CN102639552A - 含有O-缩醛乙酰丙基酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用 - Google Patents

含有O-缩醛乙酰丙基酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用 Download PDF

Info

Publication number
CN102639552A
CN102639552A CN200980144324XA CN200980144324A CN102639552A CN 102639552 A CN102639552 A CN 102639552A CN 200980144324X A CN200980144324X A CN 200980144324XA CN 200980144324 A CN200980144324 A CN 200980144324A CN 102639552 A CN102639552 A CN 102639552A
Authority
CN
China
Prior art keywords
rna
group
protection base
ale
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980144324XA
Other languages
English (en)
Other versions
CN102639552B (zh
Inventor
M·达姆哈
J·拉基
D·米特拉
M·威肯斯
F·塞里安
M·索摩查
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Royal Institution for the Advancement of Learning
Wisconsin Alumni Research Foundation
Original Assignee
Royal Institution for the Advancement of Learning
Wisconsin Alumni Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Royal Institution for the Advancement of Learning, Wisconsin Alumni Research Foundation filed Critical Royal Institution for the Advancement of Learning
Publication of CN102639552A publication Critical patent/CN102639552A/zh
Application granted granted Critical
Publication of CN102639552B publication Critical patent/CN102639552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及在核糖的2’和/或5’羟基官能团上含有O-缩醛乙酰丙基酯基团的RNA单体。所述的单体可以包括于寡聚核糖核苷酸或者RNA聚核苷酸中。此外,本发明涉及合成所述的RNA单体、寡聚核糖核苷酸以及RNA聚核苷酸的方法,以及其脱保护的方法,以及所述化合物和包括所述化合物的组合物的使用方法。具体地,该化合物和包括其的组合物用于RNA微阵列的光导向合成的方法中。

Description

含有O-缩醛乙酰丙基酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用
相关申请
本申请要求2008年9月5日提交的美国临时专利申请第61/094,525号和2009年5月27日提交的美国临时专利申请第61/181,562号的优先权,以上两者均以引用方式并入本文。
政府利益
本发明是在美国政府的支持下,在由NIH颁发的基金号为HG002375的基金支持下完成的。在本发明中美国政府具有某些权利。
发明领域
本发明提供了固定的寡核苷酸探针的阵列,其用于分析生物学感兴趣的分子间相互作用,因此本发明涉及由分子间相互作用的性质影响的多个领域,包括化学、生物、医药和医学诊断。
背景
微阵列技术由于其在诸如基因表达和基因分型(Ramsay,1998,NatureBiotechnology 16:40-44;美国专利第5,837,832号)等广泛的应用中提供了前所未有的核酸信息,因此在生物研究中容易使用。由于对RNAi和RNA适体的应用的兴趣增加,与DNA一样,RNA微阵列作为组合工具也出现了。此种微阵列的制备已经从将cDNA点到滤纸上演变为更加先进的方法,例如采用具有掩模版或微镜阵列的光刻技术。尽管可以通过固定或点样预先合成寡核苷酸来制备微阵列,但由于DNA微阵列的原位合成以高效和有成本效益的方式提供了无比的芯片的复杂度,因此DNA微阵列的原位合成已经成为优选的技术。然而,与DNA不同,RNA微阵列的构建因其在原位合成的挑战性要大得多,因此限于点样。此外,RNA更容易受到酶水解和化学水解。
通常,与DNA不同,由于RNA中存在的独特的2′-羟基,因此合成RNA寡核苷酸是有挑战的。在寡核苷酸合成过程中为了阻止磷酸二酯键的异构化或降解和允许有效的单体偶联,必须适当地保护2′-羟基(Reese,2005,Org.Biomol.Chem.3:3851-3868)。迄今为止,已经有多次尝试设计出体现构建高品质寡核糖核苷酸所需的条件的保护基。最广泛使用的2′-保护基是由Ogilvie等人,1974,Tetrahedron Lett.15:2861-2867在寡核苷酸区域引进的2′-O-叔丁基二甲基硅烷基(TBDMS)。该保护基在RNA链装配结束时通过氟离子去除。其他甲硅烷基保护基例如2′-O-TOM(2′-O-三异丙基硅氧甲基)已在RNA合成中使用(Pitsch等人,1999,HeIv.Chim.Acta82:1753-1761)。替代的保护基是光不稳定的基团2′-(2-硝基苯基)乙氧羰基、2′-(2-硝基苯基)乙基磺酰基和2′-O-(O-硝基苄基)取代基;和酸不稳定缩醛例如2′-四氢吡喃基、2′-O-Fpmp(1-(2-氟苯基)-4-甲氧基哌啶-4-基)、2′-O-Cpep(1-(4-氯苯基)-4-乙氧基哌啶-4-基)、2′-O-4-MABOM(2′-O-[4-(N-甲氨基)苄氧基]甲基和2′-ACE(2′-O-双(2-乙酰氧基乙氧基)甲基)。Javier等人,2003,Tetrahedron 14:3533-3540描述了3′-和5′-O-乙酰丙基-2′-脱氧-和2′-O-烷基核糖核苷的合成。通过亚磷酰胺法(Iwai和Ohtsuka,1988,Nucleic Acids Res.16:9443-9456)已经将乙酰丙基基团用于保护在寡核糖核苷酸的合成中的5′-羟基。在各种情况下,寡核糖核苷酸的合成是精细的多步骤过程,其引起寡核苷酸链的装配、核苷碱基碱不稳定的保护基的去保护、从载体上裂解,接着是2′-羟基保护基的去除。
目前,文献中缺乏对RNA微阵列制备的报道。通常,RNA微阵列通过固定预先合成的天然形式的RNA链来合成,其需要修饰RNA(即硫醇、生物素或氨基终止的末端)的成本较高的合成和纯化,进而限制芯片的复杂度。另外,因为RNA寡核苷酸处于去保护形式,因此这种方法使RNA寡核苷酸容易发生RNA的降解。替代的策略采用表面RNA-DNA连接化学由5′-磷酸盐修饰的DNA微阵列生成RNA微阵列。该策略涉及可靠性和复杂度限制的昂贵的和复杂的过程。在文献中没有关于RNA微阵列的原位合成的例子。
RNA干扰(RNAi)疗法代表治疗人类疾病的根本性的新途径(Manoharan,2004,Curr.Opin.Chem.Bioi.8:570-579)。然而,在RNAi技术的开发中,获得目标组织和细胞内释放、在体内的稳定性和有成本效益的大规模的RNA合成是显著的瓶颈。
迫切需要开发合成策略,允许保持附着在固体聚合物载体上或者附着在玻璃或芯片的表面的RNA链的增长和去保护。本发明讨论了这些合成策略和相关的需要。
概述
提供了RNA单体和能够与这些单体一起使用的保护基。特别地,提供了新的用于核糖核苷的2′-羟基的2′-O-缩醛乙酰丙基酯(acetal levulinylester)(本文也指ALE或2′-ALE)保护基。
一般来说,本发明的方法涉及形成和/或提供合成的RNA分子,其中RNA分子具有至少两个保护基,并且其中保护基中的至少一个是2′-O-ALE保护基。合成的RNA分子可以包含另外的保护基,这些另外的保护基包括:具有保护基的核苷碱基、2′-羟基保护基、磷保护基,以及它们的组合。在本发明的优选实施方案中,RNA单体具有两个或多个保护基。所述保护基的一个或多个可以通过与光的相互作用去保护。特别地,对本发明的实践有用的是含有光不稳定的5′-2-(2-硝基苯基)丙氧羰基(NPPOC)和碱不稳定的2′-O-缩醛-乙酰丙基酯(ALE)保护基的核糖核苷酸。
本发明的RNA单体和保护基可以用于在固体基质上RNA分子的原位合成。还提供了用于无掩模光导向的RNA微阵列的原位合成的组合物和方法。在优选的实施方案中,RNA链的去保护发生在当使寡聚物附着在固体基质上例如附着在微阵列表面时。提供了这些RNA微阵列的各种应用。
附图的简要说明
图1示出了采用无掩模的阵列合成器(MAS)RNA微阵列的光导向合成的示意图。
图2示出了RNA微阵列的光导向合成的示意图的一个实施方案,其中3个单体的寡核苷酸AUC在固体基质上原位合成。
图3示出了RNA微阵列的光导向合成的示意图的另一个实施方案:A*,将第一个单体通过活化剂进行偶联;B,通过乙酰化作用将未反应的5′-OH加帽;C,亚磷酸三酯氧化为更加稳定的磷酸酯;D,用掩模显示的365nm光的去保护;E,重复n+1个循环导致寡聚物的合成;F,在碱性条件下保护基的去保护。
图4显示了采用2′-TOM、2′-TBDMS和2′-ALE,1分钟偶联时间合成的粗制的反义siRNA链的(A)24%变性(8.3M尿素)PAGE分析和(B)阴离子交换HPLC。
图5显示了由2′-O-TBDMS、2′-O-TOM和2′-O-ACE和2′-O-ALE化学合成的粗制的反义siRNA链的阴离子交换HPLC示踪。来自2′-O-ALE化学的纯化的寡聚物标记为“ALE纯”(“ALE pure”)。
图6显示了由(A)2′-O-TOM、(B)2′-O-TBDMS、(C)2′-O-ALE和(D)2′-O-ACE单体合成的RNA链的质谱数据。
图7显示了由siRNA双链体下调的荧光素酶基因(光单位与荧光素对照成比例)。完全去保护的反义链通过TBDMS、TOM、ACE和ALE化学合成,而siRNA双链体的互补有义链通过TBDMS化学合成。
图8显示了阐明偶联时间-Cy3末端标记的图像(A)和图形(B):A,在1、2、5和10分钟时(泳道1-4)时rU偶联的荧光图像;B,rU亚磷酰胺14a的偶联时间的图示。
图9显示了阐明rU20,0-15J的曝光梯度的图像(A)和图形(B):A,rU20:dA20-Cy5的Cy5发射扫描;B,曝光梯度的图示。
图10显示了阐明在30mM浓度下rU20,0-15J.rU偶联时间1分钟的暴露梯度的图像(A)和图形(B):A,rU20:dA20-Cy5的Cy5的发射扫描;B,曝光梯度的图示。
图11证明了rU和rA微阵列的偶联和杂交。A.通过12个偶联步骤和5′-端Cy3标记,rU微阵列与零(空白)的偶联效率。每个偶联步骤特征包括具有相同数量的偶联但无末端标记的相邻区域以及一个偶联参照。强度数据与单指数拟合以获得表8中rU的平均偶联效率。B.与Cy5标记的dA20杂交的A中的相同微阵列。C.与rA偶联等效的微阵列。D.与Cy5标记的dA20杂交的rA芯片。
图12显示了在暴露于RNA酶A之前(左)和之后RNA酶A底物微阵列的扫描仪图像。每个RNA酶A底物按照表10中的方案标记并与对照底物相邻,且在核苷酸序列中用胸腺嘧啶替代尿嘧啶。
图13显示了在暴露于稀释的RNA酶A溶液之后的各个间隔,以对照DNA序列标准化的来自表10中4个RNA酶A底物的荧光发射强度的曲线图。
优选实施方式的详述
本发明一般涉及生物学领域,具体涉及采用阵列分析核酸的技术。本发明提供了在固体基质上原位合成RNA的组合物和方法。在一些实施方案中,本发明提供了用于合成RNA(微)阵列或RNA芯片形式的寡核糖核苷酸探针的阵列的新的组合物和方法。
一般来说,以下描述的术语和实验室步骤是公知的,通常在本领域中使用。DNA和RNA的分离、纯化、扩增和克隆采用标准技术。涉及DNA连接酶、DNA聚合酶、限制性核酸内切酶等的酶反应一般按照制造商的说明书进行。这些技术和各种其他技术一般按照以下的进行:Sambrook等人,1989,Molecular Cloning-A Laboratory Manual,Cold Spring HarborLaboratory Press,Cold Spring Harbor,NY;Ausubel等人,1993,CurrentProtocols in Molecular Biology,第1-3卷,John Wiley & Sons,Inc.,NewYork,NY;和Kriegler,1990,Gene Transfer and Expression:A LaboratoryManual,Stockton Press,New York,NY,其各个以引用方式将其整体并入本文。Gesteland等人,2006,The RNA World,第三版,Cold Spring HarborLaboratory Press,Cold Spring Harbor,NY和Sonenberg等人,2000,Translational Control of Gene Expression,Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,NY公开了通常RNA、RNA控制和RNA相互作用的重要性,其两者均以引用方式并入本文。
在美国专利第5,672,695号(″Modified ribozymes″)、美国专利第5,861,501号和第6,111,095号(″Capped synthetic RNA,analogs,andaptamers″)、美国专利第6,222,030 B1号(″Solid phase synthesis ofoligonucleotides using carbonate protecting groups and alpha-effectnucleophile deprotection″)、美国专利第6,295,153 B1号(″Method andapparatus for synthesis of arrays of DNA probes″)、美国专利第6,426,184 B1号(″Method and apparatus for chemical and biochemical reactions usingphoto-generated reagents)和美国专利申请公开第2007/0100136 A1号(″Monomer compositions for the synthesis of RNA,methods of synthesis,andmethods of deprotection″)中公开了本发明的与实践有关的各个方面。以上其全部都以引用方式并入本文。Beaucage,2008,Curr.Opin.Drug Discov.Devel.11:203-261在综述中概述了RNA合成的最新进展。
“核苷酸”和“核苷酸部分”是指可以包括但不限于磷酸基、糖基和含氮碱基的核酸(RNA、DNA或其类似物)的亚基,以及此种亚基的类似物。其他基团(例如保护基)可以附着在糖基和含氮碱基上。“核糖核苷酸”是各种糖类组分是核糖核苷酸中的任一种。核糖核苷酸是RNA的结构单元。
“核苷”是指包括糖基和含氮碱基的核酸亚单元。应当注意,本文使用术语“核苷酸”是为了描述本公开中的实施方案,但是本领域的技术人员理解术语“核苷”和“核苷酸”在大多数情况下可交换使用。本领域的技术人员理解对核苷的额外修饰可能是必需的。
应当意识到,如本文所用,术语“核苷”和“核苷酸”将包括以下基团,即不仅包含天然存在的嘌呤碱基和嘧啶碱基,例如腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)、鸟嘌呤(G)或尿嘧啶(U),还包含修饰的嘌呤碱基和嘧啶碱基和其他经过修饰的杂环碱基(有时将这些部分总称为“嘌呤和嘧啶碱基和其类似物”)的部分。这种修饰包括,例如二氨基嘌呤和其衍生物、肌苷和其衍生物、烷基化的嘌呤或嘧啶、酰化的嘌呤或嘧啶、硫代嘌呤或嘧啶等,或者添加保护基,例如乙酰丙基、乙酰基、二氟乙酰基、三氟乙酰基、异丁酰基、苯甲酰基、9-芴甲氧羰基、苯氧乙酰基、二甲基甲脒、N,N-二苯基氨基甲酸酯等。嘌呤或嘧啶碱基也可以是前述物质的类似物,合适的类似物对于本领域技术人员来说是已知的并在相关的教材和文献中进行描述。普通的类似物包括但不限于:1-甲基腺嘌呤、2-甲基腺嘌呤、N6-甲基腺嘌呤、N6-异戊基腺嘌呤、2-甲硫基-N6-异戊基腺嘌呤、N,N-二甲基腺嘌呤、8-溴腺嘌呤、2-硫代胞嘧啶、3-甲基胞嘧啶、5-甲基胞嘧啶、5-乙基胞嘧啶、4-乙酰胞嘧啶、1-甲基鸟嘌呤、2-甲基鸟嘌呤、7-甲基鸟嘌呤、2,2-二甲基鸟嘌呤、8-溴鸟嘌呤、8-氯鸟嘌呤、8-氨基鸟嘌呤、8-甲基鸟嘌呤、8-硫鸟嘌呤、5-氟尿嘧啶、5-溴尿嘧啶、5-氯尿嘧啶、5-碘尿嘧啶、5-乙基尿嘧啶、5-丙基尿嘧啶、5-甲氧基尿嘧啶、5-羟甲基尿嘧啶、5-(羧羟甲基)尿嘧啶、5-(甲基氨甲基)尿嘧啶、5-(羧甲基氨甲基)尿嘧啶、2-硫尿嘧啶、5-甲基-2-硫尿嘧啶、5-(2-溴乙烯基)尿嘧啶、尿嘧啶-5-氧乙酸、尿嘧啶-5-氧乙酸甲酯、假尿嘧啶、1-甲基假尿嘧啶、Q核苷、肌苷、1-甲基肌苷、次黄嘌呤、黄嘌呤、2-氨基嘌呤、6-羟氨基嘌呤、6-硫代嘌呤和2,6-二氨基嘌呤。
“核苷酸单体”是指未并入较大的寡核苷酸或聚核苷酸链,并且相当于单核甘酸亚单位的分子。核苷酸单体可能还具有活化基团或保护基,如果这种基团对核苷酸单体的预期用途来说是必需的。“RNA单体”是核苷酸单体中糖类组分是核糖的核苷酸单体。
“寡核苷酸”、“寡聚物(oligomer)”或“寡核苷酸(oligo)”通常是指长度为约2至100个核苷酸的核苷酸多聚体,而“多核苷酸”包括具有大于1个核苷酸的任何数量的核苷酸多聚体。术语“寡核苷酸”和“多核苷酸”常常可交换使用,与使用它们的句子和段落中的上下文一致。“寡核糖核苷酸”或“RNA寡核苷酸”是由核糖核苷酸组成的寡核苷酸。“RNA多核苷酸”是由核糖核苷酸组成的多核苷酸。
“多核苷酸中间体”是在多核苷酸的化学合成中的步骤之间发生的分子,其中多核苷酸中间体进行进一步的反应以得到预期的最终产物,例如受保护的多核苷酸,随后对受保护的多核苷酸去保护。
“核苷酸间连键”是指两个核苷酸基团之间的化学键,例如自然界中发现的核酸中的磷酸二酯连接,或者例如来自核酸和核酸类似物的合成领域的公知的连接。核苷酸间连键可以包括磷酸或亚磷酸基团,也可以包括磷酸或亚磷酸基团的一个或多个氧原子被取代基修饰或者被另一个原子(例如硫原子,或单或二烷基氨基基团的氮原子)或基团(例如甲基或者其他烷基或官能化的烷基)取代的键。
“基团”包括取代的和未取代的形式。典型的取代基包括一种或多种低级烷基、氨基、亚氨基、胺基、烷氨基、芳氨基、烷氧基、芳氧基、硫代烷基、烷硫基、芳硫基、芳基、羟基、氨基、胺基、磺酰基、硫基、巯基、亚氨基、卤素基(halo)、氰基、硝基、亚硝基、叠氮基、羧基、硫化基、砜基、硫氧基、磷酰基、甲硅烷基、硅氧基和硼羰基,或任选地在一个或多个可用的碳原子上用非烃基取代,例如氰基、硝基、卤素(halogen)、羟基、磺酸根、硫酸根、膦酸根、磷酸根、膦酸根等。有代表性地选择任何取代基以便在很大程度上对反应产率不产生不利影响(例如,除了不需要特定取代基或取代基的组合获得的,不使其低于超过20%(或10%、或5%、或1%)的产率)。“磷酸(phospho)”基包括磷酸二酯、磷酸三酯和H-磷酸酯。在磷酸基或亚磷酸基的情况下,可以将除了取代的5-元呋喃环之外的化学基团与连接在呋喃环和P原子之间的磷酸基团或亚磷酸基团的O连接。
“保护基”按照传统化学意义上使用,可逆地翻译为在指定条件下非反应性的官能团。一些保护基对于本领域的技术人员来数是公知的。Wuts和Greene,2006,Greene’s Protective Groups in Organic Synthesis,Wiley-Interscience,New York,NY描述了保护/去保护方法以及各种保护基的例子。可以使用本领域的技术人员公知的任何合适的保护基。在需要的反应之后,可以去除保护基从而将受保护的官能团去保护。所有的保护基应当可在不降解大部分正在合成的分子的条件下去除(因此不稳定)。与保护基相比,“加帽基团”与分子的片段永久地结合以便阻止所述片段的任何进一步的化学转化。应当注意,受保护基保护的功能可以或者不可以是称为保护基的一部分。
“羟基保护基”或“O-保护基”是指受保护的基团是羟基的保护基。在一个实施方案中,本发明提供了核糖核苷酸的2′-羟基的新的保护基,该保护基是缩醛乙酰丙基酯(ALE)保护基。在一些实施方案中,将本发明的新的保护基与至少一个其他保护基组合使用,可以原位合成RNA分子。
除了在RNA微阵列制备中的应用之外,这里描述的新的RNA单体的实用性可以延伸至在传统的固体载体例如可控孔径玻璃和聚苯乙烯上进行常规的RNA合成。在这种情况下,RNA链在合成之后裂解并从载体上释放,产生的合成的RNA用于物理化学或生物学研究。该应用可以包括几种衍生物(参见以下结构1至4)。为了伴随卓越的比率和效率(>99%)的标准RNA合成,本发明的2′-O-ALE和N-Lv/dmf保护基的组合提供了独一无二的核糖核苷5′-DMTr 3′-亚磷酰胺合成子(参见一般结构5)。从结构1至结构5的保护基如下:(1)2′-O-TBDMS,B=AdeBz,CytBz,Guaibu,Ura;(2)2′-O-TOM,B=AdeAc,CytAc,GuaAc,Ura;(3)2′-ACE,B=AdeBz,CytAc,Guaibu,Ura;(4)2′-Lv,B=AdeLv,CytLv,Guadmf,Ura;(5)2′-O-ALE,B=AdeLv,CytLv,Guadmf,Ura。
此外,ALE 2′-保护基策略提供了与之前报道的合成子相比两个明显的优点:(1)阻止了可伴随酰基和甲硅烷基保护基发生的通常的2′到3′-异构化作用;和(2)在固体载体上可以有效地去除所有的保护基,从而简化了RNA链合成后去保护并使RNA酶降解寡聚物的可能性最小化。
Figure BPA00001363085000091
例如,对于嵌合的寡核苷酸链5′-rN19-dT-3′的固相合成来说,新的2′-O-ALE(缩醛乙酰丙基酯)亚磷酰胺衍生物可与氰乙基磷酸酯保护基组合制备和使用。亚磷酰胺的平均偶联产率优于采用2′-TBDMS(1)或2′-TOM(2)亚磷酰胺试剂获得的平均偶联产率。在RNA链装配完成之后,可以采用三乙胺与乙腈(2∶3 v/v)的溶液去除氰乙基磷酸酯保护基。本发明的2′-O-ALE保护基可在肼解条件下裂解。最终,当用溶于三氟化氢(THF)的1摩尔四丁基氟化铵(TBAF)处理或者用三乙胺和48%HF水溶液(3∶1v/v,50℃)处理时,可以使RNA寡核苷酸从Q-CPG载体中释放。当在肼解之前使用后一种条件时,获得寡核苷酸及其完整的2′-O-ALE基团。或者,可以通过使用连接RNA与固体载体(例如聚苯乙烯或可控孔径玻璃)的光敏连接物连接物实现2′-O-ALE保护的RNA的释放。释放的2′-O-ALE保护的RNA链可以在肼解条件下去保护。或者,可通过下述方式获得完全保护的RNA链:采用三乙胺与乙腈(2∶3 v/v)处理固体载体以去除氰乙基磷酸盐保护基,接着通过采用高浓度氨水和乙醇(室温下3∶1 v/v)或乙二胺和乙醇(1∶1 v/v)处理固体载体来去除所有剩余的保护基。
该方法容易用于具有混合的组合物的寡核糖核苷酸(参见图4-7中所示的实例)。
例如,有可能利用5’-DMTr 2’-O-ALE RNA单体(用Lv保护C和A碱基,用二甲基甲脒保护G碱基)合成21个单体的RNA链的混合碱基组合物。在固体载体(CPG,附有氟化物敏感的Q连接物或者光敏连接物的可控孔径玻璃)上,并且用两种不同的方式去保护来合成所述的链。第一个去保护方案涉及将寡聚物置于乙腈中的三乙胺中以去除氰乙基保护基。然后,通过肼解作用溶蚀去除2’-O-ALE和碱基保护基(腺嘌呤和胞嘧啶上的乙酰丙基或者鸟嘌呤上的二甲基甲酰胺)。Lackey等人,2007,Org.Lett.9:789-792描述了之后的TBAF处理从来自Q连接物衍生化的CPG中释放寡聚物。第二个去保护方法涉及在去除氰乙基磷酸盐基团并蒸发产生的溶液之后,简单地用乙醇/浓氨水在室温下处理CPG 1小时或者简单地用乙二胺/乙醇(1∶1 v/v)在室温下处理CPG 2小时。这两种去保护方案可用于合成含有所有四种核苷酸残基的21个单体的个单体的RNA链。
本发明的实施方案包括去除RNA分子的一个或多个保护基的方法。例如,可采用水合肼或浓氨水/乙醇溶液或者乙二胺/乙醇溶液去除2’-O-ALE保护基。术语“同时去除”或者“同时地去除”是指旨在于同一个过程中去除不同保护基的过程并且这同时或者基本上同时进行。然而,如本文所用的,该术语不暗示不同保护基的脱保护以相同时间或者相同的速率或相同的动力学进行。术语“两步去除”是指在两个步骤中进行的脱保护过程,例如两个步骤之间有一定的时间延迟。两步骤去除过程的实例是碱基保护基的去保护,接着是NPPOC保护基的光去保护。预期在本发明的时间中,同时去保护和两步去保护反应均可使用。
NPPOC保护基的光去保护,例如可以采用在约6.5J/cm2下,通量大约50-150mW/cm2,曝光时间约120至140秒,对固定的核糖核苷酸单体的照射来进行。
本发明人中的一些最近报道了用于核糖核苷亚磷酰胺的2’-羟基保护的2′-O-乙酰丙基(Lv)的用途(Lackey等人,2007,Org.Lett.9:789-792)。2′-O-Lv基团可以在柱上去除,当用THF中的1M TBAF处理之后,完全去保护的RNA可以从Q-CPG载体中释放。此外,寡尿苷酸可以从固体载体中释放,且其2′-O-Lv酯完整无缺。与完全分离(deblock)的21个单体的相比,2′-O-Lv RNA在胎牛血清中显示更大的稳定性。但是,由于2′和3′-Lv亚磷酰胺区域异构体的分离困难,亚磷酰胺单体构建单元(buildingblocks)的合成产率低下。本发明通过设计用于核糖核苷酸2′-羟基的新的缩醛乙酰丙基酯(ALE)解决了该问题,同时保留Lv基团的优点。
在本发明的组合物和方法的各种实例中,以下显示了阐明多种2′-O-ALE亚磷酰胺合成的方案。在一个实施例中,该新的2′-O-ALE rU亚磷酰胺已被用于嵌合寡核苷酸链5′-rU11-dt-3′(参见下述方案5)的固相合成并用于12个单体的嵌合链的合成(5′-rU11-dT-3′)。
在本发明的一个实施方案中,提供了式(I)的化合物:
在式(I)的化合物中,B选自碱基和含有保护基的碱基;P1是氢或保护基;
P2是氢或
Figure BPA00001363085000112
或其盐,
或者
Figure BPA00001363085000113
其中,R是甲基、2-氰乙基、2-氯苯基、4-氯苯基;
P3是氢或保护基。
优选地,至少一个保护基是CH2OC(O)CH2CH2C(O)CH3,也称之为“2′-O-缩醛乙酰丙基酯”、“2′-O-ALE”、“2′-缩醛乙酰丙基酯”、“2′-ALE”、“缩醛乙酰丙基”(“acetal levulinyl”)或“ALE”。ALE基团对酸、氟化物、弱碱和光分解稳定。可以采用乙醇中的肼、氨水或乙二胺去除ALE基团。
P1和P3是氧保护基。优选地,P1和P3保护基可通过不同的反应条件去除,使得各自可以独立地被去除而不去除另一种基团。换句话说,例如当P1保留在适当位置时,可以选择性地去除P3。在这种方式中,当O-2氧保持受保护时,可以通过在O-5氧位置反应来合成RNA链。
O-保护基的实例包括但不限于:
(A)碱不稳定基团,包括-CH2OC(O)CH2CH2C(O)CH3(缩醛乙酰丙基,ALE)、-C(O)CH2CH2C(O)CH3(乙酰丙基(levulinyl),Lv);
(B)酸不稳定基团,包括缩醛基团(ACE)、1-(2-氟苯基)-4-甲氧基哌啶-4-基(Fpmp)、1-(4-氯苯基)-4-乙氧基哌啶-4-基(Cpep)、4-(N-二氯乙酰基-N-甲氨基)苄氧基甲基(4-MABOM)、三苯甲基醚基团,其包括二甲氧基三苯甲基(DMTr)和单甲氧基三苯甲基(MMTr);
(C)易还原基团,包括2-叔丁基二硫代甲基(DTM)和烯丙基;
(D)氟化物不稳定基团,包括叔-丁基二甲基硅烷基(TBDMS)、2′-O-三异丙基硅氧甲基(2′-O-TOM)、氰乙基甲基(CEM)和2-(4-甲苯磺酰基)乙氧基甲基(TEM);
(E)光不稳定基团,包括甲硅烷基醚基团、硝基苄基(包括2′-硝基苄基,例如2-(2-硝基苯基)丙氧羰基(NPPOC)、α-甲基硝基胡椒基氧羰基(α-methylnitorpiperonyloxycarbonyl)(MeNPOC)和其中的物质的衍生物(包括噻吨酮-硝基苄基缀合物)和DMBOC(5′-O-二甲氧基苯偶姻碳酸盐基团)(5′-O-dimethoxybenzoincarbonate group)。
(F)其他适合于在RNA的固相合成中使用的保护基。
优选地,P1是碱不稳定基团或酸不稳定基团。
在式(I)的化合物中,B是碱基或受保护的碱基。所述的碱基优选地是嘌呤或嘧啶碱基或者其类似物。类似物包括二氨基嘌呤和其衍生物、肌苷和其衍生物、烷基化嘌呤或嘧啶、酰化嘌呤或嘧啶、硫代嘌呤或嘧啶。更具体的类似物包括,例如1-甲基腺嘌呤、2-甲基腺嘌呤、N6-甲基腺嘌呤、N6-异戊基腺嘌呤、2-甲硫基-N6-异戊基腺嘌呤、N,N-二甲基腺嘌呤、8-溴腺嘌呤、2-硫代胞嘧啶、3-甲基胞嘧啶、5-甲基胞嘧啶、5-乙基胞嘧啶、4-乙酰胞嘧啶、1-甲基鸟嘌呤、2-甲基鸟嘌呤、7-甲基鸟嘌呤、2,2-二甲基鸟嘌呤、8-溴鸟嘌呤、8-氯鸟嘌呤、8-氨基鸟嘌呤等。“保护的碱基”是在至少一个氮上通过任何适合的N-保护基受到保护,所述的N-保护基包括:乙酰丙基、乙酰基、二氟乙酰基、三氟乙酰基、异丁酰基、苯甲酰基、9-芴甲氧羰基、苯氧乙酰基、二甲基甲脒、N,N-二苯基氨基甲酸酯、叔-丁基苯氧基乙酰基等。优选地,选择的碱基使得式(I)的化合物是腺嘌呤、胞嘧啶、鸟嘌呤或尿嘧啶的衍生物。
在式(I)的化合物中,P3可以包括:(i)光不稳定基团:硝基苯基,即2′-硝基苄基,例如NPPOC(2-(2-硝基苄基)丙氧羰基)、MeNPOC(α-甲基-硝基-胡椒基-氧-羰基)(α-methylnitorpiperonyloxycarbonyl)和其中物质的衍生物,包括噻吨酮-硝基苄基缀合物、DMBOC(5′-O-二甲氧基苯偶姻碳酸酯基);(ii)酸不稳定基团:三苯甲基醚基团,即DMTr(二甲氧基三苯甲基)和MMTr(单甲氧基三苯甲基);(iii)氟化物不稳定基团:甲硅烷基(RNA的固相合成)。
在式(I)的化合物中,P3可以包括:(i)碱不稳定的基团:ALE(缩醛乙酰丙基)、Lv(乙酰丙基);(ii)酸不稳定基团:缩醛基团(ACE)、Fpmp(1-(2-氟苯基)-4-甲氧基哌啶-4-基)、Cpep(1-(4-氯苯基)-4-乙氧基哌啶-4-基)、4-MABOM(4-(N-二氯乙酰基-N-甲氨基)苄氧基甲基);(iii)易还原基团:DTM(2-叔丁基二硫代甲基)、烯丙基;(iv)氟化物不稳定基团:TBDMS(叔丁基二甲基硅烷基)、TOM(三异丙基硅氧甲基)、CEM(氰乙基甲基)、TEM(2-(4-甲苯磺酰基)乙氧基甲基)。
优选地,P3是碱不稳定基团或光不稳定基团,更优选地,2-(2-硝基苯基)丙氧羰基(NPPOC)。
在本发明的另一个实施方案中,提供了同时(VII)的化合物:
该化合物是可以在RNA合成中使用的单体的例子。PG是指保护基。
在式(VI)的化合物中,5′-PG可以包括:(i)光不稳定基团:硝基苯基,即2′-硝基苄基,例如NPPOC(2-(2-硝基苄基)丙氧羰基)、MeNPOC(α-甲基-硝基-胡椒基-氧-羰基)(α-methylnitorpiperonyloxycarbonyl)和其中物质的衍生物,包括噻吨酮-硝基苄基缀合物、DMBOC(5′-O-二甲氧基苯偶姻碳酸盐基);(ii)酸不稳定基团:三苯甲基醚基团,即DMTr(二甲氧基三苯甲基)和MMTr(单甲氧基三苯甲基);(iii)氟化物不稳定基团:甲硅烷基(RNA的固相合成)。
在式(VI)的化合物中,2′-PG可以包括:(i)碱不稳定的基团:ALE(缩醛乙酰丙基)、Lv(乙酰丙基);(ii)酸不稳定基团:缩醛基团(ACE)、Fpmp(1-(2-氟苯基)-4-甲氧基哌啶-4-基)、Cpep(1-(4-氯苯基)-4-乙氧基哌啶-4-基)、4-MABOM(4-(N-二氯乙酰基-N-甲氨基)苄氧基甲基);(iii)易还原基团:DTM(2-叔丁基二硫代甲基)、烯丙基;(iv)氟化物不稳定基团:TBDMS(叔丁基二甲基硅烷基)、TOM(三异丙基硅氧甲基)、CEM(氰乙基甲基)、TEM(2-(4-甲苯磺酰基)乙氧基甲基)。
在式(VI)的化合物中,优选的单体包含2′-PG的ALE(缩醛乙酰丙基)。5′-PG包括NPPOC(2-(2-硝基苄基)丙氧羰基)和酸不稳定的DMTr或者MMTr基团。采用Lv基团保护碱基(腺嘌呤、胞嘧啶)或者采用dmf基团保护碱基(鸟嘌呤)。尿嘧啶不需要碱基保护。
“连接部分”是在本领域中已知的,用于连接多核苷酸或寡核苷酸化合物中的核苷酸部分的基团。
术语“烷基”是本领域已知的,包括饱和的脂肪族基团,饱和的脂肪族基团包括:直链烷基、支链烷基、环烷基(脂环基)、烷基取代环烷基和环烷基取代烷基。在某些实施方案中,直链或支链烷基在其骨架中具有约30个或更少的碳原子(例如,直链为C1-C30,支链为C3-C30),或者可选地约20个或更少的碳原子。例如,术语“烷基”是指直链或支链烃基,例如甲基、乙基、正-丙基、异-丙基、正-丁基、异-丁基、叔-丁基、戊基、己基、庚基、辛基等。同样地,环烷基在它们的环结构中具有约3至约10个碳原子,或者在环结构中具有约5、6或7个碳原子。术语“烷基”也定义为包括卤代烷基和杂原子取代烷基。此外,术语“烷基”(或“低级烷基”)包括“取代的烷基”,其是指具有取代基取代烃骨架的一个或多个碳原子上的氢的烷基。此种取代基可以包括,例如羟基、羰基(例如羧基、烷氧羰基、甲酰基或酰基)、硫羰基(例如硫代酸酯、硫代醋酸盐或硫代甲酸盐)、烷氧基、磷酰基、膦酸基、磷酸基、氨基、胺基、脒、亚胺、硝基、叠氮基、巯基、烷基硫代、硫酸基、磺酸基、氨磺酰基、亚磺酰氨基、磺酰基、杂环的芳烷基、或芳香基或杂环芳香基。本领域的技术人员能够理解,如果合适的话,在烃链上取代的部分自身可以是经取代的。例如,取代烷基的取代基可以包括取代的和未取代的下述基团的形式:氨基、叠氮基、亚氨基、胺基、磷酰基(包括膦酸基和亚膦酸基)、磺酰基(包括硫酸基、亚磺酰氨基、氨磺酰基和磺酸基)和甲硅烷基,以及醚、烷基硫代、羰基(包括酮、醛、羧化物和酯)、-CN等。环烷基还可以用烷基、烯基、烷氧基、烷硫基、氨烷基、羰基取代的烷基、-CN等。
术语“烷氧基”是指与氧连接的烷基,因此:R-O-。在该官能团中,R表示烷基。例如烷氧基CH3O-。
术语“芳基”是指5、6、7员单环芳香基团,其可以包括零至四个杂原子,例如苯、吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、三唑、吡唑、嘧啶、吡嗪、哒嗪和嘧啶等。这些在环结构中具有杂原子的芳香基团也称之为“芳基杂环”或者“杂芳环”。芳环可以在一个或者多个位置由以上所述的取代基取代,所述取代基例如卤素基、叠氮基、烷基、芳烷基、烯基、炔基、环烷基、羟基、烷氧基、氨基、硝基、巯基、亚氨基、胺基、膦酸基、亚膦酸基、羰基、羧基、甲硅烷基、醚、烷基硫代、磺酰基、亚磺酰氨基、酮基、醛基、酯基、杂环基、芳香基或杂环芳香基、-CF3、-CN等。
术语“芳基”也包括具有两个或多个环的环的多环的环系统,其中两个邻接环具有两个或多个共同的碳原子(环是“融合的环”),其中至少一个环是芳香环(例如,其他环的环可以是环烷基、环烯基、环炔基、芳基和/或杂环)。
术语“半缩醛”、“硫代半缩醛”、“缩醛”和“硫代缩醛”在本领域中是已知的,是指其中一个碳原子由两个氧原子或者氧原子与硫原子的组合偕双取代的化学基团。此外,当使用该术语时,应了解碳原子实际上可以由两个碳原子偕双取代,形成缩酮而不是缩醛化合物。
本发明包括核苷酸单体和含有核苷酸部分的多核苷酸结构(例如合成的核糖核酸),其中核苷酸单体和核苷酸部分各自包括多种类型的保护基。核苷酸单体和核苷酸部分可以与方法、过程和/或本发明的组合物结合在一起用于多核苷酸特别是RNA多核苷酸的去保护。本发明的实施方案使需要的受保护的全长多核苷酸产物能定量或半定量的并且快速的合成。
在合成的初始步骤中,部分受保护的核糖核苷酸与固体载体共价结合作为寡核糖核苷酸合成的起始位点。核糖核苷酸可以通过其3′-羟基或其5′-羟基与载体结合,但通常通过3′-羟基与载体结合。优选地,核糖核苷酸具有至少两个保护基。优选地,保护基中的至少一个是2′-O-缩醛乙酰丙基酯(ALE)保护基;还优选地,用于在微阵列上合成RNA其他保护基的至少一个是5′-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基;用于在固体载体上合成RNA的固体载体为例如可控孔径玻璃、聚苯乙烯、聚乙烯或其他用于标准RNA合成的聚合物载体,优选地,采用DMTr或MMTr基团保护5′-羟基。或者,直接与固体载体结合的第一个核苷酸可以通过2′-OH和3′-OH基团结合,因为最初RNA链的释放在其3′末端将产生含有核糖核苷酸(具有2′-OH和3′-OH)基团的寡核苷酸链(Damha等人,1990,NucleicAcids Research 18:3813-3821)。随后,将第二个核糖核苷酸单体与结合载体的最初单体的游离5′-羟基偶联,其中,对于3′到5′寡核糖核苷酸合成来说,第二个核苷酸单体具有含3′-磷的部分,例如亚磷酰胺基团三苯甲基(MMTr或DMTr)或在5′位置具有光不稳定基团。或者,对于5′到3′寡核糖核苷酸合成来说,第二核苷酸单体在5′位置具有磷部分,在3′位置具有三苯甲基(MMTr或DMTr)或光不稳定的ALE或乙酰丙基保护基。该偶联反应引起在最初核苷酸单体和附加的单体之间形成新的亚磷酸三酯核苷酸间连键。该反应形成二聚体rNpN,同时其糖和碱基保护基完好无损。接着,进行任何未反应的核苷的加帽(例如采用乙酸酐)和亚磷酸三酯基团的氧化作用(例如采用碘或叔丁基过氧化物),以便得到更加稳定磷酸三酯连键(Damha和Ogilvie,1993,In“Protocols for Oligonucleotide andAnalogs:Synthesis and Properties”S.Agrawal(ed.),Methods in MolecularBiology第81-114页,The Humana Press Inc.,Totowa,New Jersey)。图2和图3示出了RNA分子合成的实例。
本文所描述的合成策略允许寡核糖核苷酸在“柱上”去保护。采用所有四个2′-O-ALE亚磷酰胺合成子的策略允许在固体载体上,例如在玻璃或芯片表面装配和去保护需要的RNA分子。由于其2′-O-保护的糖根的亲脂性的结果,与其完整无损的2′-O-ALE基团一起释放的寡聚物表现出对核酸酶的稳定性增加,细胞吸收提高。此外,在本实施方案中,应通过细胞内的羧酸酯酶裂解每个2′-O-ALE保护基,以便在细胞内部生成天然siRNA并潜在地导致生成新的siRNAi前体药物。
本发明的组合物可以采用多种方式生成。在如下显示的合成方案中示出了对本发明的实践有用的组合物合成的非限制性实例。
下述方案1示出了优选的合成方法,通过该优选的合成方法可以生成5′-NPPOC-2′-ALE RNA amidite和5′-DMTr-2′-ALE RNA amidite。
方案1
Figure BPA00001363085000171
在方案1中,概括的每个步骤中使用的试剂为:(i)1,3-二氯-1,1,3,3-四异丙基二硅氧烷(TIPDSCI)、嘧啶(py);(ii)二甲亚砜(DMSO)、乙酸(AcOH)和乙酸酐(Ac2O);(iii)1M SO2Cl2、CH2Cl2、NaOLv、15-冠醚-5、CH2Cl2(2个步骤);用于3d,1M硫酰氯(SO2Cl2)、CH2Cl2、4-Cl-苯乙烯、Cs2CO3、乙酰丙酸;(iiia)2∶3 NEt3/py;(iiib)乙酰丙酸、2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉(EEDQ)、四氢呋喃(THF);(iiic)N,N-二甲基甲酰胺二甲基缩醛、THF;(iv)NEt3-3HF、THF;(v)DMTrCl、py;(vi)5′-2-(2-硝基苯基)丙氧碳酰氯(NPPOCCl)/py;(vii)CEtOP(Cl)NiPr2、iPr2Net、CH2Cl2
关于方案1,按照Markiewicz,1979,Chem.Res.(S):24-25,采用嘧啶中的1,3-二氯-1,1,3,3-四异丙基二硅氧烷(TIPDSCI)处理尿嘧啶核苷(6a)、N4-Lv胞嘧啶核苷(6b)、N6-(9-芴基甲氧羰基)腺嘌呤核苷(6c)和N2-(9-芴基甲氧羰基)鸟嘌呤核苷(6d),得到接近定量收率的7a-d。然后,用DMSO、AcOH和Ac2O处理这些物质,得到63-88%产率的2′-O-硫代甲基醚8a-d(参见,例如Semenyuk等人,2006,J.Am.Chem.Soc.128:12356-12357)。用硫酰氯(SO2Cl2)处理化合物8a-c 1小时,将所得到的2′-O-CH2Cl中间产物与乙酰丙酸钠(NaOLv)和15-冠-5醚合并从而得到78-94%产率的9a-c。这些条件对于8d来说不适合。相反,在4-氯-苯乙烯存在下,处理使8d化合物与SO2Cl2反应以避免在鸟嘌呤部分上发生副反应。将该混合物在不进行产物分离的情况下加至碳酸铯和乙酰丙酸中,得到85%产率的9d。此时,N-9-芴基甲氧羰基(“FMOC”)保护的嘌呤9c和9d被转化为需要的N-Lv(9f)和N-二甲基甲酰胺(dmf)(9h)衍生物。这种“暂时的”FMOC保护是必需的,因为Ade和Gua上的N-Lv和N-dmf不能在用于组装2′-O-硫代甲基醚或2′-O-ALE部分(例如7→8和8→9)的条件下生成。因此,用2∶3的三乙胺/嘧啶处理化合物9c、9d从而去除定量收率的FMOC基团。接着,用2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉(EEDQ)和乙酰丙酸处理产生的Ade 9e,得到N6-Lv Ade37 9f(86%),而用N,N-二甲基甲酰胺二甲基缩醛处理Gua 9a,得到定量收率的N2-dmf Gua38 9h。然后,用NEt3-3HF处理化合物9a、b、f、h,得到几乎定量收率的10a、b、f、h。为了获得适合于在可控孔径玻璃(CPG)固体载体上标准合成的单体,用DMTrCl/pyr处理这些核苷酸,得到11a、b、f、h(78-90%),然后在标准条件下将得到的11a、b、f、h进行亚磷酸酯化,得到13a、b、f、h(70-90%)。相应的5′-O-NPPOC单体由10a、b、f、h通过与NPPOCCl/py反应制备,然后与CEtOP(Cl)NiPr2/DIPEA反应,分别得到12a、b、f、h(30-65%)和14a、b、f、h(85-88%)。
N-9-芴基甲氧羰基(FMOC基团)保护对于RNA单体保护来说也仍然是吸引力的选择。如在方案1中描述的合成中所证明,这些可在合成结束时通过用乙二胺/乙醇(Hogrefe等人,Nucleic Acids Res.1993,21(9):2031-2038)或者三乙胺/嘧啶处理去除。同样地,可以使用酰基例如乙酰基、苯甲酰基和异丁酰基进行标准N-保护,因为在我们发现也去除了2′-ALE基团的条件下,这些酰基可以在RNA合成结束时用乙二胺去除。以下方案2中显示的是举例说明N-FMOC-5’-DMTr-2’-ALE-3’amidite和N-FMOC-5’-NPPOC-2’-ALE-3’amidite合成的示意图。
方案2
Figure BPA00001363085000191
为了证明本发明的亚磷酰胺的有用性,首先采用4,5-二氰咪唑(DCI)活化化合物13a,对于制备起始于Q连接的dT-CPG的12个单体的嵌合寡核苷酸(5′-rU11-dT-3′)来说,仅设置1分钟的偶联时间(Yu和Pon,1997,Nucleic Acids Res.18:3629-3635)。亚磷酰胺7的平均偶联产率为>98%,其与在相似条件下标准TBDMS RNA亚磷酰胺的平均偶联产率相当。
一旦完成2′-O-ALE寡聚物的合成,便可采用2∶3 NEt3/MeCN,60分钟去除磷酸氰乙基。然后,在室温下(r.t.)用3∶2的吡啶/乙酸中的0.5M水合肼裂解2′-O-ALE基团60分钟。在清洗步骤之后,当用1M TBAF室温条件下过夜处理时,将寡聚物从Q-CPG固体载体中释放(Yu和Pon,1997,Nucleic Acids Res.18:3629-3635)。在进行的实验中,通过MALDI-TOF(计算值3610,发现的是3611[M+H+])确认其质量。尽管它们的偶联时间不同(分别为1分钟和10分钟),但甲硅烷基和ALE亚磷酰胺单体均产生了极好纯度的粗制寡聚物。这通过SDS-PAGE(24%PAGE)分析由2′-ALE和2′-ALE TBDMS化学合成的粗制的5′-UUUUUUUUUUUdT-3′寡聚物来证实。因此,5′-UUUUUUUUUUUdT-3′可以从亚磷酰胺合成子7以优越的收率合成。此外,21个单体的5′-GCUUGAAGUCUUUAAUUAAtt-3(SEQID NO:1)也可以采用亚磷酰胺衍生物14a、b、f、h和14a、27-29合成,合成、纯化和鉴定的全部细节描述如下。
预期本发明的组合物和方法可以发现多种用途。RNA单体合成的新颖化学的开发使得在固体基质上上合成RNA具有相容性,所述的固体基质例如硅烷化的玻璃表面、可控孔径玻璃(CPG)、聚苯乙烯、聚乙烯和其他聚合物载体。本发明的实施方案还包括使多核苷酸(例如RNA)能够合成,该合成与之前的方法相比效率更高的方法、过程、组合物和结构。特别地,本发明提供了克服原位RNA合成的至少一些问题的方法、过程、组合物和结构。在为了RNA微阵列合成的应用中,优选的条件将要求保护基去保护与在玻璃基质化学相容。更具体而言,该条件将有利于碱基保护部分和2′保护基的同时去保护,而没有寡核糖核苷酸从载体中非选择性裂解。
与本方法相比较的一些优点显示如下。尽管甲硅烷基醚保护基例如2′-TBDMS和2′-O-TOM的化学得到了很好的确定,但在微阵列合成中要使用的玻璃基质平台对用于去除这些2′-保护基的氟化物条件敏感。而且,使用基团例如2′-ACE需要去保护的严格的酸性和碱性条件,该条件可能与微阵列制备不相容。2′-O-4-MABOM基团可以是潜在的取代基,但是去除需要已被证明引起核苷酸之间异构化作用的酸处理。尽管在较长寡核苷酸的合成中将需要延长的偶联时间(即超过10分钟),但可以使用其他缩醛保护基,例如2′-O-Fpmp和2′-O-Cpep。当与5′位置的其他光不稳定基团(例如5′-NPPOC)联合使用时,2′-光不稳定基团的使用不受欢迎,因为它们不能一个一个选择性地去除。此外,其他部分例如2′-O-DTM(叔丁基二硫代甲基)基团需要1,4-二硫苏糖醇(1,4-dithioreitol)的缓冲溶液,pH7.5,55℃,在还原时去除。虽然这与微阵列合成相容,但支撑2′-O-DTM的单体的缺点是它们具有相对短的寿命。这些限制通过使用胞嘧啶核苷(rC)、鸟嘌呤核苷(rG)、腺嘌呤核苷(rA)和尿嘧啶核苷(rU)的2′-羟基的缩醛乙酰丙基(ALE)保护基进行讨论。从核糖和杂环碱基中去除ALE保护基所需要的快速和非常弱的碱性条件产生了直接附着在固体载体表面例如微阵列表面的完整和功能RNA链。如本文所述,该化学已经使得在微阵列上进行了RNA的首次原位合成。
本发明的实施方案包括以5′-NPPOC-2′-ALE-3′-亚磷酰胺形式表示的RNA单体的合成和应用,用于RNA合成并用于原位RNA微阵列制备。上述式VII的化合物和/或化合物II例如14a、14b、14f和14h的功能同系物因而可以应用于RNA的微阵列合成并且通常应用于RNA的固相合成。
本发明的5’-DMTr RNA单体,例如13a、13b、13f和13h,或者13a和27-29可用于在固体基质上合成RNA寡核苷酸,例如用于合成RNA寡核苷酸探针。术语“寡核苷酸探针”用于短的单链核苷酸多聚体,一般在杂交实验中用作探针(例如与玻璃表面或尼龙膜结合的寡核苷酸)。特别地,本发明预期了寡核苷酸探针的用途。在本发明的实践中寡核苷酸的长度可在约30个RNA单体单位(即30个单体的s或30个单体的寡核苷酸探针)至约100个RNA单体单位(即100个单体的或100个单体的寡核苷酸探针)之间。在一个实施方案中,在本发明的实践中使用的寡聚物是50个单体的(即50个单体的寡核苷酸探针)。在另一个实施方案中,在本发明的实践中使用的寡聚物是70个单体的(即70个单体的寡核苷酸探针)。较长的寡核糖核苷酸探针使能够进行更加强烈的杂交,即采用下述的严格性较强的条件杂交。采用严格性较强的条件杂交提供了较高的特异性同时减少了非特异性结合。
可以将寡核糖核苷酸探针固定在一些类型的固体载体上。固体载体的类型可以改变。例如,固体载体可以是物品,该物品包括一种或多种多孔基质、无孔基质、三维表面、微珠、平面表面、涂有凝胶样物质的表面、蚀刻的和其他结构化的表面等。通常,固体载体应提供相对高密度的寡核糖核苷酸探针能够附着在其上的表面。在MAS工具中,基质不需要为了进行成功的合成而平坦、透明,也不需要均匀。可以采用共价结合将寡核糖核苷酸序列固定在固体基质上。
寡核糖核苷酸探针以具有相对高密度的阵列形式被固定在固体载体上。在一个实施方案中,固定在固体载体上的具有优选密度的寡核糖核苷酸探针的阵列包括每1cm2固体载体表面可以具有至少500,000个寡核糖核苷酸探针的阵列。用高密度寡核苷酸阵列技术可以获得相对高的密度。例如,采用像素小至2-15微米的无掩模阵列合成器可以方便地达到该相对高的密度,而栅格阵列则需要能够沉积大约100μm直径斑点的笔(pen)。从而寡核苷酸探针占据阵列中单独的已知位点。
寡核苷酸探针可以按成套的形式固定。例如,一套寡核苷酸探针可以与一套参考序列准确互补,例如与已知基因组准确互补。另一套寡核糖核苷酸探针可以与第一套寡核糖核苷酸探针相同,但至少一个不同的核苷酸除外(即,可对一个或多个寡核糖核苷酸探针修饰,以提供需要的与一套参考序列的错配)。另一套寡核糖核苷酸探针可以与一套参考序列完全相同。再一套寡核苷酸探针可以与一套已知参考序列反向互补。可以将上述成套阵列的多种组合固定在固体基质上,以提供混杂的多种寡核糖核苷酸探针,这些探针用于探测如下所述的与阵列杂交的互补标记的多核苷酸的不同性质。
本发明的多核苷酸(一个或多个单位)可被附着在适合的具有多种形式和成分的基质上。基质可以是具有不同形状、大小和尺寸的固体载体的形式。例如,固体载体可以是包括一种或多种多孔基质、无孔基质、三维表面、微珠和平面表面的物品形式。固体载体不必是等面的,即它们可以具有不对称的侧。例如,立方体形式的固体载体可以具有三个相同侧。或者,圆柱体形式的固体载体可以具有两个相同的基底,等圆环截面的壁。基质可以来源于天然存在的物质、经过合成改良的天然存在的物质或合成的物质。适合的载体材料的例子包括但不限于:硝酸纤维素、玻璃、二氧化硅、聚四氟乙烯和金属(例如,金、铂等)。适合的材料也包括聚合物质,例如塑料(例如,聚四氟乙烯、聚丙烯、聚苯乙烯、聚碳酸酯和它们的混合物等)、多糖例如琼脂糖(例如,商购得自Pharmacia的Sepharose)和葡聚糖(例如,也商购得自Pharmacia的商品名称为Sephadex
Figure BPA00001363085000222
和Sephacyl
Figure BPA00001363085000223
)、聚丙烯酰胺、聚苯乙烯、聚乙烯醇、甲基丙烯酸羟乙酯与甲基丙烯酸甲酯的共聚物等。
用于微阵列应用的通常有用的表面包括二氧化硅基材料,例如玻璃、硅和石英。微阵列制备中玻璃基质的替代物是聚合物基材料PDMS(聚二甲硅氧烷),通过软光刻(Moorcroft等人,2005,Nucleic Acids Res.33:1-10)可以将PDMS成模为微通道。由于聚合物膨胀的结果,PDMS与四氢呋喃和二氯甲烷不相容,因此替代化学品可用作亚磷酰胺化学中的替代物,特别是氧化剂、加帽和脱封闭试剂(在DMTr单体的情况下为脱三苯甲基)。也已经发现碳基材料在微阵列的原位光导向合成中是稳定的基质(Phillips等人,2008,Nucleic Acids Res.36:1-9),这些碳基材料也可以使用。本质上,与光导向合成化学和亚磷酰胺化学相容并且对某些条件具有鲁棒性(例如,高温或pH改变)的任何固体基质材料均可以在RNA微阵列应用中使用。此外,对于RNA的固相合成,可以使用诸如可控孔径玻璃(CPG)等材料。
RNA微阵列可以通过多种技术制备,包括但不限于:光刻法、具有5′-DMTr单体的光生酸(PGA)化学和喷墨技术。在光刻法中,有可能合成高达100个碱基长度的寡核苷酸。最近,喷墨微阵列制备已表现出合成高达200个碱基长度的寡核苷酸的能力。一般而言,寡核苷酸合成可以在按照给定微阵列技术需要的规格经过改造的任何DNA合成仪泵系统上进行。
在一个方面,通过无掩模阵列合成(MAS)平台(Singh-Gasson等人,1999,Nature Biotechnology 17:974-978;Warren等人,2006,Proc.Nat.Acad.Sci.USA103:867-872),本发明的组合物和方法利用光保护的亚磷酰胺单体的合成的优势生成了高密度RNA阵列。在光控制的RNA微阵列合成策略中,标准亚磷酰胺化学与具有光不稳定保护基的修饰的单体一起使用。该平台使用无掩模阵列合成仪,其中,每个碱基的去保护和延伸可以在暴露于紫外光之后以位点特异性的方式例如NimbleGen Systems,Madison,WI采用的技术活化。“MAS衍生的显微镜载玻片”是指采用无掩模阵列合成仪在其上已经合成寡核苷酸探针的阵列(特别地,寡核糖核苷酸探针)的显微镜载玻片。用类似光刻的方法将位点的位置和数量投射在芯片上。优选的设计可以包括用空“边框”替代帧像素,使得每个像素的增长有效地与临近像素分离。因此可在芯片上生成密度超过1百万/cm2的数百万单独像素和独立的序列。在优选的实施方案中,MAS组合了传统的照明系统、Texas Instrument DLP芯片、独特的成像光学和微流控反应池(microfluidic reaction cell),在其中合成寡核苷酸。在MAS衍生的显微镜载玻片上发生RNA链的去保护,而寡聚物附着在微阵列上,大大地简化和加快了合成过程。设计的阵列用于探究RNA序列-空间,也即显示单链RNA序列的随机排列,例如在多达10位点变化。该阵列可以与单链、双链或其他结构的RNA分子一起使用。研究人员可以控制和定义合成的RNA的序列组成。在一些实例中,已经合成了与光刻合成相容的5′-2-(2-硝基苯基)丙氧羰基2′-缩醛-乙酰丙基RNA 3′-亚磷酰胺单体。尽管该方法与DNA微阵列表面上相关,但RNA合成的条件相当严格,需要从DNA微阵列合成的标准实践中不能预测的新方法。通过荧光杂交实验确认结合的RNA链的完整性。该原位合成以高效和有成本效益的方式提供了无比的芯片的复杂度。
在一些实例中,将均聚物连接物共价附着在玻璃载玻片上,然后采用本文所述的亚磷酰胺化学在均聚物上合成寡核糖核苷酸,产生高密度RNA阵列。
重复偶联和去保护/氧化作用的过程直到获得具有需要的序列和长度的寡核苷酸(图1和3)。在合成之后,如果需要可以从固体载体中裂解寡核苷酸。
在RNA微阵列的制备中,RNA单体的5′-位可以包括光不稳定保护基和酸不稳定三苯甲基两者。例如,在标准的光刻合成方法中可以使用光不稳定的5′-硝基苄基保护的RNA单体(Singh-Gasson等人,1999),而5′-DMTr单体可以通过光生酸(PGA)去保护(Gao等人,2001,Nucleic Acids Res.29:4744-4750)。采用本文所描述的衍生物,可以应用其他微阵列合成方法,例如喷墨策略(Hughes等人,2001,Nature Biotech.19:342-347)。
本发明的实施方案包括确定任何样本中靶分子的存在与否。例如,某些靶分子可以与本发明的组合物结合(杂交)。可被检验分析的样本的例子包括但不限于:得自环境的样本、得自人类或非人类动物的样本和得自水或食物源的样本。采用得自环境的样本可以确定环境中一种或多种靶分子的存在。靶分子可以包括:核酸,例如脱氧核糖核酸(DNA)、核糖核酸(RNA)、寡核苷酸、适体、肽核酸(PNA)、吗啉代(morpholino)、锁核酸(LNA)、二醇核酸(GNA)和苏糖核酸(TNA);肽、蛋白质、多肽和其他蛋白分子;小分子和其他与本发明的RNA分子结合的分子。适合的杂交和清洗条件将取决于具体的应用。一般来说,需要区分的两个靶分子之间的相似度越高,杂交和清洗条件应当越严格。可以任选地标记靶分子。
本发明还涉及与示例性的寡核糖核苷酸序列选择性地杂交的靶分子,包括杂交到这些序列的准确互补上。核酸对杂交互补片段的特异性通过反应条件的“严格度”确定。随着形成核酸双链体的倾向减低,杂交的严格度增加。在核酸杂交反应中,可以选自有助于特异性杂交(高严格度)的严格度,其可用于鉴别例如序列库中的全长克隆。可以使用低特异性(低严格度)的杂交鉴别相关的但不准确的靶分子(例如,同源的,但不是相同的核酸分子)或片段。
本发明的组合物和方法可以用于综合地和定量地明确RNA结合分子的识别特征(Recognition Landscapes)。这些RNA结合分子包括但不限于:蛋白质、肽、RNA和DNA、小分子和用于RNA介导的催化底物。本文描述的方法使能够检测任何类的分子与固定的RNA的结合,例如为了鉴别它们结合的RNA、定量该相互作用、得到具有新特性包括催化作用的RNA。
预期,本发明的组合物和方法在各种分析中具有实用性,包括RNA-蛋白质和RNA-肽的相互作用。RNA-蛋白质相互作用确定,何时、在何部位和有多少蛋白质通过特定的mRNA制备。迄今为止,仅有少数RNA-蛋白质相互作用得到了详细的检查。出于实际原因,几乎所有的研究都集中在较高亲和性的结合序列;而在许多情况下,较低亲和性的序列在生物学上是关键的。类似地,为了理解任何给定蛋白质或肽的特异性,该方法独特地使能够描述与大范围内的序列的结合,从而使其有可以评价与目标和非目标RNA的相对结合。此研究将能够设计具有设计特异性和具有需要结合性质的化合物,就像在DNA阵列中已经成为可能的那样。本文描述的方法使能够测定RNA对于给定蛋白质或复合体的识别特性的完整光谱,并且用于毫无意义地阐明体内识别特征的生物学影响。在无掩模阵列合成仪上用光不稳定RNA单体制备的高密度RNA微阵列,可以在单一、快速实验中测定蛋白质或复合体对数百万个不同RNA序列的亲和性。
一般而言,通过下述因素使得RNA-核酸双链体稳定:(1)互补碱基对的数量;(2)碱基对的类型;(3)反应混合物的盐浓度(离子强度);(4)反应温度;(5)特定有机溶剂的存在,例如降低核酸双链体稳定性的甲酰胺;和(6)已知用于提高双链体的熔化物温度的RNA链中的化学修饰,例如包括LNA与诸如2′-氟核糖核苷、2′-O-甲基核糖核苷等2′-修饰的RNA单体。一般而言,探针越长,为了适当退火所需要的温度越高。常规方法是改变温度:更高相对温度导致更加严格的反应条件。
在“严格条件”下杂交,这描述了杂交方案,在杂交方案中,两条链中的核苷酸序列与彼此保持杂交的链具有至少60%的同源性。通常,选择的严格条件为在规定的离子强度和pH下,比特异性序列的热熔点(Tm)低约5℃。Tm是50%的与靶序列互补的探针与靶序列杂交平衡时的温度(在规定的离子强度、pH和核酸浓度下)。由于靶序列一般过量存在,因此,在Tm时50%的探针被占用。
“严格杂交条件”是使探针、引物或寡核苷酸能够仅与其靶序列杂交的条件。严格条件具有序列依赖性,并且将根据序列发生变化。一个严格条件的实例包括:在45℃下在1M[Na+]、100mM MES、20mM EDTA和0.01%Tween-20中杂交,在45℃下用6×SSPE、0.01%Tween-20清洗,接着是由100mM MES盐和游离酸溶液、0.1M[Na+]、0.01%Tween-20组成的高度严格的洗液。优选地,该条件使得至少约65%、70%、75%、85%、90%、95%、98%、99%或者100%与彼此通常保持相互杂交的序列同源。这些条件作为实施例列出,并不限制本发明。
“中度严格条件”采用较低严格度的清洗溶液和杂交条件(Sambrook等人,1989),使得多核苷酸与靶序列的全部、片段、衍生物或类似物杂交。一个实例包括:在55℃下用6×SSC、5×Denhardt溶液、0.5%SDS和100μg/mlDNA杂交,接着在37℃下用1×SSC、0.1%SDS清洗一次或多次。可以调节温度、离子强度等从而适应实验因素例如探针长度。在本领域中描述了其他中度严格条件(Ausubel等人,1993;Kriegler,1990)。
“低严格条件”使用严格度低于中度严格度(Sambrook等人,1989)的清洗溶液和杂交条件,使得多核苷酸与给定寡核苷酸序列的全部、片段、衍生物或类似物杂交。低严格杂交条件的一个非限制性实例包括:在40℃下用35%甲酰胺、5×SSC、50mM Tris HCl(pH 7.5)、5mM EDTA、0.02%PVP、0.02%Ficoll、0.2%BSA,100μg/ml变性鲑鱼精DNA、10%(wt/vol)硫酸葡聚糖杂交,接着在50℃下用2×SSC、25mM Tris HCl(pH 7.4)、5mM EDTA和0.1%SDS清洗一次或多次。低严格度的其他条件,例如用于种间杂交的那些有很好的描述(Ausubel等人,1993;Kriegler,1990)。
在一些实例中,本发明的组合物和方法可用于适体的合成。Warren等人,2006,Macromolecular Interactions:Aptamers,In:Encyclopedia of Life Sciences,John Wiley & Sons公开了适体的合成和功能的各个方面,其在此引入作为参考。
在标记的靶序列和/或参考序列与固定的RNA寡聚物杂交之后,进行信号检测。可以采用本领域中多种已知的方式进行信号的检测。在一个标准实例中,用常规2μm或更好分辨率的标准实验室共聚焦显微镜扫描RNA微阵列,并用在17mm2玻璃表面上具有自动化定量768,000个荧光点的软件分析。检测到的信号可来自一个或多个标记物。“标记物”是通过光谱学、光化学、生物化学、免疫化学或化学方式可检测到的组合物。例如,有用的标记物包括32P、荧光染料、电子密度试剂、酶(例如ELISA中通常使用的)、生物素、地高辛、或者抗血清或单克隆抗体可用的蛋白质。本发明预测了标记的核酸,例如标记的RNA的用途。
在DNA和RNA阵列合成之间存在显著差异。作为一般观察,标准DNA合成条件不适于RNA合成。重要的差异是RNA的2′-OH基团需要保护基,DNA中不存在2′-OH基团。去保护可以同时进行,或者可以在RNA合成过程中作为两步骤去保护过程进行去保护。这在当前知识的基础上不能预测到。需要NPPOC基团的合成修饰在6.5J曝光与6J曝光去保护。而且,在亚磷酰胺的偶联过程中优选地使用DCI活化剂。其他活化剂例如乙基-硫基四氮唑未得到最佳的偶联产率。在杂交之前必须去除2′-ALE保护基。优选地首先进行脱氰乙基作用,接着用水合肼除去2′-ALE保护基。优选地,进行清洗过程,以去除在去保护过程中形成的任何不需要的盐,例如采用1∶1(v/v)pyr∶HOAc进行清洗。对于杂交,必须采取预防措施避免将RNA微阵列暴露于RNA酶中,从而预防酶降解。推荐不要在载玻片上“吹”气,其是试图可视化DNA微阵列时的常见做法。呼气的湿气的酶可以引起降解。必须使用不含RNA酶的试剂,例如DPC处理过的高压灭菌H2O,制备杂交的所有缓冲液。在一些实施方案中,当缓冲液的基质内使用10mM MgCl2(二价阳离子)时观察到最佳杂交作用。
对于微阵列合成ALE的替代基团的使用,例如Lv基团可以在2′-羟基的保护中使用。由于单体合成和纯化相对容易的优势,优选使用2′-ALE基团。开发用于在可控孔径玻璃(CPG)上固相合成RNA的2′-Lv化学尽管有效地提供RNA,其需要繁琐地纯化同分异构体2′-Lv和3′-Lv核糖核苷酸,二者必须在3′-亚磷酰胺合成之前分离(Lackey等人,2007,Org.Lett.9:789-792)。由于ALE保护基在组装3′-亚磷酰胺部分的条件下不能异构化,因此这种复杂性没有伴随其一起出现。
与标准方法(例如,传统生物化学或SELEX)相比,该方法的一个优点是获得与所有RNA序列结合的定量信息,与采用双链DNA已经获得的一样。本发明的方法准许分析任意系列的百万以上的序列,它们未受到掩模基或斑点的阵列方法的限制。在单一阵列上目前可以显示多达106个特征,使得能够同时分析106个不同RNA序列的亲和性,并且证明具有较高的密度。对于结合RNA的DNA序列,该方法在9个量级上有鲁棒性并且可重复:可以测定从10-3至10-12M的Kds。
与当前的方法相比,其他优点如下指出。之前试图依赖于从DNA生物合成RNA,接着在表面上物理沉积来生成RNA阵列;然而,此方法仅能达到有限的序列-空间并要受到公知的“斑点”阵列的约束。这些约束包括但不限于:由于在成斑过程中材料的非均一沉积引起的可变性、材料在表面上的高度可变的散步和分布、生物分子的非均一粘附和附着和在长时间孵育之后来自表面的核酸的稳定分离。此外,在斑点阵列上的特征密度没有达到在原位合成的核酸阵列上可以在空间上高保真解决的数百万个结构。本发明的化学合成方法避免了这些问题的出现并且使能够以系统和定量的方式详尽的研究特异性蛋白质和多组分复合体。传统的生物化学方法,即使当与广泛的突变联合时,仅能分析少数序列。所述的方法有EMSA、荧光极化作用、过滤器结合和本领域技术人员公知的其他方法。对于所有这些测定蛋白质与特定RNA结合的方式而言,所述的方法严重限制了可被分析的RNA的数量。对于10nt RNA,为了检测单个的取代基必须进行31个独立的RNA结合实验,可能序列的总数是410。方法例如SELEX(反复选择)可以达到非常大的RNA集,但从实践来讲,有必要仅检测那些结合良好的RNA分子。本发明的方式不受那种方式的限制。其他现有的方法包括共免疫沉淀(RIP芯片)研究,其中分析了RNA与结合组份的物理结合。这些实验提供了较少的定量信息,未鉴定结合位点,并且由于RNA丰度而有偏离。本文描述的方法避免了所有这些限制,这些方法提供了广泛的定量信息,采用蛋白质或肽相互作用鉴别特定序列,并且不受RNA的自然丰度的影响。另一个现有的方法是通过将RNA杂交于DNA微阵列上,检测结合特定蛋白质的RNA群体。该方法受到可以分析的RNA的数量的限制,并在动态范围内。用这种方式确定RNA结合序列文库的每个成员的近似微摩尔浓度成为必要,RNA分子与结合伙伴的结合和解离的线性范围和与DNA阵列的均一杂交。通常,与SELEX试验一样,通过这种方法仅可以鉴别最好结合序列。与DNA结合特征一样,该方法将不能鉴别中等到差的结合序列并将压缩最好结合序列的结构。来自此种实验的识别基元在其信息内容中将必须得到限制。此外,不采用复杂的三级构象的RNA分子将更加丰富地被鉴别,不发生变性且与DNA阵列杂交的较好的粘合剂将作为一个类别未被充分体现,即使他们在RNA序列文库中是最好的粘合剂。RNA分子采用结构的能力是通过与DNA阵列的杂交限制其他鉴定RNA分子的方式的因素,并且是开发基于RNA的微阵列提供推动力。
RNA微阵列的每个特征可以由特异性RNA序列的许多拷贝组成。每个特征代表不同的序列,并将微阵列上的所有结构设计为覆盖不同套的RNA序列。微阵列上的每个特征/序列可以形成不同的结构(例如,单链、双链、泡(bubble)、凸出(bulge)、四重折叠(G-quadruplex))。由于阵列被合成为单链RNA,因此在阵列上首先诱导潜在的RNA结构。首先将微阵列载玻片浸入1×PBS中,并置于90℃水浴30分钟以便诱导RNA的潜在结构形成。然后将载玻片转移到清洗缓冲液(盐水/磷酸钠/EDTA缓冲液,pH7.5、0.01%Tween-20)的管中,并扫描载玻片以检查低背景。用3.25μm扫描仪(ArrayWorx)扫描微阵列。
然后,将阵列与封闭剂例如脱脂干躁牛奶一起孵育一个小时以防止纯化的蛋白质聚集在阵列的表面上(对于不同的蛋白质该处理可以发生变化)。将该阵列与适合的缓冲液(例如,200mM KCl、20mM HEPES pH 7.0、1mMDTT、5%甘油、0.005%Tween-20)中的蛋白质以及蛋白质的荧光抗体一起孵育一个小时。快速用缓冲液清洗阵列以去除残留的未结合蛋白质和抗体,通过离心进行干燥并扫描。
或者,可以采用荧光染料直接标记蛋白质,而不是需要荧光标记的抗体。通过标准方法(例如,马来酰亚胺结合于对溶剂暴露的半胱氨酸)进行蛋白质标记。
蛋白质-RNA相互作用的最佳检测可以需要阵列表面处理、蛋白质浓度、温度和蛋白质稳定剂使用的最佳化。聚集在阵列表面的蛋白质可以引起高度或饱和的背景荧光。各种阻塞剂例如脱脂干燥牛奶、牛血清白蛋白、胎牛血清等可用于降低感兴趣的蛋白质的非特异性相互作用和聚集。
另一个挑战是可以在RNA阵列上与RNA特异性蛋白质结合的的低阈值检测。为了对此进行讨论,可以优化一些参数。通常所检测的浓度在0.1nM至1μM之间,首先检测的最低浓度。盐浓度、盐缓冲液组合物(例如NaCl、KCl、磷酸钾或谷氨酸钾)和缓冲液pH需要优化。通常在室温下进行最初的杂交,但将温度降低至4℃可以提高一些蛋白质-RNA复合体的稳定性。该已经显示对于在相似微阵列上的许多蛋白质-RNA相互作用有效。
通常,通过降低蛋白质浓度或者增加缓冲液中的盐浓度来解决非特异性蛋白质结合。与EMSA和ChIP芯片方案相似,在实验中缓冲液可以包含0.05至1mg/mL的浓度范围的模仿DNA电荷分布的聚-dI-dC和肝素或者由实际DNA片段(~200-2,500bp)组成的鲑鱼精DNA。
每种蛋白质的结合具有特异性。对于每种蛋白质必须处理的关键问题是:最适盐浓度、pH和二价金属离子;与表面的附着;与或者用于将其附着在表面的部分RNA的非特异性结合。可以用多种方式控制这些因子。可以采用衍生的载玻片测试多种缓冲组合物和孵育条件以确定最佳结合/反应环境。可以与微阵列一起使用的样本缓冲液包括:1)50mM NaCl、20mM TrispH 7.0、1mM DTT、5mM MgCl2、0.01%Triton-X;2)200mM KCl、50mMHEPES pH 7.5、10%甘油、0.1mg/mL BSA;3)125mM谷氨酸钾、50mM磷酸盐缓冲液pH 8.0、3mg/mL BSA;4)1×PBS、0.1mg/mL鲑鱼精、0.0002%Tween-20。
在本发明的一些实施方案中,提供了用于分析RNA-RNA相互作用的组合物和方法。RNA彼此的相互作用在生物学中至关重要。核糖体、剪接体、病毒基因组、微小RNA(miRNA)-所有这些均依赖于RNA分子之间的相互作用。本文描述的RNA阵列使能够通过以上对蛋白质描述的类似方法分析RNA-RNA相互作用。例如,与微小RNA,let-7对应的RNA显示,与其在人ras 3’UTR中的天然结合位点杂交。RNA-RNA相互作用的另一个实例涉及在阵列上结构化的RNA集的应用。在这种情形下,检查了四核苷酸环(tetraloop)(在中含4nts的茎环(stem-loop))及与其紧密结合的称之为四核苷酸环受体的结合。相互作用提供了使两个双链体RNA结合在一起的本质上常规的手段。四核苷酸环结合于受体RNA,不与对照RNA结合。同样地,本领域的技术人员能够确定结构化的两个RNA之间,或者结构化的一个RNA与另一个未结构化的RNA之间相互作用的特异性。结合可能类似地具有特异性,尽管没有蛋白质那样明显。
RNA-RNA杂交方案的一个实施方案如下。获得用于杂交的荧光标记的RNA(例如通过购买或采用标准RNA标记方案)。用标准缓冲液(例如50mMNaCl、20mM Tris pH 7.0和1mM D.TT)将RNA稀释至~50nM。用标准缓冲液清洗微阵列表面。将标记的RNA与微阵列一起孵育过夜(16-20小时),在摇动下且温度为45℃(如果RNA大于20个核苷酸)。如果RNA小于20个核苷酸,则在室温下或4℃下孵育。如果荧光标记的RNA是混合的序列,或者RNA序列已知形成二级结构,在与微阵列一起孵育之前加热标记的RNA样本至95℃,持续5分钟。可以将非特异性DNA,例如鲑鱼精加至孵育混合物中以降低标记的RNA与微阵列的非特异性结合。去除标记的RNA并用标准缓冲液清洗微阵列表面。通过离心干燥微阵列并用标准微阵列扫描仪(例如,ArrayWorx 3.25μm分辨率扫描仪)进行扫描。与上述RNA-蛋白质结合方法类似,可以对方法进行控制和优化。
在本发明的一些实施方案中,提供了用于分析小分子-RNA相互作用的组合物和方法。小的有机和无机分子与RNA紧密结合。例如,Mg离子通常稳定RNA结构或者RNA链之间的相互作用;氨基糖苷类牢固结合从而确定其结构。但是,出于与上述蛋白质-RNA相互作用相同的原因,这些分子的特异性的确定具有挑战性。此种分析的价值是双倍的。首先,可以综合评价已知化合物的特异性。其次,可以衍生比亲本分子更加紧密结合,以及其结合特性全面了解的新化合物。此种方法已经产生了紧密结合并且具有高特异性的结合DNA的分子。这种新颖形式的分析的价值之一是其能够开发出活化、抑制或定位个体RNA的小分子;干扰它们与特异性调节组分的相互作用;将特异性蛋白质吸引至RNA。
包括诱导潜在的RNA结构到微阵列和使微阵列与小分子一起孵育的实验技术保持与蛋白质的实验技术一致。但在这种情况下,由于抗体具有较少的共性,很有可能直接荧光标记小分子。一些小分子自身或者与RNA结合时发荧光,因此标记在某些情况下(例如溴化乙锭、sybr green等)可能不是必需的。尽管小分子常常不太易于在表面聚集,但优化保持与蛋白质相同。已经进行了实验,成功地定义小分子DNA结合配体的序列识别特性(Warren等人,2006,Puckett等人,2007)。可以使用部分发明人已经开发的方法的多个方面,所述的方法为了获得小分子DNA配体的高分辨率DNA序列结合属性。在过去,这些方法已经产生了高品质、高分辨率属性的小分子以及在DNA结合小分子和它们在DNA上的同源位点之间的三元复合体(Warren等人,2006)。可以使用与RNA相似的步骤。
应当理解,本发明不限于所描述的特定方法、方案、受试对象或试剂,这些可以改变。还应当理解,本文使用的术语仅为了描述特定实施方案的目的,而无意于限制本发明的保护范围,本发明的保护范围仅受到权利要求书的限制。提供的以下实施例是为了举例说明的目的,而不是为了限制本发明。
实施例
实施例1 2′-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺核糖核苷的合成方案
方案1显示了2′-ALE核糖核苷amidite衍生物的合成。Zavgorondy等人,1991,Tetrahedron Lett.7593;Rastogi and Usher,1995,Nucleic Acids Res.4872-4877;和Parley等人,2006,Org.Lett.3869-3872描述了对于尿苷amidite合成有用的方面。Zavgorondy等人,1991,Tetrahedron Lett.7593;Rastogi和Usher,1995,Nucleic Acids Res.4872-4877;和Parley等人,2006,Org.Lett.3869-3872描述了对于2′-ALE胞苷amidite合成有用的方面。Heikkilii和Chattopadhyaya,1983,Acta.Chem.Scand.263;Chladek等人,1987,J.Org.Chem.5387;和Chladek等人,1988,J.Org.Chem.5040描述了对于2′-ALE腺苷amidite合成有用的方面。Heikkilii和Chattopadhyaya,1983,Acta.Chem.Scand.263;Chladek等人,1987,J.Org.Chem.5387;和Chladek等人,1988,J.Org.Chem.5040描述了对于2′-ALE鸟苷amidite合成有用的方面。
总体评述在500MHz记录1H NMR光谱,从溶剂峰开始测量化学位移,所述的溶剂峰作为内标(用CDCl3、CD3CN或DMSO-d6)。在80MHz记录1H31P NMR光谱,从将85%H3PO4作为外标开始测量化学位移,作为外标。用ESI-TOF记录质谱。在EM Science Kieselgel 60F-254(1mm)板上进行薄层色谱分析。快速色谱采用Silicycle 40-63μm(230-400目)硅胶。吡啶、乙腈和二氯甲烷(DCM)在回流数个小时之后,从CaH2中蒸馏出吡啶、乙腈和二氯甲烷(DCM)。THF在回流数个小时之后,从二苯甲酮和钠中蒸馏出THF。所有其他污水无水溶剂均购自Sigma-Aldrich。化学品和试剂购自Sigma-Aldrich。所有无水反应均在氩或氮气氛下,在火焰干燥的玻璃器皿中进行。
按照Lackey,J.G.;Sabatino,D.;Damha,M.J.Org lett.2007,9,789-792 andOgilvie,K.K.;Nemer,M.J.;Hakimelahi,G.H.;Proba,Z.A.;Lucas,M.Tetrahedron Lett.1982,23,2615-2618制备N4-乙酰丙基-胞苷(6b)。按照Happ,E.;Scalfi-Happ,C.;Chladek,S.J.Org.Chem.1987,52,5387-5391制备N6-(9-芴基甲氧羰基)腺苷(6c)。
按照Eapp,E.;Scalfi-Happ,C.;Chladek,S.J.Org.Chem 1987,52,5387-5391制备N6-(9-芴基甲氧羰基)腺苷(6c)。
按照Heikkla,J.,Chattopadhyaya.J.Acta.Chem.Scand.Ser.B,1983,B37,263-271和Hagen,J.;Scalfi-Happ.;Happ,E.;Chladek,S.J.Org.Chem.1988,53,5040-5045制备N2-(9-芴基甲氧羰基)鸟苷(6d)。
3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)核糖核苷(7a-d)的制备按照Markiewicz,W.T.J.Chem.Res.(S)1979,24-25;Markiewicz,W.T.J.Chem.Res.(M)1979,181-197进行。
例如,将尿苷(41mmol)溶于100mL的吡啶中。在干燥氮气环境下,在25分钟内逐滴添加Markiewicz试剂(43mmol)。3小时之后,反应完成。用24mL食盐水淬灭,然后在减压下浓缩为油。之后将该残余物再溶解于200mL二氯甲烷(DCM)中并用50mL食盐水清洗一次。接着,用3×50mLDCM清洗水层。随后,合并干燥有机提取物并用MgSO4干燥,过滤并浓缩。接着,用30mL苯将产生的粘胶泡沫共蒸发3次并水泵吸上高度真空以得到接近定量收率的白色泡沫。该物质不需要进一步纯化,在接下来的合成步骤中使用。
3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-(甲硫基)甲基核糖核苷(8a-d)的制备以Semenyuk,A.;
Figure BPA00001363085000331
A.;Johansson,T.;Estmer-Nilsson,C.;Blomgren,P.;
Figure BPA00001363085000332
M.;Kirsebom,L.A.;Kwiatkowski,M.J.Am.Chem.Soc.2006,128,12356-12357报道的程序加以改变进行。
例如,将3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-尿苷(7a)(20mmol)溶于30mL的DMSO中,接着添加30mL冰醋酸和20mL醋酸酐。在室温下搅拌该反应混合物20小时,然后在50℃下加热4小时,以促进反应完成。之后,将反应冷却至室温,并倒入2L锥形瓶(Erlenmeyer flask)中。随后,剧烈搅拌该物质并添加K2CO3的溶液(1L中溶解100g)。过滤白色沉淀物并溶解于200mL DCM中。将该物质转移至分液漏斗中并去除过滤水性物质。用MgSO4干燥有机物质并减压下去除溶剂,得到淡黄色泡沫。通过柱色谱法(溶于DCM中的0→2%MeOH)纯化该物质,得到88%产率的3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-(甲硫基)甲基尿苷(8a)。8a的鉴定与Semenyuk,A.;
Figure BPA00001363085000333
A.;Johansson,T.;Estmer-Nilsson,C.;Blomgren,P.;
Figure BPA00001363085000334
M.;Kirsebom,L.A.;Kwiatkowski,M.J.Am.Chem.Soc.2006,128,12356-12357一致。
表1:化合物8b-8d的柱色谱和的产率
Figure BPA00001363085000335
化合物8b、8c和8d的光谱数据和质谱数据。
N4-乙酰丙基-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-(甲硫基)甲基胞苷(8b)。1H NMR(500MHz,DMSO-d6):δ10.94(s,1H),8.07(d,1H,J=9.5),7.18(d,1H,J=9.5),5.65(s,1H),5.00-4.96(m,2H),4.32(d,1H,J=5.5),4.22(d,1H,J=16.5),4.18-4.14(m,1H),4.09-4.07(1H,m),3.93-3.90(1H,d,J=16.5),2.72-2.69(m,2H),2.59-2.56(m,2H),2.09(s,3H),2.10(s,3H),1.05-0.95(m,28H).13CNMR(125MHz,DMSO-d6):207.7,207.2,173.8,163.2,154.8,143.9,95.8,89.7,81.8,77.7,73.7,67.8,60.0,34.1,31.0,30.3,28.6,17.9,17.8,17.6,17.5,17.4,13.4,13.2,13.1,13.0,12.6.ESI-TOF CC26H45N3O8SSi2计算值666.30+(+Na+)发现了666.32。
N6-(9-芴基甲氧羰基)-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-(甲硫基)甲基腺苷(8c)。1H NMR(500MHz,CDCl3):δ9.45(s,1H),8.77(s,1H),8.34(s,1H),7.74-7.72(m,2H),7.61-7.58(m,2H),7.38-7.35(m,2H),7.26-7.22(m,2H),6.06(s,1H),5.05,4.98(abq,各个对应于1个H,J=11,11.5),4.72-4.69(m,1H),4.67-4.59(m,2H),4.38-4.31(m,1H),4.21,4.02(abq,1H each,J=13.5,13.5),4.17-4.14(m,1H),2.17(s,3H),1.11-0.94(m,28H).13CNMR(125MHz,CDCl3):δ153.1,151.6,150.7,149.8,143.9,143.7,141.5,141.5,141.2 128.0,128.0,127.9,127.4,125.3,125.2,122.9,120.3,120.2,88.8,82.0,75.0,69.1,68.0,59.9,47.15,17.7,17.6,17.5,17.45,17.4,17.38,17.32,17.3,17.2,17.1,13.7,13.6,13.2,13.0,12.9.ESI-TOF C39H53N5O7SSi2计算值814.32(+Na+)发现了814.28。
N2-(9-芴基甲氧羰基)-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-0-(甲硫基)甲基鸟苷(8d)。1H NMR(500MHz,CDCl3):δ11.29(s,1H),8.32(s,1H),7.98(s,1H),7.75-7.73(m,2H),7.57-7.54(m,2H),7.41-7.37(m,2H),7.31-7.26(m,2H),5.86(s,1H),4.98,4.94(abq,1H each,J=11.5,11.5),4.63-4.56(m,1H),4.52-4.49(m,1H),4.44(d,1H,J=5),4.25-4.20(m,2H),4.13-4.10(m,1H),4.00-3.97(m,1H),2.14(s,3H),1.10-0.92(m,28H).13CNMR(125MHz,CDCl3):δ155.8,153.7,147.6,146.8,143.1,141.5,136.6,128.3,127.5,125.0,121.7,120.4,87.92,82.0,78.2,74.6,68.7,68.5,59.9,46.9,17.7,17.5,17.4,17.3,17.25,17.2,17.1,13.7,13.6,13.2,13.1,12.8.ESI-TOFC39H53N5O8SSi2计算值830.32(+Na+)发现了830.32。
制备3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯核苷(9a,b,c)的一般过程。提供了9a的合成,作为实例。
3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯尿苷(9a)。用干燥苯冷冻干燥化合物8a(17mmol)。然后在干燥氮气环境下用170mL DCM溶解并冷却至0℃。在15分钟内,逐滴添加17mL新鲜制备的1mol/L磺酰氯溶液。搅拌反应混合物另外30分钟,之后加热至室温。随后,搅拌另外30分钟。接着,在减压下去除溶剂并用干燥氮气重新加压,得到黄色泡沫。然后,用85mL DCM再溶解该物质并添加乙酰丙酸钠至搅拌中的溶液中,接着,添加15-冠醚-5(10mmol)。搅拌反应混合物2小时,然后,用250mL DCM稀释。随后用150mL水清洗该溶液一次。之后用3×100mL DCM清洗水层。合并有机提取物并且用MgSO4干燥。在过滤之后,在减压下去除溶剂,得到淡黄色泡沫。通过柱色谱法(溶于CH2Cl2中的0→1%MeOH)纯化该粗制物质,得到86%产率的白色泡沫9a。相同色谱条件应用于9b,产率78%。9c采用70∶30 己烷/EtOAc→60∶40 己烷/EtOAc,产率94%。
化合物9a、9b和9c的光谱数据和质谱数据。
3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯尿苷(9a)。1H NMR(400MHz,DMSO-d6):δ11.39(s,1H),7.62(d,1H,J=8.4),5.56(s,1H),5.52(d,1H,J=8),5.38,5.36(abq,1H each,J=6.4,6.4),4.41(d,1H,J=4.8),4.30-4.26(m,1H),4.15(d,1H,J=12.4),3.31-3.88(m,2H),2.71-2.69(m,2H),2.48-2.46(m,2H),2.08(s,3H),1.03-0.93(m,28H).13CNMR(125MHz,DMSO-d6):172.6,164.0,150.7,140.5,101.8,90.0,88.2,82.5,80.6,68.8,60.4,37.9,30.2,28.4,18.0,17.9,17.8,17.7,17.6,17.55,17.5,17.4,13.4,13.0,12.9,12.6.ESI-TOF C27H46N2O10Si2计算值637.27(+Na+)发现了637.26。
N4-乙酰丙基-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯胞苷(9b)。1H NMR(400MHz,DMSO-d6):δ10.98(s,1H),8.02(d1H,J=7.6),7.16(d,1H,J=7.2),5.64(s,1H),5.45(s,1H),4.31(d,1H,J=4.8),4.21-4.15(m,2H),4.02(d,1H,J=10),3.90(d,1H,13.2),2.72-2.69(m,4H),2.58-2.55(m,2H),2.51-2.48(m,2H),2.09(s,3H),2.08(s,3H),1.04-0.95(m,28H).13C NMR(125MHz,DMSO-d6):207.8,207.4,173.7,172.5,163.1,154.8,144.2,95.8,90.2,87.9,81.7,80.7,70.6,68.0,37.7,31.0,30.3,30.2,28.4,18.0,17.9,17.8,17.7,17.6,17.5,17.4,13.2,13.0,12.6.ESI-TOFC32H53N3O11Si2计算值734.32(+Na+)发现了734.30。
N6-(9-芴基甲氧羰基)-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯腺苷(9c)。1H NMR(400MHz,CDCl3):δ8.71(s,1H),8.52(s,1H),8.27(s,1H),7.76(d,2H,J=7.6),7.63(d,2H,J=7.2),7.42-7.38(m,2H),7.32-7.26(m,4H),6.04(s,1H),5.58,5.40(abq,各个有1个H,J=6.4,6.4),4.95-4.91(m,1H),4.67(d,1H,J=4.4),4.62(d,1H,J=6.8),4.34-4.31(t,1H,J=6.8),4.19,3.99(abq,各个有1个H,J=13.6,13.2),4.10(d,1H,J=9.2),2.74-2.71(m,2H),2.58-2.55(m,2H),2.10(s,3H),1.09-1.00(m,28H).13CNMR(125MHz,CDCl3):δ206.6,172.6,152.9,151.2,150.6,149.5,143.7,142.0,141.6,120.0,127.4,125.3,122.9,120.3,89.1,88.6,81.6,81.4,77.5,77.15,77.0,76.9,69.5,68.0,60.0,47.1,37.9,30.0,28.2,17.7,17.5,17.4,17.3,17.2,17.1,13.6,13.2,13.0,12.9.ESI-TOF C43H57N5O10Si2计算值882.36(+Na+)发现了882.34。
制备3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯核苷(9d,9e,9g,9f,9h)的一般过程。
N2-(9-芴基甲氧羰基)-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯鸟苷(9d)。在烧瓶A中,用干燥苯冷冻干燥化合物8d(9.5mmol)。然后在干燥氮气环境下用95mL DCM溶解并冷却至0℃。在15分钟内,逐滴添加9.5mL新鲜制备的1mol/L磺酰氯溶液。紧接着,立即添加10.45mol 4-Cl-苯乙烯。该试剂用于淬灭氯甲基醚副产物。搅拌反应混合物另外30分钟,之后加热至室温。然后搅拌另外30分钟。在容量瓶B中,将碳酸铯(14.25mmol)悬浮于20mL干燥DMF中,接着添加乙酰丙酸(28.5mmol)。回流反应混合物2小时,然后冷却至室温。随后,将容量瓶A插套管于(canulate)容量瓶B中。搅拌反应混合物2小时。在反应完成之后,用3×100mL的5%NaHCO3清洗该溶液。然后用3×100mL DCM清洗水层。合并有机提取物并用MgSO4干燥。过滤之后,在减压下去除溶剂,得到淡红色产物(gew)。然后,通过柱色谱(溶于DCM中的2%MeOH)纯化粗制物质,得到85%产率的白色泡沫9d。化合物9d的光谱数据和质谱数据:1H NMR(400MHz,CDCl3)δ10.53(s,1H),9.43(s,1H),8.02(s,1H),7.78(d,J=7.5,2H),7.67-7.53(m,2H),7.42(t,J=7.5,2H),7.34(t,J=7.4,2H),6.05(s,1H),5.54,5.43(abq,2H,J=6.4,6.41),4.72-4.58(m,2H),4.51(dd,J=4.6,9.2,1H),4.40(d,J=4.6,1H),4.34(t,J=6.5,1H),4.20,4.00(d,各个有1个H,J=13.1,13.3),4.12(d,J=9.2,1H),2.63-2.59(m,2H),2.50-2.45(m,2H),2.06(s,3H),1.20-0.86(m,28H).13C NMR(125MHz,CDCl3):δ209.2,172.6,155.9,154.2,147.7,147.3,143.2,141.6,128.3,127.5,125.0,124.9,121.7,120.3,88.37,88.2,81.5,81.1,69.1,67.9,59.8,47.0,30.3,28.5,17.7,17.5,17.4,17.3,17.2,13.6,13.2,12.8.ESI-TOF C43H57N5O11Si2计算值898.36(+Na+)发现了898.46。
3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯腺苷(9e)。将5.4mmol 9c溶解于60mL干燥的2∶3 三乙胺/吡啶的溶液中。室温下搅拌反应混合物直至反应完成,大约8小时。当反应完成时,蒸干并在溶于DCM中的0→4%MeOH梯度中进行快速色谱。最终产物9e外观为白色泡沫,产率>99%。化合物9e的光谱数据和质谱数据:1H NMR(500MHz,CDCl3)δ8.28(s,1H),8.08(s,1H),7.26(s,1H),6.01(s,1H),5.65-5.660(m,2H),5.41(d,J=6.5,1H),4.92(dd,J=4.8,9.3,1H),4.66(d,J=4.8,1H),4.19(d,J=13.2,1H),4.09(d,J=9.3,1H),4.01(dd,J=2.5,13.2,1H),2.78-2.71(m,2H),2.63-2.57(m,2H),2.14(s,3H),1.04(m,28H).13C NMR(125MHz,CDCl3)δ206.58,172.58,155.51,153.24,153.19,149.43,139.72,120.63,88.95,88.69,81.52,81.48,69.48,60.18,37.94,29.99,28.20,17.67,17.57,17.53,17.44,17.32,17.27,17.15,13.60,13.18,13.01,12.88.ESI-TOF C28H47N5O8Si2计算值660.30(+Na+)发现了660.32。
3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯鸟苷(9g)。将6mmol 9d溶解于65mL干燥的2∶3 三乙胺/吡啶的溶液中。室温下搅拌反应混合物直至反应完成,大约8小时。当反应完成时,蒸干并在溶于DCM中的0→5%MeOH梯度中进行快速色谱。最终产物9g外观为白色泡沫,产率>99%。化合物9g的光谱数据和质谱数据:1H NMR(500MHz,CDCl3)δ12.07(s,1H),7.82(s,1),6.22(s,2H),5.89(s,1H),5.68,5.44(abq,各个有1个H,J=6.4,5.44),4.62-4.50(m,1H),4.50-4.40(m,1H),4.27-4.16(m,1H),4.10(d,J=9.1,1H),4.02-3.95(m,1H),2.85-2.48(m,4H),2.17(s,3H),1.20-0.83(m,28H).13C NMR(125MHz,CDCl3)δ207.11,172.68,159.52,153.83,151.12,89.06,88.31,81.54,81.47,68.93,60.01,37.82,30.12,28.27,17.74,17.69,17.56,17.53,17.51,17.42,17.36,17.30,17.25,17.11,13.66,13.16,13.08,12.76.ESI-TOF C28H47N5O9Si2计算值676.29(+Na+)发现了676.46。
N6-乙酰丙基-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯腺苷(9f)。将5.4mmol 9e溶解于60mL THF中。添加21.4mmolEEDQ,接着添加27mmol乙酰丙酸。室温下搅拌反应混合物1小时,然后60℃下加热5小时。当反应完成时,用20mL 5%的NaHCO3淬灭并用200mL乙酸乙酯稀释反应混合物。3X50mL 5%NaHCO3清洗有机层。用MgSO4干燥有机层,过滤并蒸发。通过柱色谱(溶于DCM中的0→3%MeOH)纯化有机混合物。获得的产物9f为白色泡沫,产率86%,除了在该阶段,通过柱色谱产生的不可分离的少量N6-双乙酰丙基化(N6-bislevulinylated)的杂质之外。化合物9f的光谱数据和质谱数据:1H NMR(500MHz,CDCl3)δ8.79(s,1H),8.35(s,1H),7.83(s,1H),5.72(d,J=7.5,2H),5.06(d,J=6.4,1H),4.71-4.65(m,1H),4.30(d,J=4.3,1H),4.06(s,1H),3.66(d,J=12.7,2H),3.46(d,J=11.8,1H),3.14(s,1H),2.93-2.83(m,2H),2.63-2.55(m,3H),2.49-243(m,1H),2.42-2.37(m,1H),2.10-2.02(m,2H),1.92(s,3H),1.86(s,3H).13CNMR(125MHz,DMSO)δ207.75,207.39,173.68,172.53,163.06,154.81,144.22,95.77,90.23,87.88,81.72,80.64,67.99,60.11,37.87,37.65,30.98,30.23,30.20,28.40,17.99,17.87,17.82,17.74,17.59,17.51,17.42,13.28,13.01,12.97,12.56.ESI-TOF C33H53N5O10Si2计算值758.33(+Na+)发现了758.32。
N2-二甲基甲脒-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯鸟苷(9h)。将1.9mmol 9g溶解于20mL THF中。添加7.6mmol二甲基甲脒二甲基缩醛至搅拌反应中并在室温下搅拌过夜。将反应混合物蒸干并通过柱色谱(溶于DCM中的0→5%MeOH)纯化,获得最终产物9h为白色泡沫,产率>99%。
化合物9h的光谱数据和质谱数据:1H NMR(500MHz,CDCl3)δ9.01(s,1H),8.60(s,1H),7.87(s,1H),5.99(s,1H),5.62,5.54(abq,各个有1个H,J=4.1,4.0),4.51(s,1H),4.38(s,1H),4.28-4.16(m,1H),4.11(d,1H,J=9.2),4.04-3.93(m,1H),3.20(s,3H),3.10(s,3H),2.75-3.60(m,2H),2.57-2.43(m,2H),2.12(s,J=1.9,3H),1.26-0.81(m,28H).13C NMR(125MHz,CDCl3)δ206.35,206.31,172.38,158.42,157.92,157.12,149.49,135.60,135.54,121.07,88.52,87.63,81.56,81.44,69.04,59.99,41.58,37.86,35.43,35.36,29.95,28.18,17.69,17.54,17.50,17.36,17.26,17.10,13.67,13.17,13.14,12.75.ESI-TOFC31H52N6O9Si2计算值731.33(+Na+)发现了731.38。
2′-O-缩醛乙酰丙基酯尿苷(10a)的合成。将化合物9a(10.1mmol)溶于30mL干燥THF中,并在氮气气氛下搅拌。逐滴添加NEt3∶3HF(15.1mmol)并通过TLC(溶于CH2Cl2中的5%MeOH)监测反应。2小时之后,白色固体10a沉淀。滤过10a沉淀并用100mL乙醚清洗,高真空下干燥,得到的10a接近定量收率。采用类似的方式制备化合物10b,10f和10h。
化合物10a、10b、10f和10h的光谱数据和质谱数据
2′-O-缩醛乙酰丙基酯尿苷(10a)。1H NMR(500MHz,DMSO-d6):δ11.34(s,1H),7.88(d,1H,J=8),5.84(d,1H,J=5),5.64(d,1H,J=8.5),5.30(d,1H,J=6),5.28(d,1H,J=10.5),5.21(d,1H,J=7),5.13(t,1H,J=5),4.21(t,1H,J=5.5),4.10(t,J=5.5),3.83-3.82(m,1H),3.63-3.30(m,2H),2.67(t,2H,J=6),2.43(t,2H,J=6),2.08(s,3H).13CNMR(125MHz,DMSO-d6):δ207.3,172.5,163.8,151.3,141.2,102.6,88.5,86.9,85.6,81.4,69.3,61.2,37.9,30.2,28.4.ESI-TOF C15H20N2O9计算值395.12(+Na+)发现了395.23。
N4-乙酰丙基-2′-O-缩醛乙酰丙基酯胞苷(10b)。1H NMR(400MHz,DMSO)δ10.96(s,1H),8.38(d,1H,J=7.6),7.15(d,1H,J=9.5),5.81(s,1H),5.38(d,1H,J=6.4),5.31(d,1H,J=8),5.25(d,1H,J=6),5.20(s,1H),4.16(s,1H),4.07(d,1H,J=4.8),3.86(s,1H),3.75-3.72(m,1H),3.60-3.56(m,1H),2.71-2.44(m,8H),2.09(s,3H),2.08(s,3H).13C NMR(125MHz,DMSO)δ207.68,207.4,173.8,172.5,163.1,155.2,145.8,96.0,89.2,88.4,84.9,82.1,68.2,60.2,37.9,37.7,31.1,30.3,28.4.ESI-TOF C20H27N3O10计算值492.17(+Na+)发现了492.20。
N6-乙酰丙基-2′-O-缩醛乙酰丙基酯腺苷(10f)。1H NMR(500MHz,CDCl3)δ8.79(s,1H),8.35(s,1H),7.83(s,1H),5.72(d,J=7.5,2H),5.06(d,J=6.4,1H),4.71-4.64(m,2H),4.30(d,J=4.3,1H),4.06(s,1H),3.71-3.62(m,1H),3.51-3.45(m,1H),3.14(s,1H),2.92-2.82(m,1H),2.63-2.56(m,1H),2.53-2.43(m,2H),2.42-2.34(m,2H),2.14-1.99(m,4H),1.92(s,3H),1.86(s,3H).13C NMR(125MHz,CDCl3)δ207.7,207.6,207.5,207.5,172.2,172.1,152.1,150.2,150.1,143.7,123.5,89.2,88.22,82.9,72.2,63.3,54.0,38.0,37.9,32.2,30.2,29.8,29.4,27.9.ESI-TOF C21H27N5O9计算值516.18(+Na+)发现了516.27。
N2-二甲基甲脒-2′-O-缩醛乙酰丙基酯鸟苷(10h)。1H NMR(500MHz,DMSO)δ11.46(s,1H),8.54(s,1H),8.15(s,1H),5.92(d,J=5.6,1H),5.29(d,J=6.3,1H),5.23(d,J=6.5,1H),4.77-4.66(m,1H),4.29(s,1H),3.91(s,1H),3.74-3.46(m,2H),3.15(s,3H),3.03(s,3H),2.57(t,J=6.5,3H),2.28(t,2H,J=6.2),2.04(s,3H).13C NMR(125MHz,DMSO)δ207.3,172.4,158.8,158.1,157.9,150.43 137.5,119.7,88.5,86.4,85.7,81.5,69.7,61.7,41.4,37.7,35.4,30.1,28.2.ESI-TOF C21H27N5O9计算值489.45(+Na+)发现了489.25。
制备5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯核糖核苷(11a,b,f,h)的一般过程。
提供了5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯尿苷(11a)的合成,作为实例。在氮气气氛下用10mL吡啶溶解化合物10a(7.3mmol),接着添加DMTrCl(8.8mmol)。室温下搅拌反应混合物直至反应完成,3小时。然后用2mL 5%NaHCO3淬灭反应混合物,真空下浓缩反应。之后,将其再溶解于50mL DCM中并用25mL 5%NaHCO3清洗。之后用2×50mL DCM清洗水层。合并有机提取物并且用MgSO4干燥,过滤。通过蒸发去除溶剂并通过柱色谱法(溶于DCM中的0→3%MeOH)纯化该物质。最终产物11a,外观为白色泡沫,产率90%。
表2:化合物11b、11f、11h的柱色谱和产率
  化合物   mmol(起始)   柱条件   产率
  11b   3.5   溶于DCM(0.5%TEA)中的0→2%MeOH   82
  11f   8   溶于DCM(0.5%TEA)中的0→2%MeOH   85
  11h   5   溶于DCM(0.5%TEA)中的0→3%MeOH   78
化合物11a、b、f、h的光谱数据和质谱数据。
5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯尿苷(11a)。1H NMR(500MHz,DMSO)δ11.39(s,1H),7.69(d,J=8.1,1H),7.36(d,2H,J=7.3),7.30(t,2H,J=7.6),7.23(dd,J=2.4,9.0,5H),6.88(d,J=8.9,4H),5.79(d,J=3.7,1H),5.43-5.33(m,2H),5.31(d,J=8.1,1H),5.26(d,J=6.5,1H),4.34-4.26(m,1H),4.26-4.19(m,1H),3.94(s,1H),3.72(s,6H),3.29-3.16(m,2H),2.68(t,2H,J=6.6),2.45(t,2H,J=6.5),2.06(s,3H).13C NMR(125MHz,DMSO)δ207.3,172.5,163.6,158.8,151.0,145.3,141.2,136.0,135.7,130.4,128.6,128.5,128.4,127.4,102.2,88.6,88.2,86.5,83.2,81.2,69.2,67.7,63.4,55.7,37.9,30.1,28.3,25.8.ESI-TOF C36H38N2O11计算值697.25(+Na+)发现了697.13。
N4-乙酰丙基-5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯胞苷(11b)。1H NMR(400MHz,DMSO)δ10.97,8.24(d,1H,J=8),7.37(d,2H,J=8.4),7.31(t,2H,J=7.6),7.24-7.20(m,5H),6.96(d,1H,J=7.6),6.88-6.86(m,4H),5.79(s,1H),5.43-5.41(m,1H),5.36-5.33(m,2H),4.30-4.26(m,1H),4.18(d,1H,J=5.2),3.99(d,1H,J=8),3.72(s,6H),3.32(s,2H),2.70-2.68(m,4H),2.58-2.56(m,2H),2.41-2.39(m,2H),2.09(s,3H),2.08(s,1H).13C NMR(125MHz,DMSO)δ207.6,207.4,173.7,172.5,163.0,158.8,154.94,145.2,136.2,135.8,130.4,130.3,128.6,128.4,127.5,113.9,96.0,90.0,89.9,88.4,88.3,88.2,86.6,82.5,81.9,81.8,68.3,62.3,62.2,55.8,55.7,55.6,55.5,37.9,37.6,31.0,30.2,30.1,28.4.ESI-TOF C41H45N3O12计算值794.30(+Na+)发现了794.21。
N6-乙酰丙基-5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯腺苷(11f)。1H NMR(500MHz,CH2Cl3)δ8.97(s,1H),8.57(s,1H),8.20(s,1H),7.41(d,2H J=8),7.31-7.30(m,7H),6.80-6.79(m,4H),6.18(d,1H,J=4.5),5.42,5.34(abq,1H each,J=6,6),5.23(s,1H),5.07(t,1H,5),4.61-5.06(m,1H),4.27-4.24(m,1H),3.77(s,6H),3.52-3.49(m,1H),3.43-3.40(m,1H),3.19-3.16(m,2H),2.99(d,1H,J=5.5),2.91-2.88(m,2H),2.76-2.71(m,2H),2.47-2.23(m,2H),2.30(s,3H),2.15(s,3H).13C NMR(75MHz,CD3CN)δ207.51,207.27,172.34,158.89,145.21,136.01,130.25,128.23,128.05,113.23,88.73,86.38,84.12,63.40,55.18,55.09,37.51,37.46,31.47,28.96,27.88.ESI-TOF C42H45N5O11计算值818.31(+Na+)理论值818.29。
N2-二甲基甲脒-5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯鸟苷(11h)。1H NMR(500MHz,CD3CN)δ9.83(s,1H),8.55(s,1H),7.77(s,1H),7.42(d,J=7.7,2H),7.36-7.08(m,7H),6.94-6.68(m,4H),6.01(d,J=4.6,1H),5.43,5.31(abq,1H each,J=6.5,6.6),4.88(t,J=4.8,1H),4.61-4.55(m,1H),4.10(s,1H),3.76(s,6H),3.41-3.20(m,2H),3.08(s,3H),3.05(s,3H),2.72-2.51(m,2H),2.45-2.29(m,2H),2.06(s,3H).13C NMR(125MHz,CD3CN)δ207.2,172.4,158.9,158.6,158.0,157.7,150.6,145.2,136.9,136.0,130.2,130.1,128.2,128.1,127.1,120.5,117.5,113.2,88.6,86.4,86.3,83.7,81.6,70.1,63.7,55.1,40.9,37.4,34.5,29.0,28.9,27.9.ESI-TOF C40H44N6O10计算值791.31(+Na+)发现了791.35。
制备5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯核苷(12a,b,f,h)的一般过程。
提供了5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯尿苷(12a)的合成,作为实例。将化合物10a(7.3mmol)溶解于10mL THF中,接着在干燥氮气气氛下溶解于10mL吡啶中并将反应混合物冷却至0℃。将溶于5mL吡啶中的2-(2-硝基苯基)丙氧基氯甲酸盐(8.8mmol)逐滴添加至搅拌反应中,通过TLC(乙酸乙酯)监测该反应。3小时之后,反应完成。用5mL水淬灭反应混合物,在减压下去除溶剂。将剩余的残余物溶解于150mL DCM中,用50mL 5%NaHCO3清洗。用3x50mL DCM清洗水层。合并有机提取物并用硫酸镁干燥。在过滤之后,在减压下去除溶剂,得到淡黄色泡沫。该粗制物质通过快速色谱(用3∶2 乙酸乙酯/己烷→乙酸乙酯)纯化。得到了黄色泡沫的12a的最终非对映混合物,产率65%。
表3:化合物12b、12f、12h的柱色谱和产率
  化合物   mmol(起始)   柱条件   产率
  12b   8   0→2%MeOH in DCM   52
  12f   2.8   80∶20 EtOAc/己烷   45
12h 1.5 80∶20 DCM/丙酮 30
化合物12b,12f,12h的光谱数据和质谱数据。
5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯尿苷(12a)。1HNMR(500MHz,DMSO-d6)δ5.82(d,H-1’),5.76(d,H-1′),4.34-4.23(m,2′-O-CH2-O-x2),2.68-2.65(2′-CH2-C(O)),2.63-2.61(2′-CH2-C(O)),2.43-2.40(m,2′-O-C(O)-CH2-),2.36-2.33(m,2′-O-C(O)-CH2-),2.06(s,2′-C(O)-CH3x2).ESI-TOF C25H29N3O13计算值602.17(+Na+)发现了602.16。
N4-乙酰丙基-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯胞苷(12b)。1H NMR(500MHz,DMSO-d6):δ5.88(d,H-1’),5.77(d,H-1′),5.19-5.01(m,2’-O-CH2-O-x2),2.72-2.66(m,N4-CH2-C(O)-x2,2′-CH2-C(O)x2),2.56-2.32(m,N4-C(O)-CH2-x2,2’-O-C(O)-CH2-x2),2.10-2.05(m,2′-C(O)-CH3x2,N4-C(O)-CH3x2).C30H36N4O14699.22(+Na+)发现了699.2。
N6-乙酰丙基-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯腺苷(12f)。1H NMR(500MHz,CDCl3):δ6.24-6.19(m,H-1′x2),5.19-5.01(m,2′-O-CH2-O- x2),2.82-2.57(m,N6-CH2-C(O)- x2,2’-CH2-C(O)x2,N6-C(O)-CH2- x2,2′-O-C(O)-CH2- x2),2.20-1.80(m,2′-C(O)-CH3 x2,N4-C(O)-CH3 x2).C31H36N6O13 723.23(+Na+)发现了723.29。
N2-二甲氧基甲脒-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯腺苷(12f)。1H NMR(500MHz,CDCl3):δ6.15-6.11(m,H-1′x2),5.41(d,2’-O-CH-O-,J=6.5),5.10-5.06(m,2′-O-CH2-O-),5.02(d,2′-O-CH-O-,J=6.5),2.82-2.79(m,2′-CH-C(O)x2),2.69-2.63(m,2′-CH-C(O)x2)2.44-2.34(m,2′-O-C(O)-CH2-x2),2.18(s,2′-C(O)-CH3x2).C29H35N7O12 696.23(+Na+)发现了696.30。
5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(13a,b,f,h)。
提供了5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯尿苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(13a),作为实例。在干燥氮气条件下,将化合物11a(5mmol)溶解于20mL干燥THF中。然后添加二异丙基乙胺(21mmol),接着逐滴添加2-氰乙基N,N-二异丙基氯代亚磷酰胺(6mmol)。通过TLC (溶于DCM中的5%MeOH)监测反应,2小时之后反应完成。之后用200mL DCM稀释反应混合物,用40mL 5%NaHCO3清洗一次。采用3x 50mLDCM提取水性混合物。用MgSO4干燥合并的提取物,过滤,在减压下蒸发。然后,采用6∶4 乙酸乙酯/己烷(0.5%三乙胺)→7∶3乙酸乙酯/己烷(0.5%三乙胺)的梯度,在用0.5%三乙胺中和的短柱上纯化粗制物质。得到的最终产物13a是白色泡沫,产率90%。
表4:化合物13b、13f、13h的柱色谱和产率
  化合物   mmol(起始)   柱条件   产率
  13b   6   7∶3乙酸乙酯/己烷(0.5%TEA)   84
  13f   2.5   溶于己烷中的0→90%EtOAc(0.5%TEA)   81
  13h   1.1   溶于己烷中的0→100%EtOAc(0.5%TEA)   70
化合物13a、13b、13f和13h的鉴定。
5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯尿苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(13a)。31P NMR(80MHz,CD3CN):δ151.24,149.88.ESI-TOF C45H55N4O12P计算值897.36(+Na+)发现了897.41。
N4-乙酰丙基-5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯胞苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(13b)。31P NMR(80MHz,CD3CN):δ151.30,149.26.ESI-TOF C60H62N5O13P计算值994.41(+Na+)发现了994.38。
N6-乙酰丙基-5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯腺苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(13f)。31P NMR(80MHz,CD3CN):δ151.05,150.52.ESI-TOF C51H62N7O12P计算值1018.42(+Na+)发现了1018.35。
N2-二甲基甲脒-5′-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯鸟苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(13h)。31P NMR(80MHz,CD3CN):δ151.5,150.9.ESI-TOF C49H61N8O11P 计算值1014.42(+Na+)发现了1014.38。
制备5’-0-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(14a,b,f,g)的一般过程。
提供了5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯尿苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(14a)的合成作为实例。在干燥氮气环境下,将化合物12a(2.67mmol)溶解于10mL干燥THF中。然后添加二异丙基乙胺(10.7mmol),接着逐滴添加2-氰乙基N,N-二异丙基氯代亚磷酰胺(3.2mmol)。通过TLC(乙酸乙酯)监测反应,2小时之后反应完成。之后用150mLDCM稀释反应混合物,用25mL 5%NaHCO3清洗一次。采用3x 25mL DCM提取水性混合物。用MgSO4干燥合并的提取物,过滤,在减压下蒸发。然后,采用3∶2 乙酸乙酯/己烷(0.5%三乙胺)→乙酸乙酯/己烷(0.5%三乙胺)的梯度,在用0.5%三乙胺中和的短柱上纯化粗制物质。得到的最终产物14a为淡黄色泡沫,产率88%。
表5:化合物14b、14f、14h的柱色谱和产率
Figure BPA00001363085000441
化合物14a,14b,14f和14h的鉴定。
5’-0-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯尿苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(14a)。31P NMR(80MHz,CD3CN):δ151.30,150.89,150.17,149.98.ESI-TOF C34H46N5O14P计算值802.28(+Na+)发现了802.23。
N4-乙酰丙基-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯胞苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(14b)。31P NMR(80MHz,CD3CN):δ151.15,150.32,150.10,149.79.ESI-TOF C34H46N5O14P计算值802.28(+Na+)理论值802.23。ESI-TOF C39H53N6O15P计算值899.33(+Na+)发现了899.31。
N6-乙酰丙基-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯腺苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(14f)。31P NMR(80MHz,CD3CN):δ151.64,151.41,151.25,151.03.ESI-TOF C40H53N8O14P计算值923.34(+Na+)发现了923.31。
N2-二甲基甲脒-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯鸟苷-3′-O-2-氰乙基N,N-二异丙基)亚磷酰胺(14h)。31P NMR(80MHz,CD3CN):δ151.27,151.06,149.72,149.59.ESI-TOF C40H53N8O14P计算值896.34(+Na+)发现了896.37。
按照方案2制备的化合物17-31的鉴定
N4-(9-芴甲氧基羰基)-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-(甲硫基)甲基胞苷(17)。1H NMR(500MHz,CDCl3):δ5.92(d,H-1’),5.68(d,2’-O-CH-O-),5.57(d,2’-O-CH-O),2.10(s,2’-C(O)-CH3).ESI-TOFC38H53N3O8SSi2计算值780.31(+Na+);发现了(+Na+)。
N4-(9-芴甲氧基羰基)-3′,5′-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)-2′-O-缩醛乙酰丙基酯胞苷(18)。1H NMR(500MHz,CDCl3):δ6.01(d,H-1’),5.33(d,2’-O-CH-O-),4.99(d,2’-O-CH-O-),2.79-2.74(m,2’-CH2-C(O)),2.71-2.65(m,2’-C(O)-CH2-),2.11(s,2’-C(O)-CH3).ESI-TOF C42H57N3O11Si2计算值858.35(+Na+);发现了858.34(+Na+)。
N6-(9-芴甲氧基羰基)-2′-O-缩醛乙酰丙基酯腺苷(19)。1H NMR(500MHz,CDCl3):δ6.01(d,H-1’),5.35(d,2’-O-CH-O-),4.95(d,2’-O-CH-O-),2.80-2.76(m,2’-CH2-C(O)),2.70-2.66(m,2’-C(O)-CH2-),2.17(s,2’-C(O)-CH3).ESI-TOF C31H31N5O9计算值640.21(+Na+);发现了640.26(+Na+)。
N2-(9-芴甲氧基羰基)-2′-O-缩醛乙酰丙基酯鸟苷(20)。1H NMR(500MHz,CDCl3):δ5.96(d,H-1’),5.44(d,2’-O-CH-O-),5.36(d,2’-O-CH-O-),2.78-2.72(m,2’-CH-C(O)),2.63-2.57(m,2’-CH-C(O)),2.46-2.40(m,2’-C(O)-CH-),2.12(s,2’-C(O)-CH3).ESI-TOF C31H31N5O10计算值656.21(+Na+);发现了656.24(+Na+)。
N4-(9-芴甲氧基羰基)-2′-O-缩醛乙酰丙基酯胞苷(21)。1H NMR(500MHz,CDCl3):δ5.75(d,H-1’),5.60(d,2’-O-CH-O-),5.44(d,2’-O-CH-O-),2.81-2.78(m,2’-CH2-C(O)),2.56-2.54(m,2’-C(O)-CH2-),2.19(s,2’-C(O)-CH3).ESI-TOF C31H31N3O10计算值616.20(+Na+);发现了616.20(+Na+)。
N6-5’-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯腺苷(22)。1H NMR(500MHz,CDCl3):δ6.20(d,H-1’),5.44(d,2’-O-CH-O-),5.35(d,2’-O-CH-O-),2.75-2.72(m,2’-CH2-C(O)),2.47-2.45(m,2’-C(O)-CH2-),2.15(s,2’-C(O)-CH3).ESI-TOF C52H49N5O11计算值942.34(+Na+);发现了942.30(+Na+)。
N2-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯鸟苷(23)。1H NMR(500MHz,CDCl3):δ5.99(d,H-1’),5.53(d,2’-O-CH-O-),5.40(d,2’-O-CH-O-),2.74-2.72(m,2’-CH2-C(O)),2.53-2.49(m,2’-C(O)-CH2-),2.12(s,2’-C(O)-CH3).ESI-TOF C52H44N4O12计算值958.34(+Na+);发现了958.29(+Na+)。
N4-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯胞苷(24)。1H NMR(500MHz,CDCl3):δ5.92(s,H-1’),5.67(d,2’-O-CH-O-),5.57(d,2’-O-CH-O-),2.79-2.75(m,2’-CH2-C(O)),2.58-2.55(m,2’-C(O)-CH2-),2.18(s,2’-C(O)-CH3).ESI-TOF C51H49N3O12计算值918.29(+Na+);理论值918.28(+Na+)。
N6-(9-芴甲氧基羰基)-5’-O-2-(2-硝基苯基)丙氧羰基-2’-O-缩醛乙酰丙基酯腺苷(25)。1H NMR(500MHz,CDCl3):δ6.23-6.21(m,H-1’x2),5.44-5.35(m,2’-O- CH2-O- x2),2.77-2.75(m,2’-CH2-C(O)x2),2.48-2.46(m,2’-O-C(O)-CH2- x2),2.17(s,2’-C(O)-CH3 x2).ESI-TOF C41H40N6O13计算值847.27(+Na+);发现了847.29(+Na+)。
N2-(9-芴甲氧基羰基)-5’-O-2-(2-硝基苯基)丙氧羰基-2’-O-缩醛乙酰丙基酯鸟苷(26)。1H NMR(500MHz,CDCl3):δ5.97(s,H-1’x2),5.50(d,2’-O-CH-O-),5.45(d,2’-O-CH-O-),5.38-5.36(m,2’-O-CH2-O-),2.75-2.68(m,2’-CH2-C(O)x2),2.54-2.45(m,2’-O-C(O)-CH2- x2),2.15(s,2’-C(O)-CH3 x2).ESI-TOF C31H40N6O14计算值863.23(+Na+);发现了863.36(+Na+)。
N6-(9-芴甲氧基羰基)-5’-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯腺苷-3’-O-2-氰乙基N,N-二异丙基)亚磷酰胺(27)。ESI-TOF C61H66N7O12P计算值1142.41(+Na+);发现了1142.44(+Na+);31P NMR(80MHz,CD3CN):δ151.16,151.6。
N2-(9-芴甲氧基羰基)-5’-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯鸟苷-3’-O-2-氰乙基N,N-二异丙基)亚磷酰胺(28)。ESI-TOF C61H66N7O13P计算值1158.45(+Na+);发现了1158.40(+Na+);31P NMR(80MHz,CD3CN):δ151.78,150.59。
N2-(9-芴甲氧基羰基)-5’-O-(4,4′-二甲氧三苯甲基)-2′-O-缩醛乙酰丙基酯胞苷-3’-O-2-氰乙基N,N-二异丙基)亚磷酰胺(29)。ESI-TOF C60H66N5O13P计算值1118.44(+Na+);发现了118.38(+Na+);31P NMR(80MHz,CD3CN):δ151.88,150.47。
N6-(9-芴甲氧基羰基)-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯腺苷-3’-O-2-氰乙基N,N-二异丙基)亚磷酰胺(30)。ESI-TOF C50H57N8O14P计算值1047.37(+Na+);发现了1047.51(+Na+);31P NMR(80MHz,CD3CN):δ151.01。
N2-(9-芴甲氧基羰基)-5’-O-2-(2-硝基苯基)丙氧羰基-2′-O-缩醛乙酰丙基酯鸟苷-3’-O-2-氰乙基N,N-二异丙基)亚磷酰胺(31)。ESI-TOF C50H57N8O15P计算值1063.37(+Na+);发现了1063.37(+Na+);31P NMR(80MHz,CD3CN):δ151.21,151.06。
实施例2 采用5′-DMTr-2′-ALE-3′-亚磷酰胺单体固相合成RNA链的实 验方案
合成A.在本实施例中,采用5′-DMTr-2′-ALE-3′-亚磷酰胺单体13a、b、f、g在ABI 3400上合成1μmol的序列5′-GCU UGA AGU CUU UAA UUAAtt-3′(SEQ ID NO:1)。使用的固体载体为购自Glen Research的Q-连接-dTCPG。使用了标准寡核糖核苷酸合成条件,其中使用仅1分钟偶联时间和0.25M DCI作为激活剂。还通过1分钟偶联时间和0.25M DCI作为激活剂的标准条件合成了商业上可购买到的2′-TBDMS和2′-TOM,用于比较。按照标准方法来将这些寡核苷酸(oligo)去保护。在2′-ALE RNA合成结束之后,首先采用2∶3 三乙胺/乙腈处理一部分原料,80分钟,接着用0.5M 3∶2水合肼/吡啶乙酸处理60分钟。然后,用1M TBAF处理与去保护的寡核苷酸完全结合的固体载体,24小时,以便将其从CPG中裂解。此外,在室温下,用3∶1 氢氧化铵/乙醇处理完全保护的物质的另一部分,60分钟。结果用图4A和4B中分别显示的PAGE凝胶和HPLC印迹概述,结果表明由ALE单体合成的RNA链优于(总产率)由TBDMS和TOM单体合成的那些。
合成B.在ABI-3400DNA/RNA合成仪上进行r(GCUUGAAGUCUUUAAUUAA)-d(TT)的固相合成。采用5′-DMTr-dT-Q-连接物长链烷基胺可控孔径玻璃(LCAA-CPG)在不含三苯甲基(trityl-off)模式中进行1μmol规模。载体首先接受标准加帽循环,CAP A溶液(Ac2O/pyr/THF)和Cap B溶液(THF中10%1-甲基咪唑),进行3×180s,从而乙酰化和干燥固体载体。使用0.25M DCI作为活化剂,溶于干燥ACN中的0.1M亚磷酰胺13a、b、f、g的溶液进行RNA合成。对于寡核苷酸合成必需的所有其他辅助试剂均从商业上购买。脱三苯甲基步骤使用3%三氯乙酸(TCA),持续80s。每个亚磷酰胺偶联步骤设置为1分钟或10分钟。加帽步骤(使用CAP A和CAP B)设置为20s,氧化步骤(使用0.1M碘/吡啶/水/THF)设置为30s。使用溶于乙腈(ACN)中的0.15M浓度的2′-O-TBDMS亚磷酰胺单体(Damha,M.J.;K.K.Ogilvie Protocols for OligonucleotideAnalogs,ed.;Humana:Totowa,N.J.,1993)。
采用2′-O-TOM亚磷酰胺单体合成的RNA可从商业上购买得到,如Glen Research所推荐的,采用以上所述的物质处理该RNA,除了溶于乙腈中的亚磷酰胺浓度是0.10M。由2′-O-ACE化学合成的粗制RNA购自Dharmacon。
采用29%aq.NH3(氨水)/乙醇 3∶1在55℃下处理30min,接着用溶于THF中的1M TBAF(16h;r.t.(室温))处理从CPG载体中去保护2′-O-TOM和2′-O-TBDMS RNA寡聚物。除了将肼处理延长至4小时以达到混合序列的完全去保护之外,在柱上进行ALE寡聚物的去保护如上所述地进行。具体地,在合成循环结束之后,用无水2∶3 v/v NEt3/ACN(1h;r.t.)处理完全保护的ALE寡聚物,通过柱分离氰乙基磷酸盐基团。然后,用ACN彻底清洗柱,并在高真空下干燥。接着,通过使溶于3∶2 v/v pyr∶HOAc中的0.5MNH2NH2·H2O的溶液通过柱,4h,r.t.,同时去除N-Lv/dmf和2′-O-ALE基团。随后,用CH2Cl2和CAN清洗固体载体,在高真空下去除痕量的溶剂。在这个阶段,将结合于Q-CPG的裸RNA链转移至1mL eppendorf管中。用氟化物处理(1mL 1M TBAF,16h,r.t.),将RNA从Q-CPG载体中释放。之后离心该物质,去除上清液。随后,采用4×250μL 1∶1 水/乙醇清洗CPG。将该物质蒸干,再溶解于水中。然后,通过sephadex G-25柱以去除盐,通过变性聚丙烯酰胺凝胶电泳(24%丙烯酰胺,8.3M尿素)进一步纯化。
表1和图5中给出了在最佳条件下去保护的粗制寡聚物获得的偶联数据和HPLC曲线。由99%平均偶联效率计算的结果显示,ACE寡聚物的HPLC示踪的质量很好(纯度为81.8%;未知的偶联时间)。1分钟偶联时,2′-O-ALE单体(13a、b、f、h)的平均逐步偶联产率(97.7%)高于采用2′-O-TOM(96.3%)和2′-O-TBDMS(94.7%)单体获得的产率(表2)。在较长的偶联时间下(10分钟),获得的值分别为98.7%、98.15和98.4%。去保护的寡聚物的详细HPLC和MS分析表明,在每种情况下均没有碱基修饰(参见表6和图6A-D)。
表6:由各种化学a合成的21-nt RNA的对比研究。
Figure BPA00001363085000491
a碱基序列:r(GCUUGAAGUCUUUAAUUAA)-d(TT);b计算分子量6617g/mol;c通过HPLC计算的产率%(主峰面积%);d由10min偶联时间计算;e由1min偶联时间计算;f偶联时间未知。
作为最终的核实,我们评价了在RNAi鉴定中合成的所有RNA的活性,靶向荧光素酶mRNA的活性(Dowler,T.等人,Nucleic Acids Res 2006,34,1669-75)。允许通过各种化学制备的反义链退火至经2′-TBDMS化学合成的普通有义链。如图7所示,通过2′-O-ALE化学制备的siRNA双链体与来源于TBDMS、TOM和ACE方案中的siRNA双链体具有相同的基因沉默活性,进一步证实了合成的RNA链的完整性。
合成C.在本实施例中,使用N-FMOC-5′-DMTr-2′-ALE-3′-亚磷酰胺单体13a、27-29,CPG作为固体载体,在ABI-3400上合成了1μmol的序列5′-GCU UGA AGU CUU UAA UUA Att-3′(SEQ ID NO:1)。附着于固体载体上的连接物是光不稳定的连接。标准寡核糖核苷酸合成条件仅使用一分钟偶联时间和0.25M DCI作为活化剂。通过1分钟偶联时间和0.25M DCI作为活化剂的标准条件也合成了商业上可购买到的2′-TBDMS。按照标准方案去保护2′-TBDMS寡核苷酸。在2′-ALE RNA合成结束之后,首先采用2∶3三乙胺/乙腈处理该物质,24小时,接着用乙二胺和乙醇(1∶1 v/v)处理2小时,并且在室温下用光处理X分钟。通过聚丙烯酰胺凝胶电泳表征寡聚物。
实施例3 RNA微阵列的原位光导向制备的实验方案
一般方法 包括水合肼(NH2NH2·H2O)、三乙胺(NEt3)和乙腈(ACN)在内的所有化学品和溶剂均购自Sigma-Aldrich。DNA合成试剂购自Glen Research。Cy3-亚磷酰胺也购自Glen Research,用于末端标记实验(0.03M溶液,偶联时间600s)。用于控制实验的NPPOC-DNA亚磷酰胺和曝光溶剂购自RocheNimbleGen。通过采用购自Gelest Inc的单羟基硅烷,硅烷化来自ArrayIt的Superclean玻璃显微镜载玻片制备基质。采用溶于95%EtOH中的2%三乙氧基硅基丙基-4-羟丁基酰胺,pH 4-5(用冰醋酸调节),在搅拌下将载玻片功能化4小时。然后,用95%EtOH,pH 4-5清洗载玻片两次,持续20分钟,在120℃下真空干燥12小时。处理之后,载玻片必须保持在干燥器中用于储存。
MAS(无掩模阵列合成仪)光导向阵列合成 用Perspective BiosvstemsExpedite 8909 DNA泵系统,在MAS上进行合成。MAS系统使用计算机生成的虚拟掩模并通过13μm宽的微镜的大小为768×1024阵列的TexasInstrument的数码光处理器(DLP)成像。将Roche NimbleGen的通过1000HgW灯(Oriel Instruments,Stratford,CT)365nm的暴露波长用于NPPOC去保护。在除了在合成循环中相应地使用RNA单体外,MAS系统与之前所述一样(Singh-Gasson等人,1999,Nature Biotechnology 17:974-978)。在避光和惰性气氛下稀释制备的所有亚磷酰胺以防止水分污染。DNA和RNA微阵列均采用3’-dT5连接物在玻璃基质上合成。
DNA微阵列 以溶于无水乙腈中30mM的浓度,用0.25M DCI(二氧基咪唑/ACN)作为活化剂进行标准DNA NPPOC-亚磷酰胺偶联,其持续60s。将去保护条件优化为6J下111s或在54mW/cm2下。对于偶联不成功的情况,进行TAC(叔-丁基苯氧基乙酰基)脱水物或FastCapA和Cap B(Sigma Aldrich)加帽,接着用0.02M碘水溶液将亚磷酸盐氧化为稳定的磷酸盐形式。在完成寡聚物的分步合成之后,用1∶1乙二胺的EtOH溶液进行标准DNA微阵列的碱基去保护2小时,在杂交实验之前用EtOH清洗并在氩气(Ar)下干燥。
偶联时间优化-末端标记 为了确定最佳的偶联时间,合成了序列3′-d-TTTTT-U10-Ux-Cy3-5’,其中U10是用10分钟偶联时间的rU 10mer,Ux是在不同时间,1、2、5和10分钟偶联的rU。然后,用Cy3进行末端标记并通过荧光成像进行评价。扫描结果显示于左侧(图8A),而图形表示(所有值的平均值)显示于右侧(图8B)。反应在0.1M下进行。在每个偶联时间的发射强度看起来没有显著变化。因此,1分钟偶联时间足以有效将7偶联。
5′-NPPOC光去保护分析 可以测试5′-NPPOC-2′-ALE RNA 3’-amidite单体,rA、rC、rG和rU以确定5′-NPPOC去保护需要的曝光条件。可以采用3’-dT5连接物合成阵列,接着在硅烷化载玻片上与5’-NPPOC单体偶联。然后,使阵列接受0.6J-15J UV的梯度的光暴露。在梯度去保护之后,可以将Cy3-亚磷酰胺偶联在末端位置,使得可以合成3′-dT5-x-Cy3-5′(x=rA、rC、rG或rU)形式的寡核苷酸。在梯度去保护的阵列上可以将Cy3的荧光强度定量以确定每个碱基的最佳去保护条件。
在本实施例中,进行了曝光梯度为0-15J(或0-250s,55mW/cm2曝光时间)的NPPOC去保护。以10分钟偶联时间和0.1M亚磷酰胺浓度进行每个rU单体偶联。以每个n+15’NPPOC去保护使用0-15J曝光梯度合成rU20聚体。
图9显示了阐明rU20,0-15J的曝光梯度的图像(A)和图形(B)。图9A,rU20:dA20-Cy5的发射扫描。图9B,曝光梯度的图形表示。图9A显示了与dA20-Cy5杂交的rU-20聚体的杂交荧光扫描。每个四分之一部分(quadrant)表示同一个实验。每个四分之一部分的较下方左侧特征(最黑或者最低发射强度)为0.6J能量,接着是从0.6J能量左侧开始向右侧能量递增,直到15J的第25个特征。四个四分之一部分的平均发射强度曲线显示于图9B的图形表示中。结果表明,rU NPPOC保护基的最优曝光发生在大约6.5-7J。这与大约6J的NPPOC-DNA单体的标准去保护一致(数据未显示)。
rU亚磷酰胺(14a)浓度的优化 采用1分钟亚磷酰胺偶联时间,在rU20mer上进行了0-15J的曝光梯度,因为在这些条件下评价和确定的偶联时间效率是最佳的。但是,为了评估最佳浓度,采用30mM rU amidite溶液来替代进行实验。曝光梯度实验过程与上述一致。
图10显示了阐明在30mM浓度下rU20,0-15J的暴露梯度,rU偶联时间1分钟的图像(A)和图形(B)。图10A,rU20:dA20-Cy5的Cy5的发射扫描;图10B,曝光梯度的图形表示。
图10B中显示的发射强度值证明了在6.5J时达到充分的NPPOC光去保护。该发射强度值很好并且与DNA曝光梯度对照(dA20:dT20,-数据未显示)相当。
总之,rU NPPOC亚磷酰胺显示了与DNA NPPOC亚磷酰胺的显著相似性。反应条件需要1分钟偶联时间,30mM浓度和6.5J光去保护。
动力学范围和灵敏度 可以合成由5个随机混合的寡核苷酸组成的阵列(表7)。将5个互补标记的探针与1pM至300pM范围内的阵列杂交。在阵列表面上可以重复每个寡核苷酸20次。对于每个寡核苷酸来说,在杂交之后测定的荧光强度平均超过20个特征。为了确定相对灵敏度,可以用DNA NPPOC单体作为对照,制备含有以下序列的核苷酸的阵列。本实验的目的是基于浓度的变化的范围定量测量探针杂交的灵敏度。
表7:寡核苷酸
芯片序列
Figure BPA00001363085000521
互补探针
Figure BPA00001363085000522
RNA微阵列 在RNA微阵列的合成中,使用5′-NPPOC-修饰的亚磷酰胺14a、14b、14f和14h。采用安装在与DNA合成仪连接的流式细胞(flow cell)的玻璃基质(‘芯片’),在上述无掩模阵列合成仪(MAS)上进行合成。为了确定RNA单体的偶联效率,在芯片上合成1至12个核苷酸长度的序列并用Cy3亚磷酰胺进行末端标记。使用由5′-O-NPPOC-修饰的胸腺嘧啶亚磷酰胺制备的dT5连接物链,使RNA链远离芯片表面。所有单体(溶于ACN中0.05至0.06M)用4,5-二氰基咪唑(0.25M溶于ACN中的DCI)活化并使其与载体偶联10至15分钟。进行标准加帽(Ac2O),接着进行氧化(0.02M I2/水/吡啶)。光不稳定5′-O-NPPOC基团的完全曝光需要在365nm下6.5J/cm2的UV光能量剂量(图9、10)。将来自偶联步骤的荧光强度与单指数衰减拟合以确定平均偶联效率。四个单体的偶联参数和效率见图8。
表8:微阵列合成偶联参数和效率
Figure BPA00001363085000531
在偶联效率确定之后,对两个微阵列(rU12和rA12)去保护。通过将合成的微阵列浸入2∶3 NEt3/ACN中,室温下搅拌80分钟,首先进行脱氰乙基作用。用无水ACN冲洗载玻片5次,并在Ar下干燥。通过采用0.5MNH2NH2·H2O(3∶2 v/v pyr∶AcOH)处理,室温下(r.t.)摇动1小时去除2′-O-ALE保护基。用1∶1 pyr∶AcOH(pH>5)清洗载玻片以去除在玻璃基质上形成的任何盐。在RNA微阵列合成之前进行DNA对照实验(dA10:dT10微阵列杂交),从而确保与RNA需要的去保护条件兼容(数据未显示)。杂交结果表明,当使DNA微阵列暴露于用于去除磷酸盐和2′-羟基保护基的试剂中时,没有寡核苷酸从玻璃基质丢失。在去保护之后,将芯片上的寡核苷酸与Cy5标记的dA20或Cy5标记的dT20杂交(图11)。
用寡聚物的长度逐渐增加的方式排列图11中显示的荧光显微照片中显示的微阵列特征,即在编号的标记n以上或以下的芯片上的序列为:(表面)-dT5-rn,其中n介于0与12之间。零偶联是指接受完整偶联循环的区域,但无单体,表明在芯片上加帽~90%有效。将与每个“n”标记的偶联步骤对应的芯片表面再分为四个部分:(1)单一RNA偶联(dT5-rN),接着(2)非常明亮的单一末端标记的RNA偶联(dT5-rN-Cy3),接着(3)dT5-rNn和(4)dT5-rNn-Cy3。未被标记的区域用于荧光信号的背景减除。芯片上的数据和标记具有末端标记的、单一RNA偶联模式(dT5-rN-Cy3)。与探针杂交(Cy5标记的dA20或Cy5标记的dT20)之后,末端标记的和未标记的n聚物均可见,如所预期的那样,较长(和更稳定的)双链体提供了最明亮的信号,该信号在探针长度减小时逐渐减小。
在上述杂交实验的实施例中,采取预防措施以确保无RNA酶的环境从而防止RNA微阵列的酶降解。在杂交缓冲液的制备中,使用DPC(焦碳酸二乙酯,Sigma Aldrich)高压蒸汽灭菌H2O。在DNA和RNA杂交实验中均采用由40mM TRIS-HCl、10mM MgCl2,组成的,pH 7.2的TRIS缓冲液。使用有粘性的盖玻片(GraceBiolabs)进行杂交。使300μL 500nM DNA探针(例如dA10-5’-Cy5和dA20-5’-Cy5)溶液与各自的rU互补物杂交。rU10:dA10杂交在4℃下进行1小时,rU20:dA20在环境温度下进行1小时。在荧光扫描之前,用300μL冷的非严格(NS)清洗缓冲液(0.5M NaCl、0.03M磷酸盐、0.3mM EDTA、0.01%Tween-20)清洗载玻片。在Applied PrecisionArrayWorx Biochip reader上扫描并分析杂交的芯片。
实施例4 核糖核酸酶A底物RNA微阵列
如通过存在于许多生物体中的多类RNA酶所证明的,RNA降解是重要的过程。除了提供预防病毒RNA外,RNA酶在细胞内起作用,降解编码或非编码RNA,一旦所述的RNA达到它们的目的。为了证明使用RNA微阵列对于研究核糖核酸酶底物序列文库的酶动力学和特异性的价值,进行了生物学鉴定。
RNA酶A的底物序列 内切核酸酶的RNA酶A家族最适合在嘧啶-嘌呤-嘌呤形式的序列中的嘧啶之后裂解。按照该方案,已经测定了RNA酶A的一些底物的酶裂解活性(Kelemen等人,1999,Nucleic Acids Research,27,3696-3701)。表9列出了选自Kelemen等人用于RNA酶底物RNA微阵列以及参照的底物和其活性的序列。微阵列和参照的底物之间的主要差异是荧光检测方案,在微阵列情形下基于通过RNA酶裂解之后Cy3中荧光的丢失,而对于参照的底物,因为与淬灭发色团分离,裂解导致来自6-FAM的荧光增加。此外,用胸腺嘧啶15mer将微阵列序列与玻璃表面连接。与参照的底物一样,微阵列序列由RNA和DNA核苷酸组成,因此也用于测试含DNA/RNA嵌合序列的微阵列的合成和去保护。
表9:RNA酶A底物微阵列的序列
Figure BPA00001363085000541
RNA酶A底物微阵列合成和去保护 该微阵列的合成用尿嘧啶NPPOC RNA亚磷酰胺以及胸腺嘧啶和腺嘌呤NPPOC DNA亚磷酰胺进行。胸腺嘧啶用于15聚体的连接并且用于替代与表9列出的四个RNA酶底物相邻合成四个对照序列的尿嘧啶。在合成之后,用两种方式中的一种将RNA酶底物微阵列去保护。一种方法是用1∶1(v/v)乙二胺-乙醇首先将DNA碱基去保护4小时,接着用2∶3(v/v)三乙胺-乙腈(100分钟),之后用溶于3∶2(v/v)吡啶-乙酸中的0.5M水合肼(100分钟)将尿嘧啶去保护。第二种方法是用乙二胺-乙醇溶液将所有保护基去除4小时。两种方法均使微阵列对RNA酶A具有相同的敏感性。
微阵列上的酶动力学 在去保护之后,将微阵列浸入含有0.1M 2-(N-吗啉代)乙磺酸(MES)缓冲液中的40ml 100nM RNA酶A的50ml Falcon管中。轻轻机械搅拌离心管1分钟,然后,快速移除微阵列并用水清洗,用氩气立即干燥。然后,用GenePix 4000B微阵列扫描仪扫描微阵列。在RNA酶溶液中不同的浸泡时间下,将该过程重复多次。图12显示了起始和末端扫描。之后,采用GenePix Pro软件提取扫描的荧光数据。所有四个RNA酶底物的经作图的数据显示于图13中,其显示了来自底物序列的荧光强度与RNA酶A的暴露时间的函数。图13证明了RNA酶A对RNA微阵列底物的有效作用,该RNA酶A的动力学与参照的底物的动力学相当。结果还表明,混合的RNA/DNA微阵列具有相容的合成和去保护方案。
应当理解,本发明不限于所描述的特定装置、方法、方案、受试对象或试剂,因为这些可以改变。还应当理解,本文使用的术语仅仅为了描述特定实施方案的目的,而无意于限制本发明的保护范围,本发明的保护范围仅受到权利要求书的限制。对于生物工程、分子生物学、分子间相互作用、化学、生物、医药和医学诊断领域的技术人员来说显而易见的其他适合的多种条件和参数的修改和适应均落在本发明的保护范围内。出于所有目的,本文引用的所有出版物、专利和专利公开均以引用方式整体并入本文。

Claims (32)

1.一种式(I)的化合物:
Figure FPA00001363084900011
其中,
B选自由碱基和受保护的碱基;
P1是氢或O-保护基;
P2是氢或
Figure FPA00001363084900012
或其盐,
或者或其盐,其中R是甲基、2-氰乙基、2-氯苯基、4-氯苯基;
P3是氢或O-保护基;和
其中,P1和P3中至少一个是作为O-保护基的CH2OC(O)CH2CH2C(O)CH3
2.权利要求1所述的化合物,具有式(II):
Figure FPA00001363084900014
3.权利要求1所述的化合物,具有式(III):
Figure FPA00001363084900015
4.权利要求1所述的化合物,具有式(IV):
Figure FPA00001363084900021
5.权利要求1所述的化合物,具有式(V):
Figure FPA00001363084900022
6.权利要求1所述的化合物,其中,P1是选自下述基团的O-保护基:
a.碱不稳定基团,包括-CH2OC(O)CH2CH2C(O)CH3(缩醛乙酰丙基,ALE)和-C(O)CH2CH2C(O)CH3(乙酰丙基,Lv);
b.酸不稳定基团,包括缩醛基团(ACE)、1-(2-氟苯基)-4-甲氧基哌啶-4-基(Fpmp)、1-(4-氯苯基)-4-乙氧基哌啶-4-基(Cpep)、4-(N-二氯乙酰基-N-甲氨基)苄氧基甲基(4-MABOM)、包括二甲氧基三苯甲基(DMTr)和单甲氧基三苯甲基(MMTr)的三苯甲基醚基团;
c.易还原基团,包括2-叔丁基二硫代甲基(DTM)和烯丙基;
d.氟化物不稳定基团,包括叔丁基二甲基硅烷基(TBDMS)、2′-O-三异丙基硅氧甲基(2′-O-TOM)、氰乙基甲基(CEM)和2-(4-甲苯磺酰基)乙氧基甲基(TEM);和
e.光不稳定基团,包括甲硅烷基醚基团、硝基苄基(包括2′-硝基苄基,例如2-(2-硝基苯基)丙氧羰基(NPPOC)、α-甲基硝基胡椒基氧羰基(MeNPOC)和其中物质的衍生物(包括噻吨酮-硝基苄基缀合物))和DMBOC(5′-O-二甲氧基苯偶姻碳酸盐基)。
7.权利要求1所述的化合物,其中,P3是选自下述基团的O-保护基:
a.碱不稳定基团,包括-CH2OC(O)CH2CH2C(O)CH3(缩醛乙酰丙基,ALE)和-C(O)CH2CH2C(O)CH3(乙酰丙基,Lv);
b.酸不稳定基团,包括缩醛基团(ACE)、1-(2-氟苯基)-4-甲氧基哌啶-4-基(Fpmp)、1-(4-氯苯基)-4-乙氧基哌啶-4-基(Cpep)、4-(N-二氯乙酰基-N-甲氨基)苄氧基甲基(4-MABOM)和包括二甲氧基三苯甲基(DMTr)和单甲氧基三苯甲基(MMTr)的三苯甲基醚基团;
c.易还原基团,包括2-叔丁基二硫代甲基(DTM)和烯丙基;
d.氟化物不稳定基团,包括叔丁基二甲基硅烷基(TBDMS)、2′-O-三异丙基硅氧甲基(2′-O-TOM)、氰乙基甲基(CEM)和2-(4-甲苯磺酰基)乙氧基甲基(TEM);和
e.光不稳定基团,包括甲硅烷基醚基团、硝基苄基(包括2′-硝基苄基,例如2-(2-硝基苄基)丙氧羰基(NPPOC)、α-甲基硝基胡椒基氧羰基(MeNPOC)和其中物质的衍生物(包括噻吨酮-硝基苄基缀合物))和DMBOC(5′-O-二甲氧基苯偶姻碳酸盐基)。
8.权利要求1所述的式(VI)的化合物:
Figure FPA00001363084900031
9.权利要求1-8中任一项所述的化合物,其中,B是6-氨基-9H-嘌呤-9-基、2-氨基-1H-嘌呤-6(9H)-酮-9-基、4-氨基嘧啶-2(H)-酮-1-基、或嘧啶-2,4(1H,3H)-二酮-1-基。
10.权利要求1-8中任一项所述的化合物,其中,B是N4-乙酰丙基胞嘧啶、N2-乙酰丙基鸟嘌呤、N2-(二甲基甲脒)鸟嘌呤、N2-苯氧基乙酰基乙酰基鸟嘌呤、N6-(叔-丁基苯氧乙酰基)腺嘌呤、N6-(9-芴基甲氧羰基)腺嘌呤、N2-(9-芴基甲氧羰基)鸟嘌呤、N4-苯甲酰基胞嘧啶、N6-苯甲酰基腺嘌呤、N4-异丁酰胞嘧啶、N4-乙酰基胞嘧啶或N2-异丁酰基鸟嘌呤。
11.一种化合物,包含含有2’-O-缩醛乙酰丙基酯(ALE)保护基和5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基的RNA单体。
12.权利要求11所述的化合物,其中,所述RNA单体被固定在固体基质上。
13.一种RNA寡核苷酸,包含2’-O-缩醛乙酰丙基酯(ALE)保护基和5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基。
14.权利要求13所述的RNA寡核苷酸,其中,所述RNA寡核苷酸被固定在固体基质上。
15.一种阵列,包含固定在固体基质上的至少两个不同序列的RNA寡核苷酸,每个RNA寡核苷酸包含至少一个单体,所述的单体含有权利要求1-12中任一项所述的化合物。
16.权利要求15所述的阵列,其中,所述单体具有2’-O-缩醛乙酰丙基酯(ALE)保护基和5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基。
17.一种在固体基质上合成寡核糖核苷酸的方法,所述方法包括:
a)将含有权利要求1-12中任一项所述的化合物的第一个核糖核苷酸单体固定在固体基质上,产生固定的核糖核苷酸单体;
b)去除保护基从而产生去保护的固定的核糖核苷酸单体;
c)在使得第二个核糖核苷酸单体与去保护的固定的核糖核苷酸单体偶联的条件下,将保护的固定的核糖核苷酸单体与含有权利要求1-12中任一项所述的化合物的第二核糖核苷酸单体接触,在固体基质上原位生成寡核糖核苷酸。
18.权利要求17所述的方法,其中,所述第一种核糖核苷酸单体具有2’-O-缩醛乙酰丙基酯(ALE)保护基和5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基,并照射固定的核糖核苷酸单体以去除NPPOC保护基。
19.权利要求17和18中任一项所述的方法,其中,在约6.5J下照射所述固定的核糖核苷酸单体。
20.权利要求17和18中任一项所述的方法,其中,通过连接物将所述第一种核糖核苷酸单体固定在固体基质上。
21.一种检测寡核糖核苷酸探针与靶分子结合的方法,所述方法包括:
a)提供固定在固体载体上的寡核糖核苷酸探针的阵列,所述寡核糖核苷酸探针包含多个核糖核苷酸单体,所述寡核糖核苷酸探针包含2’-O-缩醛乙酰丙基酯(ALE)保护基;
b)去除保护基从而生成去保护的寡核糖核苷酸探针的阵列;
c)将标记的样本靶与去保护的寡核糖核苷酸探针的阵列杂交;
d)清洗阵列;和
e)测定标记强度以鉴别与互补寡核糖核苷酸探针结合的每个标记的靶分子的探针特异性水平。
22.权利要求21所述的方法,其中,所述寡核糖核苷酸探针另外具有5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基。
23.权利要求21和22中任一项所述的方法,其中,所述靶分子是RNA、DNA、蛋白质或小分子。
24.权利要求22所述的方法,其中,所述2’-O-缩醛乙酰丙基酯(ALE)保护基通过碱去除,所述5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基通过光照射去除。
25.权利要求24所述的方法,其中,所述2’-O-缩醛乙酰丙基酯(ALE)保护基通过肼或氨去除。
26.一种测定样本中靶分子的存在或不存在的方法,所述方法包括:
a)提供固定在固体载体上的寡核糖核苷酸探针的阵列,每个寡核糖核苷酸探针包含多个核糖核苷酸单体,所述寡核糖核苷酸探针包含2’-O-缩醛乙酰丙基酯(ALE)保护基;
b)去除保护基从而生成去保护的寡核糖核苷酸探针的阵列;
c)提供来源于样本的制剂;
d)使制剂与阵列杂交;
e)清洗阵列;和
f)在定位一个或多个寡核糖核苷酸探针的特定位置观察杂交信号的存在或缺失,以便确定样本中靶分子的存在或缺失。
27.权利要求26所述的方法,其中,所述寡核糖核苷酸探针另外包含5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基。
28.权利要求26和28任一项所述的方法,其中,所述靶分子是RNA、DNA、蛋白质或小分子。
29.权利要求27所述的方法,其中,所述2’-O-缩醛乙酰丙基酯(ALE)保护基通过碱去除,所述5’-2-(2-硝基苯基)丙氧羰基(NPPOC)保护基通过光照射去除。
30.权利要求29所述的方法,其中,所述2’-O-缩醛乙酰丙基酯(ALE)保护基通过肼、氨或乙二胺去除。
31.权利要求1-12中任一项所述的化合物的用途,用于在固体基质上合成寡核糖核苷酸。
32.权利要求31所述的用途,用于生产RNA微阵列。
CN200980144324.XA 2008-09-05 2009-09-04 含有O-缩醛乙酰丙酸酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用 Active CN102639552B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US9452508P 2008-09-05 2008-09-05
US61/094,525 2008-09-05
US61/094525 2008-09-05
US18156209P 2009-05-27 2009-05-27
US61/181562 2009-05-27
US61/181,562 2009-05-27
PCT/CA2009/001244 WO2010025566A1 (en) 2008-09-05 2009-09-04 Rna monomers containing o-acetal levulinyl ester groups and their use in rna microarrays

Publications (2)

Publication Number Publication Date
CN102639552A true CN102639552A (zh) 2012-08-15
CN102639552B CN102639552B (zh) 2016-05-25

Family

ID=41796692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980144324.XA Active CN102639552B (zh) 2008-09-05 2009-09-04 含有O-缩醛乙酰丙酸酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用

Country Status (7)

Country Link
US (2) US9249175B2 (zh)
EP (1) EP2334692B1 (zh)
CN (1) CN102639552B (zh)
AU (1) AU2009290102A1 (zh)
CA (1) CA2772434C (zh)
HK (1) HK1171760A1 (zh)
WO (1) WO2010025566A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922441A (zh) * 2019-11-21 2020-03-27 佛山市艾达思精密仪器有限公司 光定向微阵列dna合成的链接基质物和合成方法
CN111512158A (zh) * 2017-12-22 2020-08-07 威斯康星校友研究基金会 用于癌症生物标志物捕获的纳米工程化表面
CN114685560A (zh) * 2020-12-31 2022-07-01 沈阳药科大学 含哌啶骨架亚磷酰胺单体及寡聚核苷酸的合成和应用
CN114685560B (zh) * 2020-12-31 2024-05-14 沈阳药科大学 含哌啶骨架亚磷酰胺单体及寡聚核苷酸的合成和应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140255471A1 (en) 2013-03-11 2014-09-11 Wake Forest University Health Sciences Method of treating brain tumors
TWI721929B (zh) 2013-08-05 2021-03-11 美商扭轉生物科技有限公司 重新合成之基因庫
WO2016126987A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
CA2975852A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
WO2016172377A1 (en) 2015-04-21 2016-10-27 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
WO2016170179A1 (en) 2015-04-24 2016-10-27 Qiagen Gmbh Method for immobilizing a nucleic acid molecule on solid support
WO2016170182A1 (en) 2015-04-24 2016-10-27 Qiagen Gmbh Method for immobilizing a nucleic acid molecule on a solid support
IL258164B (en) 2015-09-18 2022-09-01 Twist Bioscience Corp Methods to regulate the activity of proteins and cells and a method for the production of nucleic acids
WO2017053450A1 (en) 2015-09-22 2017-03-30 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
CN108603307A (zh) 2015-12-01 2018-09-28 特韦斯特生物科学公司 功能化表面及其制备
WO2018038772A1 (en) 2016-08-22 2018-03-01 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
JP6871364B2 (ja) 2016-09-21 2021-05-12 ツイスト バイオサイエンス コーポレーション 核酸に基づくデータ保存
EA201991262A1 (ru) 2016-12-16 2020-04-07 Твист Байосайенс Корпорейшн Библиотеки вариантов иммунологического синапса и их синтез
SG11201907713WA (en) 2017-02-22 2019-09-27 Twist Bioscience Corp Nucleic acid based data storage
EP3595674A4 (en) 2017-03-15 2020-12-16 Twist Bioscience Corporation BANKS OF VARIANTS OF IMMUNOLOGICAL SYNAPSE AND THEIR SYNTHESIS
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
CN111566209A (zh) 2017-06-12 2020-08-21 特韦斯特生物科学公司 无缝核酸装配方法
US11407837B2 (en) 2017-09-11 2022-08-09 Twist Bioscience Corporation GPCR binding proteins and synthesis thereof
KR20240024357A (ko) 2017-10-20 2024-02-23 트위스트 바이오사이언스 코포레이션 폴리뉴클레오타이드 합성을 위한 가열된 나노웰
US10936953B2 (en) 2018-01-04 2021-03-02 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
KR20210013128A (ko) 2018-05-18 2021-02-03 트위스트 바이오사이언스 코포레이션 핵산 하이브리드화를 위한 폴리뉴클레오타이드, 시약 및 방법
AU2020229349A1 (en) 2019-02-26 2021-10-14 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
SG11202109283UA (en) 2019-02-26 2021-09-29 Twist Bioscience Corp Variant nucleic acid libraries for antibody optimization
AU2020259856A1 (en) * 2019-04-18 2021-11-18 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of usher syndrome
EP3987019A4 (en) 2019-06-21 2023-04-19 Twist Bioscience Corporation BARCODE-BASED NUCLEIC ACID SEQUENCE ARRANGEMENT
WO2023097308A1 (en) 2021-11-29 2023-06-01 Hongene Biotech Corporation Synthesis of 2' acetyl-ester protected nucleosides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257675B2 (ja) * 1990-10-12 2002-02-18 マックス−プランク−ゲゼルシャフト ツール フェルデルング デル ビッセンシャフテン エー.ファウ. 修飾リボザイム
AU755913B2 (en) * 1997-06-18 2003-01-02 Masad Damha Nucleic acid biosensor diagnostics
DK1012564T3 (da) * 1997-09-11 2003-07-21 Bioventures Inc Fremgangsmåde til at fremstille højtæthedsarrays
CN100588759C (zh) * 2007-03-20 2010-02-10 苏州纳米技术与纳米仿生研究所 原位合成制备化合物芯片的方法、制备载体及发光基底

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512158A (zh) * 2017-12-22 2020-08-07 威斯康星校友研究基金会 用于癌症生物标志物捕获的纳米工程化表面
CN111512158B (zh) * 2017-12-22 2023-12-12 威斯康星校友研究基金会 用于癌症生物标志物捕获的纳米工程化表面
CN110922441A (zh) * 2019-11-21 2020-03-27 佛山市艾达思精密仪器有限公司 光定向微阵列dna合成的链接基质物和合成方法
CN110922441B (zh) * 2019-11-21 2023-07-11 佛山市艾达思精密仪器有限公司 光定向微阵列dna合成的链接基质物和合成方法
CN114685560A (zh) * 2020-12-31 2022-07-01 沈阳药科大学 含哌啶骨架亚磷酰胺单体及寡聚核苷酸的合成和应用
CN114685560B (zh) * 2020-12-31 2024-05-14 沈阳药科大学 含哌啶骨架亚磷酰胺单体及寡聚核苷酸的合成和应用

Also Published As

Publication number Publication date
CA2772434A1 (en) 2010-03-11
US20120178638A1 (en) 2012-07-12
AU2009290102A1 (en) 2010-03-11
EP2334692A4 (en) 2014-12-03
US20160340382A1 (en) 2016-11-24
CA2772434C (en) 2017-11-21
HK1171760A1 (zh) 2013-04-05
EP2334692A1 (en) 2011-06-22
US10287313B2 (en) 2019-05-14
WO2010025566A1 (en) 2010-03-11
CN102639552B (zh) 2016-05-25
US9249175B2 (en) 2016-02-02
EP2334692B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN102639552B (zh) 含有O-缩醛乙酰丙酸酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用
EP3794012B1 (en) Compositions and methods for chemical cleavage and deprotection of surface-bound oligonucleotides
US6794499B2 (en) Oligonucleotide analogues
US7807356B2 (en) Labeled nucleotide composition
US7524942B2 (en) Labeled nucleotide composition
US8034909B2 (en) Oligonucleotide analogues
EP1015469B2 (en) Bi- and tri-cyclic nucleoside, nucleotide and oligonucleoide analogues
US20150211008A1 (en) Post-synthetic chemical modification of rna at the 2'-position of the ribose ring via "click" chemistry
JPH07504087A (ja) 蛍光性n−ヌクレオシド及び蛍光性n−ヌクレオシド構造類似体の応用
EP3137478B1 (en) Phosphorous protecting groups and methods of preparation and use thereof
EP2006293B1 (en) 2'-hydroxyl-modified ribonucleoside derivative
JP2001526639A (ja) 三環式塩基類似体
EP2170924B1 (en) 5-bromo-2'-deoxy-uridine labeled nucleotide triphosphates and nucleic acid probes and methods of making and using the same
Lackey New methods for the synthesis of RNA, novel RNA pro-drugs and RNA microarrays
JPH0551599B2 (zh)
Lam Increasing the chemical functionality of DNA enzymes
Lesiak et al. The solid-phase synthesis of 2-5-linked oligoriboadenylates containing 8-bromoadenine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1171760

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1171760

Country of ref document: HK