CN102653399B - 向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法 - Google Patents

向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法 Download PDF

Info

Publication number
CN102653399B
CN102653399B CN2012101523163A CN201210152316A CN102653399B CN 102653399 B CN102653399 B CN 102653399B CN 2012101523163 A CN2012101523163 A CN 2012101523163A CN 201210152316 A CN201210152316 A CN 201210152316A CN 102653399 B CN102653399 B CN 102653399B
Authority
CN
China
Prior art keywords
sic
film
growth
temperature
print
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012101523163A
Other languages
English (en)
Other versions
CN102653399A (zh
Inventor
郭辉
张克基
张玉明
张凤祁
赵艳黎
雷天民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2012101523163A priority Critical patent/CN102653399B/zh
Publication of CN102653399A publication Critical patent/CN102653399A/zh
Application granted granted Critical
Publication of CN102653399B publication Critical patent/CN102653399B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,主要解决现有技术中制备的石墨烯表面不光滑、连续性不好,且制作器件时由于光刻工艺使石墨烯的电子迁移率降低的问题。其制作过程为:(1)在Si衬底基片上先生长一层碳化层作为过渡;(2)在温度为1100℃-1250℃,气源为C3H8和SiH4下异质外延生长3C-SiC薄膜;(3)在3C-SiC薄膜上选取注入区,并注入Si离子;(4)将3C-SiC薄膜样片置于外延炉中,加热至1200-1300℃,恒温时间为30-90min,使注入区的3C-SiC热解生成碳膜;(5)将生成的碳膜样片置于Cu膜上,并将它们一同置于Ar气中,在温度为900-1200℃下退火10-20min生成石墨烯纳米带。本发明成本低,安全性高,注入区的3C-SiC热解温度降低,且生成的石墨烯纳米带表面光滑,连续性好,可用于制作微电子器件。

Description

向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法
技术领域
本发明属于微电子技术领域,涉及一种半导体薄膜材料及其制备方法,具体地说是向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法。
技术背景
石墨烯作为一种零带隙的半金属材料,不仅具有高的载流子迁移率(104~105cm2/V·s)和高载流子浓度(1013/cm2),及室温下亚微米尺度的无散射传输特性和电场调制载流子特性,而且具有超高频率的响应特性并能够在室温下稳定存在,这些特性都为未来石墨烯在微电子器件中的应用奠定了基础。
目前石墨烯的制备方法主要有以下两种:
1.化学气相沉积法是应用最广泛的一种大规模工业化的制备半导体薄膜材料的方法,现在也成了制备石墨烯的一条重要途径。这种方法主要利用高温条件下(~1000℃),气态的碳氢化合物在过渡金属(如Ru、Ni、Cu等)单晶、多晶或非晶薄膜表面催化分解后碳原子溶解到金属内,然后在快速降温过程中由于低温碳在金属内溶解度的减小而偏析到样品表面形成石墨烯。此方法最大的缺点在于获得的片层与衬底相互作用强,丧失了许多单层石墨烯的性质,而且石墨烯的连续性不是很好。
2.热分解SiC法:将单晶SiC加热以通过使表面上的SiC分解而除去Si,随后残留的碳形成石墨烯。然而,SiC热分解时温度较高,且单晶SiC非常昂贵,并且生长出来的石墨烯呈岛状分布,孔隙多,用这种石墨烯材料制作器件时由于光刻,干法刻蚀等会使石墨烯的电子迁移率降低,从而影响了器件性能。
发明内容
本发明的目的在于避免上述现有技术的不足,提出一种向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,以提高表面光滑度和连续性、减少成本,并免除在后续制造器件过程中要对石墨烯进行刻蚀的工艺过程,保证石墨烯的电子迁移率稳定,提高器件性能。
为实现上述目的,本发明的制备方法包括以下步骤:
(1)对4-12英寸的Si衬底基片进行标准清洗;
(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
(3)在H2保护的情况下,使反应室逐步升温至碳化温度900℃-1100℃,再通入流量为40ml/min的C3H8,对Si衬底进行碳化3-8min,生长一层碳化层;
(4)使反应室迅速升温至生长温度1100℃-1250℃,并通入C3H8和SiH4气体,进行3C-SiC薄膜异质外延生长,生长时间为35-70min,然后在H2的保护下逐步降温至室温,完成3C-SiC薄膜的生长;
(5)在生长好的3C-SiC薄膜样片上的指定区域注入能量为15-30keV,剂量为5×1014~5×1017cm-2的Si离子;
(6)将注入Si离子后的3C-SiC薄膜样片放入压强为0.5~1×10-6Torr的外延炉中,并向其中通入Ar气,再加热至1200-1300℃,保持恒温时间为30-90min,使指定区域的3C-SiC热解生成碳膜;
(7)将生成的碳膜样片置于Cu膜上,再将它们一同置于Ar气气氛中,在温度为900-1200℃下退火10-20分钟,使碳膜依附在Cu膜上重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Cu膜。
本发明与现有技术相比具有如下优点:
1.本发明由于在3C-SiC样片上选取与所需要制作的器件的衬底形状相同的区域注入Si离子,使得此区域的3C-SiC热解温度降低,从而制备出石墨烯纳米带,在此石墨烯纳米带上制作器件时无需对石墨烯进行刻蚀,因而石墨烯中的电子迁移率不会降低,保证了制作的器件性能。
2.本发明由于利用在Cu膜上退火,因而生成的碳膜更容易重构形成连续性较好,表面光滑的石墨烯纳米带,并且Cu膜取材方便。
3.本发明由于在生长3C-SiC时先在Si衬底上成长一层碳化层作为过渡,然后再生长3C-SiC,因而生长的3C-SiC质量高。
4.本发明由于3C-SiC可异质外延生长在Si圆片上,因而生长成本低。
附图说明
图1是本发明制备石墨烯的流程图。
具体实施方式
参照图1,本发明的制作方法给出如下三种实施例。
实施例1
步骤1:去除样品表面污染物。
对4英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤2:将Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别。
步骤3:生长碳化层。
在H2保护的情况下将反应室温度升至碳化温度900℃,然后向反应室通入流量为40ml/min的C3H8,在Si衬底上生长一层碳化层,生长时间为8min。
步骤4:在碳化层上生长3C-SiC薄膜。
将反应室温度迅速升至生长温度1100℃,通入流量分别为15ml/min和30ml/min的SiH4和C3H8,进行3C-SiC薄膜异质外延生长,生长时间为70min;然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长。
步骤5:对3C-SiC薄膜样片的指定区域进行Si离子注入。
在生长好的3C-SiC薄膜样片上选取与所需要制作的器件的衬底形状相同的区域作为注入区,然后在此注入区中注入能量为15keV,剂量为5×1014cm-2的Si离子。
步骤6:3C-SiC热解生成碳膜。
将注入Si离子后的3C-SiC薄膜样片放入压强为0.5×10-6Torr的外延炉中,并向其中通入气流速为500ml/min的Ar气,再加热至1200℃,保持恒温时间为90min,使注入区的3C-SiC热解生成碳膜。
步骤7:碳膜重构成石墨烯纳米带。
(7.1)将生成的碳膜样片从外延炉中取出,将其置于250nm厚的Cu膜上;
(7.2)将碳膜样片和Cu膜整体置于流速为30ml/min的Ar气中,在温度为900℃下退火20分钟,使碳膜重构成石墨烯纳米带;
(7.3)将Cu膜从石墨烯纳米带样片上取开,获得石墨烯纳米带样片。
实施例2
步骤一:去除样品表面污染物。
对8英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤二:与实施例1的步骤2相同。
步骤三:生长碳化层。
在H2保护的情况下将反应室温度升至碳化温度1000℃,然后向反应室通入流量为40ml/min的C3H8,在Si衬底上生长一层碳化层,生长时间为6min。
步骤四:在碳化层上生长3C-SiC薄膜。
将反应室温度迅速升至生长温度1150℃,通入流量分别为30ml/min和60ml/min的SiH4和C3H8,进行3C-SiC薄膜异质外延生长,生长时间为45min;然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长。
步骤五:对3C-SiC薄膜样片的指定区域进行Si离子注入。
在生长好的3C-SiC薄膜样片上选取与所需要制作的器件的衬底形状相同的区域作为注入区,然后在此注入区中注入能量为25keV,剂量为5×1015cm-2的Si离子。
步骤六:3C-SiC热解生成碳膜。
将注入Si离子后的3C-SiC薄膜样片放入压强为0.8×10-6Torr的外延炉中,并向其中通入气流速为600ml/min的Ar气,再加热至1250℃,保持恒温时间为60min,使注入区的3C-SiC热解生成碳膜。
步骤七:碳膜重构成石墨烯纳米带。
将生成的碳膜样片从外延炉中取出并置于280nm厚的Cu膜上,再将它们一同置于流速为100ml/min的Ar气气氛中,在温度为1000℃下退火15分钟,使碳膜重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Cu膜,获得石墨烯纳米带样片。
实施例3
步骤A:对12英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤B:与实施例1的步骤2相同。
步骤C:在H2保护的情况下将反应室温度升至碳化温度1100℃,然后向反应室通入流量为40ml/min的C3H8,持续3min,以在Si衬底上生长一层碳化层。
步骤D:将反应室温度迅速升至生长温度1250℃,通入流量分别为35ml/min和70ml/min的SiH4和C3H8,进行3C-SiC薄膜异质外延生长35min;然后在H2保护下逐步降温至室温。
步骤E:在生长好的3C-SiC薄膜样片上选取与所需要制作的器件的衬底形状相同的区域作为注入区,然后在此注入区中注入能量为30keV,剂量为5×1017cm-2的Si离子。
步骤F:将注入Si离子后的3C-SiC薄膜样片放入压强为1×10-6Torr的外延炉中,并向其中通入流速为800ml/min Ar气,再加热至1300℃,保持恒温时间为30min,使注入区的3C-SiC热解生成碳膜。
步骤G:将生成的碳膜样片从外延炉中取出并置于300nm厚的Cu膜上,再将它们一同置于流速为150ml/min的Ar气气氛中,在温度为1200℃下退火10分钟,使碳膜重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Cu膜,获得石墨烯纳米带样片。

Claims (5)

1.一种向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,包括以下步骤:
(1)对4-12英寸的Si衬底基片进行标准清洗;
(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
(3)在H2保护的情况下,使反应室逐步升温至碳化温度900℃-1100℃,再通入流量为40ml/min的C3H8,对Si衬底进行碳化3-8min,生长一层碳化层;
(4)使反应室迅速升温至生长温度1100℃-1250℃,并通入C3H8和SiH4气体,进行3C-SiC薄膜异质外延生长,生长时间为35-70min,然后在H2的保护下逐步降温至室温,完成3C-SiC薄膜的生长;
(5)在生长好的3C-SiC薄膜样片上的指定区域注入能量为15-30keV,剂量为5×1014~5×1017cm-2的Si离子;
(6)将注入Si离子后的3C-SiC薄膜样片放入压强为0.5~1×10-6Torr的外延炉中,并向其中通入Ar气,再加热至1200-1300℃,保持恒温时间为30-90min,使指定区域的3C-SiC热解生成碳膜;
(7)将生成的碳膜样片置于Cu膜上,再将它们一同置于Ar气气氛中,在温度为900-1200℃下退火10-20分钟,使碳膜依附在Cu膜上重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Cu膜,
所述的指定区域是指:3C-SiC样片上与所需要制作的器件的衬底形状相同的区域。
2.根据权利要求1所述的向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,其特征在于步骤(4)所述的通入SiH4和C3H8气体,其流量分别为15-35ml/min和30-70ml/min。
3.根据权利要求1所述的向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,其特征在于所述步骤(6)中Ar气流速为500-800ml/min。
4.根据权利要求1所述的向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,其特征在于所述步骤(7)退火时Ar气的流速为30-150ml/min。
5.根据权利要求1所述的向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法,其特征在于所述步骤(7)中的Cu膜厚度为250-300nm。
CN2012101523163A 2012-05-16 2012-05-16 向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法 Expired - Fee Related CN102653399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101523163A CN102653399B (zh) 2012-05-16 2012-05-16 向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101523163A CN102653399B (zh) 2012-05-16 2012-05-16 向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法

Publications (2)

Publication Number Publication Date
CN102653399A CN102653399A (zh) 2012-09-05
CN102653399B true CN102653399B (zh) 2013-09-25

Family

ID=46729150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101523163A Expired - Fee Related CN102653399B (zh) 2012-05-16 2012-05-16 向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法

Country Status (1)

Country Link
CN (1) CN102653399B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201431902A (zh) * 2012-11-16 2014-08-16 巴斯夫歐洲公司 用以生產石墨烯奈米帶之聚合前驅物,以及適用於製備彼等之寡伸苯基單體
CN108706588B (zh) * 2018-07-03 2022-02-22 宁波工程学院 一种大宽厚比N掺杂SiC纳米带及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137066B2 (ja) * 2007-09-10 2013-02-06 国立大学法人福井大学 グラフェンシートの製造方法
WO2010122928A1 (ja) * 2009-04-25 2010-10-28 国立大学法人九州工業大学 グラフェン膜の作製方法
CN101602503B (zh) * 2009-07-20 2011-04-27 西安电子科技大学 4H-SiC硅面外延生长石墨烯的方法
US8142754B2 (en) * 2010-03-12 2012-03-27 The Regents Of The University Of California Method for synthesis of high quality graphene

Also Published As

Publication number Publication date
CN102653399A (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
CN102486993B (zh) 一种掺杂石墨烯的制备方法及其用途
CN106711022B (zh) 一种生长掺杂界面清晰的碳化硅外延薄膜的制备方法
CN103280398B (zh) 一种制备横向石墨烯pn结的方法
US20140256120A1 (en) Process for Preparing Graphene Based on Metal Film-Assisted Annealing and the Reaction with Cl2
CN108538707B (zh) 一种二维黑磷晶体制备方法
CN104867818B (zh) 一种减少碳化硅外延材料缺陷的方法
CN103928340A (zh) 一种直接生长二维的二硫化钼背栅器件的方法
CN105140102A (zh) 一种优化的在硅衬底上外延生长β-碳化硅薄膜的方法
CN107946180A (zh) 一种在碳化硅基片上快速生长氧化层的方法
CN111717911B (zh) 一种石墨烯薄膜的制备方法
CN102653399B (zh) 向3C-SiC注入硅的铜膜退火石墨烯纳米带制备方法
CN106169497B (zh) 碳化硅基板以及碳化硅基板的制造方法
CN102653400B (zh) 向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法
CN108046246B (zh) 一种工艺气体辅助的石墨烯薄膜生长方法
CN102505140A (zh) 基于Ni膜辅助退火的石墨烯制备方法
US20190115214A1 (en) Semiconductor device and method for forming p-type conductive channel in diamond using abrupt heterojunction
CN102674319B (zh) 基于C注入的Ni膜辅助退火石墨烯纳米带制备方法
CN108046247A (zh) 提高碳化硅热解石墨烯薄层数均匀性的方法
CN102674317B (zh) 基于C注入的Ni膜辅助SiC衬底石墨烯纳米带制备方法
CN102674318B (zh) 基于C注入的Cu膜辅助退火石墨烯纳米带制备方法
CN108183064B (zh) 碳化硅热解制备石墨烯的衬底可控台阶形貌预处理方法
CN102674320A (zh) 基于C注入的Cu膜辅助SiC衬底石墨烯纳米带制备方法
JP2005317670A (ja) (100)配向した立方晶炭化珪素結晶膜の作製方法
CN103943510B (zh) 一种氮掺杂SiC基底的外延石墨烯背栅晶体管的制备方法
CN108217636B (zh) 一种工艺气体辅助的石墨烯氢插入层生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130925

Termination date: 20190516

CF01 Termination of patent right due to non-payment of annual fee