JPH06294814A - Production method for semiconductor acceleration sensor - Google Patents

Production method for semiconductor acceleration sensor

Info

Publication number
JPH06294814A
JPH06294814A JP6854094A JP6854094A JPH06294814A JP H06294814 A JPH06294814 A JP H06294814A JP 6854094 A JP6854094 A JP 6854094A JP 6854094 A JP6854094 A JP 6854094A JP H06294814 A JPH06294814 A JP H06294814A
Authority
JP
Japan
Prior art keywords
acceleration
mass
support frame
acceleration sensor
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6854094A
Other languages
Japanese (ja)
Other versions
JPH0812199B2 (en
Inventor
Hiroyuki Kaneko
洋之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6854094A priority Critical patent/JPH0812199B2/en
Publication of JPH06294814A publication Critical patent/JPH06294814A/en
Publication of JPH0812199B2 publication Critical patent/JPH0812199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a production method for a semiconductor acceleration sensor improved in destruction resistivity of a cantilever in the case vibration near the resonance frequency or excess acceleration is added. CONSTITUTION:By combining a gap 13 between a mass part 12 and a support frame 11 in the vicinity of a part with maximum displacement in the mass part 12 using an elastic body (bridge 14) of a different material (metal film) from the beam, the sensor is so constituted that the maximum amplitude is suppressed not to be excess when vibration near the resonance frequency or excess acceleration is impressed, that signal can be detected normally without sensitivity lowering when ordinary acceleration is impressed, and that the production is attained in a series of semiconductor processing procedure at once.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、過大加速度が加わっ
た際における梁の破壊耐量を向上させた半導体加速度セ
ンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor acceleration sensor in which a beam has a high breaking resistance when an excessive acceleration is applied.

【0002】[0002]

【従来の技術】従来の半導体加速度センサとしては、例
えば、アイ イ− イ− イ− エレクトロン デバイセ
ス(IEEE Electron Devices, Vol. ED-26, N
o.12,p1911,Dec.1979 “A Batch-Fabricated Sili
con Accelerometer”)に記載されているものがある。
図2は、上記の装置の斜視図及びA−A′、B−B′断
面図である。図2において、21はSi基板、22は片
持梁、23はSi重り、24は空隙である。図2に示す
加速度センサにおいては、加速度が加わったときにSi
重り23が変位し、そのためSiの片持梁22に歪を生
ずる。この片持梁22の支持部付近にはピエゾ抵抗25
が拡散によって形成されており、片持梁22に歪を生ず
るとピエゾ抵抗効果によって上記の拡散抵抗の抵抗値が
変化する。この抵抗値の変化を検出することによって加
速度を検出することができる。
2. Description of the Related Art As a conventional semiconductor acceleration sensor, for example, an IEEE Electron Devices (Vol. ED-26, N) is used.
o.12, p1911, Dec.1979 “A Batch-Fabricated Sili
con Accelerometer ”).
FIG. 2 is a perspective view and a sectional view taken along line AA ′ and BB ′ of the above device. In FIG. 2, 21 is a Si substrate, 22 is a cantilever, 23 is a Si weight, and 24 is a void. In the acceleration sensor shown in FIG. 2, when acceleration is applied, Si
The weight 23 is displaced, which causes strain in the Si cantilever 22. A piezoresistor 25 is provided near the support of the cantilever 22.
Are formed by diffusion, and when strain occurs in the cantilever 22, the resistance value of the diffusion resistance changes due to the piezoresistance effect. The acceleration can be detected by detecting the change in the resistance value.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記のご
とき構造の加速度センサにおいては、片持梁の共振周波
数付近でSi重り23の変位が急激に増大し、片持梁の
破損を招く恐れがある。また、片持梁の破損までには至
らなくても加速度センサの出力に共振周波数付近の出力
が重複して正しいセンサ出力を示さなくなる。上記の問
題を解決するため、図3に示すように、共振周波数付近
のSi重りの変位を抑える構成が考えられている。すな
わち、図3に示す従来例においては、支持フレ−ム3
2、Si重り33、片持梁34からなる加速度センサを
適当なダンピング液35中に浸して用いるものである。
なお、31は全体を格納するパッケ−ジである。
However, in the acceleration sensor having the structure as described above, the displacement of the Si weight 23 rapidly increases in the vicinity of the resonance frequency of the cantilever, which may cause damage to the cantilever. Even if the cantilever is not broken, the output of the acceleration sensor overlaps the output near the resonance frequency and the correct sensor output cannot be obtained. In order to solve the above problem, as shown in FIG. 3, a configuration for suppressing displacement of the Si weight near the resonance frequency has been considered. That is, in the conventional example shown in FIG. 3, the support frame 3
2, an acceleration sensor including a Si weight 33 and a cantilever 34 is dipped in an appropriate damping liquid 35 for use.
Incidentally, 31 is a package for storing the whole.

【0004】しかし、上記の方法では次のごとき問題が
ある。まず第1に、この構造はチップ分割後にチップを
パッケ−ジ内に設置してダンピング液を封入する等の実
装工程を必要とするので、実装コストが高くなり、また
ダンピング液をパッケ−ジ内に密封しなければならない
ので、高信頼性を保つ実装を低コストで実現するのは困
難である。第2に、加速度センサをダンピング液中に浸
すことによる感度の低下がある。例えば、ダンピング液
として比重が約1.0g/cm3のシリコンオイルを用い
た場合、Siの比重は約2.3g/cm3であるから、ダ
ンピング液中のおもりの有効重さは約6割にまで減少し
てしまう。第3に、この構造では、チップをパッケ−ジ
内に設置してダンピング液に浸すまでは、片持梁に対す
るダンピング効果を生じないが、片持梁を形成した後の
チップの取扱い方によっては片持梁が破損する加速度が
加わる恐れがあるので、実装が完了してダンピング効果
が生じる前に片持梁が破損することがあり、そのためチ
ップの歩留まりが著しく低下することは避けられない。
However, the above method has the following problems. First of all, this structure requires a mounting process such as placing the chip in the package after dicing the chip and enclosing the damping liquid, so that the mounting cost is high and the damping liquid is stored in the package. Since it must be hermetically sealed, it is difficult to realize highly reliable packaging at low cost. Second, there is a decrease in sensitivity due to the acceleration sensor being immersed in damping liquid. For example, when silicone oil with a specific gravity of about 1.0 g / cm 3 is used as the damping liquid, the effective weight of the weight in the damping liquid is about 60% because the specific gravity of Si is about 2.3 g / cm 3. Will be reduced to. Thirdly, in this structure, the damping effect on the cantilever does not occur until the chip is placed in the package and immersed in the damping liquid, but depending on how to handle the chip after forming the cantilever. Acceleration that may damage the cantilever beam may be applied, so that the cantilever beam may be damaged before the mounting is completed and the damping effect is generated, which inevitably causes a significant decrease in chip yield.

【0005】本発明は、上記のごとき従来技術の問題を
解決するためになされたものであり、共振周波数近傍の
振動や過大加速度が加わった際における片持梁の破壊耐
量を向上させた半導体加速度センサの製造方法を提供す
ることを目的とする。
The present invention has been made in order to solve the problems of the prior art as described above, and semiconductor acceleration which improves the breaking resistance of the cantilever when vibration near the resonance frequency or excessive acceleration is applied. It is an object to provide a method for manufacturing a sensor.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、半導体基板上に形成され、加速
度に応じて変位可能な質量部と固定された支持フレ−ム
との間が、上記質量部及び支持フレ−ムと同一材質の梁
によって結合され、かつ、上記梁に形成された拡散抵抗
を有し、加速度の印加に応じて生じる上記梁の変位に応
じて上記拡散抵抗に生じる抵抗値の変化を検出すること
によって印加された加速度を検出する半導体加速度セン
サであって、上記質量部と固定された支持フレ−ムとの
間が、上記質量部の最大変位可能な部分の近傍において
上記質量部および支持フレ−ムとは異なる材質の弾性体
で結合されている半導体加速度センサを製造する方法に
おいて、請求の範囲に記載する(a)〜(g)の工程を
有することにより、一連の半導体処理工程のみで保護手
段(上記弾性体)を備えた加速度センサを製造するよう
に構成している。
In order to achieve the above-mentioned object, in the present invention, a space between a mass portion formed on a semiconductor substrate and displaceable according to acceleration and a fixed support frame is provided. , The mass part and the supporting frame are connected by a beam made of the same material, and has a diffusion resistance formed on the beam, and the diffusion resistance is changed according to the displacement of the beam caused by the application of acceleration. A semiconductor acceleration sensor for detecting an applied acceleration by detecting a change in a resistance value that occurs, wherein a space between the mass part and a fixed support frame is a maximum displaceable part of the mass part. A method for manufacturing a semiconductor acceleration sensor in which a mass is formed and an elastic body made of a material different from that of the supporting frame in the vicinity of the mass accelerometer is used, and the method includes the steps (a) to (g) described in the claims. It is configured to produce an acceleration sensor having a protective means (the elastic member) only in a series of semiconductor process steps.

【0007】[0007]

【作用】本発明においては、質量部と支持フレ−ムとの
間を、質量部の変位が最も大きくなる部分の近傍で、梁
とは異なる材質(金属膜)の弾性体で結合することによ
り、共振周波数付近の振動や過大加速度が印加された場
合には最大振幅が過大にならないように抑制し、かつ、
通常の加速度が印加された場合には、感度の低下なく正
常に検出することが出来るように構成し、また、その製
造方法を一連の半導体処理工程のみで、一度に製造する
ように構成したものである。上記のように構成したこと
により、本発明においては、加速度センサチップ製造時
に同時に保護手段が形成され、過大加速度等に対する保
護が与えられるので、その後の実装工程中においてチッ
プに過大加速度が印加された場合でも梁が破損すること
が少なくなり、そのため歩留りを大幅に向上させること
が出来る。
In the present invention, the mass part and the supporting frame are connected by an elastic body made of a material (metal film) different from that of the beam in the vicinity of the part where the displacement of the mass part is the largest. , When the vibration around the resonance frequency or the excessive acceleration is applied, the maximum amplitude is suppressed so as not to be excessive, and
When normal acceleration is applied, it is configured so that it can be detected normally without deterioration of sensitivity, and its manufacturing method is configured so that it can be manufactured at once by only a series of semiconductor processing steps. Is. With the above configuration, in the present invention, the protective means is formed at the same time when the acceleration sensor chip is manufactured, and protection against excessive acceleration or the like is given, so that excessive acceleration is applied to the chip during the subsequent mounting process. Even in this case, the beam is less likely to be damaged, so that the yield can be significantly improved.

【0008】[0008]

【実施例】図1は、本発明の製造方法によって製造した
加速度センサの一実施例図であり、(a)は全体の平面
図、(b)はブリッジ近傍部分の拡大図である。図1に
おいて、支持フレ−ム11に囲まれた変位可能な質量部
12と支持フレ−ム11との間は、支持フレ−ム11及
び質量部12と同一材質(例えばSi)の片持梁15で
接続されており、その片持梁15の上にはピエゾ抵抗1
6が形成され、いわゆる片持梁構造の加速度センサとな
っている。一方、質量部12の片持梁15と反対側、す
なわち質量部12の変位が最も大きくなる個所は、片持
梁とは異なる材質の弾性体からなるブリッジ14によっ
て、質量部12と支持フレ−ム11とが結合されてい
る。上記のブリッジ14としては、例えば、タングステ
ン等の比較的引張りに強い物質を使用することが望まし
い。また、ブリッジ14の形状は、通常の加速度検出範
囲(例えば±1G)においてはブリッジを付加したこと
によって片持梁15に発生する応力が減少せず、共振周
波数付近及び過大加速度が加わって質量部12の変位が
大きくなった時には、ブリッジのばね定数が増大して変
位を抑える方向に働くような形状にする(詳細後述)。
1A and 1B are views showing an embodiment of an acceleration sensor manufactured by a manufacturing method of the present invention. FIG. 1A is an overall plan view and FIG. 1B is an enlarged view of a portion near a bridge. In FIG. 1, between the displaceable mass portion 12 surrounded by the support frame 11 and the support frame 11, a cantilever beam made of the same material (for example, Si) as the support frame 11 and the mass portion 12 is provided. Piezoresistor 1 on the cantilever 15 which is connected by
6 is formed to serve as an acceleration sensor having a so-called cantilever structure. On the other hand, on the opposite side of the mass portion 12 from the cantilever beam 15, that is, at the location where the displacement of the mass portion 12 is the largest, the mass portion 12 and the supporting frame are supported by the bridge 14 made of an elastic material different from that of the cantilever beam. It is connected to the frame 11. As the bridge 14, it is desirable to use a material having relatively high tensile strength such as tungsten. In addition, the shape of the bridge 14 is such that in the normal acceleration detection range (for example, ± 1 G), the stress generated in the cantilever 15 does not decrease due to the addition of the bridge, and the vicinity of the resonance frequency and the excessive acceleration are applied to the mass portion. When the displacement of 12 becomes large, the spring constant of the bridge is increased so that the displacement is restrained (details will be described later).

【0009】次に、本発明の製造方法について説明す
る。図4は、製造工程の一実施例を示す断面図である。
図4において、まず(a)では、p形Si基板41上に
n形Si層42をエピタキシャル形成したものを用意す
る。次に(b)では、後に質量部と支持フレ−ム間の空
隙となる部分にp形不純物を拡散し、p+層43を形成
する。また、表面にSiO2膜44を形成する。次に
(c)では、ピエゾ抵抗を形成するためにp形不純物を
拡散し、拡散抵抗45を形成する。次に(d)では、拡
散抵抗の電極46を形成する。次に(e)では、ブリッ
ジとなる金属膜47を形成する。この金属膜はフォトリ
ソグラフィとエッチングによって所望の形状にすること
ができる。次に(f)では、質量部と片持梁を形成すた
めに、基板の裏側及び表側に保護膜48を形成して必要
な形状にパタ−ニングする。次に(g)では、上記の保
護膜48をマスクとしてエレクトロ・ケミカル・エッチ
ング等の方法によって目的の部分をエッチングし、空隙
49等を形成することにより、前記図1のごとき構造が
完成する。
Next, the manufacturing method of the present invention will be described. FIG. 4 is a sectional view showing an example of the manufacturing process.
In FIG. 4, first, in (a), a p-type Si substrate 41 on which an n-type Si layer 42 is epitaxially formed is prepared. Next, in (b), p-type impurities are diffused into a portion which will later become a gap between the mass part and the supporting frame, and a p + layer 43 is formed. Further, the SiO 2 film 44 is formed on the surface. Next, in (c), p-type impurities are diffused to form a piezoresistor, and a diffused resistor 45 is formed. Next, in (d), the electrode 46 of the diffusion resistance is formed. Next, in (e), a metal film 47 to be a bridge is formed. This metal film can be formed into a desired shape by photolithography and etching. Next, in (f), in order to form the mass portion and the cantilever, a protective film 48 is formed on the back side and the front side of the substrate and patterned into a required shape. Next, in (g), a target portion is etched by a method such as electro-chemical etching using the above-mentioned protective film 48 as a mask to form voids 49 and the like, thereby completing the structure as shown in FIG.

【0010】次に作用を説明する。図5は、前記実施例
の動作時における形状を示す図であり、(a)は小加速
度印加時、(b)は共振時及び過大加速度印加時であ
る。図示のごとく、小加速度印加時は、質量部12の変
位は小さく、ブリッジ14は或る一定のばね定数kにお
けるフックの法則に支配された働きをする。この際、ブ
リッジ14を設けたことにより、設けない場合に比べて
片持梁15に発生する応力は減少し、従ってセンサとし
ての感度は低下するが、ブリッジ14のばね定数を片持
梁15のばね定数に比べて小さくすれば、感度の低下は
無視できる程度にすることが出来る。例えば、図7に示
すように、質量部12の形状を一辺がLの正方形とし、
片持梁15の長さをh、幅をb、厚さをdとした場合
に、L=2400×10~4cm、h=600×10~4
m、b=400×10~4cm、d=12×10~4cmと
し、また質量部12の質量を6×10~3gとした場合、
このような片持梁のばね定数ksは材質をシリコン単結
晶とすれば、下記(数1)式で示される。
Next, the operation will be described. 5A and 5B are views showing a shape of the above-described embodiment at the time of operation. FIG. 5A shows a case of applying a small acceleration, and FIG. 5B shows a case of applying resonance and an excessive acceleration. As shown in the figure, when a small acceleration is applied, the displacement of the mass portion 12 is small, and the bridge 14 functions according to Hooke's law at a constant spring constant k. At this time, since the bridge 14 is provided, the stress generated in the cantilever 15 is reduced as compared with the case where the bridge 14 is not provided, and thus the sensitivity as a sensor is reduced, but the spring constant of the bridge 14 is reduced. If it is smaller than the spring constant, the decrease in sensitivity can be ignored. For example, as shown in FIG. 7, the shape of the mass portion 12 is a square with one side of L,
When the length of the cantilever 15 is h, the width is b, and the thickness is d, L = 2400 × 10 to 4 cm, h = 600 × 10 to 4 c
m, b = 400 × 10 to 4 cm, d = 12 × 10 to 4 cm, and the mass of the mass part 12 is 6 × 10 to 3 g,
The spring constant k s of such a cantilever is expressed by the following (Equation 1) formula when the material is silicon single crystal.

【0011】[0011]

【数1】 [Equation 1]

【0012】一方、ブリッジ14のばね定数kbは、ブ
リッジ14をタングステンの片持梁と仮定し、長さhb
=300×10~4cm、幅bb=6×10~4cm、厚さ
b=1.5×10~4cmとすれば、kb≒80dyn/
cmとなる。すなわち、上記の例では、ブリッジ14の
ばね定数kbは、Si片持梁15のそれに比べて約1/
70となり、小加速度範囲ではブリッジの付加による感
度低下は極くわずかで済むことが判る。
On the other hand, the spring constant k b of the bridge 14 is such that assuming that the bridge 14 is a tungsten cantilever, the length h b
= 300 × 10 to 4 cm, width b b = 6 × 10 to 4 cm, and thickness d b = 1.5 × 10 to 4 cm, k b ≈80 dyn /
cm. That is, in the above example, the spring constant k b of the bridge 14 is about 1 / th that of the Si cantilever 15.
It becomes 70, and it is understood that the sensitivity decrease due to the addition of the bridge is extremely small in the small acceleration range.

【0013】一方、共振周波数付近及び過大加速度が印
加された場合、上記の例でブリッジ14の無い場合には
印加加速度約45G相当でSi片持梁は破壊限界を超
え、その時の質量部12の変位は先端部で約470μm
となる。しかし、本発明にようにブリッジ14が設けら
れている場合には、上記の例であれば約300μm近く
の変位でブリッジのばね定数は急激に増加し、ダンピン
グ効果が急増する。図6は上記の状態を示す特性図であ
り、ブリッジを設けることにより、共振周波数f0付近
における振幅は大幅に抑制し、しかもそれ以外の周波数
範囲では、殆ど感度の変化が生じないことが判る。
On the other hand, when a resonant frequency is applied and an excessive acceleration is applied, the Si cantilever exceeds the breaking limit at an applied acceleration of about 45 G when the bridge 14 is not provided in the above example, and the mass portion 12 of the mass portion 12 at that time is exceeded. Displacement is about 470 μm at the tip
Becomes However, in the case where the bridge 14 is provided as in the present invention, in the above example, the spring constant of the bridge sharply increases with a displacement of about 300 μm, and the damping effect sharply increases. FIG. 6 is a characteristic diagram showing the above-mentioned state. By providing a bridge, it can be seen that the amplitude in the vicinity of the resonance frequency f 0 is greatly suppressed, and the sensitivity hardly changes in other frequency ranges. .

【0014】次に、図8に前記ブリッジ14の他の実施
例を示す。図8において、(a)、(b)、(c)はそ
れぞれブリッジ14の平面図であり、(a)は縦形、
(b)は横形、(c)は角を丸くし、エッジにおける応
力集中を緩和した形状である。このようにブリッジ14
は、エッチングによるパタ−ニングで自由な形状にする
ことができるので、最も効果的なばね定数、引っ張り強
度を持つ形状を作り出すことが可能である。また図8
(d)は、ブリッジ14の他の形状を示す断面図であ
る。この実施例においては、ブリッジ14は質量部12
の変位方向に湾曲させたばねとなっている。このような
構造であれば、前記(a)〜(c)のように質量部12
の変位と直角方向に湾曲させた場合に比べてブリッジの
受けるせん断応力を小さくすることが出来、過大加速度
が加わった際のブリッジ降伏限界を高くすることが出来
る。なお、これまでの実施例においては、片持梁式の半
導体加速度センサについて述べてきたが、同様の原理は
両持梁式の加速度センサについても成り立つものであ
る。
Next, FIG. 8 shows another embodiment of the bridge 14. 8, (a), (b) and (c) are plan views of the bridge 14, respectively, and (a) is a vertical type,
(B) is a horizontal shape, and (c) is a shape with rounded corners to relieve stress concentration at the edge. Bridge 14 like this
Can be formed into a free shape by patterning by etching, so that a shape having the most effective spring constant and tensile strength can be produced. See also FIG.
FIG. 6D is a sectional view showing another shape of the bridge 14. In this embodiment, the bridge 14 includes the mass 12
The spring is curved in the direction of displacement. With such a structure, the mass portion 12 as in (a) to (c) above is used.
The shear stress applied to the bridge can be made smaller than that in the case where the bridge is bent in the direction perpendicular to the displacement of, and the yield limit of the bridge when the excessive acceleration is applied can be increased. In the above embodiments, the cantilever type semiconductor acceleration sensor has been described, but the same principle can be applied to the cantilever type acceleration sensor.

【0015】[0015]

【発明の効果】以上説明してきたように、本発明におい
ては、質量部と支持フレ−ムとの間を弾性体で接続する
構造としたことにより、検出範囲内の小加速度印加時は
検出感度を低下させることなく通常の動作を行い、共振
周波数付近及び過大加速度印加時には梁の動きを抑えて
破壊を防止することが出来る、という効果が得られる。
また、本発明においては、一連の半導体処理工程のみに
よる加速度センサチップ製造時に同時にブリッジが形成
され、過大加速度等に対する保護が与えられるので、そ
の後の実装工程中においてチップに過大加速度が印加さ
れた場合でも梁が破損することが少なくなり、そのため
歩留りを大幅に向上させることが出来る。また、ダンピ
ング液等を必要としないので、実装が容易で安価に出来
る、等の多くの効果が得られる。
As described above, according to the present invention, since the mass portion and the supporting frame are connected by the elastic body, the detection sensitivity when a small acceleration within the detection range is applied. There is an effect that normal operation is performed without lowering the beam, and the movement of the beam is suppressed near the resonance frequency and when excessive acceleration is applied to prevent destruction.
Further, in the present invention, a bridge is formed at the same time when the acceleration sensor chip is manufactured only by a series of semiconductor processing steps, and protection against excessive acceleration or the like is given, so when excessive acceleration is applied to the chip during the subsequent mounting step. However, the beam is less likely to be damaged, so that the yield can be significantly improved. Further, since no damping liquid or the like is required, many effects such as easy mounting and low cost can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法によって製造した半導体加速
度センサの一実施例図であり、(a)は平面図、(b)
は要部拡大図。
1A and 1B are views showing an example of a semiconductor acceleration sensor manufactured by a manufacturing method of the present invention, in which FIG. 1A is a plan view and FIG.
Is an enlarged view of the main part.

【図2】従来装置の一例の斜視図および断面図。FIG. 2 is a perspective view and a sectional view of an example of a conventional device.

【図3】従来装置の他の例の断面図。FIG. 3 is a cross-sectional view of another example of the conventional device.

【図4】本発明の製造方法の工程を示す断面図。FIG. 4 is a cross-sectional view showing the steps of the manufacturing method of the present invention.

【図5】本発明の作用を説明するための要部側面図。FIG. 5 is a side view of a main part for explaining the operation of the present invention.

【図6】本発明の特性図。FIG. 6 is a characteristic diagram of the present invention.

【図7】図6の特性計算に用いた装置の寸法図。FIG. 7 is a dimensional diagram of the device used for the characteristic calculation of FIG.

【図8】本発明の製造方法で製造した他の実施例図であ
り、(a)、(b)および(c)は要部拡大図、(d)
は要部側面図。
FIG. 8 is a diagram of another embodiment manufactured by the manufacturing method of the present invention, in which (a), (b) and (c) are enlarged views of a main part, and (d).
Is a side view of the main part.

【符号の説明】[Explanation of symbols]

11…支持フレ−ム 12…質量部 13…空隙 14…ブリッジ 15…片持梁 16…ピエゾ抵抗 41…p形Si基板 42…n形Si層 43…p+領域 44…SiO2膜 45…拡散抵抗 46…拡散抵抗の電極 47…ブリッジとなる金属膜 48…保護膜 49…空隙11 ... supporting frame - arm 12 ... parts by 13 ... gap 14 ... Bridge 15 ... cantilever 16 ... piezoresistive 41 ... p-type Si substrate 42 ... n-type Si layer 43 ... p + region 44 ... SiO 2 film 45 ... diffusion Resistor 46 ... Diffusion resistance electrode 47 ... Bridge metal film 48 ... Protective film 49 ... Void

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成され、加速度に応じて
変位可能な質量部と固定された支持フレ−ムとの間が、
上記質量部及び支持フレ−ムと同一材質の梁によって結
合され、かつ、上記梁に形成された拡散抵抗を有し、加
速度の印加に応じて生じる上記梁の変位に応じて上記拡
散抵抗に生じる抵抗値の変化を検出することによって印
加された加速度を検出する半導体加速度センサであっ
て、上記質量部と固定された支持フレ−ムとの間が、上
記質量部の最大変位可能な部分の近傍において上記質量
部および支持フレ−ムとは異なる材質の弾性体で結合さ
れている半導体加速度センサを製造する方法において、
下記の工程を有することを特徴とする半導体加速度セン
サの製造方法。 (a)第1導電型の半導体基板上に反対導電型のエピタ
キシャル層を形成する工程。 (b)上記エピタキシャル層内で、後に上記質量部と上
記支持フレ−ム間の空隙となる部分に第1導電型の不純
物を拡散して、第1導電型の高濃度拡散領域を形成し、
かつ表面に絶縁膜を形成する工程。 (c)上記エピタキシャル層内の所定部分に第1導電型
の不純物を拡散して、拡散抵抗を形成する工程。 (d)上記拡散抵抗に接続する電極を形成する工程。 (e)上記質量部の先端部と上記支持フレームとに架け
て、上記弾性体となる金属膜を形成し、所望の弾性体形
状にエッチングする工程。 (f)基板の裏側及び表側に保護膜を形成して必要な形
状にパタ−ニングする工程。 (g)上記保護膜をマスクとして上記高濃度拡散領域を
含む所望の部分をエッチングして、上記質量部と上記梁
を形成し、質量部の先端部と支持部分とが上記弾性体形
状の金属膜で接続された構造を形成する工程。
1. A space between a fixed mass formed on a semiconductor substrate and displaceable in response to acceleration and a fixed support frame,
It is connected by a beam of the same material as the mass part and the supporting frame, and has a diffusion resistance formed on the beam, and the diffusion resistance is generated according to the displacement of the beam caused by the application of acceleration. A semiconductor acceleration sensor for detecting an applied acceleration by detecting a change in resistance value, wherein a space between the mass part and a fixed support frame is near a maximum displaceable part of the mass part. In the method of manufacturing a semiconductor acceleration sensor, which is coupled with an elastic body made of a material different from that of the mass portion and the support frame,
A method of manufacturing a semiconductor acceleration sensor, comprising the following steps. (A) A step of forming an epitaxial layer of the opposite conductivity type on a semiconductor substrate of the first conductivity type. (B) In the epitaxial layer, a first conductivity type impurity is diffused in a portion which will later become a gap between the mass part and the support frame to form a first conductivity type high concentration diffusion region,
And a step of forming an insulating film on the surface. (C) A step of diffusing a first conductivity type impurity into a predetermined portion in the epitaxial layer to form a diffusion resistance. (D) A step of forming an electrode connected to the diffusion resistance. (E) A step of bridging the tip portion of the mass portion and the support frame to form a metal film serving as the elastic body, and etching the metal film into a desired elastic body shape. (F) A step of forming a protective film on the back side and the front side of the substrate and patterning into a required shape. (G) A desired portion including the high-concentration diffusion region is etched using the protective film as a mask to form the mass portion and the beam, and the tip end portion of the mass portion and the supporting portion are made of the elastic metal. Forming a membrane connected structure.
JP6854094A 1994-04-06 1994-04-06 Method of manufacturing semiconductor acceleration sensor Expired - Lifetime JPH0812199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6854094A JPH0812199B2 (en) 1994-04-06 1994-04-06 Method of manufacturing semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6854094A JPH0812199B2 (en) 1994-04-06 1994-04-06 Method of manufacturing semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH06294814A true JPH06294814A (en) 1994-10-21
JPH0812199B2 JPH0812199B2 (en) 1996-02-07

Family

ID=13376687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6854094A Expired - Lifetime JPH0812199B2 (en) 1994-04-06 1994-04-06 Method of manufacturing semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0812199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138380A (en) * 1998-11-04 2000-05-16 Toyota Motor Corp Semiconductor device
JP2010060336A (en) * 2008-09-02 2010-03-18 Dainippon Printing Co Ltd Uniaxial semiconductor acceleration sensor
CN102298075A (en) * 2011-05-23 2011-12-28 西安交通大学 Acceleration sensor chip with compound multiple-beam structure and manufacturing method thereof
CN104215231A (en) * 2013-06-05 2014-12-17 中国科学院地质与地球物理研究所 MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138380A (en) * 1998-11-04 2000-05-16 Toyota Motor Corp Semiconductor device
JP2010060336A (en) * 2008-09-02 2010-03-18 Dainippon Printing Co Ltd Uniaxial semiconductor acceleration sensor
CN102298075A (en) * 2011-05-23 2011-12-28 西安交通大学 Acceleration sensor chip with compound multiple-beam structure and manufacturing method thereof
CN104215231A (en) * 2013-06-05 2014-12-17 中国科学院地质与地球物理研究所 MEMS high precision resonant beam closed-loop control gyroscope and manufacturing process thereof
CN104215231B (en) * 2013-06-05 2016-12-28 中国科学院地质与地球物理研究所 A kind of MEMS high accuracy resonance beam closed loop control gyroscope and manufacturing process thereof

Also Published As

Publication number Publication date
JPH0812199B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US3049685A (en) Electrical strain transducer
US5165289A (en) Resonant mechanical sensor
US4553436A (en) Silicon accelerometer
US4244225A (en) Mechanical resonator arrangements
US7594440B2 (en) Highly sensitive piezoresistive element
JP2560140B2 (en) Semiconductor device
US4305298A (en) Mechanical resonator arrangements
US6453744B2 (en) Low radiation capture cross-section electrode material for prompt radiation environments
GB2130373A (en) Accelerometer device
JPH06294814A (en) Production method for semiconductor acceleration sensor
JPH08247768A (en) Angular velocity sensor
JPH08107219A (en) Semiconductor acceleration sensor and its manufacture
JP2624311B2 (en) Semiconductor sensor
GB1596982A (en) Mechanical resonator arrangements
JPH0679033B2 (en) Semiconductor acceleration sensor
JP2936926B2 (en) Semiconductor acceleration sensor
JPS61139719A (en) Semiconductive rotation sensor
GB2130372A (en) Accelerometer device
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH06242139A (en) Semiconductor acceleration sensor
JPH0740045B2 (en) Semiconductor acceleration sensor
JPH0624773Y2 (en) Semiconductor acceleration sensor
JP2624315B2 (en) Semiconductor sensor
JP2851049B2 (en) Semiconductor sensor
JP3170667B2 (en) Semiconductor acceleration sensor