CN102566090B - 一种光波导开关 - Google Patents

一种光波导开关 Download PDF

Info

Publication number
CN102566090B
CN102566090B CN201110461701.1A CN201110461701A CN102566090B CN 102566090 B CN102566090 B CN 102566090B CN 201110461701 A CN201110461701 A CN 201110461701A CN 102566090 B CN102566090 B CN 102566090B
Authority
CN
China
Prior art keywords
waveguide
capacitor
modulation
arm
modulation part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110461701.1A
Other languages
English (en)
Other versions
CN102566090A (zh
Inventor
李冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Xinji Photon Integration Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102566090A publication Critical patent/CN102566090A/zh
Application granted granted Critical
Publication of CN102566090B publication Critical patent/CN102566090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种具有高消光比的光波导开关。本发明公开的光波导开关采用了非对称的基于半导体的波导MZI结构,在一个实施例中,MZI的两条臂上采用了不同的波导电容器结构:一条臂采用的波导电容器中,被存储的载流子迁移率低,主要实现振幅调制;另一条臂采用的波导电容器中,被存储的载流子迁移率高,主要实现相位调制。采用本发明公开的光波导开关结构,可以实现几乎无限大的消光比。

Description

一种光波导开关
技术领域
本发明涉及一种光波导开关,尤其是一种采用MZI结构的光波导开关。
背景技术
采用马赫-泽恩德干涉仪(MZI)结构构成光波导开关或调制器是一种常见的技术。在美国专利7817881中,引入了波导电容器的概念,在这种波导电容器的波导芯区中能够储存自由载流子,用来调制波导材料的折射率。
在硅光子学中,自由载流子色散效应被应用于调制硅的折射率,因而可以采用MZI结构来构成开关或是振幅调制器。然而,在自由载流子色散效应中,所注入的自由载流子不仅能影响折射率的实部,而且还能影响折射率的虚部,即它在调制相位的同时会引起光的衰减。由于MZI的两条臂所输出的光束发生干涉时的光功率不同,MZI构成的光开关不能达到一个非常高的消光比。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于半导体材料的具有高消光比的光波导开关。本发明通过下述技术方案予以实现:
一种光波导开关,包括一个基于半导体的波导MZI结构,其中,所述MZI结构包括第一波导臂,第二波导臂,两个输入端口和两个输出端口;所述MZI结构的第一波导臂包括一个相位调制部分,所述相位部分包括一段波导电容器;所述MZI结构的第二波导臂包括一个由一段不同结构的波导电容器构成的振幅调制部分;所述振幅调制部分中的波导电容器的存储电荷区域的载流子迁移率低于所述相位调制部分中的波导电容器的存储电荷区域的载流子迁移率。
如上所述的一种光波导开关,其中,所述振幅调制部分中的波导电容器的存储电荷区域的背景离子浓度高于所述相位调制部分中的波导电容器的存储电荷区域的背景离子浓度,因此前者的载流子迁移率低于后者的载流子迁移率。
如上所述的一种光波导开关,其中,仅在第一波导臂上有所述相位调制部分,仅在第二波导臂上有所述振幅调制部分,所述有相位调制部分的第一波导臂被称为相位调制臂,所述有振幅调制部分的第二波导臂被称为振幅调制臂。
如上所述的一种光波导开关,其中,所述相位调制部分的波导电容器是一种PIN结型波导电容器,所述振幅调制部分的波导电容器是一种PN结型波导电容器。
如上所述的一种光波导开关,其中,所述波导电容器是一种脊加载型波导电容器,所述脊加载型波导电容器包括一层加载在一个SOI脊波导上方的半导体薄膜,和一层位于所述半导体薄膜和所述脊波导之间的绝缘薄膜层。
另一种光波导开关,包括一个基于半导体的波导MZI结构,其中,所述MZI结构包括第一波导臂,第二波导臂,两个输入端口和两个输出端口;所述MZI结构的第一波导臂和第二波导臂均包括一个相位调制部分和一个振幅调制部分;所述相位调制部分包括一段波导电容器;所述振幅调制部分包括一段不同结构的波导电容器;所述振幅调制部分中的波导电容器的存储电荷区域的载流子迁移率低于所述相位调制部分中的波导电容器的存储电荷区域的载流子迁移率。
如上所述的一种光波导开关,其中,所述振幅调制部分中的波导电容器的存储电荷区域的背景离子浓度高于所述相位调制部分中的波导电容器的存储电荷区域的背景离子浓度,因此前者的载流子迁移率低于后者的载流子迁移率。
如上所述的一种光波导开关,其中,所述相位调制部分的波导电容器是一种PIN结型波导电容器,所述振幅调制部分的波导电容器是一种PN结型波导电容器。
如上所述的一种光波导开关,其中,所述波导电容器是一种脊加载型波导电容器,所述脊加载型波导电容器包括一层加载在一个SOI脊波导上方的半导体薄膜,和一层位于所述半导体薄膜和所述脊波导之间的绝缘薄膜层。
由于采用上述技术方案,本发明提供的一种光波导开关能够实现极高的消光比,从而提高器件效率。本发明公开的光波导开关中采用了不对称的MZI结构,所述MZI的两条臂上采用了不同的波导电容器结构:一条臂采用的波导电容器中,被存储的载流子迁移率低,主要实现振幅调制;另一条臂采用的波导电容器中,被存储的载流子迁移率高,主要实现相位调制。在本发明公开的光波导开关基础上,根据自由载流子效应设计算法和迭代过程,不断修正对MZI的两条波导臂的离子注入,最终使两条波导臂输出光功率无限接近而实现极高的消光比。
附图说明
图1是本发明公开的一种光波导开关的一个实施例的结构示意图。
图2是图1中光波导开关1-1截面的示意图。
图3是本发明公开的光波导开关中采用脊加载波导电容器的结构示意图。
图4是本发明公开的光波导开关中每条臂上都有相位调制部分和振幅调制部分的结构示意图。
具体实施方式
下面通过具体实施例并结合附图对本发明进行详细地说明:
本发明公开了一种具有高消光比的采用非对称的基于半导体的波导MZI结构的光波导开关,其中MZI结构的两条臂采用不同的波导电容器结构:一条臂采用的波导电容器中,背景离子浓度高,主要实现振幅调制;另一条臂采用的波导电容器中,背景离子浓度低,主要实现相位调制。光波导上的PN结和PIN结属于能够实现前述功能的波导电容器的两个特例。PN结的背景离子浓度较高,而PIN结的背景离子浓度较低。这里的“较高”或“较低”是相对的,也就是说,其中一个背景离子浓度高于另一个背景离子浓度,那么另一个背景离子浓度就称为“较低”。
图1是本发明公开的一种光波导开关的一个实施例的结构示意图。如图1所示的实施例中,从输入端到输出端,光波导开关40包括两个输入端口51,52,一对输入硅波导17,18,耦合波导17,18的3dB输入耦合器3,两条波导臂19,20,一对输出硅波导24,25,耦合波导24,25的3dB输出耦合器4,和两个输出端口53,54。波导臂19包括一个突变PN结190。波导臂20包括一个PIN结200。振幅调制电极22位于波导臂19的突变PN结190处的P型掺杂区191上方,并且相位调制电极23位于波导臂20的PIN结200处的P型掺杂区201上方。接地电极21位于突变PN结190和PIN结200的N型掺杂区192,202的上方。
突变PN结190和PIN结200之间的区别在于背景离子注入浓度不同。根据自由载流子色散理论,
Δα = e 3 λ 2 4 π 2 c 3 ϵ 0 n ( Δ N e μ e ( m e * ) 2 + Δ N h μ h ( m h * ) 2 ) - - - ( 1 )
Δn = - e 2 λ 2 8 π 2 c 2 ϵ 0 n ( Δ N e m e * + Δ N h m h * ) - - - ( 2 )
其中,Δα表示折射率调制的虚部(对应衰减),Δn表示折射率调制的实部(对应相位移)。请注意,该折射率调制的虚部与载流子的迁移率μ是相关的,而折射率调制的实部(产生相位移)与迁移率μ是无关的。而硅材料中自由载流子的迁移率可由表达式(3)得出,
μ = μ min + μ max - μ min 1 + ( N s N r ) η - - - ( 3 )
正如表达式(3)所示,迁移率μ随着背景离子注入Ns变化。在突变PN结中,载流子注入的区域是P型掺杂区或N型掺杂区,相比之下,在PIN结中,载流子注入的是本征区(即没有任何背景离子浓度)。因此,与PN结相比,PIN结可以得到更大的Δn值和更小的Δα值,其中,当背景注入浓度非常大的时候,在PIN结中Δα(振幅调制)对折射率的影响会比Δn(相位调制)大得多。
特别是,可通过交替地注入相反类型的掺杂物(P或者N),使它们彼此重叠,从而在保持净注入浓度不变的同时增加背景离子注入浓度。所以,按照这种方法设计和制作的PN结和PIN结,其中,PN结能高效地使光衰减,而MZI的另一条带PIN结的臂(波导臂20)能够有效地进行相位调制,而引发的寄生衰减却很小。
得到如图1所示的非对称MZI结构后,我们就可以设计一个算法来实现光开关工作期间几乎无限大的消光比。假设3dB输入和输出耦合器3,4是完全平衡的(在实际应用中,不平衡的3dB耦合器也可以通过改进的算法进行补偿,从而达到平衡),同时MZI的两条臂19,20的静态损耗和光学长度也是完全一致的,那么图1所示器件的输出结果可以由以下推导得出,
B 1 = 1 2 A B 2 = - j 1 2 A - - - ( 4 )
表达式(4)是3dB输入耦合器3的输出结果,其中B1和B2分别对应波导臂19和波导臂20。并且,
C 1 = B 1 · exp [ - Δα ( N epn , N hpn , N s ) · L pn ] · exp [ - j · Δβ ( N epn , N hpn ) · L pn ] C 2 = B 2 · exp [ - Δα ( N epin , N hpin , 0 ) · L pin ] · exp [ - j · Δβ ( N epin , N hpin ) · L pin ] - - - ( 5 )
表达式(5)是MZI两条波导臂末端(光经过PN结和PIN结后)的光场,C1代表PN结波导臂19的光场,C2代表PIN结波导臂20的光场。然后,图1所示器件在3dB输出耦合器4的输出端口53,54处的输出结果,可以由下述表达式(6)得出,
D 1 = 1 2 C 1 - j 1 2 C 2 D 2 = - j 1 2 C 1 + 1 2 C 2 - - - ( 6 )
D1和D2分别是输出端口53和54的输出结果。在表达式(5)中,-Δα(Nepn,Nhpn,Ns)·Lpn是波导臂19所引起的衰减,其中,Lpn是PN结的长度,Δα是由(1)式所得出的衰减常数,括号里Nepn,Nhpn和Ns分别是电子浓度,空穴浓度和背景离子浓度。-j·Δβ(Nepin,Nhpin)·Lpin是波导臂20引起的相位调制,其中Δβ是表达式(2)表示的折射率调制所引起的相位传播常数调制,Nepin和Nhpin是注入载流子浓度,Lpin是PIN结200的长度。
当没有载流子注入到任一波导臂中时,则图1中的器件处于交叉状态(CROSS),此时输出端口53,54的输出结果如表达式(7)所示,
D 1 = 0 D 2 = A - - - ( 7 )
此处,我们不考虑3dB耦合器和MZI波导臂的静态损耗。为使器件进入直通状态(BAR),可以向波导臂20中注入载流子使其产生π相移。如果PN结190中没有载流子注入,那么根据-Δα(Nepin,Nhpin,0)·Lpin,表达式(5)中的C1和C2的光功率将会不平衡。例如,如果向PIN结200中引入5×1017cm^-3的载流子浓度调制,那么消光比会小于30dB。
PN结190的补偿注入可以通过以下迭代过程得出:1)向PN结波导臂19引入一个衰减,使其等于-Δα(Nepin,Nhpin,0)·Lpin引起的衰减(波导臂20的衰减);2)然后稍微地增加PIN结200的离子注入,以平衡PN结波导臂19的相位项-j·Δβ(Nepn,Nhpn)·Lpn;3)然后再修正PN结190的注入,使衰减再一次平衡;4)重复1-3)步,直到两条臂所要求的载流子注入无限接近。当PN结190区域的背景离子浓度是2×1018cm^-3时,如果不用考虑其他不理想因素,那么,仅需要额外的23.5%的载流子注入到PIN结200中,从而改善BAR状态下光开关的消光比,使其值接近无限大。
图2是图1中光波导开关1-1截面的示意图。如图2所示,PN结190是一个由脊波导构成的波导电容器。PN结190包括P型掺杂区191和N型掺杂区192。同样地,PIN结200也是一个由脊波导构成的波导电容器。PIN结200包括N型掺杂区202,本征区203和P型掺杂区201。它们的电容本身就是PN和PIN的结电容。PN结190的背景离子浓度高于PIN结200的背景离子浓度。
本发明公开的采用非对称MZI结构的光波导开关的技术方案有多种实施例变化。图3是本发明公开的光波导开关中采用脊加载波导电容器的结构示意图。
波导电容器是用来描述一种光波导的专业术语,在这种光波导内部有一个存储电荷(半导体中电子或空穴)的电容器。如美国专利7817881所述,这是所有采用自由载流子色散效应的电光器件的一个基本构建模块。实际上,前面所述的光波导上的PN结和PIN结也是波导电容器的两种类型,其中电容就是PN和PIN的结电容本身。
如图3所示,在此实施例中,光波导开关40包括了一个采用波导电容器的非对称MZI结构。与图1中的结构相比,另一种波导电容器取代了突变PN结和PIN结。图3中,波导电容器26,27是脊加载型波导电容结构,此结构是通过在普通的脊波导(假设是SOI硅波导)上方加载一层半导体薄膜形成,即脊波导261上加载半导体薄膜260,脊波导271上加载半导体薄膜270。其中,脊波导261包括硅平板262和硅脊263,脊波导271包括硅平板272和硅脊273。如果加载的半导体是多晶硅,并且夹在硅脊263和半导体薄膜260之间,以及硅脊273和半导体薄膜270之间的绝缘薄膜层(图中没有描述)是栅氧化层,那么这种波导电容器所采用的电容实际上就是普通CMOS工艺下的MOS电容。在波导臂19(振幅调制臂)上,加载的半导体薄膜260和硅脊263的背景离子浓度都是重掺杂。请注意,这种重掺杂可以通过交替地进行P型掺杂或N型掺杂来实现,同时掺杂区必须有低净注入浓度以避免在没有加载电压的情况下产生大量的自由载流子衰减。在波导臂20(相位调制臂)上,加载的半导体薄膜270和硅脊273都是轻掺杂,以确保非常小的背景离子浓度。
同时,两条臂的净掺杂浓度都需要足够大以确保材料的导电性,以便波导电容26、27能短时间内及时地充放电。加载的半导体材料及其下方的硅材料的净掺杂浓度分布可以不均匀,例如,中心区域(对应于硅脊)的净掺杂浓度可以小于侧部区域(硅脊的两侧)的净掺杂浓度,这样可以同时满足导电性高且波导光衰减低的要求。
本发明公开的一种光波导开关也可以有其他不同类型的实施例。图4是本发明公开的光波导开关中每条臂上都有相位调制部分和振幅调制部分的结构示意图。
在图4所示实施例中,MZI的两条臂的物理结构实际上是一样的。MZI的每条臂上都有相位调制部分和振幅调制部分。波导臂19包括相位调制部分15和振幅调制部分16,波导臂20包括相位调制部分28和振幅调制部分29。相位调制部分15的结构和图3中的波导电容器27的结构相同,而振幅调制部分16与图3中的波导电容器26的结构相同。请注意,在图4的波导臂20上,相位调制部分28与相位调制部分15的结构相同,振幅调制部分29与振幅调制部分16的结构相同。
尽管如此,图4中的器件工作方式是非对称的:两条波导臂19,20(也称为北臂和南臂)的相位调制部分15和28的工作方式不同,即当波导臂19的相位调制部分15有载流子注入时,波导臂20的相位调制部分28会有载流子提取,反之亦然。可以通过振幅调制部分16和29来补偿相位调制部分15和28工作所造成的寄生衰减。上述工作和补偿的详细算法和迭代过程,可以参见本发明前文所述。
以上实施方式对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施方式中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (9)

1.一种光波导开关,其特征在于, 
所述光波导开关包括一个基于半导体的波导MZI结构,其中,所述MZI结构包括第一波导臂,第二波导臂,两个输入端口和两个输出端口; 
所述MZI结构的第一波导臂包括一个相位调制部分,所述相位调制部分包括一段波导电容器; 
所述MZI结构的第二波导臂包括一个振幅调制部分,所述振幅调制部分包括一段波导电容器,所述第二波导臂的波导电容器的结构不同于第一波导臂的波导电容器的结构; 
所述振幅调制部分中的波导电容器的存储电荷区域的载流子迁移率低于所述相位调制部分中的波导电容器的存储电荷区域的载流子迁移率。 
2.根据权利要求1所述的一种光波导开关,其特征在于,所述振幅调制部分中的波导电容器的存储电荷区域的背景离子浓度高于所述相位调制部分中的波导电容器的存储电荷区域的背景离子浓度。 
3.权利要求1所述的一种光波导开关,其特征在于, 
仅在第一波导臂上有所述相位调制部分; 
仅在第二波导臂上有所述振幅调制部分; 
所述有相位调制部分的第一波导臂被称为相位调制臂; 
所述有振幅调制部分的第二波导臂被称为振幅调制臂。 
4.根据权利要求1或3所述的一种光波导开关,其特征在于,所述相位调制部分的波导电容器是一种PIN结型波导电容器,所述振幅调制部分的波导电容器是一种PN结型波导电容器。 
5.根据权利要求1或3所述的一种光波导开关,其特征在于,所述波导电容器是一种脊加载型波导电容器,所述脊加载型波导电容器包括一层加载在一个SOI脊波导上方的半导体薄膜,和一层位于所述半导体薄膜和所述脊波导之间的绝缘薄膜层。 
6.一种光波导开关,其特征在于, 
所述光波导开关包括一个基于半导体的波导MZI结构,其中,所述MZI结构包括第一波导臂,第二波导臂,两个输入端口和两个输出端口; 
所述MZI结构的第一波导臂和第二波导臂均包括一个相位调制部分和一个振幅调制部分; 
所述相位调制部分包括一段波导电容器; 
所述振幅调制部分包括一段波导电容器,所述相位调制部分的波导电容器的结构不同于振幅调制部分的波导电容器的结构; 
所述振幅调制部分中的波导电容器的存储电荷区域的载流子迁移率低于所述相位调制部分中的波导电容器的存储电荷区域的载流子迁移率。 
7.根据权利要求6所述的一种光波导开关,其特征在于,所述振幅调制部分中的波导电容器的存储电荷区域的背景离子浓度高于所述相位调制部分中的波导电容器的存储电荷区域的背景离子浓度。 
8.根据权利要求6所述的一种光波导开关,其特征在于,所述相位调制部分的波导电容器是一种PIN结型波导电容器,所述振幅调制部分的波导电容器是一种PN结型波导电容器。 
9.根据权利要求6所述的一种光波导开关,其特征在于,所述波导电容器是一种脊加载型波导电容器,所述脊加载型波导电容器包括一层加载在一个SOI脊波导上方的半导体薄膜,和一层位于所述半导体薄膜和所述脊波导之间的绝缘薄膜层。 
CN201110461701.1A 2010-12-22 2011-12-22 一种光波导开关 Active CN102566090B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201061426400P 2010-12-22 2010-12-22
US61/426400 2010-12-22

Publications (2)

Publication Number Publication Date
CN102566090A CN102566090A (zh) 2012-07-11
CN102566090B true CN102566090B (zh) 2014-12-10

Family

ID=46313180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110461701.1A Active CN102566090B (zh) 2010-12-22 2011-12-22 一种光波导开关

Country Status (3)

Country Link
US (1) US8983241B2 (zh)
CN (1) CN102566090B (zh)
WO (1) WO2012083864A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638981B2 (en) * 2015-02-24 2017-05-02 Huawei Technologies Co., Ltd. Optical switch with improved switching efficiency
US9696604B1 (en) * 2016-09-09 2017-07-04 Inphi Corporation Method for forming a self-aligned Mach-Zehnder interferometer
EP3571546B1 (en) 2017-01-18 2023-03-15 NeoPhotonics Corporation Method and apparatus for phase-matched optical and rf wave propagations for semiconductor-based mzm modulators
CN110672923B (zh) * 2019-09-02 2021-09-14 宁波大学 一种硅波导导纳的检测系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251559A (zh) * 2008-04-16 2008-08-27 清华大学 一种用于强电场测量的无电极型的光电集成传感器

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758531A (en) 1987-10-23 1988-07-19 International Business Machines Corporation Method of making defect free silicon islands using SEG
FR2625333B1 (fr) 1987-12-24 1993-09-10 Commissariat Energie Atomique Procede de fabrication de microguides de lumiere a faibles pertes de propagation optique par depot de multicouches
US4932032A (en) 1989-08-03 1990-06-05 At&T Bell Laboratories Tapered semiconductor waveguides
US5078516A (en) 1990-11-06 1992-01-07 Bell Communications Research, Inc. Tapered rib waveguides
JP3162424B2 (ja) 1991-05-27 2001-04-25 キヤノン株式会社 導波型光検出器及びその作製方法
US5220296A (en) 1991-11-01 1993-06-15 Massachusetts Institute Of Technology Coupler for electrical waveguides and mechanical waveguides
US5355422A (en) 1992-11-09 1994-10-11 Honeywell Inc. Broadband optical modulator
JPH09153638A (ja) 1995-11-30 1997-06-10 Nec Corp 導波路型半導体受光装置およびその製造方法
IT1291194B1 (it) 1997-03-14 1998-12-29 Cselt Centro Studi Lab Telecom Accoppiatore ottico non lineare
US5814564A (en) 1997-05-15 1998-09-29 Vanguard International Semiconductor Corporation Etch back method to planarize an interlayer having a critical HDP-CVD deposition process
JPH11248949A (ja) 1998-02-27 1999-09-17 Hitachi Cable Ltd 光波長合分波器
WO2000011508A1 (en) 1998-08-24 2000-03-02 The Furukawa Electric Co., Ltd. Array waveguide diffraction grating optical multiplexer/demultiplexer
JP2000131541A (ja) 1998-10-27 2000-05-12 Hitachi Cable Ltd 光波長合分波器
US6278820B1 (en) 1999-04-28 2001-08-21 The Boeing Company High power and large bandwidth traveling-wave photodetector
EP1136852A1 (en) 1999-08-10 2001-09-26 The Furukawa Electric Co., Ltd. Array waveguide diffraction grating
US6654729B1 (en) 1999-09-27 2003-11-25 Science Applications International Corporation Neuroelectric computational devices and networks
KR100510996B1 (ko) 1999-12-30 2005-08-31 주식회사 하이닉스반도체 선택적 에피텍셜 성장 공정의 최적화 방법
US6434303B1 (en) 2000-07-14 2002-08-13 Applied Wdm Inc. Optical waveguide slab structures
FR2820890A1 (fr) 2001-02-15 2002-08-16 Cit Alcatel Composant optique integre monolithique comportant un modulateur et un transistor bipolaire a heterojonction
US20020159684A1 (en) 2001-03-15 2002-10-31 Zenastra Photonics Inc. Novel optical waveguide switch using cascaded mach-zehnder interferometers
US20020197016A1 (en) 2001-06-20 2002-12-26 Sethumadhavan Chandrasekhar Photodetector having a waveguide and resonant coupler and a method of manufacture therefor
KR100434698B1 (ko) 2001-09-05 2004-06-07 주식회사 하이닉스반도체 반도체소자의 선택적 에피성장법
US20030052082A1 (en) 2001-09-19 2003-03-20 Anisul Khan Method of forming optical waveguides in a semiconductor substrate
US6856733B2 (en) 2001-12-07 2005-02-15 Intel Corporation 1xN fanout waveguide photodetector
GB2384570B (en) 2002-01-19 2005-06-29 Marconi Optical Components Ltd Modulators
GB2384620A (en) 2002-01-25 2003-07-30 Denselight Semiconductors Pte A high speed waveguide photodetector
US6749893B2 (en) 2002-01-31 2004-06-15 Dalsa Semiconductor Inc. Method of preventing cracking in optical quality silica layers
US6870152B2 (en) 2002-02-01 2005-03-22 Georgia Tech Research Corporation Segmented photodetectors for detection and compensation of modal dispersion in optical waveguides
GB0208255D0 (en) 2002-04-10 2002-05-22 Imec Inter Uni Micro Electr Photonic crystal based fiber-to-waveguide coupler for polarisation independent photonic integrated circuits
US6956983B2 (en) 2002-05-31 2005-10-18 Intel Corporation Epitaxial growth for waveguide tapering
US7453132B1 (en) 2002-06-19 2008-11-18 Luxtera Inc. Waveguide photodetector with integrated electronics
US7010208B1 (en) 2002-06-24 2006-03-07 Luxtera, Inc. CMOS process silicon waveguides
US6819839B2 (en) 2002-07-23 2004-11-16 Intel Corporation Tapered waveguide photodetector apparatus and methods
US6999670B1 (en) 2002-08-27 2006-02-14 Luxtera, Inc. Active waveguides for optoelectronic devices
CN100479357C (zh) 2002-11-15 2009-04-15 中国科学院上海微系统与信息技术研究所 平面光波导分段布喇格光栅波分复用器/解复用器
CN1512207A (zh) 2002-12-26 2004-07-14 上海乐通光通信有限公司 反射式温度不敏感阵列波导光栅器件
KR100493047B1 (ko) 2003-02-13 2005-06-07 삼성전자주식회사 선택적 에피택셜 성장을 이용한 반도체 소자의 국부 배선형성 방법
US7120350B2 (en) 2003-03-14 2006-10-10 Intel Corporation Integrated waveguide photodetector
US6991892B2 (en) 2003-03-17 2006-01-31 Intel Corporation Methods of making an integrated waveguide photodetector
US7118682B2 (en) 2003-03-28 2006-10-10 Sioptical, Inc. Low loss SOI/CMOS compatible silicon waveguide and method of making the same
US20040208421A1 (en) 2003-04-17 2004-10-21 Alps Electric Co., Ltd. Mach-zehnder interferometer optical switch and mach-zehnder interferometer temperature sensor
US7065273B2 (en) 2003-06-20 2006-06-20 Intel Corporation Wideband arrayed waveguide grating
WO2005006250A1 (en) 2003-06-25 2005-01-20 Variance Dynamical, Inc. Apparatus and method for detecting and analyzing spectral components
US7116853B2 (en) 2003-08-15 2006-10-03 Luxtera, Inc. PN diode optical modulators fabricated in rib waveguides
US7136544B1 (en) 2003-08-15 2006-11-14 Luxtera, Inc. PN diode optical modulators fabricated in strip loaded waveguides
KR20050025384A (ko) 2003-09-06 2005-03-14 한국전자통신연구원 도파로형 광 검출기
US7016587B2 (en) 2004-01-20 2006-03-21 Xerox Corporation Low loss silicon waveguide and method of fabrication thereof
US7037793B2 (en) 2004-02-09 2006-05-02 United Microelectronics Corp. Method of forming a transistor using selective epitaxial growth
US7068885B2 (en) 2004-03-24 2006-06-27 Enablence, Inc. Double diffraction grating planar lightwave circuit
US7149387B2 (en) 2004-03-24 2006-12-12 Enablence Inc. Double diffraction grating with flat passband output
CN1961254A (zh) * 2004-03-31 2007-05-09 皮雷利&C.有限公司 光调制器
JP2006013252A (ja) 2004-06-28 2006-01-12 Hitachi Cable Ltd レーザダイオードの制御方法、制御回路、および光送信器
US7289698B2 (en) 2004-11-15 2007-10-30 Analog Devices, Inc. High bitrate transport over multimode fibers
KR100577929B1 (ko) 2004-11-25 2006-05-10 한국전자통신연구원 도파로형 광 검출기
US7088890B2 (en) 2004-11-30 2006-08-08 Intel Corporation Dual “cheese wedge” silicon taper waveguide
US7272273B2 (en) 2005-01-21 2007-09-18 Neophotonics Corporation Photodetector coupled to a planar waveguide
US7352926B2 (en) 2005-03-31 2008-04-01 Eastman Kodak Company Visual display with electro-optical addressing architecture
JP4899356B2 (ja) 2005-06-30 2012-03-21 富士通オプティカルコンポーネンツ株式会社 光変調器
US7807523B2 (en) 2005-07-01 2010-10-05 Synopsys, Inc. Sequential selective epitaxial growth
US7305157B2 (en) 2005-11-08 2007-12-04 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
US8160404B2 (en) 2005-11-22 2012-04-17 Massachusetts Institute Of Technology High speed and low loss GeSi/Si electro-absorption light modulator and method of fabrication using selective growth
US7515793B2 (en) 2006-02-15 2009-04-07 International Business Machines Corporation Waveguide photodetector
US7418166B1 (en) 2006-02-24 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Device and approach for integration of optical devices and waveguides therefor
US7286726B1 (en) 2006-03-31 2007-10-23 Intel Corporation Integrated active electrical waveguide for optical waveguide modulators
US7817881B2 (en) 2006-06-01 2010-10-19 Bing Li Circuit architecture for electro-optic modulation based on free carrier dispersion effect and the waveguide capacitor structures for such modulator circuitry using CMOS or Bi-CMOS process
US7668416B2 (en) 2006-06-05 2010-02-23 Bing Li Single mode photonic circuit architecture and a new optical splitter design based on parallel waveguide mode conversion
US7570365B2 (en) 2006-09-07 2009-08-04 Magiq Technologies, Inc. Compact tunable high-efficiency entangled photon source
US7796842B2 (en) * 2006-10-07 2010-09-14 Lightwire, Inc. AC-coupled differential drive circuit for opto-electronic modulators
CN201173978Y (zh) 2007-06-04 2008-12-31 李冰 并行模式变换器和由其构成的光分路器
US7539373B1 (en) 2007-11-26 2009-05-26 Onechip Photonics Inc. Integrated lateral mode converter
JP4945475B2 (ja) 2008-02-19 2012-06-06 日本電信電話株式会社 可変分散補償器
US8078020B2 (en) 2008-04-08 2011-12-13 Alcatel Lucent Optical mode-converter structure
US8290325B2 (en) 2008-06-30 2012-10-16 Intel Corporation Waveguide photodetector device and manufacturing method thereof
JP2010032671A (ja) 2008-07-28 2010-02-12 Furukawa Electric Co Ltd:The アレイ導波路格子
US8148265B2 (en) 2008-08-29 2012-04-03 Bae Systems Information And Electronic Systems Integration Inc. Two-step hardmask fabrication methodology for silicon waveguides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251559A (zh) * 2008-04-16 2008-08-27 清华大学 一种用于强电场测量的无电极型的光电集成传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mach-Zehnder Interferometers with Asymmetric Modulation Arms in Applications of High Speed Silicon-on-Insulator Based Optical Switches;SUN Fei 等;《CHIN.PHYS.LETT.》;20061231;第23卷(第4期);第868-870页 *
SUN Fei 等.Mach-Zehnder Interferometers with Asymmetric Modulation Arms in Applications of High Speed Silicon-on-Insulator Based Optical Switches.《CHIN.PHYS.LETT.》.2006,第23卷(第4期),第868-870页. *

Also Published As

Publication number Publication date
US8983241B2 (en) 2015-03-17
US20130266257A1 (en) 2013-10-10
CN102566090A (zh) 2012-07-11
WO2012083864A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP6314972B2 (ja) シリコンベース電気光学変調装置
CN103907049B (zh) 光学元件以及马赫-曾德型光波导元件
EP2132595B1 (en) High speed semiconductor optical modulator
JP6622228B2 (ja) 光変調器及びその製造方法
CN102566090B (zh) 一种光波导开关
US8548281B2 (en) Electro-optic modulating device
KR102171432B1 (ko) 강유전체 물질을 이용하는 광 위상 변환기 및 광 스위치 소자
JP5770719B2 (ja) 効率、及びチャープの制御が改善したシリコン型光変調素子
CN105960607A (zh) 叉指型光调制器
WO2016150263A1 (zh) 一种pn结
JP6983590B2 (ja) 光変調器及びその製造方法
CN112068335A (zh) 一种掺杂结构阵列及光调制器
Jiang et al. Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress
CN115145057A (zh) 多掺杂平板硅光学调制器
CN102636887B (zh) 一种马赫-曾德尔硅光调制器
Cao et al. 2× 2 MMI-MZI GaAs-GaAlAs carrier-injection optical switch
CN103207464A (zh) 一种电光开关或光衰减器
Sobirov et al. Nonlinear standing waves on planar branched systems: shrinking into metric graph
CN202433633U (zh) 一种电光开关或光衰减器
Li et al. Nonvolatile silicon photonic switch with graphene based flash-memory cell
CN105378548B (zh) 一种掺杂结构及其制作方法、电光调制器
CN108508635B (zh) 基于SiGe材料的电调谐有源波导结构以及应用其的MZI结构
CN110534521B (zh) 基于闪存技术的非易失性光波导干涉单元
CN202563200U (zh) 一种马赫-曾德尔硅光调制器
Abraham et al. Low-voltage and low-loss silicon modulator based on carrier accumulation using a vertical slot waveguide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230807

Address after: 200437 Room 401, building 1, No. 135, Yixian Road, Yangpu District, Shanghai

Patentee after: SHANGHAI XINJI PHOTON INTEGRATION TECHNOLOGY CO.,LTD.

Address before: Room 1611, Building 2, No. 335 Guoding Road, Yangpu District, Shanghai, 200433

Patentee before: Li Bing

DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: Yuan Xiao

Document name: Notification of Qualified Procedures