CN104215231A - MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof - Google Patents
MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof Download PDFInfo
- Publication number
- CN104215231A CN104215231A CN201310221840.6A CN201310221840A CN104215231A CN 104215231 A CN104215231 A CN 104215231A CN 201310221840 A CN201310221840 A CN 201310221840A CN 104215231 A CN104215231 A CN 104215231A
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- resonance beam
- etching
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 230000008878 coupling Effects 0.000 claims abstract description 85
- 238000010168 coupling process Methods 0.000 claims abstract description 85
- 238000005859 coupling reaction Methods 0.000 claims abstract description 85
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract 17
- 238000005259 measurement Methods 0.000 claims abstract 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 135
- 229910052710 silicon Inorganic materials 0.000 claims description 134
- 239000010703 silicon Substances 0.000 claims description 134
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 72
- 239000000377 silicon dioxide Substances 0.000 claims description 36
- 235000012239 silicon dioxide Nutrition 0.000 claims description 36
- 239000012212 insulator Substances 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 27
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 24
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 24
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 24
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 18
- 238000001312 dry etching Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000001020 plasma etching Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- BLIQUJLAJXRXSG-UHFFFAOYSA-N 1-benzyl-3-(trifluoromethyl)pyrrolidin-1-ium-3-carboxylate Chemical compound C1C(C(=O)O)(C(F)(F)F)CCN1CC1=CC=CC=C1 BLIQUJLAJXRXSG-UHFFFAOYSA-N 0.000 claims description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 2
- 238000000992 sputter etching Methods 0.000 claims description 2
- 238000001259 photo etching Methods 0.000 claims 5
- 238000005137 deposition process Methods 0.000 claims 2
- SLUYGONTZAHWEW-UHFFFAOYSA-N C=1(C(=CC=CC1)O)O.[P].C(CN)N Chemical compound C=1(C(=CC=CC1)O)O.[P].C(CN)N SLUYGONTZAHWEW-UHFFFAOYSA-N 0.000 claims 1
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 1
- 230000000994 depressogenic effect Effects 0.000 claims 1
- -1 tetramethyl aqua ammonia Chemical compound 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 50
- 238000001514 detection method Methods 0.000 description 12
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000000708 deep reactive-ion etching Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
- G01C19/5656—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
- G01C19/5663—Manufacturing; Trimming; Mounting; Housings
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Gyroscopes (AREA)
Abstract
Description
技术领域technical field
本发明涉及传感器领域,尤其涉及一种陀螺仪The invention relates to the field of sensors, in particular to a gyroscope
背景技术Background technique
陀螺仪可以检测物体倾斜的角度和方向,并且已经运用于诸多领域,如轮船、飞机等。而在微电子机械系统(MEMS)技术不断进步的情况下,许多纳米级的小型陀螺仪将被商业化广泛应用于汽车、机器人、手机、移动设备等领域。Gyroscopes can detect the angle and direction of an object's tilt, and have been used in many fields, such as ships and airplanes. With the continuous advancement of microelectromechanical systems (MEMS) technology, many small nanoscale gyroscopes will be commercialized and widely used in automobiles, robots, mobile phones, mobile devices and other fields.
与传统的陀螺仪不同,MEMS陀螺仪并没有旋转部件,也不需要轴承。MEMS的陀螺仪采用了振动物体传感角速度的概念。利用振动来诱导和探测科氏力。例如公开号为CN101180516的中国发明专利申请,其利用驱动器对多个质量块以X方向进行加速,当陀螺仪在Z轴上发生角速度为Ω的旋转时,质量块会根据以下公式在Y方向产生科氏力Fcori。陀螺仪对Y方向的科氏力进行检测,从而可以计算出旋转角速度Ω。Unlike conventional gyroscopes, MEMS gyroscopes have no rotating parts and do not require bearings. MEMS gyroscopes use the concept of sensing angular velocity of vibrating objects. Vibration is used to induce and detect the Coriolis force. For example, the Chinese invention patent application with the publication number CN101180516 uses a driver to accelerate multiple mass blocks in the X direction. When the gyroscope rotates with an angular velocity of Ω on the Z axis, the mass blocks will be generated in the Y direction according to the following formula: Coriolis force F cori . The gyroscope detects the Coriolis force in the Y direction, so that the rotational angular velocity Ω can be calculated.
Fcori=2mΩvF cori =2mΩv
其中,m为质量块的质量,而v则为速度。Among them, m is the mass of the mass block, and v is the velocity.
通常的MEMS陀螺仪,例如公告号为CN201828268U的中国实用新型专利,是检测因质量块位移而导致的电容变化来计算旋转角速度的。然而电容变化并非数字信号,因此集成电路还需要对检测出来的结果进行滤波、降噪、信号转换等一系列处理步骤。增加了集成芯片的复杂性,也增加了集成芯片的设计和制造成本。此外,在信号处理过程中,也会有失真、损耗等情况出现。Common MEMS gyroscopes, such as the Chinese utility model patent with the notification number CN201828268U, detect the change in capacitance caused by the displacement of the mass to calculate the rotational angular velocity. However, the capacitance change is not a digital signal, so the integrated circuit also needs to perform a series of processing steps such as filtering, noise reduction, and signal conversion on the detected results. This increases the complexity of the integrated chip, and also increases the design and manufacturing costs of the integrated chip. In addition, in the signal processing process, there will be distortion, loss and so on.
而例如公开号为CN101135563的中国发明专利申请,其通过两级杠杆将科氏力放大到设置在边框两侧的音叉谐振器上,通过调谐的方式来测量旋转角速度。虽然音叉谐振器的输出是数字信号,但由于制造工艺的限制,杠杆的尺寸会有误差,两个质量块的大小也未必一致,因此会产生一定的误差信号;而且在同一平面上制造双质量块、杠杆以及音叉谐振器会增加芯片的整体面积,降低了系统的集成度。For example, the Chinese invention patent application with the publication number CN101135563 amplifies the Coriolis force to the tuning fork resonators arranged on both sides of the frame through a two-stage lever, and measures the rotational angular velocity through tuning. Although the output of the tuning fork resonator is a digital signal, due to the limitation of the manufacturing process, there will be errors in the size of the lever, and the size of the two mass blocks may not be the same, so a certain error signal will be generated; and the double mass is manufactured on the same plane Blocks, levers, and tuning fork resonators increase the overall chip area and reduce system integration.
发明内容Contents of the invention
本发明所要解决的技术问题在于克服上述现有技术之不足,提供一种可以输出数字信号,并且灵敏度高的陀螺仪。The technical problem to be solved by the present invention is to overcome the deficiencies of the above-mentioned prior art, and provide a gyroscope capable of outputting digital signals and having high sensitivity.
一种MEMS高精度谐振梁闭环控制陀螺仪,包括:测量体、上盖板及下盖板,所述测量体包括基座、耦合框、与耦合框相连接的质量块以及位于所述质量块中心的固定块;所述基座以及所述固定块与所述上盖板及所述下盖板相固定连接;所述质量块与所述耦合框通过多个弹性梁相连接;所述质量块与所述固定块之间设置有第一梳状耦合结构;所述耦合框的一侧设置有支撑梁;所述耦合框通过所述支撑梁与所述基座相连接;所述耦合框的侧壁的上部及下部分别设置有谐振梁,所述谐振梁一端与所述耦合框相连接,另一端分别与基座相连接;所述谐振梁与所述基座之间还设置有第二梳状耦合结构;所述谐振梁以及所述第二梳状耦合结构用于检测转动角速度。A MEMS high-precision resonant beam closed-loop control gyroscope, including: a measuring body, an upper cover plate and a lower cover plate, the measuring body includes a base, a coupling frame, a quality block connected to the coupling frame, and a mass block located on the mass block The fixed block in the center; the base and the fixed block are fixedly connected with the upper cover plate and the lower cover plate; the mass block is connected with the coupling frame through a plurality of elastic beams; the mass A first comb-shaped coupling structure is set between the block and the fixed block; a support beam is set on one side of the coupling frame; the coupling frame is connected to the base through the support beam; the coupling frame The upper and lower parts of the side wall are respectively provided with resonant beams, one end of the resonant beam is connected with the coupling frame, and the other end is respectively connected with the base; the resonant beam and the base are also provided with a second Two comb-shaped coupling structures; the resonant beam and the second comb-shaped coupling structure are used to detect rotational angular velocity.
本发明中的陀螺仪还包括如下附属特征:Gyroscope among the present invention also comprises following accessory feature:
所述支撑梁以及所述谐振梁为弹性梁。The support beam and the resonant beam are elastic beams.
所述质量块为中心镂空的方形体。The mass block is a square body hollowed out in the center.
所述弹性梁为U型弹性梁。The elastic beam is a U-shaped elastic beam.
所述弹性梁设置在所述质量块的四个端角处。The elastic beams are arranged at four end corners of the mass block.
所述第一梳状耦合结构设置于所述质量块与所述固定块之间的间隔空间内。The first comb-shaped coupling structure is disposed in a space between the mass block and the fixed block.
所述质量块、所述上盖板、所述下盖板、所述第一梳状耦合结构以及所述第二耦合结构上设置有电极。Electrodes are arranged on the proof mass, the upper cover plate, the lower cover plate, the first comb-like coupling structure and the second coupling structure.
所述谐振梁与所述支撑梁设置在所述耦合框的同一侧。The resonant beam and the support beam are arranged on the same side of the coupling frame.
所述基座上设有凹槽,所述谐振梁位于所述凹槽内。A groove is provided on the base, and the resonant beam is located in the groove.
所述谐振梁为上下两组,每组所述谐振梁包括两根谐振梁,每根所述谐振梁与所述基座之间设置有两对所述第二梳状耦合结构;一对所述第二梳状耦合结构用于驱动所述谐振梁,另一对用于检测旋转角速度。The resonant beams are two groups of upper and lower groups, and each group of resonant beams includes two resonant beams, and two pairs of the second comb-shaped coupling structures are arranged between each resonant beam and the base; The second comb-shaped coupling structure is used to drive the resonant beam, and the other pair is used to detect the rotational angular velocity.
所述第二梳状耦合结构包括两个相配合的梳齿,其中一个梳齿与所述谐振梁相连接,另一个所述梳齿与所述基座相连接。The second comb-shaped coupling structure includes two matching comb teeth, one of which is connected to the resonant beam, and the other comb is connected to the base.
所述测量体采用包括有上硅层及下硅层的双层硅结构,每层硅层之间分别设置有氧化埋层。The measuring body adopts a double-layer silicon structure including an upper silicon layer and a lower silicon layer, and a buried oxide layer is arranged between each silicon layer.
所述谐振梁以及所述弹性梁成型于所述上硅层。The resonant beam and the elastic beam are formed on the upper silicon layer.
一种陀螺仪的制造工艺,其特征在于,所述制造工艺包括以下步骤:A kind of manufacturing process of gyroscope, it is characterized in that, described manufacturing process comprises the following steps:
第一步,通过高温氧化或淀积处理,在第一块绝缘体上外延硅硅片正面及背面上分别形成一层二氧化硅层;The first step is to form a silicon dioxide layer on the front and back of the epitaxial silicon silicon wafer on the first insulator through high-temperature oxidation or deposition treatment;
第二步,通过光刻和刻蚀,将第一块绝缘体上外延硅硅片正面的二氧化硅层上刻蚀出多个深至上硅层的孔;In the second step, through photolithography and etching, a plurality of holes deep to the upper silicon layer are etched on the silicon dioxide layer on the front side of the first silicon-on-insulator epitaxial silicon wafer;
第三步,在第一块绝缘体上外延硅硅片正面及背面上淀积一层氮化硅层;The third step is to deposit a silicon nitride layer on the front and back of the epitaxial silicon wafer on the first insulator;
第四步,通过光刻、刻蚀,分别将第一块绝缘体上外延硅硅片正面中支撑梁所对应的位置上的氮化硅层及二氧化硅层去除,并将所述上硅层刻蚀至所述氧化埋层;同时将第一块绝缘体上外延硅硅片背面中弹性梁、谐振梁以及固定块与质量块之间的间隙所对应的位置上的氮化硅层及二氧化硅层去除,并将所述下硅层刻蚀至所述氧化埋层;The fourth step is to remove the silicon nitride layer and silicon dioxide layer on the positions corresponding to the support beams in the front of the first epitaxial silicon-on-insulator silicon wafer respectively by photolithography and etching, and remove the upper silicon layer Etching to the buried oxide layer; meanwhile, the silicon nitride layer and the silicon dioxide layer on the positions corresponding to the elastic beams, resonant beams, and the gap between the fixed block and the mass block in the back of the first epitaxial silicon silicon wafer on insulator removing the silicon layer, and etching the lower silicon layer to the buried oxide layer;
第五步,通过刻蚀,将所述氧化埋层去除,形成一层弹性梁和谐振梁;The fifth step is to remove the buried oxide layer by etching to form a layer of elastic beams and resonant beams;
第六步,对第一块绝缘体上外延硅硅片正面中支撑梁所对应的位置进一步刻蚀至一定深度,形成支撑梁;The sixth step is to further etch to a certain depth the position corresponding to the support beam in the front surface of the epitaxial silicon-on-insulator silicon wafer to form a support beam;
第七步,通过高温氧化或淀积处理,在第二块绝缘体上外延硅硅片正面及背面上分别形成一层二氧化硅层;The seventh step is to form a layer of silicon dioxide on the front and back of the epitaxial silicon wafer on the second insulator through high temperature oxidation or deposition treatment;
第八步,通过光刻和刻蚀,将第二块绝缘体上外延硅硅片正面的二氧化硅层上刻蚀出多个深至上硅层的孔;In the eighth step, through photolithography and etching, a plurality of holes deep to the upper silicon layer are etched on the silicon dioxide layer on the front side of the second epitaxial silicon-on-insulator wafer;
第九步,在第二块绝缘体上外延硅硅片正面及背面淀积一层氮化硅;The ninth step is to deposit a layer of silicon nitride on the front and back of the epitaxial silicon wafer on the second insulator;
第十步,通过光刻、刻蚀,将第二块绝缘体上外延硅硅片背面中支撑梁、弹性梁、谐振梁以及固定块与质量块之间的间隙所对应的位置上的氮化硅层及二氧化硅层去除,并将所述下硅层刻蚀至所述氧化埋层;In the tenth step, through photolithography and etching, silicon nitride on the positions corresponding to the support beams, elastic beams, resonant beams, and the gap between the fixed block and the mass block on the back of the second silicon-on-insulator epitaxial silicon wafer layer and the silicon dioxide layer are removed, and the lower silicon layer is etched to the buried oxide layer;
第十一步,通过刻蚀,将所述氧化埋层去除;In the eleventh step, the buried oxide layer is removed by etching;
第十二步,分别将第一块和第二块绝缘体上外延硅硅片背面的氮化硅层及二氧化硅层去除;In the twelfth step, the silicon nitride layer and the silicon dioxide layer on the back of the epitaxial silicon wafer on the first and second insulators are respectively removed;
第十三步,将第一块和第二块绝缘体上外延硅硅片进行背对背硅-硅键合,形成基座、固定块、质量块以及耦合框;In the thirteenth step, perform back-to-back silicon-silicon bonding on the first and second epitaxial silicon-on-insulator wafers to form a base, a fixed block, a mass block, and a coupling frame;
第十四步,将键和后硅片正面的氮化硅层去除;In the fourteenth step, the bond and the silicon nitride layer on the front side of the silicon wafer are removed;
第十五步,对键和后硅片正面上暴露在外的上硅层进行深度刻蚀,形成通孔,从而形成自由活动的上层弹性梁、谐振梁、上层第一梳状耦合结构及上层第二梳状耦合结构;The fifteenth step is to deeply etch the bond and the exposed upper silicon layer on the front side of the rear silicon wafer to form through holes, thereby forming free upper elastic beams, resonant beams, upper first comb-like coupling structures and upper upper first combs. Two-comb coupling structure;
第十六步,将键和后硅片正面的二氧化硅层去除;In the sixteenth step, the silicon dioxide layer on the front side of the bond and the back silicon wafer is removed;
第十七步,将键和后硅片正面与上盖板进行键合;The seventeenth step is to bond the key and the front side of the rear silicon chip to the upper cover;
第十八步,将键和后硅片背面的氮化硅层去除;In the eighteenth step, the bond and the silicon nitride layer on the back of the silicon wafer are removed;
第十九步,对键和后硅片背面上暴露在外的上硅层进行深度刻蚀,形成通孔,从而形成自由活动的支撑梁、下层弹性梁、下层谐振梁、下层第一梳状耦合结构及下层第二梳状耦合结构;The nineteenth step is to deeply etch the bond and the exposed upper silicon layer on the back of the back silicon wafer to form through holes, thereby forming freely movable support beams, lower elastic beams, lower resonant beams, and the first comb-like coupling of the lower layer. structure and the second comb-like coupling structure in the lower layer;
第二十步,将键和后硅片背面的二氧化硅层去除;The twentieth step is to remove the bond and the silicon dioxide layer on the back of the silicon wafer;
第二十一步,将键和后硅片背面与下盖板进行键合;形成完整的陀螺仪;In the twenty-first step, bond the key and the back of the back silicon chip with the lower cover; form a complete gyroscope;
对所述上盖板及下盖板的加工工艺还包括:The processing technology for the upper cover plate and the lower cover plate also includes:
A、在所述上盖板和所述下盖板的键合面上分别通过光刻、深度刻蚀及刻蚀各自形成一个凹陷区;A. Forming a recessed area on the bonding surface of the upper cover plate and the lower cover plate by photolithography, deep etching and etching respectively;
B、在所述上盖板和所述下盖板上淀积金属,从而形成电极;B. Depositing metal on the upper cover and the lower cover to form electrodes;
C、与所述绝缘体上外延硅硅片键合之前,对所述上盖板硅片及所述下盖板硅片进行清洗;C. Before bonding with the epitaxial silicon wafer on the insulator, cleaning the upper cover silicon wafer and the lower cover silicon wafer;
所述深度刻蚀及所述刻蚀的方法为以下方法中的一种或多种方法:干法刻蚀或湿法刻蚀,所述干法刻蚀包括:硅的深度反应离子刻蚀及反应离子刻蚀。The deep etching and the etching method are one or more of the following methods: dry etching or wet etching, and the dry etching includes: deep reactive ion etching of silicon and reactive ion etching.
所述用于腐蚀硅层的腐蚀剂为以下腐蚀剂中的一种或多种的组合:氢氧化钾、四甲基氢氧化氨、乙二胺磷苯二酚或气态的二氟化氙。The etchant used to etch the silicon layer is one or more of the following etchant combinations: potassium hydroxide, tetramethylammonium hydroxide, ethylenediamine phosphoquinone or gaseous xenon difluoride.
所述用于腐蚀二氧化硅层的腐蚀剂为以下腐蚀剂中的一种或多种的组合:缓冲氢氟酸、49%氢氟酸或气态的氟化氢。The etchant used for etching the silicon dioxide layer is one or a combination of the following etchant: buffered hydrofluoric acid, 49% hydrofluoric acid or gaseous hydrogen fluoride.
按照本发明所提供的一种陀螺仪及其制造工艺具有如下优点:首先,本发明是通过检测谐振梁的频率变化来检测旋转角速度的,频率变化的输出为数字信号,无需再经过滤波、信号转换等过程,方便与其他信号处理器对接,也减少了电路噪声对检测结果的影响。使得陀螺仪工作更加稳定。其次,在垂直方向上下设置两组谐振梁的结构是以差分的形式来输出频率变化,这样的输出信号可以得到两倍的频率输出,同时,差分输出也消除了温度对谐振梁产生的影响。此外,本陀螺仪在检测方向上设置有反馈控制系统,当集成电路由谐振梁上的第二梳状耦合结构检测出的信号计算出质量块的位移后,反馈控制系统会向质量块上施加反馈电压,从而将质量块维持在平衡位置。该反馈控制系统能有效增强系统的稳定性,降低系统的非线性,拓宽系统带宽,缩短反应时间,从而使得检测更加精准。最后,通过键合的方式得到了更大的质量块,提高了灵敏度。The gyroscope and its manufacturing process provided by the present invention have the following advantages: First, the present invention detects the angular velocity of rotation by detecting the frequency change of the resonant beam, and the output of the frequency change is a digital signal without filtering, signal Conversion and other processes are convenient for docking with other signal processors, and the influence of circuit noise on the detection results is also reduced. Make the gyroscope work more stable. Secondly, the structure of setting two sets of resonant beams up and down in the vertical direction is to output the frequency change in the form of differential. Such an output signal can obtain twice the frequency output. At the same time, the differential output also eliminates the influence of temperature on the resonant beams. In addition, the gyroscope is equipped with a feedback control system in the detection direction. When the integrated circuit calculates the displacement of the mass block from the signal detected by the second comb-shaped coupling structure on the resonant beam, the feedback control system will apply a force to the mass block. Feedback voltage, thereby maintaining the mass in an equilibrium position. The feedback control system can effectively enhance the stability of the system, reduce the nonlinearity of the system, widen the bandwidth of the system, and shorten the reaction time, thereby making the detection more accurate. Finally, a larger mass is obtained by bonding, which improves the sensitivity.
附图说明Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2为本发明中测量体的立体图。Fig. 2 is a perspective view of the measuring body in the present invention.
图3为图2中A处放大图。Fig. 3 is an enlarged view of A in Fig. 2 .
图4为图2中B处放大图。Fig. 4 is an enlarged view of B in Fig. 2 .
图5为图2中C处放大图。Fig. 5 is an enlarged view of point C in Fig. 2 .
图6为本发明中测量体的俯视图。Fig. 6 is a top view of the measuring body in the present invention.
图7为制造方法的第一步至第四步沿图6中AA’线的剖面示意图。Fig. 7 is a schematic cross-sectional view of the first to fourth steps of the manufacturing method along the line AA' in Fig. 6 .
图8为制造方法的第一步至第四步沿图6中BB’线的剖面示意图。Fig. 8 is a schematic cross-sectional view along line BB' in Fig. 6 from the first step to the fourth step of the manufacturing method.
图9为制造方法的第五步至第七步沿图6中AA’线的剖面示意图。Fig. 9 is a schematic cross-sectional view of the fifth to seventh steps of the manufacturing method along the line AA' in Fig. 6 .
图10为制造方法的第五步至第七步沿图6中BB’线的剖面示意图。Fig. 10 is a schematic cross-sectional view of the fifth step to the seventh step of the manufacturing method along line BB' in Fig. 6 .
图11为制造方法的第八步至第十一步沿图6中AA’线的剖面示意图。Fig. 11 is a schematic cross-sectional view of the eighth step to the eleventh step of the manufacturing method along the line AA' in Fig. 6 .
图12为制造方法的第八步至第十一步沿图6中BB’线的剖面示意图。Fig. 12 is a schematic cross-sectional view of the eighth step to the eleventh step of the manufacturing method along the line BB' in Fig. 6 .
图13为制造方法的第十二步至第十四步沿图6中AA’线的剖面示意图。Fig. 13 is a schematic cross-sectional view of the twelfth to fourteenth steps of the manufacturing method along the line AA' in Fig. 6 .
图14为制造方法的第十二步至第十四步沿图6中BB’线的剖面示意图。Fig. 14 is a schematic cross-sectional view of the twelfth to fourteenth steps of the manufacturing method along line BB' in Fig. 6 .
图15为制造方法的第十五步至第十七步沿图6中AA’线的剖面示意图。Fig. 15 is a schematic cross-sectional view of the fifteenth to seventeenth steps of the manufacturing method along the line AA' in Fig. 6 .
图16为制造方法的第十五步至第十七步沿图6中BB’线的剖面示意图。Fig. 16 is a schematic cross-sectional view of the fifteenth to seventeenth steps of the manufacturing method along line BB' in Fig. 6 .
图17为制造方法的第十八步至第二十步沿图6中AA’线的剖面示意图。Fig. 17 is a schematic cross-sectional view of the eighteenth to the twentieth steps of the manufacturing method along the line AA' in Fig. 6 .
图18为制造方法的第十八步至第二十步沿图6中BB’线的剖面示意图。Fig. 18 is a schematic cross-sectional view of the eighteenth to the twentieth steps of the manufacturing method along line BB' in Fig. 6 .
图19为制造方法的第二十一步至第二十二步沿图6中AA’线的剖面示意图。Fig. 19 is a schematic cross-sectional view of the twenty-first to twenty-second steps of the manufacturing method along the line AA' in Fig. 6 .
图20为制造方法的第二十一步至第二十二步沿图6中BB’线的剖面示意图。Fig. 20 is a schematic cross-sectional view of the twenty-first to twenty-second steps of the manufacturing method along line BB' in Fig. 6 .
图21为制造方法的第二十三步沿图6中AA’线的剖面示意图。Fig. 21 is a schematic cross-sectional view of the twenty-third step of the manufacturing method along the line AA' in Fig. 6 .
图22为制造方法的第二十三步沿图6中BB’线的剖面示意图。Fig. 22 is a schematic cross-sectional view of the 23rd step of the manufacturing method along line BB' in Fig. 6 .
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
参照图1,一种陀螺仪,包括:测量体1、与所述测量体1相连接的上盖板2以及下盖板3;所述测量体1由两块绝缘体上外延硅硅片键合而成,绝缘体上外延硅结构简称SOI结构,其中包括上硅层4及下硅层5;所述上硅层4和下硅层5之间设置有氧化埋层6。Referring to Fig. 1, a kind of gyroscope comprises: measuring body 1, the upper cover plate 2 that is connected with described measuring body 1 and the lower cover plate 3; Described measuring body 1 is bonded by two pieces of epitaxial silicon on insulator The epitaxial silicon-on-insulator structure is referred to as the SOI structure, which includes an upper silicon layer 4 and a lower silicon layer 5 ; a buried oxide layer 6 is provided between the upper silicon layer 4 and the lower silicon layer 5 .
参见图1至图6,所述测量体1包括了基座11、耦合框12、与耦合框12相连接的质量块13以及位于所述质量块13中心的固定块14;所述基座11以及所述固定块14与所述上盖板2及所述下盖板3相固定连接;所述耦合框12的一侧设置有支撑梁15;所述耦合框12通过所述支撑梁15与所述基座11相连接;所述质量块13与所述耦合框12通过多个弹性梁16相连接;其中,支撑梁15为弹性梁。在出现科氏力时,质量块13会在垂直方向上移动,质量块13的移动会通过弹性梁16带动耦合框12上下摆动。1 to 6, the measuring body 1 includes a base 11, a coupling frame 12, a mass 13 connected to the coupling frame 12, and a fixed block 14 at the center of the mass 13; the base 11 And the fixed block 14 is fixedly connected with the upper cover plate 2 and the lower cover plate 3; one side of the coupling frame 12 is provided with a support beam 15; the coupling frame 12 is connected with the support beam 15 The base 11 is connected; the mass block 13 is connected to the coupling frame 12 through a plurality of elastic beams 16; wherein, the support beams 15 are elastic beams. When the Coriolis force occurs, the mass block 13 will move in the vertical direction, and the movement of the mass block 13 will drive the coupling frame 12 to swing up and down through the elastic beam 16 .
参见图1至图6,优选地,测量体1为两块硅片键合而成,基座11为一镂空的方形体,耦合框12、质量块13、固定块14均位于基座11的镂空处内。Referring to Fig. 1 to Fig. 6, preferably, the measuring body 1 is formed by bonding two silicon wafers, the base 11 is a hollowed out square body, and the coupling frame 12, the mass block 13 and the fixed block 14 are all located on the base 11. Inside the hollow.
参见图1至图6,优选地,所述质量块13为一个中心镂空的方形体,弹性梁16为U型梁,并设置在质量块13的四个边角,这样可以保证质量块13带动耦合框12的在竖直方向上位移。此外,质量块13与固定块14之间的间隔空间内还设置有第一梳状耦合结构17。第一梳状耦合结构17的两套梳齿171分别与质量块13以及固定块14相连接。第一梳状耦合结构17用于驱动所述质量块13在水平方向上来回振动。Referring to Fig. 1 to Fig. 6, preferably, the mass block 13 is a square body with a hollow center, and the elastic beam 16 is a U-shaped beam, and is arranged on the four corners of the mass block 13, so that the mass block 13 can drive The displacement of the coupling frame 12 in the vertical direction. In addition, a first comb-like coupling structure 17 is also provided in the space between the mass block 13 and the fixed block 14 . The two sets of comb teeth 171 of the first comb-shaped coupling structure 17 are respectively connected to the mass block 13 and the fixed block 14 . The first comb-like coupling structure 17 is used to drive the mass block 13 to vibrate back and forth in the horizontal direction.
参见图1至图6,在所述耦合框12的侧壁的上部及下部分别设置有谐振梁18,所述谐振梁18一端与所述耦合框12相连接,另一端分别与基座11相连接;优选地,基座11上还设置有凹槽111,谐振梁18的一端与耦合框12相连接,另一端与凹槽111的末端相连接。谐振梁18与所述基座11之间还设置有第二梳状耦合结构19。第二梳状耦合结构19的梳齿191分别与谐振梁18以及基座11相连接。在本发明的一个实施例中,每根谐振梁18上设置有两组梳齿191,一组用于驱动谐振梁18振动,另一组用于检测谐振梁18的振动频率。而谐振梁18的数量为两组,分别上下设置在耦合框12的侧壁上,并处在同一铅垂面上。每组谐振梁18中有两根谐振梁18。但谐振梁18以及第二梳状耦合结构19的数量及排列方式并不仅限于本实施例。1 to 6, resonant beams 18 are arranged on the upper and lower parts of the side walls of the coupling frame 12, one end of the resonant beam 18 is connected to the coupling frame 12, and the other end is connected to the base 11 respectively. Connection; preferably, a groove 111 is further provided on the base 11 , one end of the resonant beam 18 is connected to the coupling frame 12 , and the other end is connected to the end of the groove 111 . A second comb-shaped coupling structure 19 is also provided between the resonant beam 18 and the base 11 . The comb teeth 191 of the second comb-shaped coupling structure 19 are respectively connected to the resonant beam 18 and the base 11 . In one embodiment of the present invention, each resonant beam 18 is provided with two sets of comb teeth 191 , one set is used to drive the resonant beam 18 to vibrate, and the other set is used to detect the vibration frequency of the resonant beam 18 . The number of resonant beams 18 is two groups, which are respectively set up and down on the side walls of the coupling frame 12 and are on the same vertical plane. There are two resonant beams 18 in each group of resonant beams 18 . However, the number and arrangement of the resonant beams 18 and the second comb-shaped coupling structures 19 are not limited to this embodiment.
参见图1至图6,本陀螺仪在第一梳状耦合结构17、第二梳状耦合结构19上均设置有电极。在工作时,集成电路会对第一梳状耦合结构17施加电压,从而驱动质量块13相对于固定块14在X轴方向上来回振动。同时,集成电路也会对两对第二梳状耦合结构19中的一对施加电压,驱动谐振梁18按照一定频率振动。用于驱动的两对第二梳状耦合结构19所输出的电压的幅值及频率是相同的,因此,在谐振梁18没有受到轴向方向的应力的情况下,上下两组谐振梁18的振动频率应该完全相同。当出现Y轴旋转角速度时,由第一梳状耦合结构17所驱动的质量块13会在垂直方向,即Z轴方向上产生一个科氏力,科氏加速度会让质量块13产生上下位移。由于耦合框12和质量块13是通过弹性梁16相连接的,耦合框12也会在垂直方向上产生位移。设置在耦合框12的一侧的支撑梁15是与基座11固定连接的,使得耦合框12会以支撑梁15为轴在垂直方向上进行摆动。耦合框12的上下摆动会导致上下两组谐振梁18在轴向方向上受到大小相等,方向相反的应力,使得上下两组谐振梁18的振动频率一个增大,一个减小,且两者的频率变化幅度相等。第二梳状耦合结构19可以读出频率的变化,再由集成电路用差分的形式将两者频率相减,得到频率变化幅度两倍的输出信号,进而推算出旋转角速度。由于频率差分输出信号是一个数字信号,这样方便与其他信号处理器相连接,同时,当陀螺仪受到温度影响时,上下两组谐振梁18的振动频率会同时增大或减小,产生幅值相等,变化方向相同的偏差,通过差分相减的形式可以消除温度对陀螺仪的影响。此外,优选地,质量块13、上盖板2以及下盖板3上分别设置有电极,当集成电路根据第二梳状耦合结构19的检测结果推算出质量块13和耦合框12的摆动方向和摆动幅度后,会根据摆动方向和幅度对上盖板2或下盖板3施加一个反馈电压,将质量块13和耦合框12回复到平衡位置,从而形成一个反馈控制系统,有效增强系统的稳定性,降低系统的非线性,拓宽系统带宽,缩短反应时间,使得检测更加精准。Referring to FIG. 1 to FIG. 6 , the gyroscope is provided with electrodes on both the first comb-shaped coupling structure 17 and the second comb-shaped coupling structure 19 . In operation, the integrated circuit applies a voltage to the first comb coupling structure 17 , thereby driving the mass block 13 to vibrate back and forth in the X-axis direction relative to the fixed block 14 . At the same time, the integrated circuit will also apply a voltage to one of the two pairs of second comb-shaped coupling structures 19 to drive the resonant beam 18 to vibrate at a certain frequency. The amplitude and frequency of the voltages output by the two pairs of second comb-shaped coupling structures 19 for driving are the same. Therefore, when the resonant beam 18 is not subjected to the stress in the axial direction, the two groups of resonant beams 18 at the upper and lower The vibration frequency should be exactly the same. When the Y-axis rotation angular velocity occurs, the mass block 13 driven by the first comb coupling structure 17 will generate a Coriolis force in the vertical direction, that is, the Z-axis direction, and the Coriolis acceleration will cause the mass block 13 to displace up and down. Since the coupling frame 12 and the mass block 13 are connected through the elastic beam 16, the coupling frame 12 will also be displaced in the vertical direction. The support beam 15 arranged on one side of the coupling frame 12 is fixedly connected with the base 11 , so that the coupling frame 12 can swing in the vertical direction with the support beam 15 as the axis. The up and down swing of the coupling frame 12 will cause the upper and lower groups of resonant beams 18 to be subjected to stresses of equal magnitude and opposite directions in the axial direction, so that the vibration frequency of the upper and lower groups of resonant beams 18 will increase one and decrease, and the vibration frequency of the two groups will increase. The frequency changes are equal. The second comb-shaped coupling structure 19 can read out the frequency change, and then the integrated circuit subtracts the two frequencies in a differential form to obtain an output signal with twice the frequency change range, and then calculate the rotational angular velocity. Since the frequency difference output signal is a digital signal, it is convenient to connect with other signal processors. At the same time, when the gyroscope is affected by temperature, the vibration frequency of the upper and lower two groups of resonant beams 18 will increase or decrease at the same time, resulting in amplitude Equal, the deviation of the same direction of change, the influence of temperature on the gyroscope can be eliminated through the form of differential subtraction. In addition, preferably, the mass block 13, the upper cover plate 2 and the lower cover plate 3 are respectively provided with electrodes, when the integrated circuit calculates the swing direction of the mass block 13 and the coupling frame 12 according to the detection result of the second comb-shaped coupling structure 19 and the swing amplitude, a feedback voltage will be applied to the upper cover plate 2 or the lower cover plate 3 according to the swing direction and amplitude, and the mass block 13 and the coupling frame 12 will return to the equilibrium position, thereby forming a feedback control system and effectively enhancing the stability of the system. Stability, reduce the nonlinearity of the system, widen the system bandwidth, shorten the reaction time, and make the detection more accurate.
接着,根据图6至图22详细说明用于制造本发明中的陀螺仪的制造工艺,包括以下步骤:Next, the manufacturing process for manufacturing the gyroscope in the present invention will be described in detail according to FIGS. 6 to 22, including the following steps:
第一步,对SOI硅片A的正反表面进行高温氧化处理,在其正反表面上分别形成一层二氧化硅层7;或者利用化学气态淀积法(CVD)在正反表面上淀积一层二氧化硅层7;The first step is to perform high-temperature oxidation treatment on the front and back surfaces of SOI silicon wafer A, and form a layer of silicon dioxide layer 7 on the front and back surfaces respectively; or use chemical vapor deposition (CVD) to deposit silicon dioxide on the front and back surfaces. Build up a silicon dioxide layer 7;
第二步,对SOI硅片A的正面以及背面涂覆光阻剂,之后按照特定图案对其曝光,并用显影液进行显影。这样被曝光的图案就会显现出来。再利用反应离子干法刻蚀或缓冲氢氟酸对SOI硅片A正面和背面的二氧化硅层7刻蚀出多个深至上硅层4的孔;In the second step, the front and back of the SOI silicon wafer A are coated with photoresist, then exposed according to a specific pattern, and developed with a developer. This way the exposed pattern will appear. Reactive ion dry etching or buffered hydrofluoric acid is used to etch the silicon dioxide layer 7 on the front and back sides of the SOI silicon wafer A to form a plurality of holes deep to the upper silicon layer 4;
第三步,在SOI硅片A的正面和背面利用化学气态淀积法淀积一层氮化硅层8;In the third step, a silicon nitride layer 8 is deposited on the front and back sides of the SOI silicon wafer A by chemical vapor deposition;
第四步,对SOI硅片A的正面和背面涂覆光阻剂,之后按照特定图案对其曝光,并用显影液进行显影。这样被曝光的图案就会显现出来。再利用反应离子干法刻蚀或缓冲氢氟酸对SOI硅片A正面和背面的氮化硅层8以及二氧化硅层7分别刻蚀出多个深至上硅层4和下硅层5的孔;The fourth step is to coat the front and back of the SOI silicon wafer A with photoresist, then expose it according to a specific pattern, and develop it with a developer. This way the exposed pattern will appear. Reactive ion dry etching or buffered hydrofluoric acid are used to etch the silicon nitride layer 8 and the silicon dioxide layer 7 on the front and back sides of the SOI silicon wafer A respectively to etch a plurality of holes as deep as the upper silicon layer 4 and the lower silicon layer 5. hole;
第五步,再利用深度反应离子刻蚀、或氢氧化钾、或四甲基氢氧化氨、或乙二胺磷苯二酚将暴露在外的上硅层4和下硅层5进行深度刻蚀至氧化埋层6,形成上半边的基座11、耦合框12、质量块13、固定块14;The fifth step is to deeply etch the exposed upper silicon layer 4 and lower silicon layer 5 by using deep reactive ion etching, or potassium hydroxide, or tetramethylammonium hydroxide, or ethylenediamine phosphoquinone To the buried oxide layer 6, the base 11, the coupling frame 12, the quality block 13, and the fixed block 14 are formed on the upper half;
第六步,利用缓冲氢氟酸将暴露在外的氧化埋层6去除;Step 6, using buffered hydrofluoric acid to remove the exposed buried oxide layer 6;
第七步,利用深度反应离子刻蚀、或氢氧化钾、或四甲基氢氧化氨、或乙二胺磷苯二酚对SOI硅片A正面进一步刻蚀,直至刻蚀至下硅层5中的一定深度,形成支撑梁15;The seventh step is to use deep reactive ion etching, or potassium hydroxide, or tetramethyl ammonium hydroxide, or ethylenediamine phosphoquinone to further etch the front side of the SOI silicon wafer A until the lower silicon layer 5 is etched. A certain depth in the center forms a support beam 15;
第八步,对SOI硅片B的正反表面进行高温氧化处理,在其正反表面上分别形成一层二氧化硅层7;或者利用化学气态淀积法(CVD)在正反表面上淀积一层二氧化硅层7;The eighth step is to perform high-temperature oxidation treatment on the front and back surfaces of the SOI silicon wafer B, and form a layer of silicon dioxide layer 7 on the front and back surfaces respectively; or deposit silicon dioxide on the front and back surfaces by chemical vapor deposition (CVD). Build up a silicon dioxide layer 7;
第九步,对SOI硅片B的正面涂覆光阻剂,之后按照特定图案对其曝光,并用显影液进行显影。这样被曝光的图案就会显现出来。再利用反应离子干法刻蚀或缓冲氢氟酸对SOI硅片B正面的二氧化硅层7刻蚀出多个深至上硅层4的孔;Step 9: Coating photoresist on the front side of the SOI silicon wafer B, exposing it according to a specific pattern, and developing it with a developer. This way the exposed pattern will appear. Then use reactive ion dry etching or buffered hydrofluoric acid to etch a plurality of holes deep to the upper silicon layer 4 on the silicon dioxide layer 7 on the front side of the SOI silicon wafer B;
第十步,在SOI硅片B的正面和背面利用化学气态淀积法淀积一层氮化硅层8;In the tenth step, a silicon nitride layer 8 is deposited on the front and back sides of the SOI silicon wafer B by chemical vapor deposition;
第十一步,对SOI硅片B的背面涂覆光阻剂,之后按照特定图案对其曝光,并用显影液进行显影。这样被曝光的图案就会显现出来。再利用反应离子干法刻蚀或缓冲氢氟酸对SOI硅片B背面的氮化硅层8以及二氧化硅层7分别刻蚀出多个深至下硅层5的孔;In the eleventh step, a photoresist is coated on the back of the SOI silicon wafer B, and then exposed according to a specific pattern, and developed with a developer. This way the exposed pattern will appear. Reactive ion dry etching or buffered hydrofluoric acid are used to etch the silicon nitride layer 8 and the silicon dioxide layer 7 on the back side of the SOI silicon wafer B to respectively etch a plurality of holes as deep as the lower silicon layer 5;
第十二步,再利用深度反应离子刻蚀、或氢氧化钾、或四甲基氢氧化氨、或乙二胺磷苯二酚将暴露在外的下硅层5刻蚀至氧化埋层6,形成下半边的基座11、耦合框12、质量块13、固定块14;In the twelfth step, the exposed lower silicon layer 5 is etched to the buried oxide layer 6 by using deep reactive ion etching, or potassium hydroxide, or tetramethylammonium hydroxide, or ethylenediamine phosphoquinone, The base 11, the coupling frame 12, the mass block 13, and the fixed block 14 forming the lower half;
第十三步,利用反应离子干法刻蚀或缓冲氢氟酸将下硅层5中暴露在外的氧化埋层6去除;In the thirteenth step, the exposed buried oxide layer 6 in the lower silicon layer 5 is removed by reactive ion dry etching or buffered hydrofluoric acid;
第十四步,将SOI硅片A和SOI硅片B背面的二氧化硅层7和氮化硅层8去除;In the fourteenth step, the silicon dioxide layer 7 and the silicon nitride layer 8 on the back of the SOI silicon wafer A and the SOI silicon wafer B are removed;
第十五步,将SOI硅片A和SOI硅片B进行背对背硅-硅键合,形成完整的基座11、耦合框12、质量块13、固定块14;In the fifteenth step, perform back-to-back silicon-silicon bonding on the SOI silicon wafer A and the SOI silicon wafer B to form a complete base 11, coupling frame 12, mass block 13, and fixed block 14;
第十六步,利用反应离子干法刻蚀将键合后的硅片正面的氮化硅层去除;In the sixteenth step, the silicon nitride layer on the front side of the bonded silicon wafer is removed by reactive ion dry etching;
第十七步,再利用深度反应离子刻蚀对键和后的硅片的正面上暴露在外的部分的硅层进行深度刻蚀,直至暴露在外的部分的硅层刻穿,形成自由活动的弹性梁16、谐振梁18、第一梳状耦合结构17、第二梳状耦合结构19以及质量块13与固定块14以及基座11之间的空隙;In the seventeenth step, use deep reactive ion etching to deeply etch the exposed silicon layer on the front side of the bonded silicon wafer until the exposed silicon layer is cut through to form a free-moving elastic Beam 16, resonant beam 18, first comb-shaped coupling structure 17, second comb-shaped coupling structure 19, and gaps between mass block 13, fixed block 14, and base 11;
第十八步,利用反应离子干法刻蚀或缓冲氢氟酸将键合后硅片正面的二氧化硅层7去除;In the eighteenth step, the silicon dioxide layer 7 on the front side of the bonded silicon wafer is removed by reactive ion dry etching or buffered hydrofluoric acid;
第十九步,将键合后硅片正面与上盖板进行键合;In the nineteenth step, bond the front side of the bonded silicon wafer to the upper cover;
第二十步,利用反应离子干法刻蚀将键合后的硅片背面的氮化硅层去除;In the twentieth step, the silicon nitride layer on the back side of the bonded silicon wafer is removed by reactive ion dry etching;
第二十一步,再利用深度反应离子刻蚀对键和后的硅片的背面上暴露在外的部分的硅层进行深度刻蚀,直至暴露在外的部分的硅层刻穿,形成自由活动的弹性梁16、谐振梁18、第一梳状耦合结构17、第二梳状耦合结构19及质量块13与固定块14以及基座11之间的空隙,从而释放耦合框12和质量块13,形成自由活动的支撑梁15;The twenty-first step is to use deep reactive ion etching to etch the exposed part of the silicon layer on the back of the bonded silicon wafer until the exposed part of the silicon layer is cut through to form a freely movable The elastic beam 16, the resonant beam 18, the first comb-shaped coupling structure 17, the second comb-shaped coupling structure 19 and the gap between the mass block 13, the fixed block 14 and the base 11, thereby releasing the coupling frame 12 and the mass block 13, Form a freely movable support beam 15;
第二十二步,利用反应离子干法刻蚀或缓冲氢氟酸将键合后硅片背面的二氧化硅层7去除;The twenty-second step, using reactive ion dry etching or buffered hydrofluoric acid to remove the silicon dioxide layer 7 on the back of the bonded silicon wafer;
第二十三步,将键合后硅片背面与下盖板进行键合,形成完整的陀螺仪;The twenty-third step is to bond the back of the bonded silicon wafer with the lower cover to form a complete gyroscope;
对所述上盖板2及下盖板3的加工工艺还包括:The processing technology of the upper cover plate 2 and the lower cover plate 3 also includes:
A、在上盖板2和下盖板3的键合面上涂覆光阻剂,之后按照特定图案对其进行曝光,并用显影液进行显影。这样被曝光的图案就会显现出来。再利用深度反应离子刻蚀、或氢氧化钾、或四甲基氢氧化氨、或乙二胺磷苯二酚,分别将上盖板2和下盖板3被曝光的部分深度刻蚀至一定位置。从而在上盖板2和下盖板3的键合面上各自形成一个凹陷区,并将光阻剂去除。A. Coating photoresist on the bonding surface of the upper cover 2 and the lower cover 3, then exposing it according to a specific pattern, and developing it with a developer. This way the exposed pattern will appear. Then use deep reactive ion etching, or potassium hydroxide, or tetramethyl ammonium hydroxide, or ethylenediamine phosphoquinone to etch the exposed parts of the upper cover plate 2 and the lower cover plate 3 to a certain depth. Location. Thus, a recessed area is formed on the bonding surfaces of the upper cover 2 and the lower cover 3 respectively, and the photoresist is removed.
B、在上盖板2和下盖板3上指定位置淀积金属,并刻蚀出电极;B. Deposit metal at specified positions on the upper cover plate 2 and the lower cover plate 3, and etch the electrodes;
C、在与所述SOI硅片键合之前,对上盖板硅片2及下盖板硅片3对进行清洗;C. Before bonding with the SOI silicon wafer, the upper cover silicon wafer 2 and the lower cover silicon wafer 3 are cleaned;
其中,本发明中的上述加工工艺中的氮化硅层9和二氧化硅层8起到保护其所覆盖的硅层,使其不被刻蚀或腐蚀。Wherein, the silicon nitride layer 9 and the silicon dioxide layer 8 in the above processing technology in the present invention protect the silicon layer covered by them from being etched or corroded.
本发明中所述的深度刻蚀及所述刻蚀的方法为以下方法中的一种或多种方法:干法刻蚀或湿法刻蚀,所述干法刻蚀包括:硅的深度反应离子刻蚀及反应离子刻蚀。The deep etching and the etching method described in the present invention are one or more methods in the following methods: dry etching or wet etching, and the dry etching includes: deep reaction of silicon Ion etching and reactive ion etching.
参见图1至图6,本发明中的上述方法中所用的材料、设备、工艺均采用现有技术,但通过利用这些材料及工艺所制造出的陀螺仪,具有以下优点:本陀螺仪的检测结果是一个频率信号,可以很方便的与其他信号处理器进行对接,省去了模数转换等信号处理的步骤。此外,在垂直方向上下设置两组谐振梁18的结构是以差分的形式来输出频率变化,这样的输出信号更加准确,由于两组谐振梁18的制作方法相同,材料也相同而且位置也基本相同,所以当受到温度影响时,两组谐振梁18产生的共模误差也基本一致,通过差分输出可以消除温度对陀螺仪检测精度的影响。本发明通过键合方式得到的质量块也较大,检测过程中在驱动方向及检测方向均有较大的谐振位移,检测灵敏度也得以提高。而且本陀螺仪在检测方向上还设置有一反馈电路,当集成电路由谐振梁上的第二梳状耦合结构19检测出的信号计算出质量块13的位移后,反馈控制系统会向质量块上施加反馈电压,从而将质量块13维持在平衡位置。该反馈控制系统能有效增强系统的稳定性,降低系统的非线性,拓宽系统带宽,缩短反应时间,从而使得检测更加精准。Referring to Fig. 1 to Fig. 6, used material, equipment, technology in the above-mentioned method among the present invention all adopt prior art, but by utilizing these materials and the manufactured gyroscope of technology, have following advantage: the detection of this gyroscope The result is a frequency signal that can be easily interfaced with other signal processors, eliminating the need for signal processing steps such as analog-to-digital conversion. In addition, the structure of setting two groups of resonant beams 18 up and down in the vertical direction is to output the frequency change in the form of difference, and such output signal is more accurate, because the manufacturing method of the two groups of resonant beams 18 is the same, the materials are the same and the positions are basically the same , so when affected by temperature, the common mode errors generated by the two sets of resonant beams 18 are also basically the same, and the influence of temperature on the detection accuracy of the gyroscope can be eliminated through the differential output. The mass block obtained by bonding in the present invention is also relatively large, and there is a large resonance displacement in both the driving direction and the detection direction during the detection process, and the detection sensitivity is also improved. Moreover, the gyroscope is also provided with a feedback circuit in the detection direction. After the integrated circuit calculates the displacement of the mass block 13 from the signal detected by the second comb-shaped coupling structure 19 on the resonant beam, the feedback control system will send a feedback signal to the mass block. A feedback voltage is applied to maintain the mass 13 in an equilibrium position. The feedback control system can effectively enhance the stability of the system, reduce the nonlinearity of the system, widen the bandwidth of the system, and shorten the reaction time, thereby making the detection more accurate.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310221840.6A CN104215231B (en) | 2013-06-05 | 2013-06-05 | A kind of MEMS high accuracy resonance beam closed loop control gyroscope and manufacturing process thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310221840.6A CN104215231B (en) | 2013-06-05 | 2013-06-05 | A kind of MEMS high accuracy resonance beam closed loop control gyroscope and manufacturing process thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104215231A true CN104215231A (en) | 2014-12-17 |
CN104215231B CN104215231B (en) | 2016-12-28 |
Family
ID=52096970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310221840.6A Active CN104215231B (en) | 2013-06-05 | 2013-06-05 | A kind of MEMS high accuracy resonance beam closed loop control gyroscope and manufacturing process thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104215231B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101629A (en) * | 2017-05-10 | 2017-08-29 | 北京航空航天大学 | A kind of silicon micro mechanical graphene beam resonant mode gyroscope |
CN110672081A (en) * | 2019-08-30 | 2020-01-10 | 北京时代民芯科技有限公司 | A Large Capacitance Ring Resonant Micromachined Gyro |
WO2024212393A1 (en) * | 2023-04-10 | 2024-10-17 | 瑞声科技(新加坡)有限公司 | Mems device and manufacturing method therefor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06294814A (en) * | 1994-04-06 | 1994-10-21 | Nissan Motor Co Ltd | Production method for semiconductor acceleration sensor |
JPH10170276A (en) * | 1996-12-13 | 1998-06-26 | Toyota Central Res & Dev Lab Inc | Resonant angular velocity sensor |
TW594014B (en) * | 2003-04-09 | 2004-06-21 | Chung Shan Inst Of Science | Silicon-type dual inertia sensor |
US20050193817A1 (en) * | 2004-03-08 | 2005-09-08 | Sony Corporation | Method of manufacturing vibration gyro sensor element, vibration gyro sensor element, and method of adjusting vibration direction |
CN101303234A (en) * | 2008-05-22 | 2008-11-12 | 北京航空航天大学 | A self-decoupling high-sensitivity resonant silicon micromachined gyroscope |
CN102590555A (en) * | 2011-11-23 | 2012-07-18 | 中国计量学院 | Resonance-force balance capacitance type three-axis acceleration transducer and manufacture method |
CN102645211A (en) * | 2012-04-25 | 2012-08-22 | 哈尔滨工程大学 | Four-degree-of-freedom micromechanical gyroscope |
CN102798386A (en) * | 2011-05-25 | 2012-11-28 | 上海飞恩微电子有限公司 | Three-degree-of-freedom resonance silicon micromechanical gyroscope |
-
2013
- 2013-06-05 CN CN201310221840.6A patent/CN104215231B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06294814A (en) * | 1994-04-06 | 1994-10-21 | Nissan Motor Co Ltd | Production method for semiconductor acceleration sensor |
JPH10170276A (en) * | 1996-12-13 | 1998-06-26 | Toyota Central Res & Dev Lab Inc | Resonant angular velocity sensor |
TW594014B (en) * | 2003-04-09 | 2004-06-21 | Chung Shan Inst Of Science | Silicon-type dual inertia sensor |
US20050193817A1 (en) * | 2004-03-08 | 2005-09-08 | Sony Corporation | Method of manufacturing vibration gyro sensor element, vibration gyro sensor element, and method of adjusting vibration direction |
CN101303234A (en) * | 2008-05-22 | 2008-11-12 | 北京航空航天大学 | A self-decoupling high-sensitivity resonant silicon micromachined gyroscope |
CN102798386A (en) * | 2011-05-25 | 2012-11-28 | 上海飞恩微电子有限公司 | Three-degree-of-freedom resonance silicon micromechanical gyroscope |
CN102590555A (en) * | 2011-11-23 | 2012-07-18 | 中国计量学院 | Resonance-force balance capacitance type three-axis acceleration transducer and manufacture method |
CN102645211A (en) * | 2012-04-25 | 2012-08-22 | 哈尔滨工程大学 | Four-degree-of-freedom micromechanical gyroscope |
Non-Patent Citations (3)
Title |
---|
刘晓为等: "基于锁相技术的微机械陀螺闭环驱动电路", 《纳米技术与精密工程》 * |
王路达等: "一种高性能的硅微谐振陀螺", 《微细加工技术》 * |
陈伟平等: "一种全对称微机械陀螺的双级解耦机构特性", 《纳米技术与精密工程》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101629A (en) * | 2017-05-10 | 2017-08-29 | 北京航空航天大学 | A kind of silicon micro mechanical graphene beam resonant mode gyroscope |
CN107101629B (en) * | 2017-05-10 | 2019-12-17 | 北京航空航天大学 | A Silicon Micromachined Graphene Beam Resonant Gyroscope |
CN110672081A (en) * | 2019-08-30 | 2020-01-10 | 北京时代民芯科技有限公司 | A Large Capacitance Ring Resonant Micromachined Gyro |
WO2024212393A1 (en) * | 2023-04-10 | 2024-10-17 | 瑞声科技(新加坡)有限公司 | Mems device and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN104215231B (en) | 2016-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106500682B (en) | A MEMS gyroscope | |
US8187902B2 (en) | High performance sensors and methods for forming the same | |
CN101786593B (en) | Processing method of differential type high-precision accelerometer | |
CN102608356B (en) | A kind of double-shaft micromechanical resonant accelerometer structure and production method | |
CN104166016B (en) | A kind of highly sensitive 3 axis MEMS jerkmeter and manufacturing process thereof | |
CN104215236B (en) | A kind of anti-phase vibratory gyroscope of MEMS and manufacturing process thereof | |
CN113091721B (en) | MEMS gyroscope and preparation and packaging method thereof | |
CN105137121A (en) | Preparation method of low-stress acceleration meter | |
CN112747731A (en) | Five-mass-block double-axis detection silicon micro-resonant gyroscope based on out-of-plane vibration | |
CN100449265C (en) | A horizontal axis micromachined gyro and its preparation method | |
CN105445495A (en) | Symmetrical MEMS acceleration sensitive chip and manufacturing process thereof | |
CN111551161A (en) | MEMS vibrating gyroscope structure and manufacturing method thereof | |
CN104807452B (en) | Honeycomb fashion MEMS resonant silicon micro-gyroscope and its processing method | |
CN104215231B (en) | A kind of MEMS high accuracy resonance beam closed loop control gyroscope and manufacturing process thereof | |
JP4362877B2 (en) | Angular velocity sensor | |
CN102602879B (en) | Two step corrosion manufacture methods of resonance type accelerometer resonance beam and brace summer | |
CN112014597A (en) | Triaxial resonance capacitance type micro-electromechanical accelerometer | |
CN105277741B (en) | A kind of MEMS transverse acceleration sensitive chip and its manufacturing process | |
CN104215232B (en) | A kind of MEMS gyroscope and its manufacturing process | |
CN106546232B (en) | A MEMS gyroscope and its manufacturing process | |
KR100777404B1 (en) | Method and Apparatus for Estimation of Angular Velocity Using 2 Linear Acceleration Sensors | |
CN114195089A (en) | Six-mass-block MEMS (micro-electromechanical system) double-shaft gyroscope for inhibiting common-mode interference signals | |
JPH10267658A (en) | Vibration-type angular velocity sensor | |
JPH11237247A (en) | Angular velocity sensor and its manufacture | |
Zhao et al. | A micromachined vibrating wheel gyroscope with folded beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180307 Address after: 314006 room 1, floor 101, No. 551, No. 2, sub Zhong Road, Nanhu District, Jiaxing, Zhejiang Patentee after: Zhejiang core technology Co., Ltd. Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 19 Patentee before: Institute of Geology and Geophysics, Chinese Academy of Sciences |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof Effective date of registration: 20181024 Granted publication date: 20161228 Pledgee: Bank of Jiaxing science and technology branch of Limited by Share Ltd Pledgor: Zhejiang core technology Co., Ltd. Registration number: 2018330000332 |