CN102510846A - 具有减小的厚度并含有金属氧化物的自支撑陶瓷材料的制造 - Google Patents

具有减小的厚度并含有金属氧化物的自支撑陶瓷材料的制造 Download PDF

Info

Publication number
CN102510846A
CN102510846A CN2010800360168A CN201080036016A CN102510846A CN 102510846 A CN102510846 A CN 102510846A CN 2010800360168 A CN2010800360168 A CN 2010800360168A CN 201080036016 A CN201080036016 A CN 201080036016A CN 102510846 A CN102510846 A CN 102510846A
Authority
CN
China
Prior art keywords
pottery
powder
mox
yttrium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800360168A
Other languages
English (en)
Other versions
CN102510846B (zh
Inventor
M·察希德
M·里厄
C·埃斯图内斯
P·勒诺尔芒
F·安萨尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Universite Toulouse III Paul Sabatier
Original Assignee
Electricite de France SA
Universite Toulouse III Paul Sabatier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, Universite Toulouse III Paul Sabatier filed Critical Electricite de France SA
Publication of CN102510846A publication Critical patent/CN102510846A/zh
Application granted granted Critical
Publication of CN102510846B publication Critical patent/CN102510846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/225Use of supercritical fluids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种制造含有金属氧化物的陶瓷材料的方法,所述方法按顺序包括如下的步骤:(a)将包含具有如下通式材料的微晶和微晶团块的纳米晶体粉末供入快速烧结装置中:Zr1-xMxO2,其中M选自钇、钪和铈,或Ce1-xM’xO2,其中M’选自钆、钪、钐和钇,其中x在0-0.2之间,所述粉末的平均微晶尺寸为5-50nm,平均微晶团块尺寸为0.5-20μm,且比表面积为20-100m2/g;以及(b)通过施加50-150MPa的压力在850-1400℃的温度下快速烧结所述粉末5-30分钟。

Description

具有减小的厚度并含有金属氧化物的自支撑陶瓷材料的制造
技术领域
本发明涉及基于锆氧化物或铈氧化物的薄的、致密、自支撑陶瓷的制造以及涉及这种陶瓷在燃料电池中作为固体电解质的用途。
背景技术
由于陶瓷是未来应用的推动者和/或重要组成部分,因此目前陶瓷技术受到很大关注。例如,陶瓷用于目前代表发电领域最有前途的技术之一的一些燃料电池中(SOFC、PCFC、高温电解电池(electrolysis cell))。
燃料电池是允许包含在燃料(例如氢或氢源)中的化学能转化为电能和作为副产物的热的电化学转化系统。目前,两种主要的燃料电池技术是固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)。由于SOFC的高的总能量效率(其一般为约80-90%),其比PEMFC更具有潜在优势。然而,它们需要约750-1000℃的高操作温度,这意味着必须使用陶瓷电解质。有利地,陶瓷是基于氧化锆,任选地用金属M稳定化,(Zr1-xMxO2),其中M选自钇、钪和铈,或基于二氧化铈,任选地用金属M’稳定化,(Ce1-xM’xO2),其中M’选自钆、钪、钐和钇。
由于如下原因,通过减小这种固体电解质的厚度来提高SOFC性能:
-电池的电效率部分地由电解质的电阻支配。这种比电阻表示为R=(r×e)/A,其中r表示电解质的电阻系数,e表示其厚度以及A表示其面积。电解质越薄,电池的电效率越好;
-对于相等的能量效率,减小电解质厚度使其可以降低电池的操作温度,而较低的温度使电池具有较长的寿命;
-使电池的陶瓷电解质变薄使得可以减小电池的尺寸和重量;以及最后
-陶瓷非常昂贵。减少陶瓷的量使其可以获得经济上可接受的用于大量市场应用的成本水平。
为了满足这种需要,第三代SOFC已经提供第一技术方案:它们包括由金属制成的机械载体,在该载体上沉积有薄的活性材料层。作为非常良好的热和电的导体的该金属载体防止电池内任何温度的不均匀性以及确保电流容易收集。通过良好的机械完整性和良好的热传导性提高对温度循环的抗性。机械载体容易焊接或连接且其还可用于内重整甲烷。然而该技术的缺点在于固体电解质在金属上的沉积:利用常规技术如流延(tape casting)或丝网印刷进行沉积后,陶瓷的致密化需要金属载体不能耐受的高温(1600℃)烧结步骤。
对于这一方案的特别有利的替代方式在于提供一种具有非常薄的、自支撑的电解质,其具有足以使得可在其上沉积电池的其他成分的强度。这需要通过完全受控的致密化作用来生产具有几个平方厘米到几十个平方厘米的面积的非常薄、极其密集的陶瓷,该陶瓷可进行处理并具有足够的强度。
某些科学出版物记载了合成这种陶瓷的尝试。特别可提及G.Bernard-Granger和C.Guizard的论文“Spark plasma sintering of acommercially available granulated zirconia powder:I.Sintering path andhypotheses about the mechanism(s)controlling densification”ActaMaterialia 55(2007),p第3493-3504页。该论文记载了一种用于通过快速烧结制造金属-氧化物基陶瓷的方法。该方法中所用的粉末是含有大平均直径(50-70nm)的微晶和大尺寸(10-80μm)的微晶团块具有仅为16.4m2/g的低比表面积的可商购的氧化锆粉末。所得陶瓷是直径为8mm(即表面积仅约为0.5cm2)和厚度为1.6mm的颗粒状物。这些结果对于预想的应用不够好而且需要获得对于至少1cm2的面积的厚度为200μm以下的陶瓷。如果通过由G.Bernard-Granger和C.Guizard记载的方法获得,则具有这些尺寸的基片(wafer)不够坚固。
据本申请人知晓,同时致密、对气体和液体不渗透、非常薄且具有大面积和足够的机械稳定性的这类陶瓷至今未在文献中记载,而且基于Zr1-xMxO2(其中M选自钇、钪和铈)或基于Ce1-xM’xO2(其中M’选自钆、钪、钐和钇)的可用作SOFC中的自支撑电解质的陶瓷的制造仍然是挑战。
为此,本申请人公司已经开发了一种用于制造这种自支撑氧化物的方法。
本发明方法的新颖性在于使用了在至今很少使用的方法(即快速烧结)中具有非常独特的技术特性的纳米晶体粉末。类似于高压烧结,所谓快速烧结或火花等离子体烧结(SPS)技术对于形成任何类型的材料(金属、陶瓷、聚合物和其复合物)极其有效。申请人已经发现利用具有特定微结构(特别地特征在于存在通过松散地装填的团块和高的比表面积)的纳米粉末的该技术的使用可使得能够通过快速烧结得到致密、不渗透液体、极薄和具有良好强度的陶瓷。
因此,本发明的一个主题是提供一种用于制造基于金属氧化物的陶瓷的方法,该方法依次包括如下步骤:
(a)将包含Zr1-xMxO2陶瓷(其中M选自钇、钪和铈)或Ce1-xM’xO2陶瓷(其中M选自钆、钪、钐和钇)的微晶和微晶团块的纳米晶体粉末插入快速烧结装置中,其中x为0-0.2,所述粉末具有:
○由X-射线衍射测量的平均微晶尺寸为5-50nm(纳米),
○由扫描电镜(SEM)测量的平均微晶团块尺寸为0.5-20μm(微米),
○由氮吸附(BET方法)测量的比表面积为20-100m2/g;以及
(b)在850-1400℃的温度下,通过施加50-150MPa的压力快速烧结所述粉末5-30分钟的时间。
该方法的步骤(a)中所用的纳米晶体粉末是主要由如下通式的陶瓷颗粒构成的粉末:
Zr1-xYxO2
Zr1-xScxO2
Zr1-xCexO2
Ce1-xGdxO2
Ce1-xScxO2
Ce1-xSmxO2,或
Ce1-xYxO2
其中x为0-0.2。
特别地根据其良好的离子传导性,选择这些任选稳定化的锆或铈氧化物用于形成SOFC的良好固体电解质。
在烧结的陶瓷中所述任选稳定化的纳米晶体锆或铈颗粒的重量百分数优选大于90%或大于95%及甚至大于98%。
这种纳米晶体粉末包含个体的微晶和微晶团块。其特征是其粒度分布:
-由X-射线衍射测量的平均微晶尺寸为5-50nm,优选为10-40nm以及更优选为15-35nm;
-利用扫描电镜测定的平均微晶团块尺寸为0.5-20μm,优选是0.6-15μm以及甚至更优选为0.7-10μm;以及
-由氮吸附(BET方法)测定的比表面积为20-100m2/g,优选是30-90m2/g以及甚至更优选是40-80m2/g。
由X-射线衍射测定微晶尺寸。
可通过在扫描电镜(SEM)下观察粉末来测定微晶团块的尺寸。
最后,粉末的特征在于其比表面积。可按照BET方法,通过氮吸附常规地测定该比表面积。
如此所描述的氧化物粉末具有高比表面积,这意味着当被置于快速烧结模具中时其相对于压缩后的最终体积具有相对高的体积。这一高体积使其更易于在压缩成型前均匀地铺展粉末床以及确保最终自支持陶瓷基片具有良好的厚度均匀性,甚至对于具有几平方厘米数量级的样品。
另外,粉末颗粒优选地基本是球形。这一形状使其颗粒在被压缩时容易彼此相对滑动和形成致密和固体陶瓷。
在本发明的方法的步骤(b)中进行快速烧结。对于这一相对新近的技术的详细描述,读者可参考,例如
Figure BPA00001513990000041
Techniques de l’Ingénieur(2006年9月)的IN 56卷。一般地讲,将粉状形式的材料插入,优选在没有烧结助剂的情况下,压缩室,例如具有使得可在烧结的加热循环中施加单轴压力的石墨活塞的模具。常规热压与快速烧结之间的主要区别在于不是通过外部热源提供热量而是通过连接于模具的电极施加的直流电、脉冲-直流电或交流电提供。这一电流流过导电压缩室且也在样品也是导电性的时还通过样品。
有利的是施加单轴压力,因为在快速烧结过程中部件的尺寸仅在施加压缩力的方向上变化。在冷却后,致密化的陶瓷的横向尺寸因此将与模具的尺寸相同。此外,在烧结循环期间施加单轴压力可以防止当利用常规技术烧结薄物体时观察到的所有不期望的变形效应。
快速烧结步骤的控制参数是该室内的压力和温度以及该步骤的持续时间。根据本发明的方法:
-压力为50-150MPa,优选为80-120MPa,以及特别是90-110MPa;
-温度为850-1400℃,优选为1000-1300℃,以及特别是1100-1250℃;以及
-该步骤的总持续时间为5-30分钟,优选为10-30分钟,以及特别是15-25分钟。
关于所施加的电流的量级,必须根据所用的模具的尺寸进行调节:模具越大,需要施加的电流越高。对于具有5cm直径的圆柱形模具,作为举例,电流可以是1000-4000A。
快速烧结技术使其可显著提高烧结速率并因此在非常短的时间内得到高致密材料而同时限制颗粒生长。还可以使其与各种材料结合而限制它们的反应,以及在相对低的温度下烧结高温下不稳定的固体。
这种无反应性特别在本发明方法的特别优选的实施方式(其中同时烧结多个薄陶瓷基片)中特别有用,该基片由分隔片彼此分隔开。该实施方式成为可能不仅由于所制备的物体的小的厚度,而且特别地由于相对低的烧结温度和短的烧结时间(其防止或限制待压缩的陶瓷和形成中间分隔片的材料之间的任何反应)。
在本发明方法的这一特别有利的实施方式中,步骤(a)包括将多个粉末层插入快速烧结装置,各个层由能够经受烧结步骤(b)的热和机械条件的分隔片彼此分隔开,以在烧结步骤(b)之后获得交替排列的多个陶瓷基片和分隔片的多层。
烧结后,从模具中移除该多层,且由致密化陶瓷的基片和由分隔片构成的该多层进行移除分隔片的步骤。该步骤可以是该多层的热和/或化学处理。该处理必须使分隔片选择性地消失但没有对陶瓷造成冲击或破坏。
分隔片优选是石墨片且移除步骤包括,例如,在700-900℃的温度下在空气中处理所烧结的多层30-120分钟的时间。
在这一优选实施方式中,本发明方法因此可以在不超过几分钟的时间尺度内同时生产多个陶瓷。相对于常规的烧结方法极短的烧结时间与同时压缩许多基片相结合,可以预期明显减少制造成本和平面陶瓷物体的大量生产。
具有如上所述的技术特征的纳米晶体粉末不是可商购的或还不是可商购得到的,但可利用已知的溶胶-凝胶方法相对简单地制备。然而应注意本发明的方法不应以任何方式限制为使用由下述的溶胶-凝胶方法或一般地由溶胶-凝胶途径合成的纳米晶体粉末。
因此本发明的方法可包括制备步骤(a)中所用的纳米晶体金属氧化物粉末需要的步骤。
在具体实施方式中,本发明的方法因此在烧结纳米晶体粉末的步骤(a)之前还包括利用溶胶-凝胶技术合成所述粉末的另外的步骤。
为了获得具有本发明限定的理化性质的纳米晶体粉末,必须明智地选择适合的合成条件。
具有适合的和允许生产纳米晶体粉末(如上述的纳米晶体粉末)的两种主要的溶胶-凝胶合成技术。
在第一变体方式中,纳米微晶粉末由锆盐(任选与钇、钪或铈盐混合)的酸性水溶液,或由铈盐(任选与钆、钪、钐或钇盐混合)的酸性水溶液合成,所述溶液还包含六亚甲基四胺(HMTA)和乙酰丙酮(ACAC)。
在第一步骤中,制备包含至少三种组分的酸性水溶液,即:
a)溶解状态的至少一种锆盐(任选与钇、钪或铈盐混合)或至少一种铈盐(任选与钆、钪、钐或钇盐混合);
b)六亚甲基四胺(HMTA)和乙酰丙酮(ACAC)的至少一种混合物,HMTA与ACAC的摩尔比为0.9/1到1.1/1之间;以及
c)足以获得2-6的pH的量的有机或无机酸。
该盐优选是硝酸盐或氯氧化物,以及其以0.05-0.5mol.L-1的浓度加入。
优选HMTA和ACAC各自以0.25-1.5mol.L-1的浓度使用。
酸优选是选自乙酸、丙酸和三氟乙酸的有机酸。
在第二个步骤中,将该溶液加热到50-100℃的温度,优选为60-90℃以及甚至更优选为70-80℃。然后观察到溶液成为凝胶,凝胶作用是由于HMTA和ACAC的聚合。在该凝胶化的整个步骤中,金属盐是与HMTA和ACAC反应物配位络合物的形式。优选调节反应物的初始浓度和加热条件(温度和持续时间)以便在凝胶化步骤结束时,所获得的凝胶在25℃测定时的Brookfield粘度为20-80mPa.s。这通常是溶液被加热到如上所示温度下加热10-60分钟时间时的情形。
所得的凝胶然后在400℃或更高的温度下进行6-8小时的热处理,以生成不含任何有机残留物的无定形粉末。
然后在500-1000℃的温度下煅烧所述无定形粉末至少2小时,并因此转化为期望的纳米晶体金属氧化物粉末。
允许产生可用于本发明中的纳米晶体粉末的另一种溶胶-凝胶合成路线不是从锆或铈金属盐而是从这些金属的醇盐开始的更常见的路线。
如已知的,该路线包括制备含所有反应物的溶胶,水解烷氧基官能基并缩合由此游离的活性金属-OH官能基,以及溶液静置以形成随后被适当干燥的凝胶的步骤。
作为例子,在此描述钇氧化锆的纳米晶体粉末的溶胶-凝胶合成:
首先制备四烷氧基锆化合物和钇盐(例如硝酸钇)在有机溶剂中的溶液。烷氧基通常是C1-6,优选是C3-4的烷氧基,后者具有特别适合的反应速率。所用的有机溶剂优选是对应于由烷氧基的水解释放的醇。最优选使用的四(正丙氧基)锆的正丙醇溶液。四烷氧基锆化合物的初始浓度一般为0.01-1mol.L-1。在惰性气氛下制备溶液,醇盐对于空气中的湿气具有非常高的反应性。
溶液还包含一定量的螯合剂,如乙酰丙酮或乙酸。该螯合剂对于形成均匀的溶胶是关键的并主要用于防止当加水时形成固体沉淀。存在于溶液中的螯合剂的摩尔数与锆和钇原子的摩尔数的比(=配位比)优选为0.1-1。
接着,将限定量的水加入到这一基本无水的有机溶液中。存在于溶液中的水的摩尔数与锆和钇原子的总摩尔数的比(=水解程度)优选为1-30。
如此所得溶胶然后静置并观察到因溶胶中生成的物质的团聚而缓慢形成凝胶。可通过在烘箱中(例如在40-80℃的温度下)温和加热溶胶来加速这一凝胶化步骤。
一旦达到溶胶-凝胶转变,通过干燥去除液相。干燥技术可对所得粉末的密度具有重要影响。因此,通过在大气压下以及在室温或烘箱中简单蒸发溶剂/水相来干燥凝胶导致形成干凝胶。
在优选的实施方式中,通过在溶剂的临界温度以上的温度和临界压力以上的压力下在高压釜中超临界干燥来去除液相。这种类型的干燥一般通过在已超过液体的临界点后在恒定温度下减压之前缓慢增加系统的温度和压力来进行。以如上所述的方式制备的钇氧化锆凝胶的超临界干燥产生称为气凝胶的高充气微结构的半透明单块体。
在机械研磨所述干凝胶或气凝胶之后,在300℃以上的温度下热处理所研磨的凝胶(主要用于去除残留的溶剂)并任选在500-1000℃的温度下的煅烧步骤后,得到对应于期望的纳米晶体金属氧化物粉末的比表面积大于50m2/g的球形纳米级别晶体颗粒。
图1显示利用上述的合成方案和超临界干燥获得的气凝胶的球形纳米晶体颗粒的透射电镜显微照片。
本发明的另一主题是可通过上述方法得到的基于金属氧化物的陶瓷。
通过对粉末和烧结技术的明智的选择,本发明的方法可以生产厚度为200μm或以下,优选150μm或以下以及甚至更优选80nm-100μm以及面积可能为1-50cm2,优选为2-50cm2,以及甚至更优选为3-50cm2的非常薄的基片。
而且,本发明的方法可以非常容易控制所制备的陶瓷的致密化程度。为了可用作SOFC中的固体电解质,所得基片必须对于气体具有极佳的非渗透性。申请人已经观察到,如通过评价体积密度或由阿基米德法则确定的,这是陶瓷的孔隙率低于4%,优选为4-1%以及特别是3-1%的情形。因此作为本发明主题的陶瓷优选具有这样的孔隙率。
如引言中所述的,本发明的陶瓷完全适合用作燃料电池和高温电解电池中的固体电解质。其良好强度使得可以在其上沉积构成电池的其他组分。因此本发明的另一个主题是包括上述定义的陶瓷的燃料电池和高温电解电池。
本发明陶瓷的另一种有利的应用是电化学传感器。孔隙率小于4%,优选为1-4%的致密和非渗透性材料确实完全适合用作测量或检测各种化合物(例如O2、NOx、Cl2、CO2、CO、SO2、SH2或NH3)的系统中的电化学探针或传感器。因此本发明的另一个主题是上述的陶瓷作为电化学传感器的用途以及包括这种陶瓷作为电化学传感器的测量和/或检测装置。
最后,本发明的陶瓷非常有利地作为用于几乎任何类型的过滤的分隔膜。具体地,本发明的制造方法可以完全控制最终材料的孔隙率以及因此容易改变孔隙率以及由此根据希望提供的过滤的类型改变孔的尺寸。因此,本发明的陶瓷可用于:
-大孔过滤(macrofiltration)(大于2μm的孔径);
-交叉流动或死端微过滤(0.05-2μm的孔径);
-超滤(50-1nm的孔径);
-纳米过滤(0.4-1nm的孔径);以及
-反渗透(小于0.4nm的孔径)。
当然,为了能够作为分隔膜,本发明的陶瓷不是必须非渗透的,但允许待分离的化学物质(原子、分子、大分子)选择性渗透。
因此,如果陶瓷用作分隔膜,其孔隙率必须大于上述用于固体电解质或电化学传感器应用的范围。
此外,本发明的另一个主题因此是优选孔隙率大于4%且至多30%,优选为6-25%的本发明陶瓷作为滤膜的用途。
在后者的应用中,陶瓷因其优异的强度(这允许其用于加压过滤方法中)以及其良好的耐化学性和耐热性而特别地引人注目。因此膜的良好高温抗性使得可能有效清洁,例如堵塞孔的有机杂质可被燃烧掉。
实施例
自支持氧化钇稳定的氧化锆陶瓷(ZrO2-8%Y2O3)
(a)通过溶胶-凝胶途径由金属盐合成氧化物粉末:
制备包含1.68mol.L-1的硝酸锆、0.32mol.L-1的硝酸钇、0.94mol.L-1的乙酰丙酮(ACAC)和0.94mol.L-1的六亚甲基四胺(HMTA)的酸性水溶液,该溶液的pH为3.2。在80℃温度下加热混合物15分钟直到得到25℃时的粘度为约40mPa.s的凝胶化溶液。
在干燥凝胶后以及在空气流下进行400℃降解处理7小时后,在800℃煅烧无定形残留物2小时。
得到一种结晶化为具有Fm3m空间群的萤石结构的粉末,其基本由平均直径为20nm的球形单晶颗粒构成。该基本颗粒组合为具有10μm平均尺寸的高充气团块。这种粉末的比表面积为约50m2/g。
(b)通过快速烧结制造陶瓷:
将每层重为0.36g的五层氧化钇稳定的氧化锆粉末层插入到内径为20nm的圆柱形石墨模具中,这些层被石墨片彼此分隔开。将该组件以50℃/min的升温速度加热到1200℃并在该温度下保持20分钟。一旦达到温度设定点,活塞用于将施加渐增的单轴压力,2分钟后达到100MPa,之后将压力维持13分钟。然后,在5分钟内逐渐降低施加的压力直到达到常压,同时保持温度在1200℃。
在减压结束时,以20℃/min的速度逐渐降低温度直到达到室温。
在加热阶段中逐渐增加施加的电流,从而当达到温度设定点(1200℃)时的压缩开始时达到约1600A。
将石墨片分隔的陶瓷基片的多层在空气中700℃下进行热处理以分解中间石墨片。
因此可以制造厚度小于20μm和直径小于20mm的具有小于2%的孔隙率的五个圆形自支持陶瓷基片。

Claims (18)

1.用于制造基于金属氧化物的陶瓷的方法,按顺序包括如下步骤:
(a)将包含如下通式的陶瓷的微晶和微晶团块的纳米晶体粉末插入快速烧结装置中:
Zr1-xMxO2,其中M选自钇、钪和铈,或
Ce1-xM’xO2,其中M’选自钆、钪、钐和钇,
其中x在0-0.2之间,
所述粉末具有:
·由X-射线衍射测定的平均微晶尺寸为5-50nm(纳米),
·利用扫描电镜(SEM)测定的平均微晶团块尺寸为0.5-20μm(微米),
·利用BET方法测定的比表面积为20-100m2/g;以及
(b)通过施加50-150MPa的压力在850-1400℃温度下,快速烧结所述粉末5-30分钟的时间。
2.如权利要求1所述的制造基于金属氧化物的陶瓷的方法,其特征在于,步骤(a)包括将多个纳米晶体粉末层插入所述快速烧结装置,各层由能够经受烧结步骤(b)的热和机械条件的分隔片彼此分隔开,以在烧结步骤(b)之后得到交替排列的多个陶瓷基片和分隔片的多层。
3.如权利要求2所述的制造基于金属氧化物的陶瓷的方法,其特征在于,其还包括步骤(c)热和/或化学处理烧结步骤(b)后得到的多层,所述步骤(c)用于使分隔片选择性地消失。
4.如权利要求2或3所述的制造基于金属氧化物的陶瓷的方法,其特征在于,所述分隔片是石墨片且步骤(c)包括在700-900℃的温度下在空气中处理所烧结的多层。
5.如前述任一权利要求所述的制造基于金属氧化物的陶瓷的方法,其特征在于,在插入纳米晶体粉末的步骤(a)之前,其还包括利用溶胶-凝胶技术合成所述粉末的另外的步骤。
6.如权利要求5所述的制造基于金属氧化物的陶瓷的方法,其特征在于,由任选与钇、钪或铈盐混合的锆盐的酸性水溶液合成所述纳米晶体粉末,或由任选与钆、钪、钐或钇盐混合的铈盐的酸性水溶液合成所述纳米晶体粉末,所述溶液进一步含有六亚甲基四胺(HMTA)和乙酰丙酮(ACAC)。
7.如权利要求5所述的制造基于金属氧化物的陶瓷的方法,其特征在于,在螯合剂存在下,通过溶胶-凝胶途径由四烷氧基锆化合物和钇盐合成所述纳米晶体粉末。
8.如前述任一权利要求所述的制造基于金属氧化物的陶瓷的方法,其特征在于,步骤(b)的温度为1000-1300℃,优选为1100-1250℃。
9.如前述任一权利要求所述的制造基于金属氧化物的陶瓷的方法,其特征在于,步骤(b)中施加的压力为80-120MPa,优选为90-110MPa。
10.如前述任一权利要求所述的制造基于金属氧化物的陶瓷的方法,其特征在于,步骤(b)的持续时间为10-30分钟,优选为15-25分钟。
11.能够由前述任一权利要求所述的方法获得的基于金属氧化物的陶瓷。
12.如权利要求11所述的陶瓷,其特征在于,其为厚度为200μm或以下,优选为80nm-150μm并且面积为1-100cm2的基片。
13.如权利要求11或12所述的陶瓷,其特征在于,其孔隙率为4-1%,优选为3-1%。
14.包括权利要求13所述的陶瓷作为固体电解质的燃料电池。
15.包括权利要求13所述的陶瓷作为固体电解质的高温电解电池。
16.包括权利要求13所述的陶瓷作为电化学传感器的测量和/或检测装置。
17.根据权利要求11或12所述的陶瓷,其特征在于,其孔隙率大于4%且至多30%,优选为6-25%。
18.根据权利要求17所述的陶瓷作为滤膜的用途。
CN201080036016.8A 2009-06-19 2010-06-16 具有减小的厚度并含有金属氧化物的自支撑陶瓷材料的制造 Active CN102510846B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0954168 2009-06-19
FR0954168A FR2946979B1 (fr) 2009-06-19 2009-06-19 Fabrication de materiaux ceramiques autosupportes de faible epaisseur a base d'oxydes metalliques
PCT/FR2010/051204 WO2010146311A1 (fr) 2009-06-19 2010-06-16 Fabrication de matériaux céramiques autosupportés de faible épaisseur à base d'oxydes métalliques

Publications (2)

Publication Number Publication Date
CN102510846A true CN102510846A (zh) 2012-06-20
CN102510846B CN102510846B (zh) 2015-03-04

Family

ID=41490332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080036016.8A Active CN102510846B (zh) 2009-06-19 2010-06-16 具有减小的厚度并含有金属氧化物的自支撑陶瓷材料的制造

Country Status (6)

Country Link
US (1) US8652703B2 (zh)
EP (1) EP2443075B1 (zh)
JP (1) JP5538527B2 (zh)
CN (1) CN102510846B (zh)
FR (1) FR2946979B1 (zh)
WO (1) WO2010146311A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971119A (zh) * 2018-03-28 2020-11-20 科思创知识产权两合公司 用于氨基甲酸酯合成的多相催化剂
CN111960824A (zh) * 2020-08-11 2020-11-20 清华大学 一种陶瓷微球及其制备方法
CN111995373A (zh) * 2020-08-11 2020-11-27 清华大学 一种用于内胶凝工艺的胶液及其制备方法与应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617456B1 (en) 2010-03-22 2013-12-31 The United States Of America As Represented By The Secretary Of The Air Force Bulk low-cost interface-defined laminated materials and their method of fabrication
US9120245B1 (en) 2007-05-09 2015-09-01 The United States Of America As Represented By The Secretary Of The Air Force Methods for fabrication of parts from bulk low-cost interface-defined nanolaminated materials
US9162931B1 (en) * 2007-05-09 2015-10-20 The United States Of America As Represented By The Secretary Of The Air Force Tailored interfaces between two dissimilar nano-materials and method of manufacture
EP2259816B1 (en) 2008-02-20 2015-10-21 Unomedical A/S Insertion device with horizontally moving part
CN103476453A (zh) 2011-03-30 2013-12-25 犹诺医药有限公司 皮下插入器装置
JP6063040B2 (ja) * 2012-06-20 2017-01-18 イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG 歯科用途のためのCeO2安定化ZrO2セラミック
GB2524640B (en) * 2015-02-06 2016-07-20 Ceres Ip Co Ltd Electrolyte forming process
GB2524638B (en) * 2015-02-06 2016-04-06 Ceres Ip Co Ltd Electrolyte forming process
US10336937B2 (en) 2016-03-17 2019-07-02 Lawrence Livermore National Security, Llc Monolithic rare earth oxide aerogels
FR3060556B1 (fr) * 2016-12-20 2022-03-04 Norimat Procede de fabrication d’un materiau ceramique de couleur rouge
CN110078496A (zh) * 2018-01-25 2019-08-02 国家电投集团科学技术研究院有限公司 陶瓷材料的制备方法以及制备装置
FR3086567B1 (fr) * 2018-10-02 2022-07-22 Norimat Procede de realisation de contreforme et procede de fabrication de piece de forme complexe utilisant une telle contre-forme
DE102020209708A1 (de) 2020-07-31 2022-02-03 Schott Ag Sinterhilfsmittelmischung, Festkörperionenleiter und Verfahren zum Herstellen von Festkörperionenleitern
CN113258112A (zh) * 2021-07-16 2021-08-13 北京思伟特新能源科技有限公司 一种金属支撑固体氧化物燃料电池制备方法及燃料电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773891A (ja) * 1993-06-17 1995-03-17 Toho Gas Co Ltd 高焼結性固体電解質材料
EP1043149A2 (en) * 1999-03-31 2000-10-11 Sumitomo Coal Mining Co., Ltd. Method and apparatus for automatically loading powder material into a mold
WO2004083147A1 (en) * 2003-03-20 2004-09-30 Nissan Motor Co., Ltd. Method of producing solid electrolyte and solid electrolyte
US7494557B1 (en) * 2004-01-30 2009-02-24 Sandia Corporation Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612175A (en) * 1985-08-05 1986-09-16 The United States Of America As Represented By The United States Department Of Energy Flue gas desulfurization/denitrification using metal-chelate additives
JPH0793744A (ja) * 1993-09-22 1995-04-07 Sony Corp 磁気記録媒体
JP3067566B2 (ja) * 1995-01-17 2000-07-17 トヨタ自動車株式会社 撥水性被覆膜の形成方法
JP3603116B2 (ja) * 2001-03-02 2004-12-22 独立行政法人産業技術総合研究所 高密度イットリア安定化ジルコニア焼結体及びその製造方法
JP4721106B2 (ja) * 2005-08-05 2011-07-13 宮城県 粉末積層体の製造方法、およびこれを用いた焼結体の製造方法ならびに、これらを用いた焼結体の製造システム
JP5019323B2 (ja) * 2007-03-20 2012-09-05 独立行政法人物質・材料研究機構 希土類元素をドープしたセリア焼結体とその製造方法
US20090081512A1 (en) * 2007-09-25 2009-03-26 William Cortez Blanchard Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773891A (ja) * 1993-06-17 1995-03-17 Toho Gas Co Ltd 高焼結性固体電解質材料
EP1043149A2 (en) * 1999-03-31 2000-10-11 Sumitomo Coal Mining Co., Ltd. Method and apparatus for automatically loading powder material into a mold
WO2004083147A1 (en) * 2003-03-20 2004-09-30 Nissan Motor Co., Ltd. Method of producing solid electrolyte and solid electrolyte
US7494557B1 (en) * 2004-01-30 2009-02-24 Sandia Corporation Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANTONIO.L QUINELATO 等: "E?ect of ceria content on the sintering of ZrO2 based ceramics synthesized from a polymeric precursor", 《OURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
BERNARD-GRANGER G 等: "Spark plasma sintering of a commercially available granulated zirconia powder-II.Microstructure after sintering and ionic", 《ACTA MATERIALIA》 *
CHAKRAVARTY D 等: "High strength porous alumina by spark plasma sintering", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
GUILLAUME BERNARD-GRANGER 等: "Spark plasma sintering of a commercially available granulated zirconia powder:I.Sintering path and hypotheses about the mechanism(s)controlling densification", 《ACTC MATERIALIA》 *
MICHIHITO MUROI 等: "Preparation of nano-grained zirconia ceramics by low-temperature,low-pressure spark plasma sintering", 《JOURNAL OF MATERIALS SCIENCE》 *
OKAMOTO M 等: "Phase transition and electrical conductivity of scandia-stabilized zirconia prepared by spark plasma sintering process", 《SOLID STATE IDNICS》 *
SUZUKI T 等: "Flexural strength of Y203-TZP ceramics produced by sheet molding", 《CERAMICS INTERNATIONAL》 *
T.MORI 等: "Design of high quality doped Ce02 solid electrolytes with nanohetero structure", 《NUKLEONIKA》 *
TOMONARI TAKEUCHI 等: "Improvement of Mechanical Strength of 8 mol% Yttria-Stabilized Zirconia Ceramics by Spark-Plasma Sintering", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
王零森 等: "乙酸络合法制取稳定化ZrO2超细粉", 《中南工业大学学报》 *
章天金 等: "溶胶-凝胶工艺合成ZrO2超微粉末的研究", 《无机材料学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971119A (zh) * 2018-03-28 2020-11-20 科思创知识产权两合公司 用于氨基甲酸酯合成的多相催化剂
CN111971119B (zh) * 2018-03-28 2023-12-08 科思创知识产权两合公司 用于氨基甲酸酯合成的多相催化剂
CN111960824A (zh) * 2020-08-11 2020-11-20 清华大学 一种陶瓷微球及其制备方法
CN111995373A (zh) * 2020-08-11 2020-11-27 清华大学 一种用于内胶凝工艺的胶液及其制备方法与应用
CN111995373B (zh) * 2020-08-11 2021-09-21 清华大学 一种用于内胶凝工艺的胶液及其制备方法与应用
CN111960824B (zh) * 2020-08-11 2021-09-24 清华大学 一种陶瓷微球及其制备方法

Also Published As

Publication number Publication date
FR2946979B1 (fr) 2011-07-29
EP2443075A1 (fr) 2012-04-25
WO2010146311A1 (fr) 2010-12-23
FR2946979A1 (fr) 2010-12-24
US20120094214A1 (en) 2012-04-19
JP2012530039A (ja) 2012-11-29
EP2443075B1 (fr) 2016-12-07
US8652703B2 (en) 2014-02-18
CN102510846B (zh) 2015-03-04
JP5538527B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102510846B (zh) 具有减小的厚度并含有金属氧化物的自支撑陶瓷材料的制造
KR100904203B1 (ko) 연료 전지용 전극-전해질 복합체 분말의 제조 방법
Bansal et al. Combustion synthesis of Sm0. 5Sr0. 5CoO3− x and La0. 6Sr0. 4CoO3− x nanopowders for solid oxide fuel cell cathodes
Rioja-Monllor et al. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
Zarkov et al. Synthesis of nanocrystalline gadolinium doped ceria via sol–gel combustion and sol–gel synthesis routes
Lei et al. Low temperature processing of dense nanocrystalline scandia-doped zirconia (ScSZ) ceramics
Del Toro et al. Synthesis of La0. 8Sr0. 2FeO3 perovskites nanocrystals by Pechini sol–gel method
Accardo et al. Gadolinium-doped ceria nanopowders synthesized by urea-based homogeneous co-precipitation (UBHP)
Tsoga et al. Processing and characterisation of fine crystalline ceria gadolinia–yttria stabilized zirconia powders
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
JP2003509323A (ja) メソ細孔性金属酸化物組成物の製造方法および固体酸化物燃料電池
Li et al. Synthesis of nano-crystalline Sm0. 5Sr0. 5Co (Fe) O3− δ perovskite oxides by a microwave-assisted sol–gel combustion process
Radhika et al. Chemical Precipitation and Characterization of Multicomponent Perovskite Oxide Nanoparticles-Possible Cathode Materials for Low Temperature Solid Oxide Fuel Cell
Menzler et al. Materials synthesis and characterization of 8YSZ nanomaterials for the fabrication of electrolyte membranes in solid oxide fuel cells
Kaus et al. Synthesis and characterization of nanocrystalline YSZ powder by smoldering combustion synthesis
Bassano et al. Synthesis of Y-doped BaCeO3 nanopowders by a modified solid-state process and conductivity of dense fine-grained ceramics
Lin et al. A cathode-supported SOFC with thin Ce0. 8Sm0. 2O1. 9 electrolyte prepared by a suspension spray
Goulart et al. Reactive sintering of yttrium-doped barium zirconate (BaZr0. 8Y0. 2O3-δ) without sintering aids
JP5652602B2 (ja) 固体燃料電池用電解質材料及びその製造方法
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
Ghaemi et al. A benzoate coprecipitation route for synthesizing nanocrystalline GDC powder with lowered sintering temperature
KR102347681B1 (ko) 용출된 전이 원소를 가지는 페로브스카이트 결정구조물질로 구성된 건식 개질 촉매체, 그 제조 방법, 이를 포함하는 건식 개질 촉매 시스템, 및 이를 포함하는 고체 산화물 연료전지
Ghayoor et al. Spark plasma sintered YSZ gas electrode produced from powders synthesized by a large-scale method
CN113121227A (zh) 一种钆镍共掺杂镁基六铝酸镧陶瓷及制备方法
Singh et al. Structure-property correlations for the surfactant-free faceted nanocrystals of Ce1− xZrxO2 and their bulk ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant