CN102624332A - 石英振荡电路的负载电容确定方法和用该方法的电子设备 - Google Patents

石英振荡电路的负载电容确定方法和用该方法的电子设备 Download PDF

Info

Publication number
CN102624332A
CN102624332A CN2012100260688A CN201210026068A CN102624332A CN 102624332 A CN102624332 A CN 102624332A CN 2012100260688 A CN2012100260688 A CN 2012100260688A CN 201210026068 A CN201210026068 A CN 201210026068A CN 102624332 A CN102624332 A CN 102624332A
Authority
CN
China
Prior art keywords
load capacitance
vibration
ios
time
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100260688A
Other languages
English (en)
Inventor
相马弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN102624332A publication Critical patent/CN102624332A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • G01R31/2824Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits testing of oscillators or resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本发明目的在于明确利用石英振动器的振荡电路的振荡启动时间与负载电容CL值的关系,并从所希望的振荡启动时间确定负载电容CL值。本发明的特征在于,在利用石英振动器的振荡电路中,包括:利用振荡启动时间Ts与振荡余量M的关系式或关系图表从振荡余量M求出振荡启动时间Ts(Ts0)的步骤(A);从振荡启动时间Ts与负载电容CL的关系式以及驱动电流值Ios,求出任意的驱动电流值Ios上的振荡启动时间Ts与负载电容CL的关系式的步骤(B);以及利用所述步骤(B)中求出的振荡启动时间Ts及负载电容CL的关系式,确定与所述步骤(A)中求出的振荡启动时间Ts0对应的负载电容CL的步骤(C)。

Description

石英振荡电路的负载电容确定方法和用该方法的电子设备
技术领域
本发明涉及用于实现低耗功率的石英(水晶)振荡电路的方法,尤其涉及构成石英振荡电路的负载电容的确定方法及采用该方法的电子设备。
背景技术
在钟表、便携电话等便携设备中,由于要求该设备在非充电的状态下长时间动作或要求减少所搭载的电池的充电频度,越来越需要降低用于该设备的组装了石英振动器等压电元件的振荡电路的驱动电力、振荡电路待机时(振荡电路振荡的状态下且无负载状态时)的超低耗功率化。
图3为采用石英振动器的典型的振荡电路,其中包括:成为反相放大器的CMOS反相器IV01;在CMOS反相器IV01的输入端子XCIN与输出端子XCOUT之间连接的石英振动器X2;在CMOS反相器IV01的输入端子XCIN与接地电位Vss的电源端子之间连接的构成负载电容Cg的电容元件;以及在CMOS反相器IV01的输出端子XCOUT与接地电位Vss的电源端子之间连接的构成负载电容Cd的电容元件。
此外,CMOS反相器IV01由CMOS反相器及反馈电阻Rf构成,该CMOS反相器由在共有电源电压Vdd的第一电源端子与供给接地电位的第二电源端子之间串联连接的PMOS晶体管PM11和NMOS晶体管NM11构成。
在CMOS反相器IV01的PMOS晶体管PM11的源极与第一电源端子之间、以及在CMOS反相器IV02的NMOS晶体管NM11与第二电源端子之间,连接有限制使石英振动器X2激振的驱动电流的驱动电流调整用电阻元件r1及r2。
搭载于便携设备等上的振荡电路近年被要求低耗功率化,为此需要降低振荡电路中的石英振动器的驱动电流。为此可考虑减小振荡电路中的CMOS反相器的跨导Gm。但是,减小跨导Gm时有降低振荡电路的振荡余量M的情况。
振荡电路的振荡余量M按下式(1)提供。
M=|-Gm|/{(ω2Cg·Cd)*(1/R1(max))}=+RL/R1(max)    ....(1)
ω是振荡频率的角频率,RL是负性电阻,R1(max)是石英振动器的有效电阻R1的最大值,振荡余量M通常要求为5以上的值。
在上式中石英振动器的有效电阻R1是由石英振动器的小型化请求所确定的值,不能减小太多。因而,可知要维持振荡电路的振荡余量M,即便减小跨导Gm,只要减小外置于CMOS反相器的构成负载电容的电容器的负载电容Cg和/或负载电容Cd的值即可。为了实现该目的,振荡电路的石英振动器要求具有与对所组装的微型计算机等的IC所要求的低耗功率化的规格相称的负载电容CL。即,申请人已经提出过负载电容CL相对于以往使用的石英振动器的负载电容CL即12.5pF减少即低CL化(3pF~5pF)的方案。(专利文献1)
但是,如果减小负载电容CL,则负载电容CL的电容容许差和振荡频率的频率偏差Δf的问题变得显著。例如,负载电容CL在通常电容容许差的范围即ΔC(±5%)变化时的振荡频率的稳定性Δf(ppm),在负载电容CL为12.5pF时在ΔC为1.25pF处振荡频率的稳定性Δf成为7.3ppm,在负载电容CL为6pF时在ΔC为0.6pF处振荡频率的稳定性Δf成为13.2ppm,在负载电容CL为3pF时在ΔC为0.3pF处振荡频率的稳定性Δf成为20.5ppm。
即,在负载电容CL(3pF)处,与以往的12.5pF的情况相比,频率偏差增大到2.8倍,因此为了实现负载电容CL的低电容化(低CL化),需要提高振荡频率相对于负载电容CL的电容容许差的稳定性。
图3中的输入输出端子间XCIN及XCOUT间的石英振动器一侧的等效电路为图4。在石英振动器X2上串联连接有负载电容CL,石英振动器被表示为这样的电路,即:在等效地表示因压电效应而产生的机械谐振的电感L1、电容C1、电阻R1的串联谐振电路上并联连接电极间电容C0的电路。此外因CMOS半导体基板、信号布线等而在输入输出端子间XCIN及XCOUT间存在各种杂散电容,若设这些(合成)杂散电容为Cs,则如图5所示,负载电容CL成为串联连接的外部(外置)电容Cg及Cd与杂散电容Cs的并联连接。
因而,
CL=Cs+Cg*Cd/(Cg+Cd)    ....(2)
的关系式成立。
选择能与振荡频率匹配的外置电容元件Cg及Cd,以达到能满足式(2)的关系的CL值(2pF~6pF),这样就能提高振荡频率的稳定性。即,负载电容CL为杂散电容Cs与外部电容(电容器)Cext{=Cg*Cd/(Cg+Cd)}之和,因此选定外部电容元件Cext的值,以成为负载电容CL和杂散电容Cs之差,这样就能满足式(2),意味着石英振动器的负载电容CL和从石英振动器来看的振荡电路侧的负载电容匹配(整合)。
图6是示出石英振荡电路中的驱动电流与负载电容CL的关系的图。可知负载电容减小时驱动电流显著变小。例如,以往使用的负载电容12.5pF的驱动电流约为1.5μA,但负载电容2.2pF的驱动电流为0.073μA,驱动电流降低至约5%。如此,降低负载电容CL能有助于石英振荡电路的低耗功率化,进而能对使用该石英振荡电路的电子设备的低电力化做出较大的贡献。
专利文献1:日本特开2008-205658号公报
由图6可知,减小负载电容CL时能实现石英振荡电路的低耗功率化。但是,即便低CL化,由于与振荡启动时间Ts的关系不明确,在实际使用时以多少时间能启动成为问题。若知道是在振荡,或者,为获得所希望的Ts而定为多大的负载电容才好,就容易进行设计。此外对实际振荡电路装配具有某一值的低CL值的石英振动器加以使用时也能安心使用。因而,迫切希望得知振荡启动时间Ts与负载电容CL的关系。
发明内容
本发明的目的在于提供一种方法,以明确采用石英振动器的振荡电路的振荡启动时间Ts与负载电容CL的关系,并确定为定为所希望的振荡启动时间Ts而采用多大的负载电容CL才好。具体而言用以下的方法进行。
(1)本发明是一种采用石英振动器的振荡电路的负载电容CL的确定方法,其特征在于,包括以下步骤:
利用振荡启动时间Ts与振荡余量M的关系式或关系图表从振荡余量M求出振荡启动时间Ts(Ts0)的步骤(A);
从振荡启动时间Ts与负载电容CL的关系式以及驱动电流值Ios,求出任意的驱动电流值Ios上的振荡启动时间Ts与负载电容CL的关系式的步骤(B);以及
利用所述步骤(B)中求出的振荡启动时间Ts及负载电容CL的关系式,确定与所述步骤(A)中求出的振荡启动时间Ts0对应的负载电容CL的步骤(C)。
(2)此外,本发明的特征在于,所述步骤(A)中的振荡启动时间Ts与振荡余量M的关系式为M=a/(Ts)b,其中a、b为常数。
(3)此外,本发明的特征在于,所述步骤(A)中的振荡启动时间Ts与振荡余量M的关系式为M=3.74(Ts)-0.70
(4)此外,本发明的特征在于,所述步骤(B)中的振荡启动时间Ts与负载电容CL的关系式为Ts=c*(CL)2+d*(CL)+e,其中c、d、e为常数。
(5)此外,本发明的特征在于,在所述步骤(B)中,
事先得到的至少2个驱动电流值Ios(Ios1、Ios2)上的振荡启动时间Ts及负载电容CL的关系式为
Ts=c1*(CL)2+d1*(CL)+e1(Ios=Ios1)...式(1)
Ts=c2*(CL)2+d2*(CL)+e2(Ios=Ios2)...式(2),
利用式(1)及式(2)确定任意的驱动电流值Ios时的振荡启动时间Ts与负载电容CL的关系式
Ts=c0*(CL)2+d0*(CL)+e0(驱动电流值Ios为任意值(Ios0)时)    ...式(3),
在所述步骤(C)中,从式(3)及所述步骤(A)中求出的振荡启动时间Ts0确定负载电容CL。
(6)此外,本发明的特征在于,在步骤(B)中,振荡启动时间Ts及负载电容CL的关系式在以驱动电流值Ios为参数时,为
Ts=0.0191(CL)2+0.0487(CL)+0.0623(Ios=160nA时)...式(4)
Ts=0.0424(CL)2-0.0030(CL)+0.1240(Ios=95nA时)...式(5)
Ts=0.0558(CL)2+0.0316(CL)+0.1141(Ios=70nA时)...式(6),
当所使用的振荡电路的驱动电流值Ios为Ios≥95nA时,使用式(4)和式(5),当Ios≤95nA时使用式(5)和式(6),求出任意的驱动电流值Ios上的振荡启动时间Ts及负载电容CL的关系式Ts=α(CL)2+β(CL)+γ(驱动电流值Ios为任意值(Ios0)时)...式(7)(即,确定式(4)的α、β及γ),在所述步骤(C)中,
利用所述步骤(B)中求出的式(7)确定负载电容CL。
(7)此外,本发明是一种电子设备,搭载有石英振荡电路,该石英振荡电路具有利用上述的(1)~(6)所述的负载电容CL的确定方法来确定的负载电容。
(发明效果)
依据本发明,首次明确以振荡电路的驱动电流值Ios为参数时,振荡启动时间Ts与负载电容CL之间有2次式的关系。即,首次发现Ts=α*(CL)2+β(CL)+γ的关系式(α、β、γ为常数)成立。由振荡余量M与振荡启动时间Ts的关系式或者关系图表,从要求值的振荡余量M0求出所需要的振荡启动时间Ts0,本发明人再从该Ts0发现了能用Ts=α*(CL)2+β(CL)+γ的关系式确定振荡电路的负载电容CL。因而,最初无需确定振荡电路的负载电容CL,仅通过确定振荡电路的驱动电流Ios及振荡余量M这样的设计值,就能自动确定振荡电路的CL值,设计变得非常容易。此外,Ts值成为1.0秒以下,因此能实现石英振荡电路的低CL化,并能实现石英振荡电路的低耗功率化,其结果,还能实现装配该石英振荡电路的电子设备的低耗功率化。
附图说明
图1是以振荡电路的驱动电流Ios为参数示出具有各种CL值的振荡电路中的与振荡开始时间Ts的关系的图。
图2是示出具有石英振动器的振荡电路中的振荡余量M与振荡启动时间Ts的关系的图表。
图3是示出采用石英振动器的振荡电路的图。
图4是示出图3中的输入输出端子间XCIN及XCOUT间的石英振动器侧的等效电路的图。
图5是示出构成负载电容CL的电容的图。
图6是示出石英振荡电路中的驱动电流与负载电容CL的关系的图。
具体实施方式
本发明的目的在于提供一种方法,以明确采用石英振动器的振荡电路的振荡启动时间与负载电容CL值的关系,并确定为定为所希望的振荡开始时间而采用多大的负载电容CL值才好。
振荡启动时间是指自将具有石英振动器的振荡电路安装到设备并接通电源后振荡的波形稳定(饱和)为止的时间,但从测定上的观点出发,定义为达到正常波形的振幅的90%为止的时间。图2是示出具有各种石英振动器的各种振荡电路中的前述的振荡余量M与振荡启动时间Ts的关系的图。从图2可知振荡启动时间变长时振荡余量M变小。从该图也可知M不取5以上时振荡启动时间长达1秒以上,并且偏差变大,实用上存在问题。
从图2能得到Ts=3.74M-0.70的关系式,相关系数R也达到0.985,具有非常好的相关。由此次数据得到上述的关系式,但是通常有Ts=a*M-b的关系。(a、b为正的常数)振荡余量M是由设计者等考虑安全性而确定的值。a和b能从具有各种石英振荡器的振荡电路求出。
减小负载电容CL的低CL振荡电路,取较大的振荡余量,因此认为能减小振荡启动时间Ts,但关于振荡启动时间Ts与负载电容CL的关系,迄今为止还没那么明确。因此本发明的发明人对具有各种低CL值的振荡电路测定了振荡启动时间Ts,结果发现振荡启动时间Ts与负载电容CL之间存在非常密切的相关关系。
图1以振荡电路的驱动电流值Ios为参数绘图具有各种负载电容CL的值(其中,7pF以下的低的负载电容值)的振荡电路中的振荡启动时间Ts的测定值。由该图可知,与驱动电流值Ios的大小无关,当振荡启动时间Ts变短时负载电容CL减少。相反,在采用较低的负载电容CL时能缩短振荡启动时间Ts。按图2中的与振荡余量M的关系来说,当使用较低的负载电容CL时振荡余量M变大。该情况也可从负性电阻RL=-Gm/(2ωCL)2的关系,说明当低CL时负性电阻RL变大,也可从按照上述振荡余量M的定义式(1),M=RL/R1max增大的情况进行说明。在采用以往的较高的负载电容(CL>10pF,例如12.5pF)的情况下,采用增大驱动电流Ios而增加振荡余量M的方法,因此难以减少消耗功率。但是,如果采用本申请涉及的低CL化的方法,能减小负载电容CL的值,并增加振荡余量M,进而能简单地使振荡启动时间Ts为1秒以下(从图1也能做到0.5秒以下),也能实现高速启动。即,低CL振子能够容易实现高速且省电的振荡电路。
根据图1,将多项式近似于这些曲线,则在Ios=160nA时Ts(sec)=0.0191CL2+0.0487CL+0.0623(相关系数R=0.9999);在Ios=95nA时Ts(sec)=0.0424CL2-0.0030CL+0.1240(相关系数R=0.9999);在Ios=70nA时Ts(sec)=0.0558CL2+0.0316CL+0.1141(相关系数R=0.9999),能用相关关系非常大的2次式表示。即,随着Ios的不同而关系式的系数有所不同,但可知存在Ts=α*CL2+β*CL+γ的关系。这是新的发现,利用该关系式能确定用于得到所希望的振荡启动时间Ts的负载电容CL的值。从图1的图表,能实现各自的驱动电流中满足Ts<0.5sec的规格的非常高速启动的石英振荡器。但是,振荡启动时间Ts必须不超过振子的时间常数τ0(石英振子的情况下0.3sec)。
以下,对本发明的具体方法进行更加详细地说明。首先,确定振荡电路的驱动电流值Ios0和振荡余量M0。关于这些值,根据所连接的电子设备(例如,便携电话、电子书等便携终端设备),能够由设计者选定适当的值。接着利用诸如图2那样的关系式(或图表)从事先得到的关系式Ts=a*M-b求出振荡启动时间Ts(Ts0)。即,Ts0=a*M0-b。如果没有自己得到的关系式,当然能够用Ts=3.74M-0.70。(此时,Ts0=3.74M0-0.70)或者,从自己制作的图1那样的Ts与M的关系图表求出大概的Ts0也可。如果没有自己制作的关系图表,当然使用图1也可。
接着,事先取得图1那样的数据。得到以最低2个驱动电流Ios为参数的振荡启动时间Ts和负载电容CL的关系。由于存在非常大的相关关系,对于各个驱动电流Ios最低为3~4个数据也可。
得到由此求出的最低2个2次式
Ts=c1*(CL)2+d1*(CL)+e1(Ios=Ios1)
Ts=c2*(CL)2+d2*(CL)+e2(Ios=Ios2)
(Ios1>Ios2)。
然后对于3个负载电容CL值(x1、x2、x3),由简单比例关系得到驱动电流Ios0上的曲线Ts=c0*(CL)2+d0*(CL)+e0(Ios=Ios0)。例如,由Ts(x1)at Ios1=c1*(x1)2+d1*(x1)+e1、Ts(x1)at Ios2=c2*(x2)2+d2*(x2)+e2,求出Ts(x1)at Ios0={(Ios0-Ios1)/(Ios1-Ios2)}*(Ts(x1)at Ios1-Ts(x1)at Ios2)+Ts(x1)at Ios1。即,认为振荡启动时间Ts与驱动电流Ios0的值成比例而计算。同样地,得到Ts(x2)at Ios0及Ts(x3)at Ios0。由这些3组值(x1、Ts(x1)at Ios0)、(x2、Ts(x2)at Ios0)及(x3、Ts(x3)at Ios0)得到与驱动电流Ios0相关的振荡启动时间Ts的式,即振荡启动时间Ts=c0*(CL)2+d0*(CL)+e0(Ios=Ios0)。(确定c0、d0及e0。)基于此,由代入从振荡启动时间Ts与振荡余量M的关系式或关系图表得到的振荡启动时间Ts0的2次方程式Ts0=c0*(CL)2+d0*(CL)+e0,能够求出负载电容CL值。
该方法,在Ios0≥Ios1或Ios0≤Ios2时,即任意的驱动电流Ios0存在于驱动电流Ios1或驱动电流Ios2的外侧时,精度变差,但Ios1≥Ios0≥Ios2时,即驱动电流Ios0在驱动电流Ios1和驱动电流Ios2之间时精度相当好(原因在于采用简单比例关系)。特别是,当驱动电流Ios1和驱动电流Ios2较近时对于振荡启动时间Ts0能求出准确的负载电容CL值。如图1所示,能得到3组对驱动电流Ios值的关系式时,在它们之间(即,驱动电流Ios在160nA~75nA之间)的情况下,能得到相当准确的负载电容CL值。
即,在本发明的步骤(B)中,振荡开始时Ts及负载电容CL的关系式,以驱动电流值Ios为参数时,为
Ts=0.0191(CL)2+0.0487(CL)+0.0623(Ios=160nA时)
Ts=0.0424(CL)2-0.0030(CL)+0.1240(1os=95nA时)
Ts=0.0558(CL)2+0.0316(CL)+0.1141(Ios=70nA时),
因此在将所使用的振荡电路的驱动电流值定为Ios0时,当Ios≥95nA时使用上式的第1、第2式,当Ios≤95nA时使用第2、第3式,以简单比例关系求出驱动电流值Ios=Ios0上的关系式
Ts=α*(CL)2+β(CL)+γ(Ios=Ios0时)(即,确定α、β、γ),在本发明的步骤(C)中确定负载电容CL。
如以上所述,本发明从振荡余量M与振荡启动时间Ts的关系曲线(式)或关系图表求出与振荡余量M0对应的振荡启动时间Ts0。然后,向作为振荡启动时间Ts及负载电容CL的关系曲线(式)而得到的2次曲线Ts=α(CL)2+β(CL)+γ代入Ts0,能够确定负载电容值CL。
利用上述的本发明的负载电容值CL确定方法确定的石英振荡电路,能够搭载到石英振荡器或电子设备而加以适用。例如,是钟表、便携电话、便携终端、笔记本电脑等电池驱动的电子设备。进而对要求节能、节电的车载用电子设备、电视/冰箱/空调等家电产品等广范的电子设备也能适用。

Claims (7)

1.一种采用石英振动器的振荡电路中的负载电容CL的确定方法,其特征在于,包括以下步骤:
利用振荡启动时间Ts与振荡余量M的关系式或关系图表从振荡余量M求出振荡启动时间Ts(Ts0)的步骤(A);
从振荡启动时间Ts与负载电容CL的关系式以及驱动电流值Ios,求出任意的驱动电流值Ios上的振荡启动时间Ts与负载电容CL的关系式的步骤(B);以及
利用所述步骤(B)中求出的振荡启动时间Ts及负载电容CL的关系式,确定与所述步骤(A)中求出的振荡启动时间Ts0对应的负载电容CL的步骤(C)。
2.根据权利要求1所述的负载电容CL的确定方法,其特征在于,所述步骤(A)中的振荡启动时间Ts与振荡余量M的关系式为M=a/(Ts)b,其中a、b为常数。
3.根据权利要求2所述的负载电容CL的确定方法,其特征在于,所述步骤(A)中的振荡启动时间Ts与振荡余量M的关系式为M=3.74(Ts)-0.70
4.根据权利要求1至3中任一项所述的负载电容CL的确定方法,其特征在于,所述步骤(B)中的振荡启动时间Ts与负载电容CL的关系式为Ts=c*(CL)2+d*(CL)+e,其中c、d、e为常数。
5.根据权利要求1至3中任一项所述的负载电容CL的确定方法,其特征在于,在所述步骤(B)中,
事先得到的至少2个驱动电流值Ios(Ios1、Ios2)上的振荡启动时间Ts及负载电容CL的关系式为
Ts=c1*(CL)2+d1*(CL)+e1其中Ios=Ios1    ...式(1)
Ts=c2*(CL)2+d2*(CL)+e2其中Ios=Ios2    ...式(2),
利用式(1)及式(2)确定任意的驱动电流值Ios时的振荡启动时间Ts与负载电容CL的关系式
Ts=c0*(CL)2+d0*(CL)+e0其中驱动电流值Ios为任意值(Ios0)    ...式(3),
在所述步骤(C)中,从式(3)及所述步骤(A)中求出的振荡启动时间Ts0确定负载电容CL。
6.根据权利要求1至3中任一项所述的负载电容CL的确定方法,其特征在于,在步骤(B)中,
振荡启动时间Ts及负载电容CL的关系式在以驱动电流值Ios为参数时,为
Ts=0.0191(CL)2+0.0487(CL)+0.0623其中Ios=160nA    ...式(4)
Ts=0.0424(CL)2-0.0030(CL)+0.1240其中Ios=95nA    ...式(5)
Ts=0.0558(CL)2+0.0316(CL)+0.1141其中Ios=70nA    ...式(6),
当所使用的振荡电路的驱动电流值Ios为Ios≥95nA时,使用式(4)和式(5),当Ios≤95nA时使用式(5)和式(6),求出任意的驱动电流值Ios上的振荡启动时间Ts及负载电容CL的关系式Ts=α(CL)2+β(CL)+γ其中驱动电流值Ios为任意值(Ios0)    ...式(7),即确定式(4)的α、β及γ,
在所述步骤(C)中,
利用所述步骤(B)中求出的式(7)确定负载电容CL。
7.一种电子设备,搭载有石英振荡电路,该石英振荡电路具有利用权利要求1至3中任一项所述的负载电容CL的确定方法来确定的负载电容。
CN2012100260688A 2011-01-27 2012-01-29 石英振荡电路的负载电容确定方法和用该方法的电子设备 Pending CN102624332A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015446A JP2012156875A (ja) 2011-01-27 2011-01-27 水晶発振回路の負荷容量の決定方法およびそれを用いた電子機器
JP2011-015446 2011-01-27

Publications (1)

Publication Number Publication Date
CN102624332A true CN102624332A (zh) 2012-08-01

Family

ID=46564040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100260688A Pending CN102624332A (zh) 2011-01-27 2012-01-29 石英振荡电路的负载电容确定方法和用该方法的电子设备

Country Status (4)

Country Link
US (1) US20120197568A1 (zh)
JP (1) JP2012156875A (zh)
CN (1) CN102624332A (zh)
TW (1) TW201251305A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184450A (zh) * 2013-05-21 2014-12-03 联发科技股份有限公司 信号转换装置及应用该信号转换装置的数字传送装置
CN112800714A (zh) * 2020-12-30 2021-05-14 科大讯飞股份有限公司 一种印制电路板设计方法和相关装置
CN112800714B (zh) * 2020-12-30 2024-05-31 科大讯飞股份有限公司 一种印制电路板设计方法和相关装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10530325B1 (en) 2018-08-30 2020-01-07 Advanced Micro Devices, Inc. Low loss T-coil configuration with frequency boost for an analog receiver front end
US10692545B2 (en) * 2018-09-24 2020-06-23 Advanced Micro Devices, Inc. Low power VTT generation mechanism for receiver termination
US10749552B2 (en) 2018-09-24 2020-08-18 Advanced Micro Devices, Inc. Pseudo differential receiving mechanism for single-ended signaling
JP6721737B1 (ja) * 2019-02-13 2020-07-15 Necプラットフォームズ株式会社 出力装置、発振装置、出力方法及び出力プログラム
US10944368B2 (en) 2019-02-28 2021-03-09 Advanced Micro Devices, Inc. Offset correction for pseudo differential signaling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184450A (zh) * 2013-05-21 2014-12-03 联发科技股份有限公司 信号转换装置及应用该信号转换装置的数字传送装置
CN104184450B (zh) * 2013-05-21 2017-09-29 联发科技股份有限公司 信号转换装置及应用该信号转换装置的数字传送装置
CN112800714A (zh) * 2020-12-30 2021-05-14 科大讯飞股份有限公司 一种印制电路板设计方法和相关装置
CN112800714B (zh) * 2020-12-30 2024-05-31 科大讯飞股份有限公司 一种印制电路板设计方法和相关装置

Also Published As

Publication number Publication date
US20120197568A1 (en) 2012-08-02
JP2012156875A (ja) 2012-08-16
TW201251305A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
CN102624332A (zh) 石英振荡电路的负载电容确定方法和用该方法的电子设备
CN103248321A (zh) 一种晶体振荡器电路及芯片
CN110224689B (zh) 起振电路
US7834710B2 (en) Oscillator circuit and electronic device having oscillator circuit
JP2006165720A (ja) 発振回路
US20080211593A1 (en) Oscillation circuit
CN214380843U (zh) 低频振荡电路、振荡器、电源及电子设备
JPWO2010032384A1 (ja) 圧電振動素子及びこれを用いた発振回路
US8674776B2 (en) Oscillator circuit, oscillator, electronic apparatus, and activation method oscillator circuit
JP2008211757A (ja) 温度補償圧電発振器
JP2019097014A (ja) 温度補償型水晶発振器及びそれを用いた電子機器
JP2012175362A (ja) 水晶発振回路の設計値決定方法及び電子機器
CN105278322A (zh) 模拟电子钟表
KR101478949B1 (ko) 트랜스포머와 전류 재사용 방식을 사용한 암스트롱 및 암스트롱 콜핏츠 전압 제어 발진기
JP2013017074A (ja) 温度補償発振器および電子機器
CN105094198A (zh) 电流电压变换电路以及自激振荡电路
US8653898B2 (en) Crystal oscillator circuit
JP2013017074A5 (ja) 発振器および電子機器
CN110492849A (zh) 一种rc振荡电路
JP5176838B2 (ja) 発振器及び発振器を備えた電子機器
TW201249105A (en) Oscillator circuit and electronic device equipped with the same
CN111953315B (zh) 晶体振荡器、芯片和电子设备
JP5098979B2 (ja) 圧電発振器
JP2004266820A (ja) 圧電発振回路
JP2004104631A (ja) 水晶発振回路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120801