CN102637888B - 燃料电池固态电解质结构 - Google Patents

燃料电池固态电解质结构 Download PDF

Info

Publication number
CN102637888B
CN102637888B CN201210115197.4A CN201210115197A CN102637888B CN 102637888 B CN102637888 B CN 102637888B CN 201210115197 A CN201210115197 A CN 201210115197A CN 102637888 B CN102637888 B CN 102637888B
Authority
CN
China
Prior art keywords
fuel cell
gas flow
solid electrolyte
electrolyte structure
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210115197.4A
Other languages
English (en)
Other versions
CN102637888A (zh
Inventor
方冠荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102637888A publication Critical patent/CN102637888A/zh
Application granted granted Critical
Publication of CN102637888B publication Critical patent/CN102637888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

本发明为一种燃料电池固态电解质结构,包括有阳极、阴极、电解质与至少两气体流道。其中该阴极系对应于该阳极设置;该电解质系设置于该阳极与该阴极之间;该等气体流道系分别设置于该阳极与该阴极旁且于该电解质的两侧,该等气体流道的末端包括有一转折部与一相连该转折部且封闭该气体流道的末端部,且该气体流道末端处内部形成有一连续曲面。藉此气体流道末端结构设计,本发明可增加燃料电池电解质结构的制作良率,并可延长其使用寿命。

Description

燃料电池固态电解质结构
技术领域
本发明系一种燃料电池固态电解质结构,尤指一种可增加燃料电池的制作良率,并可延长其使用寿命的燃料电池固态电解质结构。
背景技术
燃料电池(Fuel Cell, FC)具有较高的能源转换效率,亦不会造成任何的污染,也因此在新能源的领域中扮演着重要的角色。燃料电池主要将还原性燃料(例如:氢气)与氧化性气体(例如:氧气)产生的标准电位差,透过功能性电极与电解质材料所构成的回路,进行自发性氧化还原反应,藉电化学的原理,有效地将化学能转换为电能,总反应的生成物可为水或二氧化碳(CO2),并无任何造成污染的废料产生,符合环保的要求。
燃料电池依电解质的不同离子传导的功能,大致上被分为五大类。其中固态氧化物燃料(Solid Oxide Fuel Cell,简称 SOFC)电池,亦称为陶瓷燃料电池,因其高反应速率、不需白金催化剂,可使用燃料种類多,经反应所产生的高温蒸汽,可进行汽-电共生,效率达80%以上,是最具潜力的燃料电池。
在燃料电池的使用过程中,含一氧化碳(CO)与氢气(H2)的燃料经气体流道往阳极电极表面扩散,流道尽头若为直角,转折处容易有应力集中现象,一旦破损,燃料混合氧气后容易产生爆炸,考虑存在此危险,气体压力差不能过高,同样的,阴极所在的流道亦然,脆弱点亦可能因过大的氧源压力,进而崩解或破裂。
    而在制作过程中,电池两电极之间夹着电解质,这种三明治结构的制作过程,若在流道尽头的转角,一般为直角,容易因各层材料间的性质差异,在干燥、烧结和热涨冷缩过程中,产生分层、裂痕和内应力,因而,在此曲线反转区是最容易产生制程缺陷。
是以,要如何解决上述习用的问题与缺失,即为本发明的发明人与从事此行业的相关厂商所亟欲研究改善的方向所在者。
发明内容
故,本发明的发明人有鉴于上述缺失,乃搜集相关资料,经由多方评估及考虑,并以从事于此行业累积的多年经验,经由不断试作及修改,始设计出此种可增加燃料电池的制作良率,并可延长其使用寿命的燃料电池固态电解质结构发明专利者。
本发明的主要目的在于提供一种制作良率高、寿命长的燃料电池固态电解质结构。
为了达到上述的目的,本发明包括有阳极、阴极、电解质与至少两气体流道。其中该阴极系对应于该阳极设置;该电解质系设置于该阳极与该阴极之间;该气体流道系分别设置于该阳极与该阴极旁且于该电解质的两侧,该等气体流道的末端包括有一转折部与一相连该转折部且封闭该气体流道的末端部,且该气体流道末端处内部形成有一连续曲面。
由于气体流道的末端包括有转折部与一相连该转折部且封闭该气体流道的末端部,且该气体流道末端处内部形成有一连续曲面,俾藉由上述结构,本发明燃料电池在使用过程中,当燃料经气体流道往阳极、阴极电极表面扩散时,可以有效的分散应力,避免气体流道因为两边气体压力差过高,而产生过大的氧源压力,进而崩解或破裂;以及,燃料电池制作过程,在干燥、烧结和热涨冷缩过程中,可以有效避免产生分层、裂痕和降低内应力。本发明确实可以增加燃料电池的制作良率,并可延长其使用寿命。
附图说明
图1系为本发明较佳实施例的立体图。
图2系为本发明较佳实施例的剖视图。
图3系为本发明较佳实施例的实施示意图。
图4系为本发明再一较佳实施例的剖视图。
【主要组件符号说明】
101阳极
102阴极
10电解质
1气体流道
11转折部
12末端部
13连续曲面。
具体实施方式
为达成上述目的及功效,本发明所采用的技术手段及构造,兹绘图就本发明较佳实施例详加说明其特征与功能如下,俾利完全了解。
请参阅图1、图2与图3所示,系为本发明较佳实施例的立体图与剖视图,由图中可清楚看出,本发明燃料电池包括有:
阳极101;
阴极102,系对应于该阳极101设置;
电解质10,系设置于该阳极101与该阴极102之间;
至少两气体流道1,该气体流道1可流通还原性燃料(例如:氢气、甲烷和瓦斯其中之一或其组合)与氧化性气体(例如:氧气或空气),系分别设置于该阳极101与该阴极102旁,且于该电解质10的两侧,该等气体流道1的末端包括有一转折部11与一相连该转折部11,且封闭该气体流道1的末端部12,且该气体流道1末端处内部形成有一连续曲面13,该气体流道1的末端部12外表面为半球状。
其中该连续曲面13包括二次曲面、弧形曲面、球形曲面或是抛物球面,其曲面的斜率为连续的数值,无奇点(single point)产生。
其中,燃料电池依电解质10的不同离子传导的功能,大致上被分为五大类。本发明实施例即为固态氧化物燃料(Solid Oxide Fuel Cell;简称 SOFC)电池,因为阴、阳极及电解层电阻率不同,而各材料电阻率随厚度增加而上升,因此,SOFC 单电池组装具有下列三种型态:电解质支撑单电池(electrolyte supported cell)、阴极支撑单电池(cathode supported cell)及阳极支撑单电池(anode supported cell)。因阳极导电率比阴极及电解质导电率高出许多,如以阳极为支撑材,将可使电池内电阻显著降低。但此型固态氧化物燃料电池电解质薄膜制备困难,因此进入门坎较高。
请参阅图4所示,系为本发明再一较佳实施例的剖视图,由图中可清楚看出,本发明的气体流道1可为交叉设置,其中一气体流道1为流通还原性燃料,另一气体流道1为流通氧化性气体,其余结构相同,不再赘述。
请参阅全部附图所示,相较于习用技术,本发明具有以下优点:
由于本发明的气体流道1末端包括有一转折部11与一相连该转折部11且封闭该气体流道1的末端部12,且该气体流道1末端处内部形成有一连续曲面13,可以有效的增加气体流道1末端的强度,在燃料电池使用过程中,藉由此结构,当燃料经气体流道1往阳极101、阴极102电极表面扩散时,可以有效的分散应力,避免气体流道1因为气体压力差过高而产生过大的氧源压力,进而崩解或破裂;而于燃料电池制作过程,在干燥、烧结和热涨冷缩过程中,藉由此结构,可以有效避免产生分层、裂痕和降低内应力,本发明确实可以增加燃料电池的制作良率,并可延长其使用寿命。
再者,该末端部12外表面可为半球状,同样的可以达到增加气体流道1末端强度的效果。
透过上述的详细说明,即可充分显示本发明的目的及功效上均具有实施的进步性,极具产业的利用性价值,且为目前市面上前所未见的新发明,完全符合发明专利要件,爰依法提出申请。唯以上所述着仅为本发明的较佳实施例而已,当不能用以限定本发明所实施的范围。即凡依本发明专利范围所作的均等变化与修饰,皆应属于本发明专利涵盖的范围内,谨请 贵审查委员明鉴,并祈惠准,是所至祷。

Claims (10)

1.一种燃料电池固态电解质结构,包括有:
一阳极;
一阴极,对应于该阳极设置;
一电解质,设置于该阳极与该阴极之间;
至少两个气体流道,分别设置于该阳极与该阴极旁且于该电解质的两侧,所述至少两个气体流道的末端为包括有一转折部与一相连该转折部且封闭所述气体流道的末端部,且所述气体流道末端处内部形成有一连续曲面,该连续曲面的斜率为连续的数值,无奇点产生。
2.如权利要求1所述的燃料电池固态电解质结构,其中所述至少两个气体流道的末端外表面为半球状。
3.如权利要求1所述的燃料电池固态电解质结构,其中该燃料电池为固态氧化物燃料电池。
4.如权利要求1所述的燃料电池固态电解质结构,其中所述气体流道可流通还原性燃料与氧化性气体。
5.如权利要求4所述的燃料电池固态电解质结构,其中该还原性燃料为氢气、甲烷和瓦斯其中之一或其组合,而该氧化性气体为氧气或空气。
6.如权利要求1所述的燃料电池固态电解质结构,其中所述气体流道可为交叉设置。
7.如权利要求1所述的燃料电池固态电解质结构,其中所述气体流道末端处内部形成的该连续曲面为一二次曲面。
8.如权利要求1所述的燃料电池固态电解质结构,其中所述气体流道末端处内部形成的该连续曲面为一弧形曲面。
9.如权利要求1所述的燃料电池固态电解质结构,其中所述气体流道末端处内部形成的该连续曲面为一球形曲面。
10.如权利要求1所述的燃料电池固态电解质结构,其中所述气体流道末端处内部形成的该连续曲面为一抛物球面。
CN201210115197.4A 2011-04-22 2012-04-19 燃料电池固态电解质结构 Active CN102637888B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100114025 2011-04-22
TW100114025A TWI472090B (zh) 2011-04-22 2011-04-22 Fuel cell solid electrolyte structure

Publications (2)

Publication Number Publication Date
CN102637888A CN102637888A (zh) 2012-08-15
CN102637888B true CN102637888B (zh) 2015-09-30

Family

ID=45976837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210115197.4A Active CN102637888B (zh) 2011-04-22 2012-04-19 燃料电池固态电解质结构

Country Status (6)

Country Link
US (1) US9692074B2 (zh)
EP (1) EP2515366A1 (zh)
JP (1) JP2012230899A (zh)
CN (1) CN102637888B (zh)
CA (1) CA2775800A1 (zh)
TW (1) TWI472090B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976156B (zh) * 2022-04-02 2024-01-30 河南理工大学 一种甲烷水合物分解-电解燃料电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301409A (zh) * 1998-04-09 2001-06-27 西门子西屋动力公司 制造封闭端陶瓷燃料电池管的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138273A1 (de) * 1991-11-21 1993-05-27 Abb Patent Gmbh Verfahren zur herstellung eines keramischen brennstoffzellentraegers
GB9305189D0 (en) * 1993-03-13 1993-04-28 British Nuclear Fuels Plc Fuel cells
ATE216137T1 (de) * 1997-02-11 2002-04-15 Fucellco Inc Brennstoffzellenstapel mit festen elektrolyten und deren anordnung
US5993985A (en) * 1998-04-09 1999-11-30 Siemens Westinghouse Power Corporation Fuel cell tubes and method of making same
DK174654B1 (da) * 2000-02-02 2003-08-11 Topsoe Haldor As Faststofoxid brændselscelle og anvendelser heraf
AUPS087502A0 (en) * 2002-03-04 2002-03-28 Ceramic Fuel Cells Limited Solid oxide fuel cell
US7067215B2 (en) * 2002-10-31 2006-06-27 Hewlett-Packard Development Company, L.P. Fuel cell and method of manufacturing same using chemical/mechanical planarization
EP1447869A1 (en) * 2003-02-15 2004-08-18 Haldor Topsoe A/S Interconnect device, fuel cell and fuel cell stack
JP4682511B2 (ja) * 2003-12-02 2011-05-11 日産自動車株式会社 固体酸化物型燃料電池
JP4412986B2 (ja) * 2003-12-04 2010-02-10 京セラ株式会社 セルスタック及び燃料電池
US7645365B2 (en) * 2005-02-09 2010-01-12 Carleton Life Support Systems, Inc. IMAT modules with serial conductive stripes
TW200717905A (en) * 2005-10-24 2007-05-01 Univ Nat Central Fuel cells with conductive hydrophobic materials
KR100731594B1 (ko) * 2005-12-09 2007-06-25 한국에너지기술연구원 일단 폐쇄형 세라믹 기체분리막 튜브용 몰드 및 이를이용한 기체분리막 튜브 제조방법
US7931990B2 (en) * 2005-12-15 2011-04-26 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell having a buffer layer
JP5135844B2 (ja) * 2007-03-28 2013-02-06 Nok株式会社 中空糸膜モジュール
TW200933967A (en) * 2008-01-16 2009-08-01 xiao-kang Ma Piezoelectric proton exchange membrane fuel cell with changeable channel
JP5368062B2 (ja) * 2008-01-30 2013-12-18 日本碍子株式会社 固体酸化物型燃料電池
US8097384B2 (en) * 2008-07-08 2012-01-17 Siemens Energy, Inc. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end
WO2010066465A1 (en) * 2008-12-12 2010-06-17 Ezelleron Gmbh Solid oxide fuel cell with special cell geometry
TW201027825A (en) * 2009-01-05 2010-07-16 High Tech Battery Inc Low pressure mould packaging structure of a fuel cell
JP5631625B2 (ja) * 2009-06-30 2014-11-26 日本碍子株式会社 固体酸化物形燃料電池
DE102010001005A1 (de) * 2010-01-19 2011-07-21 Robert Bosch GmbH, 70469 Verfahren zur Herstellung einer SOFC Brennstoffzelle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301409A (zh) * 1998-04-09 2001-06-27 西门子西屋动力公司 制造封闭端陶瓷燃料电池管的方法

Also Published As

Publication number Publication date
CN102637888A (zh) 2012-08-15
TWI472090B (zh) 2015-02-01
TW201244242A (en) 2012-11-01
US9692074B2 (en) 2017-06-27
CA2775800A1 (en) 2012-10-22
EP2515366A1 (en) 2012-10-24
JP2012230899A (ja) 2012-11-22
US20120270140A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
AU2020200913A1 (en) Flow fields for use with an electrochemical cell
US20130260281A1 (en) Fuel cell and fuel cell stack
JP2000100457A (ja) 燃料電池
CN103178275A (zh) 双极板与燃料电池
JP2018109221A (ja) 電気化学式水素ポンプ
US20210285427A1 (en) Electrochemical hydrogen pump
US8546038B2 (en) Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same
JP2019163521A (ja) 電気化学式水素ポンプ
CN102687325A (zh) 燃料电池
CN108091900B (zh) 利用凸缘近邻处的压制压纹减少压力变化
AU2015259213A1 (en) Flow fields for use with an electrochemical cell
Cui et al. Modeling of anode-supported SOFCs with samaria doped-ceria electrolytes operating at 500–600° C
US8546037B2 (en) Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same
CN102637888B (zh) 燃料电池固态电解质结构
US20180090773A1 (en) Fuel cell stack
EP2405515B1 (en) Fuel cell separator and fuel cell including same
CN107615542B (zh) 固体氧化物型燃料电池用单元模块和使用了该固体氧化物型燃料电池用单元模块的固体氧化物型燃料电池
JP2010251086A (ja) 燃料電池
CN2911974Y (zh) 一种燃料电池结构
Sreenivasulu et al. A theoretical simulation of a PEM fuel cell with 4‐serpentine flow channel
JP6389959B2 (ja) 燃料電池スタックおよび燃料電池スタックの製造方法
Lee et al. The development of a heterogeneous composite bipolar plate of a proton exchange membrane fuel cell
US20210372379A1 (en) Compressor
JP2017073246A (ja) 電気化学反応単セルおよび電気化学反応セルスタック
Singh et al. Experimental study of different operating temperatures and pressure in PEM fuel cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant