CN102621452A - 一种基于信号距离和π型线路模型的纵联保护方法 - Google Patents

一种基于信号距离和π型线路模型的纵联保护方法 Download PDF

Info

Publication number
CN102621452A
CN102621452A CN2012100950185A CN201210095018A CN102621452A CN 102621452 A CN102621452 A CN 102621452A CN 2012100950185 A CN2012100950185 A CN 2012100950185A CN 201210095018 A CN201210095018 A CN 201210095018A CN 102621452 A CN102621452 A CN 102621452A
Authority
CN
China
Prior art keywords
img
transmission line
gif
current
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100950185A
Other languages
English (en)
Inventor
束洪春
蒋彪
董俊
田鑫萃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN2012100950185A priority Critical patent/CN102621452A/zh
Publication of CN102621452A publication Critical patent/CN102621452A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种基于信号距离和Π型线路模型的纵联保护方法,属于输电线路继电保护技术领域。当输电线路发生故障时,在短时窗内,量测输电线路两端保护安装处M点、N点的电压u M u N 和电流i M i N ,通过分析输电线路集中参数Π型等效电路,根据基尔霍夫电流定理,得出输电线路末端N点处模拟电流的表达式,用线路首端M点的实测电压u M 和电流i M 模拟计算输电线路N点处的电流
Figure 181716DEST_PATH_IMAGE001
,再将末端N点处模拟电流
Figure 250166DEST_PATH_IMAGE001
与实测电流i N 的波形相比较,计算出模拟电流与实测电流i N 的互距离度,将计算所得互距离度
Figure 409118DEST_PATH_IMAGE002
与设定的互距离度整定值
Figure DEST_PATH_IMAGE003
进行比较,根据两者的大小关系识别区内外故障。具有甄别区内外故障快速可靠,不受过度电阻、故障初始角的影响等优点。

Description

一种基于信号距离和Π型线路模型的纵联保护方法
技术领域
本发明涉及一种基于信号距离和Π型线路模型的纵联保护方法,属于电力系统继电保护技术领域。
背景技术
纵联保护可实现全线速动,并具有绝对的选择性,因此它可满足电力系统稳定需要,充分满足继电保护的选择性、灵敏性和速动性、可靠性的要求。但传统的纵联保护如光纤电流差动、高频保护,受超高压长线路分布电容、两侧TA暂态特性和饱和程度的差异及通信信道的影响,容易造成保护不正确动作。在装有阻波器的输电线路中,利用高频含量的不同构成的区内外故障识别判据,由于判据可靠性依赖于物理边界频率特性,在实际应用中会存在整定值不好设定的问题。
为了克服传统纵联保护所存在的以上不足,提高其可靠性,实现对区内外故障的快速识别和快速切除输电线路上任意点的故障。对于远距离输电线路,由于T型等值电路比Π型等值电路节点数多,因此常用的是Π型等值电路。在如图1的输电线路中,通过分析输电线路集中参数Π型等效电路,并根据基尔霍夫电流定理,用M点电压u M 、电流i M 模拟计算输电线路N点处的电流                                                
Figure 134450DEST_PATH_IMAGE001
,再将模拟N点处电流
Figure 597792DEST_PATH_IMAGE002
与实测N点处电流i N 的波形相比较,计算出模拟电流与实测电流i N 的互距离度,并将此互距离度
Figure 11477DEST_PATH_IMAGE003
的大小与设定的互距离度整定值
Figure 962116DEST_PATH_IMAGE004
比较,并根据两者的大小关系识别区内外故障。对于区内和区外故障,其对应的互距离度
Figure 31572DEST_PATH_IMAGE003
差别明显,整定值
Figure 384056DEST_PATH_IMAGE004
容易设定。
藉此,提出基于信号距离和Π型线路模型的纵联保护方法。
发明内容
本发明的目的是提出一种基于信号距离和Π型线路模型的纵联保护方法,通过分析线路集中参数Π型等效电路,计算出保护安装处模拟电流及其与实测电流的互距离度,再与设定的互距离度整定值比较而识别区内外故障,克服系统振荡、TA饱和及通信信道等对纵联保护的影响,提高纵联保护判据的可靠性,实现对区内外故障的快速识别和快速切除输电线路上任意点的故障。
本基于信号距离和Π型线路模型的纵联保护方法是:当输电线路发生故障时,在短时窗内,量测输电线路两端保护安装处M点、N点的电压u M 、u N 和电流i M 、i N ,通过分析输电线路集中参数Π型等效电路,根据基尔霍夫电流定理,得出输电线路末端N点处模拟电流
Figure 264287DEST_PATH_IMAGE001
的表达式,用线路首端M点的实测电压u M 和电流i M 模拟计算输电线路N点处的电流
Figure 702222DEST_PATH_IMAGE001
,再将末端N点处模拟电流
Figure 388418DEST_PATH_IMAGE002
与实测电流i N 的波形相比较,计算出模拟电流
Figure 782359DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 895809DEST_PATH_IMAGE003
,将此互距离度
Figure 758722DEST_PATH_IMAGE003
与互距离度的设定值
Figure 983030DEST_PATH_IMAGE004
进行比较,根据两者的大小关系识别区内外故障。具体步骤如下:
(1)输电线路发生故障后,在短时窗内,量测输电线路首、末两端保护安装处M点、N点的电压u M 、u N 和电流i M 、i N ,然后根据集中参数Π型等效电路的特征及基尔霍夫电流定理,得到如下输电线路末端N点处模拟电流
Figure 497057DEST_PATH_IMAGE001
的表达式,并根据该式计算输电线路N点处的模拟电流
Figure 515829DEST_PATH_IMAGE001
Figure 928356DEST_PATH_IMAGE005
其中,C为线路总电容,t为时间;
(2)在对应t时间区间[0, Ns]内,定义线路末端N点处模拟电流与实测电流i N 的互距离度函数如下式:
(3)按下式确定一个互距离度整定值
=
其中,为线路各种情况下(包括不同的故障过渡电阻、不同的故障初始角、不同的故障距离)区内故障时计算出的模拟电流和实测电流i N 的互距离度的最小值,k a 为整定系数;
   (4)根据步骤(2)定义的互距离度函数,计算线路末端N点模拟电流
Figure 106821DEST_PATH_IMAGE002
与实测电流i N 的互距离度,再将计算所得互距离度
Figure 570480DEST_PATH_IMAGE003
与步骤(3)设定的互距离度整定值
Figure 367535DEST_PATH_IMAGE004
进行比较,根据两者的大小关系识别区内外故障;当
Figure 163322DEST_PATH_IMAGE003
Figure 71235DEST_PATH_IMAGE004
时,判别为输电线路区外故障;当>
Figure 987555DEST_PATH_IMAGE004
时,判别为输电线路区内故障。
所述整定系数k a 一般取0.6,以保留一定裕度。
本发明中,测量输电线路首、末两端电压和电流时,采样频率为20kHz,短时窗的长度为3ms。
本发明的原理是:
1、输电线路Π型线路模型故障特征分析
如图1所示,若线路M-N区外发生接地故障,由基尔霍夫电流定理可得:
Figure 270638DEST_PATH_IMAGE010
由于
Figure 847430DEST_PATH_IMAGE012
因此,可将量测端M、N的电压电流关系表示为:
Figure 923970DEST_PATH_IMAGE005
其中,C为线模总电容值,t为时间。
当输电线路发生故障时,如图1,在短时窗内,通过量测输电线路两端保护安装处M点、N点的电压u M 、u N 电流i M 、i N ,即可根据上述公式计算出输电线路N点处的模拟电流
Figure 507398DEST_PATH_IMAGE001
2、线路末端实测电流i N 与模拟电流
Figure 212574DEST_PATH_IMAGE002
的信号距离
“信号距离”是一个表征两种特征信号之间差异的概念, 使用“信号距离”的概念可以容易地表示两个信号的差异程度。求取两种特征信号在比较区间内对应时刻的差值,并计算差值的平均值,是反映客观事物或过程中两种特征信号之间的差异性的最简单方式。两离散信号的互距离度函数为
Figure 932268DEST_PATH_IMAGE003
,在对应时间区间为[0, Ns] ,则信号
Figure 179710DEST_PATH_IMAGE002
与信号i N 的互距离度计算公式如下:
Figure 250434DEST_PATH_IMAGE013
通过上述互距离度函数表达式,即可对故障发生时线路末端的实测电流i N 与模拟电流信号的波形进行比较,计算出输电线路模拟电流
Figure 330571DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 811231DEST_PATH_IMAGE003
3、基于信号距离的输电线路区内、外故障甄别
当输电线路发生故障时,假设故障点位于线路M-N区外,如图1,在短数据窗内,量测输电线路两端保护安装处M点、N点电压u M 、u N 电流i M 、i N 然后分析输电线路集中参数Π型等效电路,根据基尔霍夫电流定理,由
Figure 306934DEST_PATH_IMAGE005
公式计算输电线路N点处的模拟电流。计算模拟电流
Figure 779690DEST_PATH_IMAGE002
的式中反映的等量关系均由真实元件参数所决定,唯一稳恒,这时模拟电流
Figure 696830DEST_PATH_IMAGE002
和实测电流i N 的波形一致,实际中由于使用集中参数模型,不考虑行波在线路上传播时间,计算出的模拟电流与实测电流i N 的波形在时刻上相差t(如图2)其中t=l/v,l为线路全长,v为波速。此时,计算出模拟电流
Figure 809460DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 623832DEST_PATH_IMAGE003
是一个相对很小的数值。
如果假设不成立,故障点位于线路M-N区内,由于故障点的分流,计算模拟电流
Figure 633245DEST_PATH_IMAGE002
的公式 
Figure 900279DEST_PATH_IMAGE005
不再成立,这时模拟电流
Figure 36862DEST_PATH_IMAGE002
和实测电流的波形不一致,计算出的模拟电流
Figure 888985DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 643314DEST_PATH_IMAGE003
是一个相对很大的数值。
因此,当输电线路发生区外故障时,模拟电流
Figure 318009DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 841394DEST_PATH_IMAGE003
是一个相对很小的数值;而当输电线路发生区内故障时,计算出的比区外故障时的大得多。只要确定出各种区内故障时的模拟电流
Figure 974938DEST_PATH_IMAGE002
和实测电流i N 的互距离度的最小值
Figure 556092DEST_PATH_IMAGE009
,再通过公式
Figure 891259DEST_PATH_IMAGE004
=
Figure 807131DEST_PATH_IMAGE008
设定距离度整定值,即可将
Figure 383923DEST_PATH_IMAGE009
Figure 93253DEST_PATH_IMAGE003
进行比较,判断区内外故障。
Figure 43891DEST_PATH_IMAGE003
Figure 113348DEST_PATH_IMAGE004
时,互距离度为一个相对较小的数值,与输电线路发生区外故障模型匹配,判别为为输电线路区外故障;
Figure 346063DEST_PATH_IMAGE003
>
Figure 783997DEST_PATH_IMAGE004
时,互距离度
Figure 204614DEST_PATH_IMAGE003
为一个相对较大的数值,与输电线路发生区内故障模型匹配,判别为输电线路区内故障。
为了保留一定裕度,一般取整定系数k a  =0.6。
与现有技术相比,本发明具有如下优点:
(1)本方法利用两端暂态量信息构成的线路保护能可靠地识别区内外故障,不受过度电阻、故障初始角的影响。
(2)本方法采样频率为20kHz,符合目前硬件条件,现场容易实现。时间窗很短,时间窗为3ms,能快速的甄别区内外故障,实现超高速启动保护元件。
(3)本方法根据信号距离中互距离度
Figure 867064DEST_PATH_IMAGE003
与互距离度的设定值
Figure 980514DEST_PATH_IMAGE004
的大小比较识别区内外故障,比较的数值差别明显,整定值
Figure 843428DEST_PATH_IMAGE004
容易设定,保护灵敏度高,能可靠甄别区内外故障。
附图说明
图1为本发明输电系统结构示意图;图中,EM、EN为两端电源,i M 、i N 为输电线路两端M点和N点两侧的实测电流,Z为线路总阻抗,Y为线路总导纳。k 1为线路M-N反向区外发生单相接地故障,故障点到M端距离为40km; k 2为线路M-N区内发生单相接地故障,故障点到M端距离为10km; k 3为线路M-N正向区外发生单相接地故障,故障点到N端距离为70km;
图2为本发明线路M-N反向区外发生单相接地故障,故障点到M端距离为40km(图1中k 1点处)、过渡电阻为100Ω时,末端实测电流i N 与模拟电流
Figure 67736DEST_PATH_IMAGE002
波形图;
Figure 316183DEST_PATH_IMAGE014
为实测电流,
Figure 600534DEST_PATH_IMAGE001
为模拟电流,t/ms为时间/毫秒,i/kV为电流/千安;
图3为本发明线路M-N区内发生单相接地故障,故障点到M端距离为10km(图1中k 2点处)、过渡电阻为10Ω时,末端实测电流i N 与模拟电流
Figure 950744DEST_PATH_IMAGE002
波形图;
Figure 978743DEST_PATH_IMAGE014
为实测电流,为模拟电流,t/ms为时间/毫秒,i/kV为电流/千安。
具体实施方式
以下结合附图和实施例对本发明作进一步阐述,但本发明的保护范围不限于所述内容。
实施例1:仿真系统如图1所示,输电线路M-N采用J.Marti依频变线路模型, 线路全长150km。线路α模总电容为2.1324e-6F,线路α模电阻R=2.8143e-005Ω/m,线路α模电容C= 1.4215e-05uF/m,线路α模电感L=8.0223e-007 H/m。线路M-N反向区外发生单相接地故障,故障位置距M端40km,如图1中的k 1,过渡电阻100欧。
当输电线路发生故障时,取仿真采样频率为20kHz,在3ms短时窗内,量测输电线路两端保护安装处M点、N点的电压u M 、u N 和电流i M 、i N ,通过分析输电线路集中参数Π型等效电路,根据基尔霍夫电流定理,得出输电线路末端N点处模拟电流
Figure 536949DEST_PATH_IMAGE001
的表达式,用线路首端M点的实测电压u M 和电流i M 模拟计算输电线路N点处的电流
Figure 436772DEST_PATH_IMAGE001
,再将末端N点处模拟电流
Figure 940566DEST_PATH_IMAGE002
与实测电流i N 的波形相比较,计算出模拟电流
Figure 242234DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 602808DEST_PATH_IMAGE003
,将此互距离度
Figure 176878DEST_PATH_IMAGE003
与设定的互距离度整定值进行比较,根据两者的大小关系识别区内外故障。具体步骤如下:
(1)输电线路发生故障后,取仿真采样频率为20kHz,在3ms短时窗内,量测输电线路首、末两端保护安装处M点、N点的电压u M 、u N 和电流i M 、i N ,然后根据集中参数Π型等效电路的特征及基尔霍夫电流定理,得到如下输电线路末端N点处模拟电流
Figure 553120DEST_PATH_IMAGE001
的表达式,并根据该式计算输电线路N点处的模拟电流
 
Figure 896693DEST_PATH_IMAGE005
其中,C为线路总电容,t为时间;所得末端实测电流i N 与模拟电流
Figure 70186DEST_PATH_IMAGE002
波形如图2所示;
(2)在对应t时间区间[0, Ns]内,定义线路末端N点处模拟电流与实测电流i N 的互距离度函数如下式:
Figure 235774DEST_PATH_IMAGE016
取Ns=60,即60个采样点;
(3)按下式确定一个互距离度整定值
Figure 981193DEST_PATH_IMAGE004
=
Figure 33331DEST_PATH_IMAGE008
其中,
Figure 172189DEST_PATH_IMAGE009
为各种情况下的区内故障时计算出的模拟电流和实测电流i N 的互距离度的最小值。为保留一定裕度,取整定系数k a =0.6,设定整定值
Figure 943016DEST_PATH_IMAGE004
为0.35;
(4)根据步骤(2)定义的互距离度函数,计算线路末端N点模拟电流与实测电流i N 的互距离度
Figure 424998DEST_PATH_IMAGE003
,再将计算所得互距离度与步骤(3)设定的互距离度整定值
Figure 549129DEST_PATH_IMAGE004
进行比较,根据两者的大小关系识别区内外故障;
经计算,模拟电流
Figure 326592DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 807252DEST_PATH_IMAGE003
=0.073,
Figure 146671DEST_PATH_IMAGE004
,判别为输电线路区外故障。 
实施例2:仿真系统如图1所示,输电线路M-N采用J.Marti依频变线路模型, 线路参数同实施例1。线路M-N区内发生A相接地故障,故障位置距M端10km,如图1中的k 2,过渡电阻10欧。
输电线路发生故障后,取仿真采样频率为20kHz,在3ms短时窗内,按实施例1相同的方法,模拟计算输电线路末端(N侧)电流
Figure 778641DEST_PATH_IMAGE002
。线路末端N点处实测电流i N 与模拟电流波形如图3所示。
取整定系数k a =0.6,设定整定值
Figure 662469DEST_PATH_IMAGE004
为0.35。经计算,在时窗3ms内,模拟电流
Figure 57678DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 544155DEST_PATH_IMAGE003
=0.986,
Figure 632196DEST_PATH_IMAGE003
>
Figure 899230DEST_PATH_IMAGE004
,判别为输电线路区内故障,末端实测电流i N 与模拟电流
Figure 285080DEST_PATH_IMAGE002
波形如图3。
实施例3:仿真系统如图1所示,输电线路M-N采用J.Marti依频变线路模型, 线路参数同实施例1。线路M-N正向区外发生A相接地故障,故障位置距N端70km,如图1中的k 3,过渡电阻100欧。
输电线路发生故障后,取仿真采样频率为20kHz,在3ms短时窗内,按实施例1相同的方法,模拟计算输电线路末端(N侧)电流
Figure 688380DEST_PATH_IMAGE002
取整定系数k a =0.6,设定整定值
Figure 885006DEST_PATH_IMAGE004
为0.35。经计算,在时窗3ms内,模拟电流
Figure 639335DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 563298DEST_PATH_IMAGE003
=0.145,
Figure 86683DEST_PATH_IMAGE003
,判别为输电线路区外故障。
实施例4:仿真系统如图1所示,输电线路全长400km, 其他参数同实施例1。线路M-N正向区内发生A相接地故障,故障位置距M端300km,过渡电阻300欧。
输电线路发生故障后,取仿真采样频率为20kHz,在3ms短时窗内,按实施例1相同的方法,模拟计算输电线路末端(N侧)电流
Figure 430257DEST_PATH_IMAGE002
取整定系数k a =0.6,设定整定值
Figure 970960DEST_PATH_IMAGE004
为0.3。经计算,在时窗3ms内,模拟电流
Figure 804311DEST_PATH_IMAGE002
与实测电流i N 的互距离度
Figure 139477DEST_PATH_IMAGE003
=0.856,
Figure 806082DEST_PATH_IMAGE003
>
Figure 884897DEST_PATH_IMAGE004
,判别为输电线路区内故障。

Claims (4)

1.一种基于信号距离和Π型线路模型的纵联保护方法,其特征在于:当输电线路发生故障时,在短时窗内,量测输电线路两端保护安装处M点、N点的电压u M 、u N 和电流i M 、i N ,通过分析输电线路集中参数Π型等效电路,根据基尔霍夫电流定理,得出输电线路末端N点处模拟电流                                                
Figure 772016DEST_PATH_IMAGE001
的表达式,用线路首端M点的实测电压u M 和电流i M 模拟计算输电线路N点处的电流
Figure 81775DEST_PATH_IMAGE001
,再将末端N点处模拟电流
Figure 73870DEST_PATH_IMAGE001
与实测电流i N 的波形相比较,计算出模拟电流
Figure 127277DEST_PATH_IMAGE001
与实测电流i N 的互距离度,将计算所得互距离度
Figure 385400DEST_PATH_IMAGE002
与设定的互距离度整定值
Figure 943420DEST_PATH_IMAGE003
进行比较,根据两者的大小关系识别区内外故障。
2.根据权利要求1所述的基于信号距离和Π型线路模型的纵联保护方法,其特征在于具体步骤如下:
(1)输电线路发生故障后,在短时窗内,量测输电线路首、末两端保护安装处M点、N点的电压u M 、u N 和电流i M 、i N ,然后根据集中参数Π型等效电路的特征及基尔霍夫电流定理,得到如下输电线路末端N点处模拟电流
Figure 724819DEST_PATH_IMAGE004
的表达式,并根据该式计算输电线路N点处的模拟电流
Figure 684685DEST_PATH_IMAGE004
其中,C为线路总电容,t为时间;
(2)在对应t时间区间[0, Ns]内,定义线路末端N点处模拟电流与实测电流i N 的互距离度函数
Figure 53666DEST_PATH_IMAGE006
如下式:
Figure 448876DEST_PATH_IMAGE007
 (3)按下式确定一个互距离度整定值
Figure 450199DEST_PATH_IMAGE003
Figure 272661DEST_PATH_IMAGE003
=
Figure 477377DEST_PATH_IMAGE008
其中,
Figure 676278DEST_PATH_IMAGE009
为各种情况下区内故障时计算出的模拟电流与实测电流i N 的互距离度的最小值,k a 为整定系数;
(4)根据步骤(2)定义的互距离度函数,计算线路末端N点模拟电流
Figure 525471DEST_PATH_IMAGE001
与实测电流i N 的互距离度
Figure 279800DEST_PATH_IMAGE002
,再将计算所得互距离度
Figure 220074DEST_PATH_IMAGE002
与步骤(3)设定的互距离度整定值
Figure 743460DEST_PATH_IMAGE003
进行比较,根据两者的大小关系识别区内外故障:当
Figure 907725DEST_PATH_IMAGE002
Figure 336301DEST_PATH_IMAGE003
时,判别为输电线路区外故障;当
Figure 877004DEST_PATH_IMAGE002
>
Figure 192578DEST_PATH_IMAGE003
时,判别为输电线路区内故障。
3.根据权利要求2所述的基于信号距离和Π型线路模型的纵联保护方法,其特征在于:整定系数k a  =0.6。
4.根据权利要求1或2所述的基于信号距离和Π型线路模型的纵联保护方法,其特征在于:测量输电线路首、末两端电压和电流时,采样频率为20kHz,短时窗的长度为3ms。
CN2012100950185A 2012-03-31 2012-03-31 一种基于信号距离和π型线路模型的纵联保护方法 Pending CN102621452A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100950185A CN102621452A (zh) 2012-03-31 2012-03-31 一种基于信号距离和π型线路模型的纵联保护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100950185A CN102621452A (zh) 2012-03-31 2012-03-31 一种基于信号距离和π型线路模型的纵联保护方法

Publications (1)

Publication Number Publication Date
CN102621452A true CN102621452A (zh) 2012-08-01

Family

ID=46561483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100950185A Pending CN102621452A (zh) 2012-03-31 2012-03-31 一种基于信号距离和π型线路模型的纵联保护方法

Country Status (1)

Country Link
CN (1) CN102621452A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278744A (zh) * 2013-05-30 2013-09-04 昆明理工大学 一种基于t型线路等效及测后模拟思想的同塔双回输电线路纵联保护的方法
CN104007368A (zh) * 2014-06-17 2014-08-27 漳州市锦成电力设备有限公司 一种基于can总线的高压电线故障检测系统
CN106560720A (zh) * 2016-11-08 2017-04-12 西安科技大学 一种基于互距离函数的输电线路故障类型判别方法
CN106896297A (zh) * 2017-04-25 2017-06-27 武汉理工大学 一种综合计及稳态和暂态响应特性的配电线路模型构建方法
CN107463729A (zh) * 2017-07-03 2017-12-12 西南交通大学 一种高铁站场内电弧烧损钢轨绝缘节的暂态过程分析方法
CN109471003A (zh) * 2018-09-30 2019-03-15 昆明理工大学 一种基于110kV同塔双回输电线路雷击闪落与未闪落辨识方法
CN110568308A (zh) * 2019-07-19 2019-12-13 昆明理工大学 一种基于Bergeron线路模型的特高压直流输电线路区内外故障识别方法
CN111044848A (zh) * 2019-12-31 2020-04-21 武汉三相电力科技有限公司 一种基于特征参数调整波速的电缆故障高精度定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466031B1 (en) * 2000-12-29 2002-10-15 Abb Power Automation Ltd. Systems and methods for locating faults on a transmission line with multiple tapped loads
RU2008136406A (ru) * 2006-02-10 2010-03-20 Абб Текнолоджи Лтд (Ch) Способ и реле адаптивной дистанционной защиты для линий электропередачи
CN101741070A (zh) * 2010-01-11 2010-06-16 山东大学 基于两端电流量电压量的线路纵联保护方法
CN102255291A (zh) * 2011-07-04 2011-11-23 昆明理工大学 一种基于贝杰龙模型的交流输电线路纵联保护的测后模拟方法
CN102305899A (zh) * 2011-05-18 2012-01-04 昆明理工大学 一种识别超高压交流输电线路区内外故障的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466031B1 (en) * 2000-12-29 2002-10-15 Abb Power Automation Ltd. Systems and methods for locating faults on a transmission line with multiple tapped loads
RU2008136406A (ru) * 2006-02-10 2010-03-20 Абб Текнолоджи Лтд (Ch) Способ и реле адаптивной дистанционной защиты для линий электропередачи
CN101336503B (zh) * 2006-02-10 2012-07-25 Abb技术有限公司 用于电力传输线路的自适应距离保护继电器及方法
CN101741070A (zh) * 2010-01-11 2010-06-16 山东大学 基于两端电流量电压量的线路纵联保护方法
CN102305899A (zh) * 2011-05-18 2012-01-04 昆明理工大学 一种识别超高压交流输电线路区内外故障的方法
CN102255291A (zh) * 2011-07-04 2011-11-23 昆明理工大学 一种基于贝杰龙模型的交流输电线路纵联保护的测后模拟方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278744B (zh) * 2013-05-30 2015-09-30 昆明理工大学 一种基于t型线路等效及测后模拟思想的同塔双回输电线路纵联保护的方法
CN103278744A (zh) * 2013-05-30 2013-09-04 昆明理工大学 一种基于t型线路等效及测后模拟思想的同塔双回输电线路纵联保护的方法
CN104007368A (zh) * 2014-06-17 2014-08-27 漳州市锦成电力设备有限公司 一种基于can总线的高压电线故障检测系统
CN104007368B (zh) * 2014-06-17 2017-01-18 漳州市锦成电力设备有限公司 一种基于can总线的高压电线故障检测系统及方法
CN106560720A (zh) * 2016-11-08 2017-04-12 西安科技大学 一种基于互距离函数的输电线路故障类型判别方法
CN106896297B (zh) * 2017-04-25 2019-06-25 武汉理工大学 一种综合计及稳态和暂态响应特性的配电线路模型构建方法
CN106896297A (zh) * 2017-04-25 2017-06-27 武汉理工大学 一种综合计及稳态和暂态响应特性的配电线路模型构建方法
CN107463729A (zh) * 2017-07-03 2017-12-12 西南交通大学 一种高铁站场内电弧烧损钢轨绝缘节的暂态过程分析方法
CN109471003A (zh) * 2018-09-30 2019-03-15 昆明理工大学 一种基于110kV同塔双回输电线路雷击闪落与未闪落辨识方法
CN110568308A (zh) * 2019-07-19 2019-12-13 昆明理工大学 一种基于Bergeron线路模型的特高压直流输电线路区内外故障识别方法
CN110568308B (zh) * 2019-07-19 2021-07-13 昆明理工大学 一种基于Bergeron线路模型的特高压直流输电线路区内外故障识别方法
CN111044848A (zh) * 2019-12-31 2020-04-21 武汉三相电力科技有限公司 一种基于特征参数调整波速的电缆故障高精度定位方法
CN111044848B (zh) * 2019-12-31 2022-04-05 武汉三相电力科技有限公司 一种基于特征参数调整波速的电缆故障高精度定位方法

Similar Documents

Publication Publication Date Title
CN102621452A (zh) 一种基于信号距离和π型线路模型的纵联保护方法
CN102621453A (zh) 一种基于信号距离和贝杰龙模型的输电线路纵联保护方法
US20100102824A1 (en) Electrical network fault location by distributed voltage measurements
US9791495B2 (en) High impedance fault location in DC distribution systems
CN104569744A (zh) 一种适用于配电网线路的综合单端故障定位方法
CN104898021B (zh) 一种基于k‑means聚类分析的配电网故障选线方法
CN101207281A (zh) 多端故障定位系统
CN103323741B (zh) 一种针对强故障的基于故障电压初始行波幅值比较的d型线缆混合线路故障区段判别的方法
CN101672883A (zh) 一种架空和电缆混合输电线路故障定位方法和装置
CN102565629B (zh) 一种基于集中参数π模型的交流输电线路故障选相测后模拟方法
CN105242179A (zh) 一种阻抗法和行波法相结合的行波综合测距方法
CN105486978A (zh) 单相短路故障选线方法
CN104865495A (zh) 电力线路故障行波定位方法及系统
CN102590704A (zh) 一种基于贝杰龙模型的同杆双回输电线路区内外故障识别的测后模拟方法
CN107632238B (zh) 一种基于wams系统的多端传输线路故障测距方法
CN103558506A (zh) 非注入式直流系统接地故障查找方法及其装置
CN112540269A (zh) 一种提升配电电缆局部放电定位精度的方法
CN103675536A (zh) 一种利用瞬时功率和直线拟合的雷击干扰识别方法
CN103698662A (zh) 直流融冰架空地线故障探测方法及装置
CN111007355A (zh) 一种基于广域同步智能传感器的断线故障检测方法
CN103592572A (zh) 一种利用直流分量和谐波分量交线定位的直流接地极线路故障测距方法
CN102590694B (zh) 一种基于集中参数t模型的同杆双回输电线路区内外故障测后模拟识别方法
CN102623974B (zh) 一种基于信号距离和t型线路模型的纵联保护方法
CN112782532A (zh) 基于断路器合闸产生行波信号的配电网故障测距方法
CN102540019B (zh) 一种测后模拟识别母线区内外故障的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120801