CN102590555A - Resonance-force balance capacitance type three-axis acceleration transducer and manufacture method - Google Patents
Resonance-force balance capacitance type three-axis acceleration transducer and manufacture method Download PDFInfo
- Publication number
- CN102590555A CN102590555A CN2012100593741A CN201210059374A CN102590555A CN 102590555 A CN102590555 A CN 102590555A CN 2012100593741 A CN2012100593741 A CN 2012100593741A CN 201210059374 A CN201210059374 A CN 201210059374A CN 102590555 A CN102590555 A CN 102590555A
- Authority
- CN
- China
- Prior art keywords
- axis
- double
- axis acceleration
- fixed beam
- mass block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 122
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 62
- 239000010703 silicon Substances 0.000 claims abstract description 62
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 61
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 235000012431 wafers Nutrition 0.000 claims description 47
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- 239000010408 film Substances 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 22
- 230000007423 decrease Effects 0.000 claims description 18
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- 238000005516 engineering process Methods 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 12
- 238000001312 dry etching Methods 0.000 claims description 11
- 238000000206 photolithography Methods 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 238000004544 sputter deposition Methods 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 238000005275 alloying Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 238000000347 anisotropic wet etching Methods 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000005496 eutectics Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 238000000427 thin-film deposition Methods 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 238000011160 research Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 230000000703 anti-shock Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Pressure Sensors (AREA)
Abstract
本发明公开了一种谐振-力平衡电容式三轴加速度传感器的结构及制作方法,属于微电子机械系统领域。其结构特征在于三轴加速度传感器由中间硅片(1)、上盖板(2)和下底板(3)组成;其中,中间硅片(1)由双端固支梁谐振器(4)、质量块(6)和支撑梁(5)、可动电极(7)和框架(8)组成。本传感器在检测原理方面的特征在于芯片平面内X轴和Y轴加速度信号采用双端固支梁谐振器(4)检测,双端固支梁谐振器(4)谐振频率的变化反映加速度的大小和方向;垂直芯片平面的Z轴加速度信号采用采用电容式敏感原理检测,并工作于闭环力平衡工作模式。质量块(6)在芯片法向运动位移很小,Z轴输入的加速度信号对X轴和Y轴加速度检测引入交叉干扰极小。
The invention discloses a structure and a manufacturing method of a resonance-force balance capacitive three-axis acceleration sensor, belonging to the field of micro-electromechanical systems. Its structural feature is that the three-axis acceleration sensor is composed of a middle silicon chip (1), an upper cover plate (2) and a lower bottom plate (3); wherein, the middle silicon chip (1) is composed of a double-end fixed support beam resonator (4), The mass block (6) is composed of a support beam (5), a movable electrode (7) and a frame (8). The characteristic of this sensor in terms of detection principle is that the X-axis and Y-axis acceleration signals in the chip plane are detected by a double-end fixed beam resonator (4), and the change of the resonant frequency of the double-end fixed beam resonator (4) reflects the magnitude of the acceleration and direction; the Z-axis acceleration signal perpendicular to the chip plane is detected by the capacitive sensitive principle, and works in the closed-loop force balance mode. The movement displacement of the mass block (6) in the normal direction of the chip is very small, and the acceleration signal input by the Z axis has very little cross interference on the acceleration detection of the X axis and the Y axis.
Description
技术领域 technical field
本发明涉及三轴加速度传感器的工作原理、结构及制造方法,特别是一种谐振-力平衡电容式三轴加速度传感器的工作机理、结构及制作方法,属于微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)领域。The present invention relates to the working principle, structure and manufacturing method of a three-axis acceleration sensor, in particular to the working mechanism, structure and manufacturing method of a resonant-force balance capacitive three-axis acceleration sensor, belonging to Micro-Electro-Mechanical Systems (Micro-Electro-Mechanical Systems, MEMS) field.
背景技术 Background technique
微型加速度传感器是一类重要的力学量传感器。早在上世纪60年代末人们就开始研究一维微型硅加速度传感器。80年代末开始一维微型加速度传感器的规模化生产。进入到90年代,随着科学技术的发展和军事、商业市场的需求,开始研究三维微型加速度传感器,应用于军事、汽车电子、工业自动化、机器人技术、消费类电子产品等领域。由于微型加速度传感器具有体积小、重量轻、功耗和成本低、过载能力强、易集成、可大规模批量生产等优点,不仅成为微惯性测量组合的核心元件,也迅速应用到车辆控制、高速铁路、机器人、工业自动化、探矿、玩具、医疗等民用领域。Miniature accelerometers are an important class of mechanical quantity sensors. As early as the end of the 1960s, people began to study one-dimensional micro-silicon acceleration sensors. The large-scale production of one-dimensional miniature acceleration sensors began in the late 1980s. In the 1990s, with the development of science and technology and the needs of the military and commercial markets, research on three-dimensional micro-acceleration sensors began to be used in military, automotive electronics, industrial automation, robotics, consumer electronics and other fields. Due to the advantages of small size, light weight, low power consumption and cost, strong overload capacity, easy integration, and large-scale mass production, the miniature acceleration sensor has not only become the core component of the micro-inertial measurement combination, but also quickly applied to vehicle control, high-speed Civilian fields such as railways, robots, industrial automation, mining, toys, and medical care.
微型加速度计是利用传感质量的惯性力测量加速度的传感器。按照检测质量的运动方式可以分为线加速度计和摆式加速度计;按照信号检测方式分可为压阻式、电容式、隧道电流式、谐振式、热对流式、压电式加速度传感器。按照有无反馈信号可分为开环偏差式和闭环力平衡式加速度传感器。按照敏感轴的数量,分为单轴、双轴以及三轴加速度传感器。上世纪90年代以后,随着MEMS技术的不断发展以及军事、商业市场的需求,单一方向的加速度测试已经不能满足对加速度传感器越来越高的需求,加速度传感器正向三维方向发展,以用于检测空间加速度,为卫星导航、导弹制导、炮弹定向等军工项目和汽车防震保护、自动刹车、医疗等民用项目服务。三轴微型加速度传感器能够同时测量相互正交的三个轴向加速度。其测量原理包括电容式、压阻式、压电式和热对流式,按照质量块数目可分为多质量块和单质量块系统。Miniature accelerometers are sensors that use the inertial force of a sensing mass to measure acceleration. According to the movement mode of the detection quality, it can be divided into linear accelerometer and pendulum accelerometer; according to the signal detection method, it can be divided into piezoresistive, capacitive, tunnel current, resonant, thermal convection and piezoelectric acceleration sensors. According to whether there is a feedback signal, it can be divided into open-loop deviation type and closed-loop force balance type acceleration sensor. According to the number of sensitive axes, it is divided into single-axis, double-axis and three-axis acceleration sensors. After the 1990s, with the continuous development of MEMS technology and the needs of the military and commercial markets, the acceleration test in a single direction can no longer meet the increasing demand for acceleration sensors, and the acceleration sensors are developing in a three-dimensional direction for use in Detect spatial acceleration, and serve military projects such as satellite navigation, missile guidance, and shell orientation, as well as civil projects such as automobile anti-shock protection, automatic braking, and medical treatment. The triaxial miniature accelerometer can simultaneously measure the acceleration of three axial directions orthogonal to each other. Its measurement principles include capacitive, piezoresistive, piezoelectric and thermal convection, and can be divided into multi-mass and single-mass systems according to the number of masses.
电容检测的三轴加速度传感器最容易实现,并且性能较好。1996年T.Mineta研制了一种三轴电容式加速度传感器。三个轴向的加速度测量灵敏度相同,质量块的重心在支撑梁之上,利用质量块的平移检测X轴和Y轴加速度,质量块的倾斜检测Z轴加速度。三个轴向加速度每改变1g,电容间隙改变0.3μm,灵敏度40mV/g,横向灵敏度约为10%。1997年加州大学伯克利分校的研究人员在单轴微加速度计的研究基础上研制了一种采用表面微加工工艺制作的单片三轴电容式加速度计,采用三个不同的质量块检测三个轴向的加速度。X、Y轴加速度的测量利用梳状叉指电容测量,垂直方面的Z轴加速度用平板电容测量。传感器采用表面微机械工艺制造,微结构与CMOS电路集成,结构层为2μm的多晶硅,电路含有Sigma-Delta调制器的反馈闭环控制电路和片上集成AD转换电路。X、Y、Z轴的电容分别为101fF、78fF和322fF;叉指间隙分别为2.13、2.13和2.3μm;噪声为和同年,该研究小组还成功研制出单质量块电容传感力平衡式三轴微加速度计,采用三个含有Sigma-Delta调制器的反馈闭环控制系统,每个方向的检测电容各使用一个。传感部分包括质量块、四个对角支撑的弹性梁以及叉指电容。平面加速度依靠叉指电容检测,垂直方向的加速度依靠质量块与下电极组成的电容检测。微结构为2.3μm厚的多晶硅,叉指静止时的间隙为2.2μm,质量块为0.2μg。电路为2μm的CMOS技术制作,5V供电。X、Y、Z轴的电容分别为98fF、98fF和177fF。最大量程为11g、11g、5.5g。灵敏度分别为0.24fF/g、0.24fF/g和0.82fF/g。噪声为和最大交叉轴干扰为-36dB。2003年,密西根大学的Junseok Chae等人研制成功一种电容式三轴微加速度计。该加速度计包含三个独立的单轴加速度计,多晶硅传感和驱动电极面积较大,由牺牲氧化层形成的微小感应间隙仅1.5μm。该加速度计系统的尺寸是7×9mm2,量程1g,灵敏度大于5pF/g,三个轴的最低噪声都低于与接口电路集成之后的加速度计工作时其XY平面内和Z轴向的最低噪声分别是和2008年台湾工业技术研究所微系统技术研究中心的Y.W.Hsu采用SOG体微机工艺和DRIE刻蚀技术研制了一种三轴电容式加速度传感器,其平面尺寸仅为1.3×1.28mm2,量程±2g,其Z轴输出灵敏度高达1.434V/g,分辨率为X轴灵敏度和交叉灵敏度分别为1.442V/g和0.03%,Y轴灵敏度和交叉灵敏度分别为1.241V/g和0.21%。2008年Hongwei Qu报道了一种采用单一质量块实现的单片集成电容式CMOS-MEMS三轴加速度传感器。在芯片上设计有低功耗、低噪声、双斩波的放大电路以降低传感器的噪声。传感器X、Y、Z轴的灵敏度分别为520mV/g,460mV/g,320mV/g。相应地,其噪声水平分别为2010年Chih-Ming Sun报道了一种单质量块三轴电容式加速度传感器。包含传感部分和测量电路在内的芯片面积只有1.78×1.38mm2,量程为0.8~6g。X、Y、Z轴的灵敏度分别为0.53mV/,0.28mV/g和0.2mV/g,非线性度分别为2.64%、3.15%和3.36%。交叉灵敏度在1%~8.3%之间,X、Y、Z轴的噪声分别为和 The three-axis acceleration sensor with capacitance detection is the easiest to implement and has better performance. In 1996, T.Mineta developed a three-axis capacitive acceleration sensor. The acceleration measurement sensitivity of the three axes is the same, the center of gravity of the mass block is above the support beam, the X-axis and Y-axis accelerations are detected by the translation of the mass block, and the Z-axis acceleration is detected by the inclination of the mass block. For every 1g change in the three axial accelerations, the capacitance gap changes by 0.3μm, the sensitivity is 40mV/g, and the transverse sensitivity is about 10%. In 1997, researchers at the University of California, Berkeley developed a monolithic three-axis capacitive accelerometer made by surface micromachining technology based on the research of single-axis micro-accelerometers, using three different masses to detect three axes. to the acceleration. The measurement of X and Y-axis acceleration is measured by comb-shaped interdigital capacitance, and the vertical Z-axis acceleration is measured by flat-plate capacitance. The sensor is manufactured by surface micro-mechanical technology, the microstructure is integrated with CMOS circuit, the structure layer is 2μm polysilicon, the circuit contains the feedback closed-loop control circuit of the Sigma-Delta modulator and the on-chip integrated AD conversion circuit. The capacitances of the X, Y, and Z axes are 101fF, 78fF, and 322fF, respectively; the interdigital gaps are 2.13, 2.13, and 2.3μm; the noise is and In the same year, the research team also successfully developed a three-axis micro-accelerometer with single-mass capacitive sensing force balance, using three feedback closed-loop control systems containing Sigma-Delta modulators, and using one detection capacitor in each direction. The sensing part includes a proof mass, four diagonally supported elastic beams, and interdigital capacitors. Plane acceleration is detected by interdigital capacitance, and acceleration in the vertical direction is detected by capacitance composed of mass block and lower electrode. The microstructure is 2.3 μm thick polysilicon, the interdigitation gap is 2.2 μm at rest, and the mass is 0.2 μg. The circuit is made of 2μm CMOS technology and powered by 5V. The capacitances for the X, Y, and Z axes are 98fF, 98fF, and 177fF, respectively. The maximum capacity is 11g, 11g, 5.5g. The sensitivities are 0.24fF/g, 0.24fF/g and 0.82fF/g, respectively. Noise is and The maximum cross-axis interference is -36dB. In 2003, Junseok Chae and others at the University of Michigan successfully developed a capacitive three-axis micro-accelerometer. The accelerometer contains three independent uniaxial accelerometers, the polysilicon sensing and driving electrodes have a large area, and the tiny sensing gap formed by the sacrificial oxide layer is only 1.5μm. The size of the accelerometer system is 7×9mm 2 , the measuring range is 1g, the sensitivity is greater than 5pF/g, and the lowest noise of the three axes is lower than When the accelerometer integrated with the interface circuit works, the lowest noise in the XY plane and the Z axis are respectively and In 2008, YWHsu of the Microsystem Technology Research Center of Taiwan Industrial Technology Research Institute developed a three-axis capacitive acceleration sensor using SOG bulk microcomputer technology and DRIE etching technology. Its plane size is only 1.3×1.28mm 2 and the range is ±2g. Its Z-axis output sensitivity is as high as 1.434V/g, and the resolution is The X-axis sensitivity and cross-sensitivity are 1.442V/g and 0.03%, respectively, and the Y-axis sensitivity and cross-sensitivity are 1.241V/g and 0.21%, respectively. In 2008, Hongwei Qu reported a monolithic integrated capacitive CMOS-MEMS three-axis acceleration sensor realized by a single mass. A low power consumption, low noise, double chopping amplifier circuit is designed on the chip to reduce the noise of the sensor. The sensitivities of the X, Y, and Z axes of the sensor are 520mV/g, 460mV/g, and 320mV/g, respectively. Correspondingly, their noise levels are In 2010, Chih-Ming Sun reported a single-mass three-axis capacitive acceleration sensor. The chip area including the sensing part and the measuring circuit is only 1.78×1.38mm 2 , and the measuring range is 0.8~6g. The sensitivities of the X, Y, and Z axes are 0.53mV/, 0.28mV/g, and 0.2mV/g, respectively, and the nonlinearities are 2.64%, 3.15%, and 3.36%, respectively. The cross-sensitivity is between 1% and 8.3%, and the noises of the X, Y, and Z axes are respectively and
利用压敏电阻实现的三轴压阻式加速度传感器测量平面加速度时作用方向不是沿着质量块的边长,而是沿着质量块的对角线方向,使质量块沿着加速度的方向的两个顶点一个上升一个下降,因此弹性梁的压阻变化方向不同。压阻式加速度传感器也可以采用P型MOS晶体管测量微梁的应变。1999年Hidekuni Takao采用CMOS兼容的应力敏感差动放大器实现了一种单片集成三轴加速度计。其CMOS信号处理电路制作在中心,传感加速度的惯性质量位于周边,二者之间是四根支撑梁,梁根部制作有P型MOS晶体管以测量惯性力引起的梁的变形。该结构称作周边质量结构,可以减少封装应力的影响。Z轴灵敏度为192mV/g,分辨率0.024g;X轴和Y轴的灵敏度为23mV/g,分辨率0.23g。2001年Hidekuni Takao在商用0.8微米CMOS工艺线上采用体微机械工艺制作了一种低g三轴加速度计,采用折叠梁上的P型MOS晶体管检测加速度的大小,器件尺寸3×3mm2和6×6mm2,Z轴分辨率为2mg,X轴和Y轴分辨率为10.8mg。When the three-axis piezoresistive acceleration sensor realized by piezoresistor measures the plane acceleration, the action direction is not along the side length of the mass block, but along the diagonal direction of the mass block, so that the mass block is along the two sides of the acceleration direction. One of the vertices rises and the other falls, so the pressure resistance of the elastic beam changes in different directions. The piezoresistive acceleration sensor can also use P-type MOS transistors to measure the strain of the microbeam. In 1999 Hidekuni Takao implemented a monolithically integrated triaxial accelerometer using a CMOS-compatible stress-sensitive differential amplifier. Its CMOS signal processing circuit is made in the center, and the inertial mass for sensing acceleration is located in the periphery. There are four support beams between them, and a P-type MOS transistor is made at the root of the beam to measure the deformation of the beam caused by inertial force. This structure, called a perimeter mass structure, reduces the effects of package stress. The sensitivity of the Z axis is 192mV/g, and the resolution is 0.024g; the sensitivity of the X and Y axes is 23mV/g, and the resolution is 0.23g. In 2001, Hidekuni Takao produced a low-g three-axis accelerometer on a commercial 0.8-micron CMOS process line using bulk micromechanical technology. The P-type MOS transistor on the folded beam was used to detect the magnitude of the acceleration. The device size was 3×3mm 2 and 6 ×6mm 2 , Z-axis resolution is 2 mg, X-axis and Y-axis resolution are 10.8 mg.
2004年南加州大学的Q.Zou等人报道了一种三轴压电双晶加速度传感器,采用一种高度对称的四梁双压电晶片结构支撑一个质量块。X,Y和Z轴的灵敏度分别为0.9mV/g、1.13mV/g和0.88mV/g。2008年,Abdul Haseeb Ma报道了一种采用聚合物基表面微机械技术制作的基于压屈悬臂梁的三轴热加速度传感器,X,Y和Z轴灵敏度分别为10μV/g、14.4μV/g和9.8μV/g。A.Chaehoi等人研制了一种混合工作机理的三轴加速度传感器,X轴和Y轴加速度的测量采用热对流方式,灵敏度为370mV/g,分辨率为30mg。Z轴加速度的测量采用压敏电阻,灵敏度为24mV/g,分辨率1g。In 2004, Q.Zou et al. of the University of Southern California reported a triaxial piezoelectric bimorph acceleration sensor, which uses a highly symmetrical four-beam bimorph structure to support a mass. The sensitivities of the X, Y and Z axes are 0.9mV/g, 1.13mV/g and 0.88mV/g, respectively. In 2008, Abdul Haseeb Ma reported a three-axis thermal acceleration sensor based on a buckled cantilever beam made of polymer-based surface micromechanical technology. The X, Y and Z-axis sensitivities were 10 μV/g, 14.4 μV/g and 9.8μV/g. A. Chaehoi et al. developed a triaxial acceleration sensor with a mixed working mechanism. The X-axis and Y-axis accelerations are measured by thermal convection, with a sensitivity of 370mV/g and a resolution of 30mg. The measurement of the Z-axis acceleration uses a piezoresistor with a sensitivity of 24mV/g and a resolution of 1g.
总之,微型三轴加速度传感器的实现方法可分为三类:[1]将3只单自由度加速度传感器正交放置后封装在一起,实际上仅仅是三只微型单轴加速度传感器的组合模块。该方法存在稳定性差、适应范围小、装配困难等缺点。[2]在同一硅片上实现敏感3个轴向的加速度,最简单的做法是在同一基片上制作3个独立的敏感元结构。该方法需要较大的芯片面积。[3]采用一个敏感元结构实现对三轴加速度的测量。In short, the implementation methods of miniature three-axis acceleration sensors can be divided into three categories: [1] Place three single-degree-of-freedom acceleration sensors orthogonally and package them together, which is actually just a combined module of three miniature single-axis acceleration sensors. This method has disadvantages such as poor stability, small application range, and difficult assembly. [2] To realize the acceleration of three axial axes on the same silicon chip, the easiest way is to make three independent sensitive element structures on the same substrate. This method requires a larger chip area. [3] used a sensitive element structure to realize the measurement of the three-axis acceleration.
目前实现三轴加速度的检测方式比较单一,三个轴向加速度多采用同一原理检测。交叉干扰比较严重,一般在3%~25%之间。At present, the detection method of three-axis acceleration is relatively simple, and the three axial accelerations are mostly detected by the same principle. Cross-interference is more serious, generally between 3% and 25%.
发明内容 Contents of the invention
本发明的目的在于发明一种新型三轴加速度传感器,以实现三轴加速度的高精度、高分辨率、低交叉轴干扰、低噪声测量和数字化输出。The object of the present invention is to invent a novel three-axis acceleration sensor to achieve high precision, high resolution, low cross-axis interference, low noise measurement and digital output of the three-axis acceleration.
为实现上述目的,本发明所采用的技术方案是:所述的三轴加速度传感器由中间硅片(1)、上盖板(2)和下底板(3)组成。中间硅片(1)由双端固支梁谐振器(4)、支撑梁(5)、质量块(6)、可动电极(7)和框架(8)组成。采用单一质量块(6)敏感三个轴向加速度信号。双端固支梁谐振器(4)位于中间硅片(1)的上表面,双端固支梁谐振器(4)一端固支在框架(8)上表面的四个边上,另一端固支在质量块(6)的四条边上。支撑梁(5)的中性面与质量块(6)的重心在同一水平面内。双端固支梁谐振器(4)检测芯片平面内X轴和Y轴加速度。在中间硅片(1)、上盖板(2)和下底板(3)上分别制作检测Z轴加速度的可动电极(7)、上电极(9)和下电极(10)。In order to achieve the above object, the technical solution adopted by the present invention is: the three-axis acceleration sensor is composed of a middle silicon wafer (1), an upper cover plate (2) and a lower base plate (3). The middle silicon wafer (1) is composed of a double-end fixed beam resonator (4), a support beam (5), a quality block (6), a movable electrode (7) and a frame (8). A single mass block (6) is used to sense three axial acceleration signals. The double-end fixed-supported beam resonator (4) is located on the upper surface of the middle silicon wafer (1), and one end of the double-ended fixed-supported beam resonator (4) is fixedly supported on the four sides of the upper surface of the frame (8), and the other end is fixed Support on the four limits of mass block (6). The neutral plane of the support beam (5) and the center of gravity of the mass block (6) are in the same horizontal plane. The beam resonator (4) with fixed supports at both ends detects the X-axis and Y-axis accelerations in the plane of the chip. A movable electrode (7), an upper electrode (9) and a lower electrode (10) for detecting Z-axis acceleration are respectively fabricated on the middle silicon chip (1), the upper cover plate (2) and the lower base plate (3).
本发明所涉及的谐振-力平衡电容式三轴加速度传感器的工作原理:在X轴正向加速度作用下,质量块(6)在X轴方向运动。X轴方向的双端固支梁谐振器(4)之一所受的轴向拉应力增加或轴向压应力减小,谐振频率增加;X轴方向的另一双端固支梁谐振器(4)轴向拉应力减小或轴向压应力增加,谐振频率减小。X轴方向的两个双端固支梁谐振器(4)谐振频率的差值反映X轴加速度的大小和方向。同样地,在Y轴加速度作用下使质量块(6)在Y轴方向运动,Y轴方向的双端固支梁谐振器(4)之一轴向拉应力增加或轴向压应力减小,谐振频率增加;Y轴方向的另一双端固支梁谐振器(4)轴向拉应力减小或轴向压应力增加,谐振频率减小,Y轴方向的两个双端固支梁谐振器(4)谐振频率的差值反映Y轴加速度的大小和方向。垂直芯片平面的Z轴加速度信号采用采用电容式敏感原理检测,并工作于闭环力平衡工作模式。质量块(6)受到Z轴加速度作用而向上盖板(2)时,质量块(6)和上盖板(2)之间的电容增大,质量块(6)和下底板(3)之间的电容减小。控制电路将产生一个与质量块(6)运动趋势方向相反的静电力,促使敏感质量块(6)返回到平衡位置。因此,质量块(6)在芯片法向运动位移很小,Z轴输入的加速度信号对X轴和Y轴加速度检测引入的交叉干扰极小。The working principle of the resonance-force balance capacitive three-axis acceleration sensor involved in the present invention is that the mass block (6) moves in the X-axis direction under the positive acceleration of the X-axis. One of the double-ended fixed-supported beam resonators (4) in the X-axis direction is subjected to an increase in axial tensile stress or a decrease in axial compressive stress, and the resonance frequency increases; the other double-ended fixed-supported beam resonator (4) in the X-axis direction ) The axial tensile stress decreases or the axial compressive stress increases, and the resonant frequency decreases. The difference between the resonant frequencies of the two double-end fixed beam resonators (4) in the X-axis direction reflects the magnitude and direction of the X-axis acceleration. Similarly, when the mass block (6) moves in the Y-axis direction under the action of the Y-axis acceleration, the axial tensile stress of one of the double-ended fixed beam resonators (4) in the Y-axis direction increases or the axial compressive stress decreases, The resonant frequency increases; the other double-ended fixed beam resonator in the Y-axis direction (4) the axial tensile stress decreases or the axial compressive stress increases, and the resonant frequency decreases. The two double-ended fixed-supported beam resonators in the Y-axis direction (4) The difference in resonance frequency reflects the magnitude and direction of the Y-axis acceleration. The Z-axis acceleration signal perpendicular to the chip plane is detected by the capacitive sensitive principle, and works in the closed-loop force balance mode. When the mass block (6) is subjected to the Z-axis acceleration to cover the plate (2), the capacitance between the mass block (6) and the upper cover plate (2) increases, and the capacitance between the mass block (6) and the lower bottom plate (3) The capacitance between them decreases. The control circuit will generate an electrostatic force opposite to the movement tendency of the mass block (6) to prompt the sensitive mass block (6) to return to the equilibrium position. Therefore, the movement displacement of the mass block (6) in the normal direction of the chip is very small, and the acceleration signal input by the Z axis causes very little cross interference to the acceleration detection of the X axis and the Y axis.
本发明所涉及的谐振-力平衡电容式三轴加速度传感器的X轴加速度信号也可以只用一个双端固支梁谐振器(4)检测,根据其谐振频率增加或减小反映X轴加速度的大小和方向,但检测灵敏度较小。同样地,Y轴加速度信号也可以只用一个双端固支梁谐振器(4)检测,根据其谐振频率增加或减小反映Y轴加速度的大小和方向The X-axis acceleration signal of the resonant-force balance capacitive three-axis acceleration sensor involved in the present invention can also only be detected by a double-ended fixed-support beam resonator (4), which can reflect the X-axis acceleration according to its resonant frequency increase or decrease. size and orientation, but with less detection sensitivity. Similarly, the Y-axis acceleration signal can also be detected by only one double-ended fixed beam resonator (4), and the increase or decrease according to its resonant frequency reflects the magnitude and direction of the Y-axis acceleration
本发明所涉及的谐振-力平衡电容式三轴加速度传感器的双端固支梁谐振器(4)既可以是两端固支单梁谐振器,也可采用两端固支双梁谐振器或两端固支三梁谐振器。梁上可以开槽或开孔以提高品质因数或实现电学隔离。两端固支双梁谐振器由两根平行的梁组成,梁的末端合并,并与衬底固支。当通过适当的激励方式使两个音叉臂反相振动时,在它们的合并区域产生的应力和力矩方向相反,互相抵消,因此整个结构通过固支端与外界的能量耦合最小,振动系统的能量损失小,具有较高的Q值。三梁结构双端固支梁谐振器(4)的中间梁的宽度等于左右相邻两梁的宽度之和,且三者在端部经由能量隔离区相互连成一个整体。当选用三梁谐振器的反对称相位的三阶振动模态作为梁的谐振模态时,中间的梁和两边的两个梁在固支端产生的反力和力矩因振动方向相反而相互抵消,振动能量储存在谐振器内部,从而减少能量损耗,起到提高Q值的作用。The double-end fixed-supported beam resonator (4) of the resonance-force balance capacitive three-axis acceleration sensor involved in the present invention can be either a double-end fixed-supported single-beam resonator, or a double-end fixed-supported double-beam resonator or A three-beam resonator is fixed at both ends. Slots or openings can be made in the beams to improve the quality factor or to achieve electrical isolation. Double-beam resonators fixed at both ends consist of two parallel beams whose ends are merged and fixed to the substrate. When the two tuning fork arms are vibrated in antiphase through a suitable excitation method, the stress and moment generated in their merged area are in opposite directions and cancel each other out, so the energy coupling between the entire structure and the outside world through the fixed end is minimal, and the energy of the vibration system The loss is small and has a high Q value. The width of the middle beam of the beam resonator (4) with double-end fixed support in the three-beam structure is equal to the sum of the widths of the left and right adjacent beams, and the three beams are connected to each other at the ends through the energy isolation area to form a whole. When the third-order vibration mode of the antisymmetric phase of the three-beam resonator is selected as the resonance mode of the beam, the reaction force and moment generated by the middle beam and the two beams on both sides at the fixed end cancel each other due to the opposite vibration direction , The vibration energy is stored inside the resonator, thereby reducing energy loss and improving the Q value.
本发明所涉及的谐振-力平衡电容式三轴加速度传感器的双端固支梁谐振器(4)采用电热激励、光热激励、逆压电激励、电磁激励、静电激励之一激励,使其处于谐振状态,它输出的谐振频率信号采用压阻检测、电磁检测、压电检测、光学干涉、电容检测之一实现。The double-end solid-supported beam resonator (4) of the resonant-force balance capacitive triaxial acceleration sensor involved in the present invention adopts one of electrothermal excitation, photothermal excitation, inverse piezoelectric excitation, electromagnetic excitation, and electrostatic excitation to make it In the resonant state, the resonant frequency signal output by it is realized by one of piezoresistive detection, electromagnetic detection, piezoelectric detection, optical interference and capacitance detection.
本发明所涉及的谐振-力平衡电容式三轴加速度传感器的基本制作工艺步骤如下:The basic manufacturing process steps of the resonance-force balance capacitive triaxial acceleration sensor involved in the present invention are as follows:
1)采用低电阻率的硅片作为中间硅片(1),热氧化或化学气相淀积法在低电阻率硅片上制作绝缘薄膜;1) Adopting a silicon wafer with low resistivity as the intermediate silicon wafer (1), thermal oxidation or chemical vapor deposition method is used to make an insulating film on the low resistivity silicon wafer;
2)光刻、腐蚀、扩散、薄膜沉积工艺相结合在硅片上制作双端固支梁谐振器(4)的激振器和振动检测元件。2) Combining photolithography, corrosion, diffusion, and thin film deposition processes to fabricate the exciter and vibration detection element of the double-end fixed beam resonator (4) on the silicon wafer.
3)在中间硅片(1)正面光刻双端固支梁谐振器(4)及质量块(6)图形,各向异性湿法腐蚀或干法刻蚀双端固支梁谐振器(4)及质量块(6)的成型槽。3) On the front side of the middle silicon wafer (1) photolithography double-terminal fixed beam resonator (4) and mass block (6) patterns, anisotropic wet etching or dry etching double-terminal fixed beam resonator (4 ) and the forming groove of the mass block (6).
4)蒸发或溅射工艺淀积金属薄膜,光刻与腐蚀工艺相结合制作金属内引线(13)。4) Metal film is deposited by evaporation or sputtering process, and the metal inner lead (13) is produced by combining photolithography and corrosion process.
5)正面保护,背面光刻,腐蚀或刻蚀背面窗口中的绝缘薄膜。各向异性湿法腐蚀或干法刻蚀释放双端固支梁谐振器(4)和支撑梁(5)。5) Front protection, back photolithography, etch or etch the insulating film in the back window. Anisotropic wet etching or dry etching releases the double-ended fixed beam resonator (4) and the support beam (5).
6)采用低电阻率的硅片制作上盖板(2)。以二氧化硅、氮化硅薄膜为掩膜湿法腐蚀或以光刻胶、金属薄膜为掩膜干法刻蚀除去硅片正面面对质量块(6)和双端固支梁谐振器(4)的一部分硅,为质量块(6)受到Z轴加速度在芯片法向的微小运动提供活动空间和电容间隙,也为双端固支梁谐振器(4)提供运动空间。溅射或蒸发工艺在硅片背面淀积金属薄膜,光刻上电极(9),合金化工艺使金属薄膜与低阻硅片形成良好的欧姆接触。6) A silicon wafer with low resistivity is used to make the upper cover plate (2). Wet etching with silicon dioxide and silicon nitride film as a mask or dry etching with photoresist and metal film as a mask to remove the front side of the silicon wafer facing the mass block (6) and the double-terminal fixed beam resonator ( 4) A part of the silicon provides a movement space and a capacitance gap for the tiny movement of the proof mass (6) in the normal direction of the chip under the Z-axis acceleration, and also provides a movement space for the double-end fixed beam resonator (4). A metal thin film is deposited on the back of the silicon wafer by sputtering or evaporation process, and the upper electrode (9) is photolithographically etched, and an alloying process makes the metal thin film and the low-resistance silicon wafer form good ohmic contact.
7)采用低电阻率的硅片制作下底板(3)。以二氧化硅、氮化硅薄膜为掩膜湿法腐蚀或以光刻胶、金属薄膜为掩膜干法刻蚀除去硅片正面面对质量块(6)下表面的一部分硅,为质量块(6)受到Z轴加速度在芯片法向的微小运动提供活动空间和电容间隙。溅射或蒸发工艺在硅片背面淀积金属薄膜,合金化工艺使金属薄膜与低阻硅片形成良好的欧姆接触,形成下电极(10)。7) The lower base plate (3) is fabricated by using silicon wafers with low resistivity. Wet etching with silicon dioxide and silicon nitride film as a mask or dry etching with photoresist and metal film as a mask to remove a part of the silicon on the front side of the silicon wafer facing the lower surface of the mass block (6), which is the mass block (6) The slight movement in the normal direction of the chip under the acceleration of the Z axis provides a space for movement and a capacitance gap. A metal thin film is deposited on the back of the silicon wafer by sputtering or evaporation process, and an alloying process makes the metal thin film form a good ohmic contact with the low-resistance silicon wafer to form a lower electrode (10).
8)上盖板(2)和下底板(3)的正面分别面对中间硅片(1)的正面和背面,将三者键合在一起,并采用共晶键合工艺或导电胶将封接好的传感器芯片封接在金属管壳或管芯底部有金属层的陶瓷管壳内。在传感器芯片上的焊盘和封装管壳之间焊接引线,并将管壳底部的金属层与管壳上的一个接线柱连接起来,实现传感器下电极(10)电学信号的引出。8) The fronts of the upper cover (2) and the lower base (3) face the front and back of the middle silicon wafer (1) respectively, bond the three together, and use eutectic bonding technology or conductive adhesive to seal the The connected sensor chip is sealed in a metal casing or a ceramic casing with a metal layer at the bottom of the tube core. Lead wires are welded between the pads on the sensor chip and the packaging tube shell, and the metal layer at the bottom of the tube shell is connected to a terminal on the tube shell to realize the extraction of electrical signals from the lower electrode (10) of the sensor.
本发明所涉及的谐振-力平衡电容式三轴加速度传感器的上盖板(2)和下底板(3)也可以采用电导率较大的硅片制作,但需要将上电极(9)和下电极(10)制作在面对质量块(6)的一面,并需通孔互连技术实现上电极(9)和下电极(10)电学信号的引出。The upper cover plate (2) and the lower base plate (3) of the resonance-force balance capacitive triaxial acceleration sensor involved in the present invention can also be made of silicon wafers with higher conductivity, but the upper electrode (9) and the lower electrode (9) need to be The electrode (10) is made on the side facing the mass block (6), and through-hole interconnection technology is required to realize the electrical signal extraction of the upper electrode (9) and the lower electrode (10).
本发明所涉及的谐振-力平衡电容式三轴加速度传感器存在以下三个优点:[1]Z轴加速度信号采用力平衡工作模式,质量块(6)在芯片法向运动位移很小,Z轴输入的加速度信号对X轴和Y轴加速度检测引入交叉干扰极小。同样地,质量块(6)感受到X轴和Y轴加速度信号而在芯片平面内的位移也不会对Z轴加速度信号的检测带来交叉灵敏度。[2]X轴和Y轴加速度信号采用对轴向应力具有高度敏感特性的双端固支梁谐振器(4)测量,被测加速度直接转换为稳定性和可靠性较高的频率信号,在传输过程中不易产生失真误差,无需经A/D转换器即可与数字系统接口,测量精度极高,能够满足对加速度传感器的高性能要求。[3]Z轴加速度信号采用闭环力平衡工作模式,具有线性度好、动态范围大、低噪声等优点。The resonance-force balance capacitive three-axis acceleration sensor involved in the present invention has the following three advantages: [1] The Z-axis acceleration signal adopts the force balance mode of operation, and the mass block (6) is very small in the normal movement displacement of the chip, and the Z-axis The input acceleration signal introduces minimal cross-interference to the X-axis and Y-axis acceleration detection. Similarly, the mass block (6) feels the X-axis and Y-axis acceleration signals and the displacement within the chip plane will not bring cross-sensitivity to the detection of the Z-axis acceleration signals. [2] The X-axis and Y-axis acceleration signals are measured by a double-ended fixed beam resonator (4) that is highly sensitive to axial stress. The measured acceleration is directly converted into a frequency signal with high stability and reliability. Distortion errors are not easy to occur during the transmission process, and it can be interfaced with the digital system without an A/D converter. The measurement accuracy is extremely high, and it can meet the high performance requirements of the acceleration sensor. [3] The Z-axis acceleration signal adopts the closed-loop force balance working mode, which has the advantages of good linearity, large dynamic range, and low noise.
附图说明 Description of drawings
图1是本发明所涉及的谐振-力平衡电容式三轴加速度传感器的中间硅片(1)的结构示意图。Fig. 1 is a structural schematic diagram of the middle silicon chip (1) of the resonance-force balance capacitive triaxial acceleration sensor involved in the present invention.
图2是作为本发明所涉及的谐振-力平衡电容式三轴加速度传感器的实施例的结构示意图,该实施例利用多晶硅电阻电热激励和压阻检测的双端固支梁谐振器(4)检测X轴和Y轴加速度信号。Fig. 2 is the structural representation of the embodiment of the resonant-force balance capacitive three-axis acceleration sensor involved in the present invention, and this embodiment utilizes the double-end solid-supported beam resonator (4) detection of polysilicon resistance electrothermal excitation and piezoresistive detection X-axis and Y-axis acceleration signals.
图3是作为本发明实施例的谐振-力平衡电容式三轴加速度传感器的制作工艺流程图。Fig. 3 is a flow chart of the manufacturing process of the resonance-force balance capacitive triaxial acceleration sensor as an embodiment of the present invention.
附图中:In the attached picture:
1-中间硅片 2-上盖板 3-下底板1- middle silicon wafer 2- upper cover plate 3- lower bottom plate
4-双端固支梁谐振器 5-支撑梁 6-质量块4-Double-end fixed support beam resonator 5-Support beam 6-Mass block
7-可动电极 8-框架 9-上电极7-movable electrode 8-frame 9-upper electrode
10-下电极 11-激励电阻 12-压敏电阻10-lower electrode 11-excitation resistor 12-varistor
13-内引线 14-二氧化硅薄膜 15-多晶硅薄膜13-Inner lead 14-Silicon dioxide film 15-Polysilicon film
16-多晶硅生长的二氧化硅 17-离子注入窗口 18-氮化硅薄膜16-Silicon dioxide grown from polysilicon 17-Ion implantation window 18-Silicon nitride film
19-密封环19-Sealing ring
具体实施方式 Detailed ways
下面结合附图和实施例对本发明做进一步说明,但并不局限于该实施例。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but is not limited to the embodiments.
实施例:Example:
利用本发明的技术方案制作一种谐振-力平衡电容式三轴加速度传感器。其中X轴和Y轴加速度信号利用多晶硅电阻电热激励、压阻检测的微型双端固支梁谐振器(4)检测。其制作工艺流程如下:The technical scheme of the invention is used to manufacture a resonance-force balance capacitive triaxial acceleration sensor. Wherein, the X-axis and Y-axis acceleration signals are detected by a miniature double-end solid-supported beam resonator (4) that is electrothermally excited by polysilicon resistance and piezoresistively detected. Its production process is as follows:
1)采用N型、(100)面、电阻率为0.1Ω.cm的硅片作为中间硅片(1)。(见附图3[1])1) An N-type silicon wafer with a (100) plane and a resistivity of 0.1Ω.cm is used as the intermediate silicon wafer (1). (See Attachment 3[1])
2)热氧化,生成厚度1微米的二氧化硅薄膜(14)。(见附图3[2])2) Thermal oxidation to produce a silicon dioxide film (14) with a thickness of 1 micron. (See attached drawing 3[2])
3)低压化学气相淀积法淀积多晶硅薄膜(15),厚度1微米。(见附图3[3])3) Depositing a polysilicon film (15) with a thickness of 1 micron by low-pressure chemical vapor deposition. (See attached drawing 3[3])
4)热氧化,部分多晶硅薄膜(15)被氧化为二氧化硅(16),光刻和腐蚀工艺结合制作激励电阻(11)和压敏电阻(12)的离子注入窗口(17)。(见附图3[4])4) thermal oxidation, part of the polysilicon film (15) is oxidized to silicon dioxide (16), photolithography and etching processes are combined to make the ion implantation window (17) of the excitation resistor (11) and the piezoresistor (12). (see attached drawing 3[4])
5)离子注入硼制作多晶硅激励电阻(11)压敏电阻(12)。950℃、氧气气氛中退火30分钟,激活掺杂硼离子。(见附图3[5])5) Ion-implanting boron to make a polysilicon excitation resistor (11) and a piezoresistor (12). Anneal at 950°C for 30 minutes in an oxygen atmosphere to activate doped boron ions. (see attached drawing 3[5])
6)正面光刻胶保护,缓释氢氟酸溶液腐蚀背面的二氧化硅(16),去胶。各向异性溶液腐蚀背面的多晶硅薄膜(15)。(见附图3[6])6) The front photoresist is protected, and the silicon dioxide (16) on the back is corroded by a slow-release hydrofluoric acid solution to remove the glue. The anisotropic solution etches the polysilicon film (15) on the back. (see attached drawing 3[6])
7)低压化学气相淀积法沉积氮化硅薄膜(18),厚度250nm。在中间硅片(1)正面光刻双端固支梁谐振器(4)及质量块(6)图形,各向异性湿法腐蚀或干法刻蚀双端固支梁谐振器(4)及质量块(6)的成型槽;(见附图3[7])7) Depositing a silicon nitride film (18) with a thickness of 250 nm by low-pressure chemical vapor deposition. On the front side of the middle silicon wafer (1) photolithographically etches the double-terminal fixed-support beam resonator (4) and the mass block (6), and anisotropic wet etching or dry etching of the double-terminal fixed-support beam resonator (4) and The molding groove of mass block (6); (see accompanying drawing 3 [7])
8)光刻接触孔,干法刻蚀接触孔中的氮化硅薄膜和二氧化硅薄膜。光刻与薄膜淀积工艺相结合制作金属内引线(13)。(见附图3[8])8) Photoetching the contact hole, dry etching the silicon nitride film and the silicon dioxide film in the contact hole. The metal inner lead (13) is fabricated by combining photolithography and thin film deposition process. (See attached drawing 3[8])
9)正面光刻密封环(19)图形,电子束蒸发技术淀积Schott 8329玻璃,剥离工艺制作密封环(19)。(见附图3[9])9) The pattern of the sealing ring (19) is photolithographically etched on the front side, Schott 8329 glass is deposited by electron beam evaporation technology, and the sealing ring (19) is manufactured by a stripping process. (see attached drawing 3[9])
10)正面保护,背面光刻,干法刻蚀背面的氮化硅薄膜(18)和二氧化硅薄膜(14),去胶。有掩膜腐蚀与无掩膜腐蚀相结合腐蚀形成双端固支梁谐振器(4)和支撑梁(5)。(见附图3[10])10) Front protection, back photolithography, dry etching of the silicon nitride film (18) and silicon dioxide film (14) on the back, and stripping. A double-end fixed-support beam resonator (4) and a support beam (5) are formed by combining etching with a mask and etching without a mask. (See attached drawing 3[10])
11)采用另外一片N型、(100)面,电阻率为0.1Ω.cm的硅片制作上盖板(2)。热氧化法生长二氧化硅薄膜。以二氧化硅薄膜为掩膜湿法腐蚀除去硅片正面面对质量块(6)和双端固支梁谐振器(4)的一部分硅,为质量块(6)受到Z轴加速度在芯片法向的微小运动提供活动空间和电容间隙,也为双端固支梁谐振器(4)提供运动空间。缓释氢氟酸溶液腐蚀二氧化硅薄膜。溅射或蒸发工艺在硅片背面淀积金属薄膜,光刻上电极(9),合金化工艺使金属薄膜与低阻硅片形成良好的欧姆接触。(见附图3[11])11) Use another N-type silicon wafer with a (100) plane and a resistivity of 0.1Ω.cm to make the top cover (2). Growth of silicon dioxide thin films by thermal oxidation. Use the silicon dioxide film as a mask to wet etch and remove a part of the silicon on the front side of the silicon wafer facing the mass block (6) and the double-end fixed beam resonator (4), so that the mass block (6) is subjected to Z-axis acceleration in the chip method The small movement of the direction provides the activity space and the capacitance gap, and also provides the movement space for the double-end fixed support beam resonator (4). The slow-release hydrofluoric acid solution etches the silicon dioxide film. A metal thin film is deposited on the back of the silicon wafer by sputtering or evaporation process, and the upper electrode (9) is photolithographically etched, and an alloying process makes the metal thin film and the low-resistance silicon wafer form good ohmic contact. (See attached drawing 3[11])
12)采用另外一片N型、(100)面,电阻率为0.1Ω.cm的硅片制作下底板(3)。热氧化法生长二氧化硅薄膜。以二氧化硅薄膜为掩膜湿法腐蚀除去硅片正面面对质量块(6)的一部分硅,为质量块(6)受到Z轴加速度在芯片法向的微小运动提供活动空间和电容间隙。缓释氢氟酸腐蚀二氧化硅薄膜。溅射或蒸发工艺在硅片背面淀积金属薄膜,合金化工艺使金属薄膜与低阻硅片形成良好的欧姆接触,形成下电极(10)。(见附图3[12])12) Use another N-type silicon wafer with a (100) surface and a resistivity of 0.1Ω.cm to make the lower base plate (3). Growth of silicon dioxide thin films by thermal oxidation. Using the silicon dioxide film as a mask to wet etch and remove a part of the silicon on the front of the silicon wafer facing the mass block (6), to provide an active space and a capacitance gap for the micro movement of the mass block (6) subjected to Z-axis acceleration in the normal direction of the chip. Slow-release hydrofluoric acid etches the silica film. A metal thin film is deposited on the back of the silicon wafer by sputtering or evaporation process, and an alloying process makes the metal thin film form a good ohmic contact with the low-resistance silicon wafer to form a lower electrode (10). (See attached drawing 3[12])
13)上盖板(2)和下底板(3)的正面分别面对中间硅片(1)的正面和背面,将三者键合在一起,并采用共晶键合工艺或导电胶将封接好的传感器芯片封接在金属管壳或管芯底部有金属层的陶瓷管壳内。在传感器芯片上的焊盘和封装管壳之间焊接引线,并将管壳底部的金属层与管壳上的一个接线柱连接起来,实现传感器下电极(10)电学信号的引出。焊接外引线。(见附图3[13])13) The fronts of the upper cover (2) and the lower base (3) face the front and back of the middle silicon wafer (1) respectively, bond the three together, and use eutectic bonding technology or conductive adhesive to seal the The connected sensor chip is sealed in a metal casing or a ceramic casing with a metal layer at the bottom of the tube core. Lead wires are welded between the pads on the sensor chip and the packaging tube shell, and the metal layer at the bottom of the tube shell is connected to a terminal on the tube shell to realize the extraction of electrical signals from the lower electrode (10) of the sensor. Solder the outer leads. (See Figure 3 [13])
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210059374.1A CN102590555B (en) | 2011-11-23 | 2012-03-01 | Resonance-force balance capacitive three-axis acceleration sensor and manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110374249.5 | 2011-11-23 | ||
CN2011103742495 | 2011-11-23 | ||
CN201110374249 | 2011-11-23 | ||
CN201210059374.1A CN102590555B (en) | 2011-11-23 | 2012-03-01 | Resonance-force balance capacitive three-axis acceleration sensor and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102590555A true CN102590555A (en) | 2012-07-18 |
CN102590555B CN102590555B (en) | 2017-03-15 |
Family
ID=46479481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210059374.1A Expired - Fee Related CN102590555B (en) | 2011-11-23 | 2012-03-01 | Resonance-force balance capacitive three-axis acceleration sensor and manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102590555B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102967729A (en) * | 2012-09-18 | 2013-03-13 | 华东光电集成器件研究所 | Piezoresistive micro-electromechanical system (MEMS) accelerometer |
CN103454449A (en) * | 2013-09-15 | 2013-12-18 | 滕金燕 | Three-axis micro-mechanical accelerometer |
GB2505875A (en) * | 2012-09-04 | 2014-03-19 | Cambridge Entpr Ltd | Dual and triple axis inertial sensors and methods of inertial sensing |
CN103913158A (en) * | 2014-03-14 | 2014-07-09 | 上海交通大学 | Magnetoelectric Coriolis force detection sensor |
CN104215231A (en) * | 2013-06-05 | 2014-12-17 | 中国科学院地质与地球物理研究所 | MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof |
CN104591080A (en) * | 2015-02-05 | 2015-05-06 | 中国电子科技集团公司第四十九研究所 | Method for improving gold-gold thermal compression bonding strength |
CN104860258A (en) * | 2013-09-19 | 2015-08-26 | 因文森斯公司 | Aluminum Nitride (ain) Devices With Infrared Absorption Structural Layer |
CN105526927A (en) * | 2016-01-20 | 2016-04-27 | 上海交通大学 | Geostrophic force effect based translational velocity or acceleration sensing device and structure |
US9511994B2 (en) | 2012-11-28 | 2016-12-06 | Invensense, Inc. | Aluminum nitride (AlN) devices with infrared absorption structural layer |
CN106500942A (en) * | 2016-11-25 | 2017-03-15 | 北京强度环境研究所 | A kind of upright state simple structure modal test system |
US9618405B2 (en) | 2014-08-06 | 2017-04-11 | Invensense, Inc. | Piezoelectric acoustic resonator based sensor |
US9617141B2 (en) | 2012-11-28 | 2017-04-11 | Invensense, Inc. | MEMS device and process for RF and low resistance applications |
CN109110727A (en) * | 2018-07-24 | 2019-01-01 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of packaging method of high overload micromachined process |
CN109239399A (en) * | 2018-08-27 | 2019-01-18 | 中国计量大学 | Resonance type accelerometer based on bifilar forked type resonance beam |
CN109839515A (en) * | 2017-11-28 | 2019-06-04 | 精工爱普生株式会社 | Physical quantity transducer, e-machine and moving body |
US10497747B2 (en) | 2012-11-28 | 2019-12-03 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
CN111024194A (en) * | 2019-11-26 | 2020-04-17 | 东南大学 | Coupled double-end clamped beam resonator for micro-quality detection and quality detection method |
CN111272162A (en) * | 2020-03-02 | 2020-06-12 | 扬州大学 | Single-mass three-axis MEMS gyroscope and preparation method thereof |
CN111289772A (en) * | 2020-03-02 | 2020-06-16 | 扬州大学 | Single-mass three-axis MEMS inertial accelerometer with low aspect ratio and preparation method thereof |
CN111323616A (en) * | 2020-03-02 | 2020-06-23 | 扬州大学 | Single-mass three-axis MEMS inertial accelerometer and preparation method thereof |
US10726231B2 (en) | 2012-11-28 | 2020-07-28 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
CN111579818A (en) * | 2020-07-06 | 2020-08-25 | 吉林大学 | High-sensitivity low-noise acceleration detection device and method |
CN112014597A (en) * | 2020-09-10 | 2020-12-01 | 苏州感测通信息科技有限公司 | Triaxial resonance capacitance type micro-electromechanical accelerometer |
CN112014595A (en) * | 2019-05-30 | 2020-12-01 | 合肥杰发科技有限公司 | Accelerometer and method of making the same |
CN112285383A (en) * | 2020-10-21 | 2021-01-29 | 中国工程物理研究院电子工程研究所 | Asymmetric beam resonant micro-mechanical acceleration sensor and acceleration measuring method |
CN113029321A (en) * | 2021-02-26 | 2021-06-25 | 中国兵器工业集团第二一四研究所苏州研发中心 | Capacitive MEMS vector acoustic wave sensor capable of inhibiting vibration interference and processing method thereof |
CN115575662A (en) * | 2022-10-24 | 2023-01-06 | 南方电网数字电网研究院有限公司 | Reconfigurable wind speed and direction sensor based on electrostatic repulsive force and detection device |
CN118858691A (en) * | 2024-09-24 | 2024-10-29 | 中北大学 | A large-range cavity optical acceleration sensor and measurement method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060156818A1 (en) * | 2001-03-08 | 2006-07-20 | Konrad Kapser | Micromechanical capacitive acceleration sensor |
JP2007309654A (en) * | 2006-05-16 | 2007-11-29 | Sony Corp | Acceleration sensor and manufacturing method therefor |
CN101386400A (en) * | 2007-09-13 | 2009-03-18 | 李刚 | Capacitance single mass three-shaft acceleration transducer and preparation method |
US20100242602A1 (en) * | 2009-03-31 | 2010-09-30 | Ming-Ching Wu | Process for fabricating a capacitance type tri-axial accelerometer |
CN102597699A (en) * | 2009-08-04 | 2012-07-18 | 飞兆半导体公司 | Micromachined inertial sensor devices |
-
2012
- 2012-03-01 CN CN201210059374.1A patent/CN102590555B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060156818A1 (en) * | 2001-03-08 | 2006-07-20 | Konrad Kapser | Micromechanical capacitive acceleration sensor |
JP2007309654A (en) * | 2006-05-16 | 2007-11-29 | Sony Corp | Acceleration sensor and manufacturing method therefor |
CN101386400A (en) * | 2007-09-13 | 2009-03-18 | 李刚 | Capacitance single mass three-shaft acceleration transducer and preparation method |
US20100242602A1 (en) * | 2009-03-31 | 2010-09-30 | Ming-Ching Wu | Process for fabricating a capacitance type tri-axial accelerometer |
CN102597699A (en) * | 2009-08-04 | 2012-07-18 | 飞兆半导体公司 | Micromachined inertial sensor devices |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9310391B2 (en) | 2012-09-04 | 2016-04-12 | Cambridge Enterprise Limited | Dual and triple axis inertial sensors and methods of inertial sensing |
GB2505875A (en) * | 2012-09-04 | 2014-03-19 | Cambridge Entpr Ltd | Dual and triple axis inertial sensors and methods of inertial sensing |
CN102967729A (en) * | 2012-09-18 | 2013-03-13 | 华东光电集成器件研究所 | Piezoresistive micro-electromechanical system (MEMS) accelerometer |
US10160635B2 (en) | 2012-11-28 | 2018-12-25 | Invensense, Inc. | MEMS device and process for RF and low resistance applications |
US9617141B2 (en) | 2012-11-28 | 2017-04-11 | Invensense, Inc. | MEMS device and process for RF and low resistance applications |
US10497747B2 (en) | 2012-11-28 | 2019-12-03 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
US10726231B2 (en) | 2012-11-28 | 2020-07-28 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
US10294097B2 (en) | 2012-11-28 | 2019-05-21 | Invensense, Inc. | Aluminum nitride (AlN) devices with infrared absorption structural layer |
US11263424B2 (en) | 2012-11-28 | 2022-03-01 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
US11847851B2 (en) | 2012-11-28 | 2023-12-19 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
US9511994B2 (en) | 2012-11-28 | 2016-12-06 | Invensense, Inc. | Aluminum nitride (AlN) devices with infrared absorption structural layer |
US10508022B2 (en) | 2012-11-28 | 2019-12-17 | Invensense, Inc. | MEMS device and process for RF and low resistance applications |
CN104215231B (en) * | 2013-06-05 | 2016-12-28 | 中国科学院地质与地球物理研究所 | A kind of MEMS high accuracy resonance beam closed loop control gyroscope and manufacturing process thereof |
CN104215231A (en) * | 2013-06-05 | 2014-12-17 | 中国科学院地质与地球物理研究所 | MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof |
CN103454449A (en) * | 2013-09-15 | 2013-12-18 | 滕金燕 | Three-axis micro-mechanical accelerometer |
CN104860258A (en) * | 2013-09-19 | 2015-08-26 | 因文森斯公司 | Aluminum Nitride (ain) Devices With Infrared Absorption Structural Layer |
CN103913158A (en) * | 2014-03-14 | 2014-07-09 | 上海交通大学 | Magnetoelectric Coriolis force detection sensor |
US9618405B2 (en) | 2014-08-06 | 2017-04-11 | Invensense, Inc. | Piezoelectric acoustic resonator based sensor |
CN104591080B (en) * | 2015-02-05 | 2016-03-16 | 中国电子科技集团公司第四十九研究所 | A kind of method improving Jin-Jin thermocompression bonding intensity |
CN104591080A (en) * | 2015-02-05 | 2015-05-06 | 中国电子科技集团公司第四十九研究所 | Method for improving gold-gold thermal compression bonding strength |
CN105526927A (en) * | 2016-01-20 | 2016-04-27 | 上海交通大学 | Geostrophic force effect based translational velocity or acceleration sensing device and structure |
CN106500942A (en) * | 2016-11-25 | 2017-03-15 | 北京强度环境研究所 | A kind of upright state simple structure modal test system |
CN109839515A (en) * | 2017-11-28 | 2019-06-04 | 精工爱普生株式会社 | Physical quantity transducer, e-machine and moving body |
CN109839515B (en) * | 2017-11-28 | 2022-08-23 | 精工爱普生株式会社 | Physical quantity sensor, electronic apparatus, and moving object |
CN109110727B (en) * | 2018-07-24 | 2020-09-22 | 中国航空工业集团公司西安飞行自动控制研究所 | Packaging method of high-overload micro-mechanical inertial sensor |
CN109110727A (en) * | 2018-07-24 | 2019-01-01 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of packaging method of high overload micromachined process |
CN109239399A (en) * | 2018-08-27 | 2019-01-18 | 中国计量大学 | Resonance type accelerometer based on bifilar forked type resonance beam |
CN109239399B (en) * | 2018-08-27 | 2021-10-26 | 中国计量大学 | Resonant accelerometer based on double-fork resonant beam |
CN112014595A (en) * | 2019-05-30 | 2020-12-01 | 合肥杰发科技有限公司 | Accelerometer and method of making the same |
CN111024194B (en) * | 2019-11-26 | 2021-05-11 | 东南大学 | A kind of quality detection method of resonant system |
CN111024194A (en) * | 2019-11-26 | 2020-04-17 | 东南大学 | Coupled double-end clamped beam resonator for micro-quality detection and quality detection method |
CN111289772B (en) * | 2020-03-02 | 2022-03-15 | 扬州大学 | Single-mass-block three-axis MEMS inertial accelerometer with low depth-to-width ratio and preparation method thereof |
CN111272162A (en) * | 2020-03-02 | 2020-06-12 | 扬州大学 | Single-mass three-axis MEMS gyroscope and preparation method thereof |
CN111289772A (en) * | 2020-03-02 | 2020-06-16 | 扬州大学 | Single-mass three-axis MEMS inertial accelerometer with low aspect ratio and preparation method thereof |
CN111323616A (en) * | 2020-03-02 | 2020-06-23 | 扬州大学 | Single-mass three-axis MEMS inertial accelerometer and preparation method thereof |
CN111323616B (en) * | 2020-03-02 | 2022-03-15 | 扬州大学 | Single-mass three-axis MEMS inertial accelerometer and preparation method thereof |
CN111272162B (en) * | 2020-03-02 | 2022-03-29 | 扬州大学 | Single-mass block triaxial MEMS gyroscope and preparation method thereof |
CN111579818B (en) * | 2020-07-06 | 2021-09-28 | 吉林大学 | High-sensitivity low-noise acceleration detection device and method |
CN111579818A (en) * | 2020-07-06 | 2020-08-25 | 吉林大学 | High-sensitivity low-noise acceleration detection device and method |
CN112014597A (en) * | 2020-09-10 | 2020-12-01 | 苏州感测通信息科技有限公司 | Triaxial resonance capacitance type micro-electromechanical accelerometer |
CN112285383A (en) * | 2020-10-21 | 2021-01-29 | 中国工程物理研究院电子工程研究所 | Asymmetric beam resonant micro-mechanical acceleration sensor and acceleration measuring method |
CN112285383B (en) * | 2020-10-21 | 2023-03-10 | 中国工程物理研究院电子工程研究所 | Asymmetric beam resonant micro-mechanical acceleration sensor and acceleration measurement method |
CN113029321B (en) * | 2021-02-26 | 2023-08-04 | 中国兵器工业集团第二一四研究所苏州研发中心 | Capacitive MEMS vector acoustic wave sensor capable of inhibiting vibration interference and processing method thereof |
CN113029321A (en) * | 2021-02-26 | 2021-06-25 | 中国兵器工业集团第二一四研究所苏州研发中心 | Capacitive MEMS vector acoustic wave sensor capable of inhibiting vibration interference and processing method thereof |
CN115575662A (en) * | 2022-10-24 | 2023-01-06 | 南方电网数字电网研究院有限公司 | Reconfigurable wind speed and direction sensor based on electrostatic repulsive force and detection device |
CN115575662B (en) * | 2022-10-24 | 2023-09-15 | 南方电网数字电网研究院有限公司 | Reconfigurable wind speed and direction sensor and detection device based on electrostatic repulsion |
CN118858691A (en) * | 2024-09-24 | 2024-10-29 | 中北大学 | A large-range cavity optical acceleration sensor and measurement method |
CN118858691B (en) * | 2024-09-24 | 2024-11-22 | 中北大学 | A large-range cavity optical acceleration sensor and measurement method |
Also Published As
Publication number | Publication date |
---|---|
CN102590555B (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102590555B (en) | Resonance-force balance capacitive three-axis acceleration sensor and manufacturing method | |
CN102608355B (en) | Resonance dynamic balance tunnel current formula 3-axis acceleration sensor and manufacture method | |
CN104698222B (en) | Three axle single-chip integration resonant capacitance formula silicon micro accerometers and its processing method | |
CN101858929B (en) | Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof | |
CN102778583B (en) | Silicon substrate-based quartz resonance acceleration sensor chip with four-beam structure | |
US8322216B2 (en) | Micromachined accelerometer with monolithic electrodes and method of making the same | |
US8973439B1 (en) | MEMS accelerometer with proof masses moving in anti-phase direction normal to the plane of the substrate | |
CN102608356B (en) | A kind of double-shaft micromechanical resonant accelerometer structure and production method | |
CN102879608B (en) | Capacitive acceleration transducer for bending elastic beam and manufacturing method | |
CN107271724A (en) | Single chip integrated pressure resistance type three axis accelerometer and preparation method | |
CN105137121A (en) | Preparation method of low-stress acceleration meter | |
CN109001490B (en) | High-sensitivity torsional pendulum type silicon micro-accelerometer and preparation method thereof | |
CN102879609B (en) | Capacitive acceleration sensor of "H" shaped beam and its preparation method | |
CN108008150A (en) | A kind of low intersecting axle sensitivity piezoresistive accelerometer structure and production method | |
Chen et al. | A single-side fabricated triaxis (111)-silicon microaccelerometer with electromechanical sigma–delta modulation | |
CN113702665B (en) | MEMS accelerometer and forming method thereof | |
CN106771358A (en) | A kind of full quartz resonance accelerometer of miniature differential formula | |
CN102602879B (en) | Two step corrosion manufacture methods of resonance type accelerometer resonance beam and brace summer | |
CN101792108B (en) | Large capacitance micro inertial sensor based on slide-film damping and manufacturing method thereof | |
CN102901520B (en) | Method for improving temperature stability of capacitor type micromechanical sensor and micromechanical sensor | |
CN107782915A (en) | Silicon hollow beam, silicon micro-accelerometer based on silicon hollow beam and preparation method of silicon micro-accelerometer | |
CN105182003B (en) | Torsional pendulum type differential capacitance accelerometer and preparation method with buffer structure | |
RU2251702C1 (en) | Micromechanical accelerometer | |
CN212410634U (en) | Triaxial resonance capacitance type micro-electromechanical accelerometer | |
CN116008593A (en) | A three-axis capacitive accelerometer similar to zigzag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170315 Termination date: 20180301 |
|
CF01 | Termination of patent right due to non-payment of annual fee |