CN102627367A - 一种深度处理焦化废水的方法 - Google Patents

一种深度处理焦化废水的方法 Download PDF

Info

Publication number
CN102627367A
CN102627367A CN2012101219784A CN201210121978A CN102627367A CN 102627367 A CN102627367 A CN 102627367A CN 2012101219784 A CN2012101219784 A CN 2012101219784A CN 201210121978 A CN201210121978 A CN 201210121978A CN 102627367 A CN102627367 A CN 102627367A
Authority
CN
China
Prior art keywords
treatment
iron
carrying
post
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101219784A
Other languages
English (en)
Inventor
林立君
苑庆山
朱天玉
徐鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN2012101219784A priority Critical patent/CN102627367A/zh
Publication of CN102627367A publication Critical patent/CN102627367A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种深度处理焦化废水的方法。主要解决现有技术中存在的,处理工艺复杂、效果不佳,难以达到排放标准的问题。其特征在于:该方法主要包括以下步骤:第一步为装柱,即首先分别用稀硫酸和稀NaOH溶液浸泡废铁屑,将焦碳粉碎,按铁屑和焦碳比例为10∶1的体积比混合均匀后装入铁碳柱;第二步为对二级生化处理后的焦化废水进行酸化处理;第三步为将酸化后的废水加入絮凝剂;第四步为进行过柱处理,使液体从铁碳柱中的柱子底部进入,上部流出;第五步为进行中和处理后沉淀;第六步为将第五步中的上清液重复第二步至第五步中的操作。本发明实施时所需设备简单,操作方便,效果好,见效快,药品及试剂廉价易得,装置运行的费用低,实用性较高。

Description

一种深度处理焦化废水的方法
技术领域
 本发明涉及一种应用于污水环保处理领域中,深度处理焦化废水的方法。
背景技术
焦化废水是在煤制焦炭、煤气净化及焦化产品回收过程中产生的废水。该废水的特点是COD、氨氮浓度高,含有大量的铵盐、硫化物、氰化物等无机盐类,而且有机物成分复杂,主要有酚类化合物、多环芳香族化合物、杂环化合物及脂肪类化合物,且污染物浓度高,属于生物难降解有机废水。焦化废水一般要通过一级预处理、二级生化处理和深度处理才能排放。目前,焦化废水经过二级生化处理后,出水COD、总酚、氨氮污染物浓度仍然很高,色泽较深,达不到国家排放标准,因此必须对焦化废水进行深度处理。现有的焦化废水深度处理的方法主要有絮凝法、吸附法、膜分离法、化学氧化法等,这些方法各有利弊,不是一次性投资太大、治理费用高,就是工艺复杂、效果不佳,都难以达到排放标准取得满意效果。
发明内容
为了解决背景技术中给出的现有技术问题,本发明提供了一种深度处理焦化废水的新方法,该种方法所需设备简单,操作方便,效果好,见效快,所用药品及试剂廉价易得,并且装置运行的费用低,具有很高的实用性。
本发明的技术方案是:该种深度处理焦化废水的方法,主要包括以下步骤:
第一步为装柱,即首先分别用稀硫酸和稀NaOH溶液浸泡废铁屑,再用清水充分洗涤铁屑,同时,将焦碳粉碎成粒度近乎于铁屑的粒度,取处理好的铁屑,然后按铁屑和焦碳比例为10:1的体积比混合均匀后装入铁碳柱;
第二步为进行酸化处理,即将经过二级生化处理后的焦化废水,加浓H2SO4调制成pH值为2.5-4之间的溶液;
第三步为进行絮凝处理,即将经第二步处理过的酸化废水,加入絮凝剂FeCl3进行絮凝后沉淀,所述絮凝剂的浓度范围在3g/L-5g/L之间;
第四步为进行过柱处理,即将经第三步处理过的废水采用逆流式先进入高位水槽,之后,液体从铁碳柱中的柱子底部进入,上部流出;并且在进水的同时打开空气压缩机,调整流量,使柱内铁碳填料处于流化状态;
第五步为进行中和处理:即将经第四步处理过的废水,用浓度为5%的石灰乳调制成pH值范围在8-9之间的溶液,而后沉淀;
第六步为将第五步中的上清液重复第二步至第五步中的操作,直至出水COD降至60-80mg/L,色度接近无色,达到排放标准。
本发明具有如下有益效果:本发明首先利用酸碱浸泡铁屑可除去其表面的杂质污渍,焦炭与铁屑粒度接近可使其混合均匀,有利于微电解等反应的进行,同时,活性炭具有较大的比表面积,通过分子间的作用主要发生物理吸附,利用微电解柱的活性炭可以对废水起到吸附和脱色的作用;之后,通过酸化可使溶液中酚类、氨氮等物质的溶解度发生变化,促使其析出,同时,硫化物等物质也会反应生成相应的气体和沉淀,便于除去。再次,通过投加FeCl3后,正3价Fe离子在水中离解,其水解产物兼有凝聚和絮凝两种作用,可以吸附废水中的悬浮颗粒,使呈分散状态的颗粒形成网状结构,成为更为粗大的絮凝体而沉淀。此外,采用逆流式并调节适当的流速,可使废水在柱内充分发生电化学反应、氧化还原反应和电凝聚作用等,从而降低溶液的COD及色度,另外,柱内铁碳填料处于流化状,可增加柱内氧含量,有利于氧化还原反应的发生,并且避免铁碳结块。而且,加入石灰乳调溶液pH为8-9时,产生大量Fe(OH)2,Fe(OH)3的胶体颗粒,吸附废水中的其它悬浮物,同时在石灰乳作助凝剂的前提下,形成铁矾花,具有很强的混凝吸附作用,达到净化废水的目的。
本发明将上述多个步骤有机的组合在一起形成一个完整的流程,该种方法所需设备简单,操作方便,处理效果好,见效快,所用药品及试剂廉价易得,并且装置运行的费用低,具有很高的实用性。
附图说明:
图1是本发明所述方法的工艺流程图。
图2是用于实施本发明所述方法的铁碳柱的结构示意图。
图中1-筒体,2-挡板,3-铁碳填料,4-进水管,5-进气管,6-出水堰,7-出水管,8-加料口,9-支柱。
具体实施方式:
下面结合附图对本发明作进一步说明:
首先对本发明的工艺流程进行介绍。如图1所示,实施该方法的主要设备由酸化反应池、絮凝沉淀池、高位水槽、铁碳柱、中和沉淀池及气泵组成。其工艺流程为,在常温常压下,二级生化处理后的焦化废水进入酸化处理池,加浓H2SO4调溶液pH,上清液进入絮凝池,加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,即从柱子底部进水,上部出水,并调节适当的进水流速,同时打开空气压缩机,调合适流量,使柱内铁碳填料处于流化状,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,沉淀。出水按上述步骤循环3次,出水COD可降到60-80mg/L,色度接近无色,可达标排放。
图2所示为铁碳柱的结构示意图,所述铁碳柱包括筒体1、挡板2、铁碳填料3、进水管4、进气管5、出水堰6、出水管7以及加料口8。其中筒体1为圆柱体,其外侧壁上固定有支柱9,进水管4和进气管5固定在筒体1的底部并与筒体1内连通,出水管7固定在筒体1的右上部并与筒体1内连通,在筒体1的右侧壁上有一个加料口8,出水堰6和挡板2固定在筒体1的内部,填料3位于两块挡板2之间。
具体实施时,本种深度处理焦化废水的方法,主要包括以下步骤:
第一步为装柱,即首先分别用稀硫酸和稀NaOH溶液浸泡废铁屑,再用清水充分洗涤铁屑,同时,将焦碳粉碎成粒度近乎于铁屑的粒度,取处理好的铁屑,然后按铁屑和焦碳比例为10:1的体积比混合均匀后装入铁碳柱;
第二步为进行酸化处理,即将经过二级生化处理后的焦化废水,加浓H2SO4调制成pH值为2.5-4之间的溶液。通过酸化处理,使酚类、氨氮等物质的溶解度发生变化,促使其析出。同时,硫化物等物质也会反应生成相应的气体和沉淀,便于除去。
第三步为进行絮凝处理,即将经第二步处理过的酸化废水,加入絮凝剂FeCl3进行絮凝后沉淀,所述絮凝剂的浓度范围在3g/L-5g/L之间;絮凝工艺主要通过投加FeCl3后,正3价Fe离子在水中离解,其水解产物兼有凝聚和絮凝两种作用。正3价Fe离子还可水解生成Fe(OH)3胶体,其表面积很大,活性较高,可以吸附废水中的悬浮颗粒,使呈分散状态的颗粒形成网状结构,成为更为粗大的絮凝体而沉淀。
第四步为进行过柱处理,即将经第三步处理过的废水采用逆流式先进入高位水槽,之后,液体从铁碳柱中的柱子底部进入,上部流出;并且在进水的同时打开空气压缩机,调整流量,使柱内铁碳填料处于流化状态。本步骤中包含一个微电解处理废水过程,具有多种反应机理,主要为电化学反应、氧化还原反应和电凝聚作用。废水中有机物的去除和脱色主要依靠新生态的[H]和新裸露的铁原子所具有的反应活性。在电解质中,铁屑和碳粒形成微小原电池,铁屑作为阳极被腐蚀消耗,碳粒作为阴极,发生反应。在酸性条件下,不断进行铁屑的电化学腐蚀使大量正2价Fe离子进入溶液,不但有效地克服阳极的钝化,同时新生态的正2价Fe离子也对污染物有还原降解作用。正2价Fe离子参与氧化还原反应后生成正3价Fe离子,由于反应后期溶液pH值升高,正2价Fe离子、正3价Fe离子水解成铁的络合物,能对废水中的其它胶体和悬浮物起到有效的吸附、凝聚及共沉淀作用。碳粒不仅具有很大比表面积且其微观表面上含有大量不饱和键和含氧活性基团,在相当宽的pH值范围内对有机物分子有吸附和脱色作用。
第五步为进行中和处理:即将经第四步处理过的废水,用浓度为5%的石灰乳调制成pH值范围在8-9之间的溶液,而后沉淀。本步骤中是将在微电解过程中溶液内的大量正2价Fe离子、正3价Fe离子,通过加入5%石灰乳调至pH为8-9后,产生大量Fe(OH)2,Fe(OH)3的胶体颗粒,吸附废水中的其它悬浮物,同时在石灰乳作助凝剂的前提下,形成铁矾花,具有很强的混凝吸附作用,达到净化废水的目的。
第六步为将第五步中的上清液重复第二步至第五步中的操作,直至出水COD降至60-80mg/L,色度接近无色,达到排放标准。
下面给出按照本发明所述方法实施的3个具体实施例:
实施例1:取废铁屑若干,用稀硫酸将铁屑浸泡去掉其表面的氧化物,再用稀NaOH溶液浸泡,去掉其表面的油污,再用清水充分洗涤铁屑。将焦碳粉碎成粒度近乎于铁屑的粒度,取处理好的铁屑,然后按铁屑和焦碳比例为10:1(体积比)混合均匀,装柱。二级生化处理后的焦化废水进入酸化处理池,加浓H2SO4调溶液pH为3左右,静置沉淀,上清液进入絮凝池,按3g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,即从柱子底部进水,上部出水,并调节进水流速为2.5mL/min,同时打开空气压缩机,调合适流量,使柱内铁碳填料处于流化状,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀。上清液进入酸化处理池,加浓H2SO4调溶液pH为3左右,静置沉淀,上清液进入絮凝池,按3g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,保持进水流速为2.5mL/min,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀。上清液进入酸化处理池,加浓H2SO4调溶液pH为3左右,静置沉淀,上清液进入絮凝池,按3g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,保持进水流速为2.5mL/min,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀,出水COD可由210mg/L降到64mg/L,色度接近无色。
实施例2:取废铁屑若干,用稀硫酸将铁屑浸泡去掉其表面的氧化物,再用稀NaOH溶液浸泡,去掉其表面的油污,再用清水充分洗涤铁屑。将焦碳粉碎成粒度近乎于铁屑的粒度,取处理好的铁屑,然后按铁屑和焦碳比例为10:1(体积比)混合均匀,装柱。二级生化处理后的焦化废水进入酸化处理池,加浓H2SO4调溶液pH为2左右,静置沉淀,上清液进入絮凝池,按2.5g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,即从柱子底部进水,上部出水,并调节进水流速为2mL/min,同时打开空气压缩机,调合适流量,使柱内铁碳填料处于流化状,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀。上清液进入酸化处理池,加浓H2SO4调溶液pH为2左右,静置沉淀,上清液进入絮凝池,按2.5g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,保持进水流速为2mL/min,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀。上清液进入酸化处理池,加浓H2SO4调溶液pH为2左右,静置沉淀,上清液进入絮凝池,按2.5g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,保持进水流速为2mL/min,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀,出水COD可由200mg/L降到73mg/L,色度接近无色。
实施例3:取废铁屑若干,用稀硫酸将铁屑浸泡去掉其表面的氧化物,再用稀NaOH溶液浸泡,去掉其表面的油污,再用清水充分洗涤铁屑。将焦碳粉碎成粒度近乎于铁屑的粒度,取处理好的铁屑,然后按铁屑和焦碳比例为10:1(体积比)混合均匀,装柱。二级生化处理后的焦化废水进入酸化处理池,加浓H2SO4调溶液pH为3.5左右,静置沉淀,上清液进入絮凝池,按5g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,即从柱子底部进水,上部出水,并调节进水流速为4mL/min,同时打开空气压缩机,调合适流量,使柱内铁碳填料处于流化状,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀。上清液进入酸化处理池,加浓H2SO4调溶液pH为3.5左右,静置沉淀,上清液进入絮凝池,按5g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,保持进水流速为4mL/min,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀。上清液进入酸化处理池,加浓H2SO4调溶液pH为3.5左右,静置沉淀,上清液进入絮凝池,按5g/L加入絮凝剂FeCl3,静置沉淀,上清液采用逆流式进入高位水槽中,保持进水流速为4mL/min,上部出水进入中和沉淀池,用5%石灰乳调溶液pH值为8-9,静置沉淀,出水COD可由213mg/L降到60mg/L,色度接近无色。

Claims (1)

1.一种深度处理焦化废水的方法,该方法主要包括以下步骤:
第一步为装柱,即首先分别用稀硫酸和稀NaOH溶液浸泡废铁屑,再用清水充分洗涤铁屑,同时,将焦碳粉碎成粒度近乎于铁屑的粒度,取处理好的铁屑,然后按铁屑和焦碳比例为10:1的体积比混合均匀后装入铁碳柱;
第二步为进行酸化处理,即将经过二级生化处理后的焦化废水,加浓H2SO4调制成pH值为2.5-4之间的溶液;
第三步为进行絮凝处理,即将经第二步处理过的酸化废水,加入絮凝剂FeCl3进行絮凝后沉淀,所述絮凝剂的浓度范围在3g/L-5g/L之间;
第四步为进行过柱处理,即将经第三步处理过的废水采用逆流式先进入高位水槽,之后,液体从铁碳柱中的柱子底部进入,上部流出;并且在进水的同时打开空气压缩机,调整流量,使柱内铁碳填料处于流化状态;
第五步为进行中和处理:即将经第四步处理过的废水,用浓度为5%的石灰乳调制成pH值范围在8-9之间的溶液,而后沉淀;
第六步为将第五步中的上清液重复第二步至第五步中的操作,直至出水COD降至60-80mg/L,色度接近无色,达到排放标准。
CN2012101219784A 2012-04-24 2012-04-24 一种深度处理焦化废水的方法 Pending CN102627367A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101219784A CN102627367A (zh) 2012-04-24 2012-04-24 一种深度处理焦化废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101219784A CN102627367A (zh) 2012-04-24 2012-04-24 一种深度处理焦化废水的方法

Publications (1)

Publication Number Publication Date
CN102627367A true CN102627367A (zh) 2012-08-08

Family

ID=46585798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101219784A Pending CN102627367A (zh) 2012-04-24 2012-04-24 一种深度处理焦化废水的方法

Country Status (1)

Country Link
CN (1) CN102627367A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922524A (zh) * 2014-05-14 2014-07-16 山东盛阳集团有限公司 一种焦化废水的深度处理方法
CN104326607A (zh) * 2014-11-12 2015-02-04 云南昆钢水净化科技有限公司 一种处理焦化纳滤浓盐水的方法
CN104591453A (zh) * 2015-02-03 2015-05-06 云南昆钢水净化科技有限公司 降解纳滤浓盐水中cod的方法
CN104891721A (zh) * 2015-06-12 2015-09-09 东北石油大学 一种用于深度处理焦化废水的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074087A (ja) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc シアン化合物含有廃液の処理方法
CN101224936A (zh) * 2008-01-29 2008-07-23 北京盖雅环境科技有限公司 处理焦化废水的工艺
CN102161543A (zh) * 2010-07-27 2011-08-24 王兵 一种基于臭氧复合催化氧化的钻井废水深度处理方法
CN202054648U (zh) * 2011-06-01 2011-11-30 杭州朗利环保工程有限公司 填充流化床铁炭微电解设备
CN102267771A (zh) * 2010-06-07 2011-12-07 鞍钢股份有限公司 一种焦化废水的预处理方法
CN102372401A (zh) * 2011-09-28 2012-03-14 同济大学 铁炭微电解-动态膜废水深度处理工艺
CN102417274A (zh) * 2011-10-14 2012-04-18 武汉凯瑞达环保工程有限公司 难降解工业污水处理工艺及其设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074087A (ja) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc シアン化合物含有廃液の処理方法
CN101224936A (zh) * 2008-01-29 2008-07-23 北京盖雅环境科技有限公司 处理焦化废水的工艺
CN102267771A (zh) * 2010-06-07 2011-12-07 鞍钢股份有限公司 一种焦化废水的预处理方法
CN102161543A (zh) * 2010-07-27 2011-08-24 王兵 一种基于臭氧复合催化氧化的钻井废水深度处理方法
CN202054648U (zh) * 2011-06-01 2011-11-30 杭州朗利环保工程有限公司 填充流化床铁炭微电解设备
CN102372401A (zh) * 2011-09-28 2012-03-14 同济大学 铁炭微电解-动态膜废水深度处理工艺
CN102417274A (zh) * 2011-10-14 2012-04-18 武汉凯瑞达环保工程有限公司 难降解工业污水处理工艺及其设备

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
《中国给水排水》 20030731 张文艺 微电解-混凝-SBR法处理焦化废水 第19卷, 第7期 *
张文艺: "微电解—混凝—SBR法处理焦化废水", 《中国给水排水》 *
张金升等: "氯化铁水溶液和氯化亚铁水溶液性能研究", 《山东交通学院学报》 *
朱志平: "铝盐(铁盐)混凝过程行为分析与最佳pH值预测", 《水处理技术》 *
杨艳玲等: "三氯化铁混凝-气浮处理VAE乳液废水效能研究", 《北京工业大学学报》 *
王海玥: "混凝/铁炭内电解处理焦化废水的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
陈文琳等: "Cu/Fe内电解预处理焦化废水的研究", 《四川环境》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922524A (zh) * 2014-05-14 2014-07-16 山东盛阳集团有限公司 一种焦化废水的深度处理方法
CN103922524B (zh) * 2014-05-14 2015-03-11 山东盛阳集团有限公司 一种焦化废水的深度处理方法
CN104326607A (zh) * 2014-11-12 2015-02-04 云南昆钢水净化科技有限公司 一种处理焦化纳滤浓盐水的方法
CN104326607B (zh) * 2014-11-12 2016-06-29 云南昆钢水净化科技有限公司 一种处理焦化纳滤浓盐水的方法
CN104591453A (zh) * 2015-02-03 2015-05-06 云南昆钢水净化科技有限公司 降解纳滤浓盐水中cod的方法
CN104891721A (zh) * 2015-06-12 2015-09-09 东北石油大学 一种用于深度处理焦化废水的方法

Similar Documents

Publication Publication Date Title
CN102701496B (zh) 一种用于处理高浓度难降解有机废水的工艺
CN104478160B (zh) 采选矿含有机物和重金属废水协同氧化处理的方法
CN106082502B (zh) 一种去除废水中铊的方法
CN101302053A (zh) 一种城市污水处理厂除磷的方法
CN101234831A (zh) 废水脱氮与沼气脱硫耦联工艺
CN107540135A (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CN103641230A (zh) 利用铁炭-Fenton一体化反应器进行有机废水预处理的方法
CN102627367A (zh) 一种深度处理焦化废水的方法
CN109851103A (zh) 一种采用铁碳内电解-非均相芬顿处理焦化废水反渗透浓水中有机质的组合工艺
CN101618905A (zh) 含磷废水的臭氧强化电絮凝处理方法
CN204022601U (zh) Meo微电解高级氧化反应器
CN102020382B (zh) 二硝基重氮酚工业废水处理方法
CN109293074A (zh) 一种去除化学镀镍废水中次亚磷的装置及方法
CN109336328A (zh) 一种生物电化学同步脱氮除磷装置及其方法
CN102897956A (zh) 一种处理高含砷废水的方法
CN101973659A (zh) 微电解及物化法联用处理维生素b12提炼废水的装置及方法
CN105110515B (zh) 一种dsd酸废水的处理方法
CN106467349B (zh) 一种高浓度酸性有机废水处理系统及方法
CN204607770U (zh) 一种染料生产氧化塘浓缩废水的处理装置
CN110642433A (zh) 一种巴豆醛废水处理方法
CN102910771B (zh) 一种高浓度含磷废水的处理方法
CN106630312B (zh) 一种焦化酚氰废水的处理系统和处理方法及应用
CN210764765U (zh) 一种新型废水处理装置
CN205088058U (zh) 一种高浓度有机废水微电解处理系统
CN105347580B (zh) 一种适合聚合物驱采出水处理达标外排的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120808