架元件的下凸缘24。对于图6A所示实施例,每个独立的突出的支架元件26构成构造过程中的“步”,并且每个“步”需要5个“步进”来形成支架21的主体。
图6B图示了包括线编织物的本发明的支架21的进一步的实施例,该线编织物包括具有二十五个独立的突出的支架元件的上凸缘22和具有二十五个独立的突出的支架元件的下凸缘24。对于图6B的实施例,每个独立的突出的支架元件26构成构造过程中的“步”,并且每个“步”需要3个“步进”来形成支架21的主体。
可用来形成根据本发明的包括线编织物的支架的“步进”的数目可以为2、3、4、5、6、7、8、9或10。
图6A和6B还图示了用来形成包括线编织物的支架21的线的厚度如何影响支架的某些特性。图6A的实施例涉及具有0.025英寸的厚度的线的使用,而图6B则的实施例涉及具有0.012英寸的厚度的线的使用。在图6A的实施例的情况中,与图6B的对应元件相比,每个独立的突出的支架元件26的端部弯曲更宽,因为在前者的情况中使用了比在后者中更厚的线。如之前指出的,用来形成本发明的支架的骨架的线的厚度可以为约0.005英寸至约0.030英寸。
本发明的瓣膜假体也可包括套囊,该套囊包括至少部分地周向围绕支架的外表面设置的吸收材料。术语“套囊”旨在包含:在支架的外表面周围形成完整圆周的吸收材料的连续环;涉及吸收材料的邻接部分的任何其它构型,诸如围绕支架的外表面形成螺旋的带;设置在支架的外表面上的吸收材料的一个、两个、三个或更多个根本不同的小片或带(或任何其它形状或配置);或者,材料的一个或多个邻接部分和不同的小片、带等的任何组合。在优选的实施例中,套囊包括在支架的外表面周围形成完整圆周的吸收材料的连续环。
当存在时,套囊包括通过吸收流体而膨胀以使假体基本上附着在植入部位处的吸收材料。当所公开的假体用于置换破损或无功能的二尖瓣时,植入部位为二尖瓣环。如本文所用,“附着”可表示将假体基本上固定或锚固在植入部位处、在套囊和二尖瓣环之间产生基本上不可渗透流体的密封,或两者。目前已经发现,套囊可形成这样的密封,该密封可靠地防止在心房和心室之间的瓣周漏,使得当假体就位时,在心房和心室之间穿过的唯一流体是置换瓣膜本身的活动允许通过的流体。
在包括套囊的实施例中,假体的附着被延迟足够时间以允许将假体定位在植入部位处。例如,由于用于将假体经由导管定位在植入部位处的程序可能持续40分钟,由流体吸收使得套囊膨胀达到足以使假体附着到植入部位的程度可以被延迟,直到该时间期满。因此,套囊包括在流体吸收中产生延迟、或提供足够缓慢的流体吸收速率的一种或多种材料、构件或两者,使得套囊在所需延迟期期满之前不膨胀到使假体附着到植入部位所需的程度。延迟期可以从假体暴露于流体(例如血液)的时间点开始测量。延迟期可以为约1分钟、约2分钟、约5分钟、约7分钟、约10分钟、约15分钟、约20分钟、约30分钟、约45分钟、约1小时、约75分钟、约90分钟、或约2小时。被选择用于假体的套囊的类型可以取决于将假体递送到植入部位的程序的难度。
套囊的吸收材料本身可以以足够缓慢的速率吸收流体,以延迟假体在植入部位处的附着。在其它实施例中,套囊的吸收材料可以以可变的吸收速率为特征,使得吸收速率在开始的时间段低,但随时间推移或在一个时间段之后增加。例如,吸收材料可具有在假体暴露于流体之后的第一时间段内每分钟约0μL至约20μL的流体吸收速率,以及在第一时间段之后每分钟约10至约200μL的流体吸收速率。吸收速率增加之前的时间段可以为约10分钟、约15分钟、约20分钟、约30分钟、约45分钟、约1小时、约90分钟、约2小时、约180分钟、或约2小时。在其它实施例中,套囊的吸收材料吸收流体的能力被延迟。例如,套囊的吸收材料可以完全或部分地覆盖有影响吸收材料吸收流体的能力的材料或被包含在这种材料内。吸收材料可以完全或部分地覆盖有例如膜或织物的覆盖材料或包含在该覆盖材料内,该覆盖材料永久性地不可渗透流体,但是可移除的并在所需延迟期期满时被移除;覆盖材料的移除可以在假体在植入部位处在原位时例如通过使用基于导管的移除工具夹持和移除覆盖材料来进行。可使用基本上不可渗透流体(例如,水、血液等)并且是生物相容的任何材料来形成覆盖材料。非限制性实例包括聚氨酯、聚乙烯、聚二甲基硅氧烷、硅酮、橡胶和聚氯乙烯。在其它实施例中,吸收材料可以完全或部分地覆盖有例如膜或织物的覆盖材料或包含在该覆盖材料内,该覆盖材料是临时不可渗透流体的,但在所需的一段延迟期之后变得可渗透流体。例如,覆盖材料可以随时间推移可降解,或者可包括响应于温度、pH或植入部位存在的一些其它环境诱因而降解或改变的材料。在其它实施例中,吸收材料可以完全或部分地覆盖有覆盖材料或包含在该覆盖材料内,该覆盖材料可渗透流体,但流体迁移穿过这类覆盖材料和/或覆盖材料对流体的饱和足够缓慢,以在吸收材料吸收足够量的流体而附着到植入部位之前提供延迟。由覆盖材料提供的延迟期可以为例如在假体暴露于流体之后约5分钟至约3小时、约10分钟至约3小时、约20分钟至约2小时、约30分钟至约2小时、约45分钟至约90分钟、或约1小时。在另一些实施例中,因为吸收材料自身,或者与吸收材料混合或以其它方式大致散布在吸收材料中或与吸收材料一体化的材料响应于植入部位存在的一个或多个条件(如温度、pH等)而改变,套囊的吸收材料吸收的能力被延迟。例如,吸收材料可包括聚合物或与聚合物一起提供,该聚合物响应于暴露于流体或植入部位存在的某些其它环境诱因而随时间推移改变形状,并且这样的形状改变允许引发或加速吸收材料对流体的吸收。
可用于形成吸收材料的示例性物质包括任何交联水凝胶组分。交联水凝胶组分可基于共价交联、物理/离子交联,或这两者。非限制性实例包括聚(丙烯酸)、聚(乙二醇)、聚(氧化乙烯)、聚(氧丙烯)、聚(乙烯醇)、聚乙烯吡咯烷酮、聚(甲基丙烯酸羟乙酯)、聚(氨基酸)、葡聚糖、多糖和蛋白质。可用于形成吸收材料的物质的另外的实例包括聚丙烯酸钠、聚丙烯酰胺共聚物、乙烯-马来酸酐共聚物、羧甲基纤维素聚乙烯醇共聚物、聚氧化乙烯、以及聚丙烯腈。
当存在时,在套囊中也可使用任何“超吸收”材料,例如超吸收聚合物。如本文所用,“超吸收”材料是以体积溶胀率(Qv,溶胀体积除以“干燥”体积或在吸收任何流体之前的体积)从1至约5-1000增加为特征的材料。上面列出了超吸收材料的一些实例。本领域的普通技术人员可容易地识别可以以“超吸收”为特征的其它合适的材料,并且可以使用任何这样的材料。优选地,套囊被配置为使得膨胀主要在单个方向上发生。例如,膨胀可以主要在相对于支架的外表面大致垂直的方向上。如果套囊包括在支架的外表面周围形成完整圆的吸收材料的连续环,吸收材料的膨胀方向可以表征为径向的。由于处于其膨胀状态的支架将足够刚性,以抵御在朝支架表面的方向上因吸收材料的任何径向膨胀导致的压缩,因此吸收材料的径向膨胀将是在远离支架表面,即朝二尖瓣环的内表面的方向上基本上单向的。如上所述,吸收材料的膨胀可提高在套囊和二尖瓣环之间防止瓣周漏的密封。
根据本公开的假体可以进一步包括设置在上凸缘、下凸缘或两者处的网状物。网状物可包括吸收材料。网状物的存在可以有助于将假体附着(即固定、锚固和/或密封)在植入部位处。因此,网状物可通过吸收流体而膨胀,并且结果的附着可被延迟足够时间以允许将假体定位在植入部位处。当上凸缘和下凸缘中的一个或两者包括诸如如上所述突出的支架元件的分立元件时,网状物的一部分可设置在凸缘的任意一个或两者中的至少一对突出的支架元件之间。优选地,网状物设置在上锚固凸缘的多对突出的支架元件之间和下锚固凸缘的多对突出的支架元件之间。当上凸缘和下凸缘中的一个或两者包括翼片、叶片、套环或其它凸起时,凸起中的每一个的部分或全部可与网状物配合。上文关于套囊描述的材料或组分的特性中的每一个可以存在于网状物中。因此,网状物可包括在流体吸收中产生延迟或提供足够缓慢的流体吸收速率的一种或多种材料、组分或两者,使得网状物在所需延迟期期满之前不膨胀到使假体附着到植入部位所需的程度。
本发明的假体也包括瓣膜,该瓣膜包括固定地附接到支架的内表面的至少一个小叶。一个或多个小叶与支架内表面的附接未必是直接的;例如,瓣膜支撑环可固定地附接到支架的内表面,并且(一个或多个)瓣膜可固定地附接到瓣膜支撑环。瓣膜可包括一个小叶、两个小叶或三个小叶。小叶优选地从诸如哺乳动物心包膜的生物来源获得。例如,小叶可由牛、马、绵羊、山羊或猪心包膜制成。在其它实施例中,小叶可从动物瓣膜,优选从哺乳动物瓣膜获得。非限制性实例包括牛颈静脉瓣、猪肺动脉瓣和猪主动脉瓣。本领域的普通技术人员将会理解如何为所需目的选择合适的瓣膜。例如,可以认识到,特定类型的瓣膜的适宜性和小叶的数目可受到瓣膜假体的预期用途的影响。在一种情况中,瓣膜假体的预期用途可以是破损或病变的二尖瓣的置换物,在这种情况下,可以理解,应选择三小叶瓣膜。即用假体(instantprosthesis)可被配置用于置换任何心脏瓣膜,诸如,肺动脉瓣、三尖瓣、主动脉瓣或二尖瓣。
本公开也包括用于置换对象体内的破损或病变瓣膜的方法,该方法包括:将瓣膜假体递送至对象的植入部位,该瓣膜假体包括:至少部分地自膨胀的支架,该支架包括限定外表面和内表面的线骨架以及插入有中间区域的上锚固凸缘和下锚固凸缘,该支架具有未膨胀状态和膨胀状态,并且下锚固凸缘具有至少一个大于上锚固凸缘的对应尺寸的几何尺寸;和瓣膜,该瓣膜包括固定地附接到支架内表面的至少一个小叶;以及使支架膨胀以将假体基本上附着在植入部位处。
根据本发明的方法,可以使用上文对于本发明的瓣膜假体描述的属性、构件、材料等的每一个。
向植入部位递送瓣膜假体可经心房、经心尖或经皮实现。紧随假体递送之后可以是一个或多个定位步骤(即,定位和在需要时再定位),由此可调整假体的位置以相对于瓣环最佳地定位。
对于经心房递送,可进行如下所述示例性程序。通过肋间空间进行小的(2-3cm)开胸手术。展开房间平面。收缩右心房,并将荷包缝合置入左心房。然后,可操纵的导引器导管通过荷包置入左心房。将导管推进通过二尖瓣环。其位置可通过超声心动图引导和确认。将假体导引通过导管。下(心室)凸缘首先膨胀,然后锚固到瓣环和瓣下结构(小叶、腱索、左心室壁)的心室侧。同样在超声心动图引导下递送支架的剩余部分和上(心房)凸缘。心房凸缘膨胀并锚固到瓣环和左心房。在包括套囊的假体的实施例中,密封套囊在随后的60分钟期间保持松弛,以允许通过超声心动图充分记录瓣膜位置和功能。在就位1小时之后,套囊完全膨胀以使装置抵靠天然二尖瓣环密封。
对于经心尖递送,可进行如下所述示例性程序。进行小的左侧开胸手术,尺寸类似于经心房递送程序期间使用的尺寸。将荷包缝合置入左心室顶端。然后,将可操纵的导管导引器通过荷包置入左心室。导引器导管在超声心动图的引导下被引导通过二尖瓣环。对于该方法,装置可以设计成使得心房凸缘首先展开和定位。可选的套囊和/或网状物可类似于上文关于示例性经心房递送过程描述的情况。
经皮递送可以是静脉式或动脉式的。当经皮递送为预期程序时,假体被相应地配置成例如可充分折叠,以便经由经皮静脉或动脉通路置入。
静脉经皮递送可以如下进行。通过本领域的技术人员将容易理解的标准技术实现股静脉的进入。然后,将可操纵的导管引入静脉系统并利用荧光镜引导引导至右心房。一旦位于右心房内,则使用标准技术将导管横穿房间隔到达左心房。然后,如在经心房方法中所述,在超声心动图的引导下展开假体。
对于动脉经皮递送,可以进行如下示例性程序。通过标准技术实现进入股动脉。然后,将可操纵的导管引入动脉系统并使用荧光镜引导引导至主动脉根和左心室内。一旦位于左心室内,即如上文结合经心尖方法所述展开装置。
在另一方面,提供了用于将包括至少部分地自膨胀的支架的瓣膜假体递送到植入部位的系统,其包括:导管,该导管包括远端和近端,允许导管沿导丝转移的导丝管腔,用于容纳用于操纵该导管的张力线缆的操纵管腔,和停放部,该停放部在远端处且其上可以装载支架。本系统还包括:可收回的压缩套管,该可收回的压缩套管用于在支架装载到停放部上的同时压缩支架的至少一部分;引导尖端,该引导尖端定位在停放部的远侧,用于在递送期间引导导管;和操纵机构,该操纵机构与张力线缆可操作地关联以用于在至少一个定向平面内偏转引导尖端。
与现有递送系统不同,根据本公开的所公开的系统能够容纳、输送和递送根据本公开的瓣膜假体的支架以及其它配置的支架,包括常规带支架装置。如本文将更充分讨论的,本发明的系统包括多个特征,这些特征解决了与至少部分地自膨胀的支架的操纵和植入相关的问题,该支架包括具有与本发明公开的假体一起使用的支架的特性的支架。
本发明的系统的导管包括远端,该远端是在支架植入程序期间被首先引导进生理进入点的导管的末端。导管的近端(本文限定为在使用期间最靠近系统的操作者的导管的末端)保留在对象的体外。即用导管(instant catheter)可具有从远端至近端约20cm至约200cm的长度。导管的外径可以为约0.5cm至约1.5cm。
导管可由任何合适的材料构成,其中适宜性由诸如生物相容性、耐久性、在刚性和柔韧性之间适当的平衡、以及基于导管的预期用途可容易理解的其它因素的考虑来确定。例如,可以使用聚酰亚胺、聚乙烯、聚丙烯、硅酮、氯丁橡胶、腈、金属或金属合金(诸如Ti-Nb-Zr;参见例如美国专利No.5,685,306)或它们的任何其它组合。用于构造导管的材料以及用于构造该导管的方法是本领域的技术人员容易理解的,并且本文构思到所有合适的材料和构造方式。
导管包括至少两个管腔,第一管腔为导丝管腔,该导丝管腔允许导管沿导丝转移;第二管腔为操纵管腔,该操纵管腔用于容纳用于操纵该导管的张力线缆。导丝管腔被适当地加工大小、成形和定位在导管内以容纳导丝,使得导管可在已沿适当的生理通道放置的导丝上转移到对象体内所关注的部位。操纵管腔被适当地加工大小、成形和定位在导管内以容纳张力线缆。操纵位于本发明的导管的管腔内的张力线缆引起导管的偏转,这继而允许导管从第一位置在原位移动至第二位置。导丝及操纵张力线缆的选择和使用是本领域的技术人员熟知的。对于管腔在导管内的相对布置没有限制。然而,传统上将导丝管腔朝向导管的中心定位。在一个实施例中,导丝管腔和操纵管腔以并列布置方式设置在导管内。在其它情况下,导丝管腔可大致位于导管的中心,并且操纵管腔位于导丝管腔和导管的外表面之间。可能希望包括多于一个操纵管腔,其中每个操纵管腔可容纳分开的张力线缆,以便提高导管的操纵能力。例如,示例性导管可包括单个导丝管腔和两个、三个或四个分开的操纵管腔。
本发明的系统的导管进一步包括在导管的远端处的停放部,该停放部上可以装载支架。停放部优选地与导管的剩余部分一体化,并且可以仅包括导管的远端部,该远端部具有比导管的剩余部分,或者至少比位于紧邻停放部处的一部分导管更小的直径。例如,虽然导管的外径(不包括停放部)可以为约0.25cm至约1.5cm,但停放部的外径可以为导管剩余部分的直径的从约25%至约75%。确切地说,停放部的外径可以为约0.10cm至约0.80cm。停放部的长度优选地至少与处于充分压缩状态的支架(其示例性长度在上文中结合本发明所公开的假体而提供)一样长,并且可以在一定程度上比压缩的支架长。确切地说,停放部的长度可以从约4cm至约15cm。
停放部可以可选地包括可充胀球囊,用于使装载到停放部上的支架膨胀或辅助该支架膨胀。用于支架的膨胀的可充胀球囊的使用是本领域的技术人员熟知的。由于这样的球囊通常在所需的时间经由流体(液体或气体)压力的选择性引入而致动,当停放部包括可膨胀球囊时,导管可以进一步包括用于供应用来充胀球囊的流体(例如,生理盐水、水或CO2气体)的球囊管腔。当被充胀时,球囊可采用适于辅助支架膨胀的任何配置;例如,充胀的球囊可以是沿停放部的长度分布的细长的隆凸(torus)或一系列两个或更多个隆凸。
本发明的系统进一步包括至少一个可收回的压缩套管,用于在将支架装载到停放部上的同时压缩支架的至少一部分。压缩套管例如优选地与导管同轴布置,该压缩套管作用类似于在朝向或远离导管远端的方向上在导管上转移的插管或外覆盖物。支架可以以压缩状态装载到停放部上,并且压缩套管可在停放部上转移,以使得其在压缩的支架上面经过并环绕压缩的支架;这样,压缩套管确保支架在装载到停放部上的同时保持压缩。可能需要专业技术来将支架以压缩状态装载到停放部上。在压缩的支架装载到停放部上,并且至少一个压缩套管与停放部同轴布置并确保支架保持压缩的情况下,导管的远端可被递送到植入部位,在这里,压缩套管被最终撤出,并且由此允许支架在植入部位处膨胀。
压缩套管可由生物相容的且能够以所述方式起作用的任何材料制成。例如,压缩套管可由刚性材料构成,使得其不被由压缩的支架所施加的外部径向力损坏或变形。压缩套管的内表面和/或外表面优选地配置成导致相对于任何其它组件或套管在使用期间可能抵靠其滑动的生理特征的低摩擦系数;该特征可以是构造套管的材料固有的,或者可由低摩擦涂层赋予套管材料。一种用于在构造压缩套管中使用的示例性材料为聚四氟乙烯(PTFE-有时以商品名制造)。可以使用任何其它合适的材料,可选地涂布在具有PTFE或适于减小摩擦的另一种材料的内表面和外表面中的一个或两者上。
单个压缩套管可用来压缩整个支架。在其它情况下,该系统可包括两个或更多个压缩套管;可存在第二可收回压缩套管或其它另外的压缩套管,以便在支架装载到停放部上时压缩支架的另外的部分。例如,可以存在第一压缩套管并用来使支架的中间区域保持压缩状态,并且第二压缩套管可用来使支架的上凸缘和下凸缘保持压缩状态。在这样的实施例中,当支架装载到停放部上时,第一和第二压缩套管定位成与停放部同轴布置,第一压缩套管被直接定位在支架上,并且第二压缩套管被定位在第一压缩套管和支架上;第二压缩套管的撤出(例如,通过在远离停放部的方向上在导管上转移)导致凸缘的膨胀,并且第一压缩套管的随后撤出导致支架的剩余部分的膨胀。由于撤出第二压缩套管的过程的性质,上凸缘或下凸缘将在上凸缘或下凸缘中的另一个膨胀之前膨胀。下面将结合图7-9更充分地描述前面的过程。在通过移除第一压缩套管而使中间区域膨胀之前,通过移除第二压缩套管而使凸缘膨胀,导致凸缘在植入部位处展开,这允许支架在支架的中间区域(包含瓣膜)展开之前至少部分地附着到植入部位。
本发明的系统进一步包括引导尖端,引导尖端定位在导管的停放部分的远端处,并且用于在递送过程期间引导导管。引导尖端可以是大致圆锥形的,可以在其远端处成圆形,或者可以具有提高了尖端以及由此后继导管被引导穿过对象脉管的便利性的任何其它配置。可用来形成引导尖端的材料可以包括任何刚性的、生物相容的且优选地低摩擦的材料。实例包括尼龙、硅橡胶、塑料、镍钛诺、不锈钢、钴/铬合金、钴/铬/镍合金、镍/铬合金、铂、以及铂/铱合金。引导尖端可以牢固地但可移除地附接到停放部的远端,以使得能在附接引导尖端之前将支架装载到停放部上。
根据本公开的系统还包括操纵机构,操纵机构可操作地与一条或多条张力线缆相关联,并且用于在至少一个定向平面内偏转引导尖端。在操纵机构与一条或多条张力线缆之间的关联被描述为可操作的,这是因为操纵机构利用其与张力线缆的连接来偏转引导尖端。使用张力线缆偏转张力线缆壳体是本领域的技术人员容易理解的。操纵机构可以是允许使用者以预期方式操纵(一条或多条)张力线缆,从而操纵导管的任何装置,例如,可以使用闭孔节(obturator knob)、杠杆、刻度盘或任何合适的机构。通过使用操纵机构偏转引导尖端允许引导导管穿过对象的脉管(例如,使得下降进入对象的脉管)并将停放部和支架准确放置在植入部位处或附近。操纵机构典型地结合诸如荧光镜或超声心动图的合适的成像技术使用。
在又一方面,公开了一种套件,该套件包括包括用于将至少部分地自膨胀的支架递送到植入部位的系统,该系统包括:导管,该导管包括远端和近端,允许导管沿导丝转移的导丝管腔,用于容纳用于操纵该导管的张力线缆的操纵管腔,在远端处且其上可以装载支架的停放部;可收回的压缩套管,该可收回的压缩套管用于在支架装载到停放部上的同时压缩支架的至少一部分;引导尖端,该引导尖端定位在停放部的远侧,用于在递送期间引导导管;和操纵机构,该操纵机构与张力线缆可操作地关联以用于在至少一个定向平面内偏转引导尖端;以及,至少一个瓣膜假体,该至少一个瓣膜假体包括:至少部分地自膨胀的支架,该支架包括限定外表面和内表面的线骨架以及插入有中间区域的上锚固凸缘和下锚固凸缘,该支架具有未膨胀状态和膨胀状态,并且下锚固凸缘具有至少一个大于上锚固凸缘的对应尺寸的几何尺寸;和瓣膜,该瓣膜包括固定地附接到支架内表面的至少一个小叶。
根据包括在本发明的套件中的假体和系统可分别使用以上关于本发明的瓣膜假体和系统描述的属性、构件、材料等中的每一个。
套件可以进一步包括下列附加构件中的一个或多个:使用说明;系统或假体的任何构件的替换部件;以及用于修理系统的工具。在某些实施例中,本发明的套件包括多个瓣膜假体,其中假体中的至少一个在其膨胀状态下的直径大于假体中的至少另一个在其膨胀状态下的直径。这样的实施例考虑了以下事实:使用者为了植入手头的特定患者体内所关注的特定部位必须选择被适当地加工在其膨胀状态下尺寸的瓣膜假体。瓣环的内径在特定患者体内变化,使得例如,主动脉瓣环的直径可不同于二尖瓣环的直径。同样,诸如二尖瓣环的特定瓣环的内径可随患者而变化,使得第一患者的二尖瓣环具有比第二患者的二尖瓣环更大的直径。因此,瓣膜假体必须选择为在其膨胀状态下具有合适的直径,其中特定膨胀直径的适宜性取决于预期植入部位和特定对象。因此,有利的是在本公开的套件内包括至少两个假体,其中假体中的至少一个在其膨胀状态下的直径大于假体中的至少另一个在其膨胀状态下的直径,使得可以取决于相关标准从至少两个不同“大小”的假体中做出选择。
本发明的套件可包括至少两个假体,其中一个假体具有与至少另一个假体不同类型的瓣膜。例如,特定套件可包括三个瓣膜假体,其中两个包括置换二尖瓣,一个包括置换主动脉瓣。本文所述的用于包括在本发明的套件中的系统可用来将任何类型的假体(包括具有任何类型瓣膜的假体)递送到植入部位,并且包括分别包括不同类型瓣膜的假体使得使用者能够选择最适合预期目的的假体。
图7描述了根据本公开的示例性套件的构件。如图7D所示,套件包括具有导管30的系统,导管30具有远端32和近端34。图7A提供了导管30的横截面图,图中显示了导丝管腔36和三个操纵管腔38。回到图7D,停放部40在导管30的远端32处,并且引导尖端42定位在停放部40的远端。在系统使用期间,假体将被装载到停放部40上。操纵机构44位于导管30的近端34处,并且在描述的实施例中包括阻塞器旋钮46。套件也包括具有支架21的假体,支架21包括线骨架,图7B图示了其膨胀状态,图7C图示了其压缩状态。支架21的线骨架限定了插入有中间区域28的上凸缘22和下凸缘24。瓣膜29固定地附接到支架21的内部。
本公开还涉及用于将包括至少部分地自膨胀的支架的瓣膜假体递送至植入部位的方法,该方法包括:(i)提供一种系统,该系统包括:导管,该导管包括远端和近端,允许导管沿导丝转移的导丝管腔,用于容纳用于操纵该导管的张力线缆的操纵管腔,在远端处且其上可以装载支架的停放部;可收回的压缩套管,该可收回的压缩套管用于在支架装载到停放部上的同时压缩支架的至少一部分;引导尖端,该引导尖端定位在停放部的远侧,用于在递送期间引导导管;和操纵机构,该操纵机构与张力线缆可操作地关联以用于在至少一个定向平面内偏转引导尖端;(ii)将瓣膜假体装载到停放部上;(iii)将导丝递送到植入部位;(iv)将导管在导丝上转移,以使得装载的瓣膜假体定位在植入部位处;(v)收回可收回的压缩套管以允许支架在植入部位处膨胀并从导管脱离;以及(vi)从植入部位移除导管和导丝。
根据按照本发明的方法使用的假体和系统可分别使用以上关于本发明的瓣膜假体和系统描述的属性、构件、材料等的每一个。
图8-9图示了可收回的压缩套管48、50如何可用来在递送到植入部位期间抵靠导管30的停放部40压缩支架21并且允许支架在植入部位处膨胀和从导管30脱离的实例。图8A描述了安装在导管30的停放部40上的压缩的支架21;为简单起见,未示出压缩套管,尽管不存在压缩套管通常将允许支架21膨胀。图8B示出了被示出为深灰色层的第一压缩套管48(参见示例性的插图X)如何在支架21上推进并作用以压缩支架21的中间区域28。下凸缘24不被第一压缩套管48覆盖。在图8C中,示出为浅灰色层的第二压缩套管50(参见示例性插图Y)在第一压缩套管48和支架21两者上推进,此时包括支架21的下凸缘24。第二压缩套管50因此确保下凸缘24在将导管30的远端递送到植入部位期间保持压缩。
图9A-C以相反的顺序描述了压缩套管的撤出如何允许包括支架的假体以受控的顺序方式膨胀。在图9C中,第一压缩套管48和第二压缩套管50以同轴布置就位于被安装在导管30的停放部40上的支架上;压缩套管48、50共同地压缩支架的中间区域28和凸缘22、24,使得支架保持安装在停放部40上。图9C中的浅灰箭头指示第二压缩套管50在导管30上撤出以便继续到使支架在植入部位处膨胀的过程的下一步骤的方向。图9B示出了撤出第二压缩套管50的结果:下凸缘24已开始膨胀。图9B中的深灰箭头指示第一压缩套管48在导管30上撤出以便允许支架的构件中的每一个膨胀的方向。在图9A中,第一压缩套管48已完全撤出,并且支架21的下凸缘24、上凸缘22和中间区域28中的每一个都已完全膨胀。下凸缘24朝向中间区域28向回弯曲,并且插入在这两个构件之间的任何组织将被牢固地夹紧。
在本发明的方法的一些实施例中,导管的停放部可包括可充胀球囊,并且在可收回的压缩套管收回之后,该方法可以进一步包括至少部分地填充球囊以进一步使支架膨胀。虽然支架是至少部分地自膨胀的,但使用球囊以确保支架达到其最大膨胀状态可能是期望的。
图10图示了图9所述过程将如何导致在原位植入包括线骨架的瓣膜假体。在图10A中示出了在导管30已推进至植入部位(二尖瓣环),引导尖端42已经过瓣环推进进入心室,并且装载有压缩的瓣膜假体的停放部已经定位在瓣环内的植入过程点。图10B示出了压缩套管从装载的假体的初始撤出如何导致下凸缘24的部分膨胀和展开。在图10C中,压缩套管已更进一步撤出,使得下凸缘24的更大部分已膨胀。图10D描述了在压缩套管已完全撤出,下凸缘24朝向中间区域28向回弯曲,中间区域28完全膨胀并抵靠二尖瓣环施加径向力的植入过程点。在二尖瓣环的心室侧上的松散组织已被下凸缘24夹持,并且在下凸缘24和支架中间区域28之间夹紧。上凸缘22也处于完全膨胀状态,其已夹持二尖瓣环的心房侧上的松散组织,并且起在瓣环心房侧上的组织上方的“盖子”的作用。
实例1-经由经股静脉(transfemoral)方法经皮植入
利用本发明所公开的用于递送瓣膜假体的系统以及根据本公开的瓣膜假体,可以如下进行示例性递送和植入程序。
首先,进入股静脉(右或左)并利用塞尔丁格(Seldinger)技术插入脉管鞘(vascular sheath)。经由标准的穿隔(transseptal)技术横穿房间隔,并且经由球囊扩张房间隔造口术(10-15mm血管成形术球囊)产生/扩大心房孔。
将超硬导丝小心地成形,然后通过新产生的心房孔定位在左心室中。利用连续变大的血管扩张器使股静脉进入部位更大或“扩张(dilatedup)”,其中血管扩张器被适当地加工尺寸以匹配递送系统的直径。
瓣膜假体被压缩和定位在递送系统的停放部上,并且该系统被以其它方式制备用于插入股静脉中。装载的递送导管在线上推进到股静脉中,穿过静脉系统,横穿房间隔缺损,然后利用ECHO(经食管的和/或心内的)和荧光镜引导而定位在二尖瓣环的水平上。操纵机构用来引导导管的引导尖端穿过脉管并横穿隔膜。
一旦横穿二尖瓣就位,即通过依次撤出封闭套管(containmentsleeve)、允许支架膨胀来实现假体的展开。必要时,通过充胀位于递送导管的停放部中的球囊,可以使支架强制膨胀至其正常配置。
使用ECHO和荧光镜评价来确认装置的位置和稳定性。如果全部看起来稳定,则从体内撤出递送导管。将大的脉管鞘置入股静脉以促进止血。利用经皮闭合装置(Amplatzer或Helex)闭合房间隔缺损。
实例2-计算“拔出力”
根据本发明的假体在瓣环和周围材料上在原位施加多种不同的力。这样的力有助于假体保持锚固和适当地定位在植入部位处的独特能力。例如,上凸缘和下凸缘分别朝向支架的中间区域向回弯曲,并且插入在凸缘和中间区域之间的任何组织将被凸缘夹持并在凸缘和中间区域之间夹紧。支架也抵靠瓣环的壁施加向外的径向力。虽然这样的力可能难以单独测量,但拔出植入的假体所需的力表示由支架施加的各种力的集合的一个代表。
进行实验以测量示例性假体的拔出力。使用新切离的绵羊心脏进行测试,绵羊心脏被外部地固定在定制设计的箱子中,箱子被建造用于将心脏保持在稳定直立位置。首先,进行左心房切开术以暴露二尖瓣。然后,在直视下将假体展开到二尖瓣中。将缝合线成环穿过装置的心房臂,聚集成中心交汇点,然后打结到一起,并小心使每个缝合线束保持相等长度(很像降落伞的伞绳在跳伞员背后汇集到一起)。利用测力计,向后拉动打结的缝合线,利用逐渐增加的力使装置从二尖瓣环移开。该过程的目的是,拔出假体将需要至少15牛顿的力。事实上,假体在15牛顿下仍然固定到瓣环,并且不能被拔出,直到二尖瓣和腱索组织在测得20牛顿以上的力的点时开始撕裂为止。因此,即使在施加很大拔出力时,由假体施加到植入部位上的力的集合也使得装置能够附着到瓣环。
本领域的技术人员还将容易地理解,在不实质上脱离本发明的新颖教导和优点的情况下,在示例性实施例中进行许多附加修改是可能的。因此,任何这样的修改旨在包括在如下面的示例性权利要求书限定的本发明的范围内。

Claims (13)

1.一种二尖瓣膜假体,包括:
支架,该支架具有长轴以及膨胀状态和未膨胀状态,所述支架包括:
中间区域,所述中间区域具有第一和第二端,并包括限定内表面和外表面的骨架;
在所述中间区域的所述第一端处的下凸缘部,所述下凸缘部通过夹持天然二尖瓣的小叶以及二尖瓣环的心室侧的腱索,将所述支架锚固在所述二尖瓣环内,其中,所述下凸缘部定向为当支架处于膨胀状态时相对于支架的长轴成倾斜的角度,以及其中,所述下凸缘部定向为当支架处于未膨胀状态时大致平行于支架的长轴;以及
在所述中间区域的第二端处的上凸缘部,所述上凸缘部将所述支架锚固到二尖瓣环的心房侧;
瓣膜,所述瓣膜附接到所述支架的所述中间区域的所述内表面。
2.根据权利要求1所述的二尖瓣膜假体,其中,所述下凸缘部通过将所述小叶和腱索夹持在所述下凸缘部与所述中间区域的外表面之间,将所述支架锚固在所述二尖瓣环内。
3.根据权利要求1所述的二尖瓣膜假体,其中,所述下凸缘部通过夹持左心室壁,将所述支架锚固在所述二尖瓣环内。
4.根据权利要求1所述的二尖瓣膜假体,其中,所述上凸缘部通过夹持在所述上凸缘部和所述中间区域的外表面之间的组织,将所述支架锚固在所述二尖瓣环内。
5.根据权利要求1所述的二尖瓣膜假体,其中,所述上凸缘部通过夹持在所述二尖瓣环的心房侧的组织,将所述支架锚固在所述二尖瓣环内。
6.根据权利要求5所述的二尖瓣膜假体,其中,所述上凸缘部通过夹持左心房组织将所述支架锚固到所述二尖瓣环内。
7.根据权利要求1所述的二尖瓣膜假体,其中,所述支架是自膨胀的。
8.根据权利要求1所述的二尖瓣膜假体,其中,所述支架包括线编织物。
9.根据权利要求1所述的二尖瓣膜假体,其中,所述上凸缘部定向为当所述支架在膨胀状态时相对于支架的长轴成倾斜的角度。
10.根据权利要求1所述的二尖瓣膜假体,其中,所述上凸缘部定向为当支架处于未膨胀状态时大致平行于支架的长轴。
11.一种二尖瓣膜假体,包括:
支架,该支架具有膨胀状态和未膨胀状态,且包括:
中间区域,所述中间区域具有第一和第二端,并包括限定内表面和外表面的骨架;
在所述中间区域的所述第一端处的下凸缘部,所述下凸缘部通过夹持二尖瓣环的心室侧的组织,将所述支架锚固在所述二尖瓣环内;以及
在所述中间区域的所述第二端处的上凸缘部,所述上凸缘部通过夹持在所述二尖瓣环的心房侧的组织,将所述支架锚固到二尖瓣环内;
瓣膜,所述瓣膜附接到所述支架的所述中间区域的所述内表面。
12.根据权利要求11所述的二尖瓣膜假体,其中,所述下凸缘部通过夹持在所述二尖瓣环的心室侧的瓣下结构,将所述支架锚固到二尖瓣环内。
13.根据权利要求11所述的二尖瓣膜假体,其中,所述上凸缘部通过夹持左心房组织,将所述支架锚固到二尖瓣环内。
CN201080050314.2A 2009-11-05 2010-11-05 瓣膜假体 Active CN102665612B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US25833109P 2009-11-05 2009-11-05
US61/258,331 2009-11-05
PCT/US2010/055645 WO2011057087A1 (en) 2009-11-05 2010-11-05 Valve prosthesis

Publications (2)

Publication Number Publication Date
CN102665612A CN102665612A (zh) 2012-09-12
CN102665612B true CN102665612B (zh) 2015-04-08

Family

ID=43970357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080050314.2A Active CN102665612B (zh) 2009-11-05 2010-11-05 瓣膜假体

Country Status (7)

Country Link
US (8) US9289291B2 (zh)
EP (2) EP2496182B1 (zh)
JP (7) JP2013509961A (zh)
CN (1) CN102665612B (zh)
AU (5) AU2010315030B2 (zh)
CA (2) CA3050297A1 (zh)
WO (1) WO2011057087A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697418A (zh) * 2015-11-02 2018-10-23 马里兰大学巴尔的摩分校 用于二尖瓣瓣膜修复的远侧锚固设备和方法

Families Citing this family (258)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447669A (zh) 2000-08-18 2003-10-08 阿特里泰克公司 用于过滤从心房附件流出的血液的可膨胀植入装置
AU2002337598A1 (en) 2001-10-04 2003-04-14 Neovasc Medical Ltd. Flow reducing implant
IL158960A0 (en) 2003-11-19 2004-05-12 Neovasc Medical Ltd Vascular implant
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8951299B2 (en) 2003-12-23 2015-02-10 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
DE102005003632A1 (de) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katheter für die transvaskuläre Implantation von Herzklappenprothesen
AU2006315812B2 (en) 2005-11-10 2013-03-28 Cardiaq Valve Technologies, Inc. Balloon-expandable, self-expanding, vascular prosthesis connecting stent
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
DE202008018556U1 (de) 2007-08-21 2015-10-26 Symetis Sa Eine Ersatzklappe
EP2484311B1 (en) 2007-08-24 2015-05-06 St. Jude Medical, Inc. Prosthetic aortic heart valve
ES2571740T3 (es) 2007-09-26 2016-05-26 St Jude Medical Válvulas cardiacas protésicas colapsables
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
WO2009053497A1 (en) 2007-10-25 2009-04-30 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (pt) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent para posicionamento e ancoragem de uma prótese valvular em um local de implantação no coração de um paciente
US20090276040A1 (en) * 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
ES2570592T3 (es) 2008-07-15 2016-05-19 St Jude Medical Diseños de manguito colapsable y reexpansible de válvula cardiaca protésica y aplicaciones tecnológicas complementarias
AU2009295960A1 (en) 2008-09-29 2010-04-01 Cardiaq Valve Technologies, Inc. Heart valve
WO2010098857A1 (en) 2009-02-27 2010-09-02 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
AU2010236288A1 (en) 2009-04-15 2011-10-20 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
BR112012010321B8 (pt) 2009-11-02 2021-06-22 Symetis Sa válvula de substituição para uso em um corpo humano
AU2010315030B2 (en) 2009-11-05 2016-03-10 The Trustees Of The University Of Pennsylvania Valve prosthesis
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
CN103002833B (zh) 2010-05-25 2016-05-11 耶拿阀门科技公司 人工心脏瓣及包括人工心脏瓣和支架的经导管输送的内假体
CA2803149C (en) 2010-06-21 2018-08-14 Impala, Inc. Replacement heart valve
EP2590595B1 (en) 2010-07-09 2015-08-26 Highlife SAS Transcatheter atrio-ventricular valve prosthesis
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
CN106073946B (zh) 2010-09-10 2022-01-04 西美蒂斯股份公司 瓣膜置换装置、用于瓣膜置换装置的递送装置以及瓣膜置换装置的生产方法
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
WO2012051096A1 (en) * 2010-10-11 2012-04-19 Dardi Peter S Hydrogel jacketed stents
JP6010545B2 (ja) 2010-12-23 2016-10-19 トゥエルヴ, インコーポレイテッド 僧帽弁の修復および置換のためのシステム
US9125738B2 (en) * 2011-01-11 2015-09-08 Hans Reiner Figulla Prosthetic valve for replacing an atrioventricular heart valve
EP2478868A1 (en) * 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
CN107647939A (zh) 2011-06-21 2018-02-02 托尔福公司 人工心脏瓣膜装置及相关系统
WO2012178115A2 (en) * 2011-06-24 2012-12-27 Rosenbluth, Robert Percutaneously implantable artificial heart valve system and associated methods and devices
US9364326B2 (en) 2011-06-29 2016-06-14 Mitralix Ltd. Heart valve repair devices and methods
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP3417813B1 (en) 2011-08-05 2020-05-13 Cardiovalve Ltd Percutaneous mitral valve replacement
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20130190857A1 (en) * 2011-09-09 2013-07-25 Endoluminal Sciences Pty Ltd. Means for controlled sealing of endovascular devices
US9387075B2 (en) 2011-09-12 2016-07-12 Highlife Sas Transcatheter valve prosthesis
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
JP6151705B2 (ja) 2011-10-19 2017-06-21 トゥエルヴ, インコーポレイテッド 心臓弁置換のためのデバイス、システムおよび方法
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
JP6133309B2 (ja) 2011-10-19 2017-05-24 トゥエルヴ, インコーポレイテッド 人工心臓弁デバイス
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CN102462565B (zh) * 2011-10-25 2014-03-26 张石江 可回收可调节血管内缩窄介入支架
FR2982763B1 (fr) 2011-11-17 2015-07-17 Ct Hospitalier Regional Universitaire D Amiens Implant destine a etre place dans un passage de circulation du sang et dispositif de traitement associe
CA2892838A1 (en) * 2011-12-01 2013-06-06 The Trustees Of The University Of Pennsylvania Percutaneous valve replacement devices
US10172708B2 (en) * 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
WO2013134214A1 (en) * 2012-03-05 2013-09-12 The Trustees Of The University Of Pennsylvania Superabsorbent coated stents for vascular reduction and for anchoring valve replacements
US20130274873A1 (en) * 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
ES2675936T3 (es) 2012-03-23 2018-07-13 Sorin Group Italia S.R.L. Prótesis de válvula plegable
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
EP2695586B1 (en) * 2012-08-10 2019-05-08 Sorin Group Italia S.r.l. A valve prosthesis and kit
US10206775B2 (en) 2012-08-13 2019-02-19 Medtronic, Inc. Heart valve prosthesis
US9232995B2 (en) 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
US9226823B2 (en) * 2012-10-23 2016-01-05 Medtronic, Inc. Valve prosthesis
US20140128964A1 (en) * 2012-11-08 2014-05-08 Symetis Sa Stent Seals and Methods for Sealing an Expandable Stent
US20150351906A1 (en) 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9155616B2 (en) 2013-02-28 2015-10-13 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with expandable microspheres
US9844435B2 (en) * 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9867697B2 (en) 2013-03-12 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for a paravalvular leak protection
US8986375B2 (en) * 2013-03-12 2015-03-24 Medtronic, Inc. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9398951B2 (en) * 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US20140350668A1 (en) * 2013-03-13 2014-11-27 Symetis Sa Prosthesis Seals and Methods for Sealing an Expandable Prosthesis
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9730791B2 (en) * 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
FR3004638B1 (fr) 2013-04-19 2015-05-29 Invalv Lab Implant, notamment destine a etre place dans une valve auriculo-ventriculaire cardiaque, comportant un systeme d'ecartement des bras proximaux
KR101429005B1 (ko) * 2013-05-06 2014-08-12 부산대학교 산학협력단 심장판막 고정장치
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US9445894B2 (en) * 2013-06-17 2016-09-20 Alan W. HELDMAN Prosthetic heart valve with linking element and methods for implanting same
WO2014204807A1 (en) 2013-06-19 2014-12-24 Aga Medical Corporation Collapsible valve having paravalvular leak protection
US9259237B2 (en) 2013-07-12 2016-02-16 Inceptus Medical, Llc Methods and apparatus for treating pulmonary embolism
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9724083B2 (en) 2013-07-26 2017-08-08 Edwards Lifesciences Cardiaq Llc Systems and methods for sealing openings in an anatomical wall
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
JP6563394B2 (ja) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド 人工弁のための径方向に折り畳み自在のフレーム及び当該フレームを製造するための方法
WO2015038458A1 (en) 2013-09-12 2015-03-19 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
AU2014334772B2 (en) * 2013-10-05 2018-12-13 Sinomed Cardiovita Technology Inc. Device and method for mitral valve regurgitation method
EP3052053B1 (en) * 2013-10-05 2020-08-12 Sino Medical Sciences Technology, Inc. Device for mitral valve regurgitation method
US9662202B2 (en) 2013-10-24 2017-05-30 Medtronic, Inc. Heart valve prosthesis
US20150119692A1 (en) * 2013-10-25 2015-04-30 Medtronic, Inc. Non-invasive evaluation of fit and sizing of device prior to implant
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP3065670B1 (en) 2013-11-06 2019-12-25 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
EP3071149B1 (en) * 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
EP3730095A1 (en) * 2014-02-14 2020-10-28 Edwards Lifesciences Corporation Percutaneous leaflet augmentation
US11672652B2 (en) 2014-02-18 2023-06-13 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
CA2938614C (en) 2014-02-21 2024-01-23 Edwards Lifesciences Cardiaq Llc Delivery device for controlled deployement of a replacement valve
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
AU2015231788B2 (en) 2014-03-18 2019-05-16 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
AU2015236516A1 (en) * 2014-03-26 2016-09-22 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
WO2015152980A1 (en) 2014-03-31 2015-10-08 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US10321987B2 (en) * 2014-04-23 2019-06-18 Medtronic, Inc. Paravalvular leak resistant prosthetic heart valve system
US10245141B2 (en) 2014-05-14 2019-04-02 Sorin Group Italia S.R.L. Implant device and implantation kit
EP3142604B1 (en) 2014-05-16 2024-01-10 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
WO2015175863A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
EP3142606B1 (en) 2014-05-16 2020-04-29 St. Jude Medical, Cardiology Division, Inc. Subannular sealing for paravalvular leak protection
US20150328000A1 (en) 2014-05-19 2015-11-19 Cardiaq Valve Technologies, Inc. Replacement mitral valve with annular flap
JP6755858B2 (ja) * 2014-05-21 2020-09-16 マレティ,オスカーMALETI, Oscar 下肢に逆流を生じる疾患を治療するための人工弁
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US9700412B2 (en) 2014-06-26 2017-07-11 Mitralix Ltd. Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices
FR3023703B1 (fr) * 2014-07-17 2021-01-29 Cormove Dispositif de traitement d'un conduit de circulation du sang
EP4066786A1 (en) 2014-07-30 2022-10-05 Cardiovalve Ltd. Articulatable prosthetic valve
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
WO2016093877A1 (en) 2014-12-09 2016-06-16 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
WO2016125160A1 (en) 2015-02-05 2016-08-11 Mitraltech Ltd. Prosthetic valve with axially-sliding frames
US10231834B2 (en) * 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
EP3273912A1 (en) 2015-03-23 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
US9962260B2 (en) 2015-03-24 2018-05-08 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
US10064718B2 (en) * 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
JP6767388B2 (ja) 2015-05-01 2020-10-14 イェーナヴァルヴ テクノロジー インコーポレイテッド 心臓弁置換におけるペースメーカー割合を低減させるデバイス及び方法
EP3294221B1 (en) 2015-05-14 2024-03-06 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP3307207A1 (en) * 2015-06-12 2018-04-18 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
GB2539444A (en) 2015-06-16 2016-12-21 Ucl Business Plc Prosthetic heart valve
WO2016209970A1 (en) 2015-06-22 2016-12-29 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US10639149B2 (en) 2015-07-16 2020-05-05 St. Jude Medical, Cardiology Division, Inc. Sutureless prosthetic heart valve
US10368983B2 (en) 2015-08-12 2019-08-06 St. Jude Medical, Cardiology Division, Inc. Collapsible heart valve including stents with tapered struts
US10238490B2 (en) 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10456243B2 (en) 2015-10-09 2019-10-29 Medtronic Vascular, Inc. Heart valves prostheses and methods for percutaneous heart valve replacement
WO2017079698A1 (en) * 2015-11-06 2017-05-11 Micor Limited Mitral valve prosthesis
JP6795591B2 (ja) * 2015-12-28 2020-12-02 テンダイン ホールディングス,インコーポレイテッド 人工心臓弁用の心房ポケットクロージャ
US10321992B2 (en) 2016-02-01 2019-06-18 Medtronic, Inc. Heart valve prostheses having multiple support arms and methods for percutaneous heart valve replacement
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US9974649B2 (en) * 2016-03-24 2018-05-22 Medtronic Vascular, Inc. Stented prosthetic heart valve having wrap and methods of delivery and deployment
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
CN109069272A (zh) 2016-04-29 2018-12-21 美敦力瓦斯科尔勒公司 具有带系绳的锚定件的假体心脏瓣膜设备以及相关联的系统和方法
US11471661B2 (en) * 2016-05-06 2022-10-18 University Of Virginia Patent Foundation Ventricular assist device stent, ventricular assist device, and related methods thereof
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
WO2017196912A1 (en) 2016-05-13 2017-11-16 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
CN109789017B (zh) 2016-08-19 2022-05-31 爱德华兹生命科学公司 用于置换二尖瓣的可转向递送系统和使用方法
EP3503848B1 (en) 2016-08-26 2021-09-22 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US10548722B2 (en) 2016-08-26 2020-02-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3512466B1 (en) 2016-09-15 2020-07-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US11241307B2 (en) 2016-10-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve with diaphragm
CN113215721B (zh) 2016-10-14 2023-02-17 因赛普特斯医学有限责任公司 编织机器和使用方法
EP3311774B1 (en) * 2016-10-19 2022-05-11 P+F Products + Features Vertriebs GmbH Self-expandable atrioventricular valve and system of cardiac valves
WO2018081490A1 (en) 2016-10-28 2018-05-03 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US9999502B2 (en) 2016-11-04 2018-06-19 Highlife Sas Transcather valve prosthesis
CN108295359B (zh) * 2016-12-30 2021-05-07 先健科技(深圳)有限公司 载药器械及其制备方法
WO2018131042A1 (en) * 2017-01-11 2018-07-19 Mitrassist Medical Ltd. Heart valve prosthesis
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
CA3051272C (en) 2017-01-23 2023-08-22 Cephea Valve Technologies, Inc. Replacement mitral valves
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
US10376267B2 (en) 2017-02-24 2019-08-13 Inceptus Medical, Llc Vascular occlusion devices and methods
WO2018160790A1 (en) 2017-03-03 2018-09-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
CN110678149B (zh) 2017-03-27 2021-12-21 楚利福医疗有限公司 包括对接元件的用于治疗病变二尖瓣的设备
WO2018178967A1 (en) * 2017-03-27 2018-10-04 Truleaf Medical Ltd. Invertible valve support frame for use with prosthetic heart valve apparatus
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10856980B2 (en) * 2017-05-08 2020-12-08 Medtronic Vascular, Inc. Prosthetic valve delivery system and method
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019010321A1 (en) 2017-07-06 2019-01-10 Edwards Lifesciences Corporation HAND RAIL INSTALLATION SYSTEM
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. MEDICAL IMPLANT LOCKING MECHANISM
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
CN107496055B (zh) * 2017-08-10 2021-06-08 上海微创心通医疗科技有限公司 心脏瓣膜输送导管及输送系统
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US10973629B2 (en) * 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11304806B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility
US11885051B2 (en) 2017-10-14 2024-01-30 Inceptus Medical, Llc Braiding machine and methods of use
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
WO2019144069A2 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019147846A2 (en) 2018-01-25 2019-08-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11051934B2 (en) * 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
US11234812B2 (en) 2018-04-18 2022-02-01 St. Jude Medical, Cardiology Division, Inc. Methods for surgical valve expansion
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
WO2019224577A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
WO2019241477A1 (en) 2018-06-13 2019-12-19 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
EP3852679A1 (en) 2018-09-20 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
US11395738B2 (en) 2018-09-25 2022-07-26 Truleaf Medical Ltd. Docking elements
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
WO2020123267A1 (en) 2018-12-10 2020-06-18 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
WO2020139542A1 (en) 2018-12-26 2020-07-02 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
US11723783B2 (en) 2019-01-23 2023-08-15 Neovasc Medical Ltd. Covered flow modifying apparatus
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
EP4003230A1 (en) 2019-07-31 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Alternate stent caf design for tavr
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
CN111658253B (zh) * 2020-06-16 2023-08-29 西安交通大学医学院第一附属医院 一种心血管支架输送器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551302B1 (en) * 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6669719B2 (en) * 1996-12-09 2003-12-30 Microtherapeutics, Inc. Intracranial stent and method of use
CN101031258A (zh) * 2004-09-07 2007-09-05 彼鲁兹实验室公司 瓣膜假体
CN101128168A (zh) * 2005-01-20 2008-02-20 弗劳恩霍弗实用研究促进协会 用于穿过血管而植入心脏瓣膜假体的导管
CN101426452A (zh) * 2006-02-27 2009-05-06 奥尔特克斯公司 用于传送心脏瓣膜假体和其它假体的方法和装置

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477864A (en) 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
JP2000037403A (ja) 1998-07-24 2000-02-08 Getz Brothers:Kk 人工心臓弁
US6398758B1 (en) * 1999-02-16 2002-06-04 Stephen C. Jacobsen Medicament delivery system
US6790229B1 (en) * 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US7195641B2 (en) * 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20030009213A1 (en) * 2000-03-13 2003-01-09 Jun Yang Stent having cover with drug delivery capability
DE10121210B4 (de) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Verankerungselement zur intraluminalen Verankerung eines Herzklappenersatzes und Verfahren zu seiner Herstellung
DE10217559B4 (de) 2002-04-19 2004-02-19 Universitätsklinikum Freiburg Vorrichtung zur minimalinvasiven, intravasalen Aortenklappenextraktion
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7217287B2 (en) 2002-08-28 2007-05-15 Heart Leaflet Technologies, Inc. Method of treating diseased valve
DE10302447B4 (de) 2003-01-21 2007-12-06 pfm Produkte für die Medizin AG Okklusionseinrichtung, Platziersystem, Set aus einem derartigen Platziersystem und einer derartigen Okklusionseinrichtung sowie Verfahren zur Herstellung einer Okklusionseinrichtung
CA2533353A1 (en) * 2003-07-21 2005-02-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8840663B2 (en) * 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
DE102004013012B3 (de) 2004-03-16 2005-06-16 Universitätsklinikum Schleswig-Holstein Balkonkatheter
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
ES2407684T3 (es) * 2004-05-05 2013-06-13 Direct Flow Medical, Inc. Válvula cardiaca sin estent con estructura de soporte formada en el sitio
US8287583B2 (en) 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
JP5208517B2 (ja) 2005-01-10 2013-06-12 タヘリ ラドュカ エルエルシー 血管移植物およびその製造方法
ES2558534T3 (es) 2005-02-18 2016-02-05 The Cleveland Clinic Foundation Aparato para sustituir una válvula cardíaca
WO2006113906A1 (en) 2005-04-20 2006-10-26 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US7780723B2 (en) * 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
WO2007013999A2 (en) * 2005-07-21 2007-02-01 Florida International University Collapsible heart valve with polymer leaflets
US20080188928A1 (en) * 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
DE102005052628B4 (de) * 2005-11-04 2014-06-05 Jenavalve Technology Inc. Selbstexpandierendes, flexibles Drahtgeflecht mit integrierter Klappenprothese für den transvaskulären Herzklappenersatz und ein System mit einer solchen Vorrichtung und einem Einführkatheter
WO2007054015A1 (en) 2005-11-09 2007-05-18 Ning Wen An artificial heart valve stent and weaving method thereof
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
WO2007081820A1 (en) * 2006-01-09 2007-07-19 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
EP2583640B1 (en) 2006-02-16 2022-06-22 Venus MedTech (HangZhou), Inc. Minimally invasive replacement heart valve
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US20070244544A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Seal for Enhanced Stented Valve Fixation
CA2657446A1 (en) 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
WO2008031103A2 (en) * 2006-09-08 2008-03-13 Edwards Lifesciences Corporation Integrated heart valve delivery system
DE102006052564B3 (de) 2006-11-06 2007-12-13 Georg Lutter Mitralklappenstent
DE102007005992A1 (de) 2007-02-07 2008-08-28 Georg Lutter Katheter für die Herzklappenvalvuloplastie, -resektion und konsekutiver Implantation eines Herzklappenstents
EP2129333B1 (en) * 2007-02-16 2019-04-03 Medtronic, Inc Replacement prosthetic heart valves
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
CN101091675B (zh) * 2007-07-19 2010-06-16 中国人民解放军第二军医大学 双盘状带人工瓣膜房室瓣支架
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8323336B2 (en) 2008-04-23 2012-12-04 Medtronic, Inc. Prosthetic heart valve devices and methods of valve replacement
JP5685183B2 (ja) * 2008-04-23 2015-03-18 メドトロニック,インコーポレイテッド ステント付き心臓弁装置
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
AU2010236288A1 (en) * 2009-04-15 2011-10-20 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
NZ624106A (en) 2009-04-29 2015-12-24 Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
AU2010315030B2 (en) 2009-11-05 2016-03-10 The Trustees Of The University Of Pennsylvania Valve prosthesis
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669719B2 (en) * 1996-12-09 2003-12-30 Microtherapeutics, Inc. Intracranial stent and method of use
US6551302B1 (en) * 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
CN101031258A (zh) * 2004-09-07 2007-09-05 彼鲁兹实验室公司 瓣膜假体
CN101128168A (zh) * 2005-01-20 2008-02-20 弗劳恩霍弗实用研究促进协会 用于穿过血管而植入心脏瓣膜假体的导管
CN101426452A (zh) * 2006-02-27 2009-05-06 奥尔特克斯公司 用于传送心脏瓣膜假体和其它假体的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697418A (zh) * 2015-11-02 2018-10-23 马里兰大学巴尔的摩分校 用于二尖瓣瓣膜修复的远侧锚固设备和方法

Also Published As

Publication number Publication date
AU2016203213A1 (en) 2016-06-09
AU2018202664A1 (en) 2018-05-10
CA3050297A1 (en) 2011-05-12
US20220354641A1 (en) 2022-11-10
AU2020202791B2 (en) 2022-02-10
JP7122078B2 (ja) 2022-08-19
EP2496182B1 (en) 2023-06-21
JP2022169607A (ja) 2022-11-09
JP2017060777A (ja) 2017-03-30
AU2010315030B2 (en) 2016-03-10
US11864993B2 (en) 2024-01-09
CN102665612A (zh) 2012-09-12
EP4257083A2 (en) 2023-10-11
US20230248517A1 (en) 2023-08-10
JP2013509961A (ja) 2013-03-21
US20160151154A1 (en) 2016-06-02
AU2010315030A1 (en) 2012-06-07
JP2015119993A (ja) 2015-07-02
AU2018202664B2 (en) 2020-01-30
EP2496182A4 (en) 2016-05-04
US9289291B2 (en) 2016-03-22
CA2779393A1 (en) 2011-05-12
AU2016203213B2 (en) 2018-01-18
US20240024103A1 (en) 2024-01-25
US20120303116A1 (en) 2012-11-29
US20200046495A1 (en) 2020-02-13
AU2022203110A1 (en) 2022-05-26
US20160199182A1 (en) 2016-07-14
JP6460563B2 (ja) 2019-01-30
US20170143485A1 (en) 2017-05-25
JP6748173B2 (ja) 2020-08-26
JP2019048095A (ja) 2019-03-28
CA2779393C (en) 2020-06-09
WO2011057087A8 (en) 2011-06-23
JP6023232B2 (ja) 2016-11-09
EP4257083A3 (en) 2024-01-17
JP2020189131A (ja) 2020-11-26
JP2020189132A (ja) 2020-11-26
AU2020202791A1 (en) 2020-05-21
EP2496182A1 (en) 2012-09-12
JP7122077B2 (ja) 2022-08-19
WO2011057087A1 (en) 2011-05-12
US11628060B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
CN102665612B (zh) 瓣膜假体
JP7155183B2 (ja) 天然心臓弁を置換するためのシステム
EP2994072B1 (en) Heart valve assistive prosthesis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant