CN102483970A - 静电放电装置以及制造该装置的方法 - Google Patents

静电放电装置以及制造该装置的方法 Download PDF

Info

Publication number
CN102483970A
CN102483970A CN2010800332539A CN201080033253A CN102483970A CN 102483970 A CN102483970 A CN 102483970A CN 2010800332539 A CN2010800332539 A CN 2010800332539A CN 201080033253 A CN201080033253 A CN 201080033253A CN 102483970 A CN102483970 A CN 102483970A
Authority
CN
China
Prior art keywords
layer
conductive
esd
electrode
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800332539A
Other languages
English (en)
Other versions
CN102483970B (zh
Inventor
E·斯瓦桑德
M·布坎南
M·克纳皮拉
G·赫尔格森
A·梅兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institutt for Energiteknikk IFE
Original Assignee
Institutt for Energiteknikk IFE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institutt for Energiteknikk IFE filed Critical Institutt for Energiteknikk IFE
Publication of CN102483970A publication Critical patent/CN102483970A/zh
Application granted granted Critical
Publication of CN102483970B publication Critical patent/CN102483970B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0079Electrostatic discharge protection, e.g. ESD treated surface for rapid dissipation of charges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F1/00Preventing the formation of electrostatic charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0003Protection against electric or thermal overload; cooling arrangements; means for avoiding the formation of cathode films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/02Carrying-off electrostatic charges by means of earthing connections
    • H05F3/025Floors or floor coverings specially adapted for discharging static charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明通过施用混合物的层来实现,该混合物包含在第一表面之上的聚合物和导电颗粒,混合物具有能够使导电颗粒在层内重新排列的第一粘度。将电场施加到所述层上,以使数个导电颗粒与电场定向排列,随后将层的粘度改变成第二粘度,所述第二粘度高于第一粘度,以使所述层在机械上稳定。这将导致具有提升的各向异性导电性的稳定的层,其可用于制造ESD装置。

Description

静电放电装置以及制造该装置的方法
技术领域
本发明涉及导电的和耗散的静电放电(ESD)装置,其又称为抗静电装置,并涉及利用可固化不导电基体中的低成本颗粒导电路径制造所述装置的方法。
背景技术
两个异质材料的物体相互摩擦时,电子就会通过摩擦起电方法从一种材料转移另一种材料。物体成为静电充电,其中一种材料聚积正电荷,另一种材料聚积负电荷。通过ESD装置可实现安全释放静电电荷或者防止或最大程度减少其发生的过程,例如在制造或作业环境中。这些装置有减少人体或设备上的静电电荷的作用,例如可防止操作易燃液体和气体时的起火与爆炸,或防止对诸如电子元器件或装置的静电敏感物体的破坏。
在此使用的术语静电放电(ESD)装置包括导电的和耗散的装置、薄膜和粘合剂。关于ESD有许多标准。ESD协会(www.esda.org)发布了覆盖电子环境中的ESD的35种标准。CENELEC发布了欧洲静电标准EN 100015-静电敏感装置的保护(Protection of Electrostatic Sensitive Devices)。
ESD装置有许多应用领域,例如:
-ESD包装装置,包括薄膜、袋子、和运输或贮藏时用于容纳装置的刚性结构,装置例如图形卡或硬盘驱动器。这类薄膜还可以用于电池或电容器的生产,形成电池或电容器内部的导电阻隔层。
-ESD服饰装置,例如服装和鞋子,可用于许多工作场所。
-ESD试剂或化合物,用于材料或其表面的处理,以减少或消除静电累积。
-ESD垫和地板,从用于键盘和鼠标的小垫子到大垫子或整个地板。
-ESD工作站和工作面,提供接地的导电路径,用于与表面接触的材料上的静电电位的受控耗散。
-ESD零部件,如垫片。
术语导电的和耗散的可以宽泛地定义为:
-导电的:电阻为1K[Ω]~1M[Ω]的材料
-耗散的:电阻为1M[Ω]~1T[Ω]的材料
静电放电协会(Electrostatic Discharge Association)的文献ESD ADV1.0-009提供了适用于本语境的以下定义:
-导电材料,电阻率:表面电阻率低于1x10E5欧姆/平方或体积电阻率低于1x10E4欧姆-厘米的材料。
-导电材料,电阻:表面电阻低于1x10E4欧姆或体积电阻低于1x10E4欧姆的材料。
-导电地板材料:对地电阻低于1.0x10E6欧姆的地板材料。
-耗散地板材料:对地电阻为1.0x10E6~1.0x10E9欧姆的地板材料。
-耗散材料:表面电阻大于或等于1x10E4欧姆但低于1x10E11欧姆、或体积电阻大于或等于1x10E4欧姆但低于1x10E11欧姆的材料。
本发明涉及导电的和耗散的ESD装置,对于这些装置我们使用ESD装置这一常用术语。术语“抗静电”也是“静电放电”的一个常见同义词,例如在ESD装置的同义词“抗静电装置”中所使用的;即,我们使用术语ESD装置,其含义等同于抗静电装置。
在如抗静电薄膜以及袋子、鞋子、垫子和地板一类的导电和耗散装置的生产中,聚合物很适合用在外表面。其它在生产过程中可类似地改变粘度的材料也适合。材料可以制造成可层压的薄膜或片材,或者制造成可以喷雾在装置上或将装置浸在其中的液体涂料,然后通过材料的自发反应固化,或利用例如热或紫外光加速固化。
含有导电聚合物的材料可以基于聚合物基体和嵌在该基体中的导电颗粒(填料)的混合物,或基于内在导电的聚合物。
本发明感兴趣的导电的或耗散的聚合材料基于不导电的聚合物基体和嵌在该基体中的导电颗粒(填料)的混合物;内在导电的聚合物也已为人们所知,并可与不导电的聚合物形成合金,以形成导电的或耗散的材料。
加入填料会改变聚合物基体的一些本体性质。这些改变经常是不合要求的,例如,材料强度与透明度下降以及颜色变化。减少填料含量对于将这些影响减至最低很重要。
在本发明中,聚合物基体可以是粘合剂与导电颗粒;金属、金属氧化物、金属胶体颗粒、或碳颗粒如碳纳米管(CNT)。所述材料还可以是方向性导电的。
通常可通过将填料与聚合物树脂混合来生产导电或耗散聚合物薄膜,为了得到导电的混合物,填料的量必须超过渗滤(percolation)阈值。混合体系使用寿命有限,使用之前必须再次混合。常见的问题是即使薄膜或层制造成均匀的厚度,也会有不均匀的导电性,因为填料不会均匀分布。该问题在聚合物物理中已为人们所熟知,起因于填料与聚合物基体的互不相容性,这就意味着只可以有少量的填料与基体混合才能得到稳定的混合物。较高的量会随着时间产生宏观相分离。因此,该问题在实质上是基本问题。此外,针对较高填料量所施用的混合方法必须十分有力,才可以使填料颗粒破碎。
US 4269881和US 5348784教导了地毯产品的生产,其中导电纤维混合到粘合剂基底中。US 4724187教导用于导电的层压地板的类似内容。
US 2005/0206028A1教导了由负载导电材料的树脂基材料所形成的导电地板,其包括占导电树脂总重量20~50重量%的微米尺寸的导电粉末、导电纤维或组合。WO 2010018094A2教导了没有基底的导电表面的类似发明。
US 4101689教导了导电地板的覆盖材料,包括一层基本上不导电的热塑性合成树脂,所述层含多个穿透其中的孔,并且由导电材料充填所述孔。
US 4944998教导了具有静电耗散电特性的表面覆盖乙烯基地板砖产品及其生产方法。
US 7060241B2公开了使用能产生导电性和透明度的单壁CNT的导电薄膜。通过将薄膜暴露于剪切步骤,可以使CNT取向。
为了不增加导电填料的量就能够提高信号传输能力或耗散放电,导电薄膜可以制造成各向异性。各向异性薄膜还可以设计成使它们在某些方向具有绝缘性能。
在EP 1809716中,描述了一种制造基于CNT的方向性导电粘合剂的方法。可以制造具有绝缘基底和起电接触点作用的平行排列的碳纳米管(CNT)的胶带,其方法包括在向胶带加入粘合剂部分之前,在用于胶带的材料上生长碳CNT,或在胶带上布置CNT。
在US 5429701中,描述了两个层的离散的单个软磁金属导体之间如何通过导电粘合剂联结导体实现相互的电连接。所述粘合剂含有软磁金属颗粒,通过施加磁场,颗粒可以在导体之间的区域聚集。
众所周知,通过电场可以对偶极的刚性不对称颗粒或分子进行定向;这尤其可应用于低分子量的液晶。
在这些情况下,具有永久偶极矩的材料在正常条件下是流体,这一事实使得有可能进行电场定位。
与CNT一样,不熔的导电碳颗粒知道其定向结构可通过化学蒸气沉积或旋转形成。
US 6837928中给出了CNT定向生长的方法。CNT在引导其生长方向的电场中生长,因此生长过程完成时产生了定向排列的CNT。
文献WO 2006052142中已经说明了CNC与各种材料的混合。在其说明书中,CNC与基体形成了各向同性的混合物。
在文献WO 2008009779中,使用电场在纳米颗粒涂层中引起烧结。
碳纳米锥(CNC)的电场定向排列在Svasand等的Colloids & Surf.APhysicochem.Eng.Aspects 2007 308,67和2009 339 211中已经说明。这些文章中显示,施加最低50V/mm的场时,分散在硅油中的纳米锥材料可以形成微米尺寸的纳米锥“纤维”。为了在合理的时间内形成纤维,使用了400V/mm的场。
在Schwarz等的Polymer 2002,43,3079″Alternating electric fieldinduced agglomeration of carbon black filled resins″中,报告了在浸入树脂的铜电极之间施加400V/cm的场时,低于零场渗滤阈值的炭黑填充树脂如何可以形成导电的网络。
US 20090038832描述了由分散在可固化聚合物基体中的碳纳米管形成具有所要求电阻的电路径的方法。将电极布置成与分散体接触,并向碳纳米管施加电能,直到达到所要求的电阻。燃烧掉可能是碳纳米管混合物一部分的金属纳米管,在沉积后施加电流,可以实现纯的半导电连接。固化聚合物基体,以固定装置。
现有技术的缺点是碳纳米管非常昂贵,并且难以以工业规模生产。纳米管的分散体难以保存,并且在将分散体涂覆到基底之前要求有特殊的制造步骤,如均化或声处理。如US 4101689A所说明的在聚合物基体中穿孔,并用导电材料填充的方法也很复杂。
因此,存在对成本效益更好的制造方法的需求,该方法能够赋予装置、薄膜和粘合剂均匀的导电性以及改善的机械和光学性能。
附图清单
图1所示为导电颗粒组件在定向排列前好后的光学显微图。
图2所示为分散在粘合剂中的0.2体积%的CNC颗粒的DC导电率与定向排列时间的关系曲线图。实线是示意曲线(guide to eye)。
图3所示为在电极(a)和材料(b)之间含电触点(A-B)和不含电触点(C-D)的定向薄膜。
图4所示为UV固化方法的示意图。
图5a-c以平面内几何结构描绘了定向并固化的导电纳米锥粘合剂。
图6所示为任意定向排列几何结构和任意电极形状的定向材料。
图7举例说明了“枝状的”结构,使导电部件与基体之间的接触面积最大化。
发明内容
本发明提供形成各向异性的导电薄膜或耗散薄膜的方法,所述薄膜包括混合了导电颗粒的不导电基体。
本发明既可用于装置、薄膜或粘合剂中避免静电电荷积累,也可用于人或物体被静电充电时可安全放电的装置。
导电颗粒是不熔性颗粒,如碳颗粒或金属颗粒。导电颗粒表现出低的分子或颗粒各向异性,球形炭黑或碟状碳颗粒就是这种情况。因此,导电颗粒的主要部分有低的纵横比;纵横比范围为1-4,或1-5,1-10,1-20或1-100是典型的。导电颗粒可以是不同碳颗粒的混合物。也可以使用其它的导电颗粒。可以使用金属,如银,或金属氧化物颗粒。
基体可以是任何类型的聚合物体系,其可以含有一种或几种组分。尤其可以是热固性聚合物体系,也就是说基体原来是流体,但是可以通过交联固化。所述聚合物可以是粘合剂。它也可以是热塑性聚合物体系,也就是说聚合物在较低的温度时是固态或粘稠的,但通过增加温度可以可逆地熔融或塑化。它还可以是溶致的(lyotropic)聚合物体系,也就是说基体可以通过溶剂塑化,并可以通过蒸发掉该溶剂固化。此时其可以含有高比例的低价填料,可用于生产大体积的ESD装置,如地板砖。它还可以是这些体系的任何组合。例如,热固性聚合物体系可以含有用来将其塑化的溶剂,但是稳定化处理可以主要基于交联,仅在其次才基于溶剂蒸发。
本发明的一个要素(element)是导电路径(conductive path)可以在低电场强度时由如炭黑和碟状碳颗粒的低分子各向异性颗粒形成。这可简化生产设备,并且使得能生产更大的表面及更厚的薄膜。炭黑和碟状碳颗粒比碳纳米管(CNT)便宜得多,并可通过工业方法大批量生产。
本发明的另一个要素是导电颗粒的量可以低于渗滤阈值。这有若干优势,因为仅含少量导电颗粒,混合物更少倾向于宏观相分离,从而更易于保存。如果可以降低颗粒的量,各向异性导电薄膜的机械强度也可以提高。对于UV固化的薄膜,屏蔽(shielding)颗粒的量较低时,固化方法更有效。类似地,如果可以降低颗粒的量,则薄膜的透明度可以提高。导电颗粒的量较低也是节约成本的要素。
可以在电极之间产生电场,电极既可布置成与层的一个或两个面直接接触,或在附加的绝缘层外面,其中绝缘层布置成与第一层接触;或也可不与层直接接触。
电场的方向可以通过电极排列预先确定,从而可以控制定向导电颗粒形成的电连接的方向。
通过改变诸如颗粒混合和场的因素,可以在生产中控制ESD程度。电场可以为约0.01~35kV/cm,约0.05~20kV/cm,或约0.05~5kV/cm或0.1~1kV,尤其是约0.1~1kV/cm。
也就是说对于典型的10μm~1mm的定向排列距离,施加的电压可以为0.1~100V。电场为交流(AC)电场,但是也可以是直流(DC)电场。典型的场是频率为10Hz~100kHz的AC场,典型地为10Hz~10kHz。<10Hz的非常低的频率或DC场会导致不对称链的形成和累积。实施所述方法要求的低电压在生产线上易于处理,并且处理高电压时不要求有必须的特殊安排。
因此,本发明基于以下发现:使用电场可以在流体状聚合物基体中定向排列导电颗粒,在流体状聚合物基体中形成导电路径。所述路径能够增强材料的宏观导电率。尤其是,形成导电路径可以使材料在含有较少量的导电颗粒时也可变为导电的,否则就要求含无规分布颗粒的材料来产生电接触。因此可以减少聚合物基体中导电颗粒的量,并且可以比渗滤阈值低多达10倍,或者甚至更低。
此外,本方法可产生各向异性的材料和定向的导电率,也即导电率沿定向排列方向比与其垂直方向更高。
如果导电路径变得有缺陷或者在第一步骤中没有适当定向,还可以修复定向导电颗粒路径,在基体的稳定步骤还没有执行或者如果稳定步骤是可逆的情况下,可以再次进行定向排列步骤。这有以下优点,即对于连接路径(connection)制备中的现有薄膜,不要求重新开始所述方法。
可以在定向排列后除去大部分或所有的基体,产生清晰的定向排列的导电颗粒分子线。例如可以通过过热(例如热解)或通过化学处理(例如选择性溶剂)实现脱除。
各向异性导电薄膜的制造不要求形成薄膜的树脂与电极接触。制造方法可以以连续方式或分步方式进行。各向异性薄膜可以贴装到基底上,或者可以是自支撑薄膜。
本发明的导电薄膜可以有导电路径,因此可以用作电流集电器,并可与导电或不导电的其它薄膜连接。由于电子流可以是单向或双向的,因此本发明可以在电池或电容器中用作阳极或阴极。薄膜可以通过热层压方法层压到其它材料上,热封到其它不导电聚合物,或使用导电粘接剂进行层压。另一用途是在任何类型的电解质溶液中作为阻隔层阻挡电解质转移,或作为任何电池金属化电极导体的替代物。
在本发明的一个实施方案中,在制成各向异性导电薄膜后从薄膜完全或部分除去树脂,并且实现含自支撑导电路径的基底。
在另一个实施方案中,聚合物用作粘合剂或用于层压方法中。
具体实施方式
以下参考实施例和附图对本发明进行说明。应当理解,本发明决不限于这些实施例和附图。
本发明的方法是制造至少具有一个各向异性导电层的ESD装置,所述导电层包括基体和导电颗粒的混合物。步骤为:
a.在ESD装置的第一表面上涂敷混合物的层,所述混合物具有能使导电颗粒在层内重新排列的第一粘度;
b.在两个定向排列电极之间在所述层之上施加电场,以使数个(anumber of)导电颗粒与电场定向排列,因此产生导电路径;
c.将层的粘度改变成第二粘度,所述第二粘度比第一粘度更高,以便使层在机械上稳定,并保护(preserve)导电路径。
应当注意,第一表面可以用作定向排列电极,由此不必使用另外的电极。该电极还可以是远离的,因此可与混合物绝缘。
该方法可以在ESD用装置生产线中实施;该生产线可以包括以下步骤:
i.使聚合物树脂与根据本发明的CB混合,形成基体
ii.使基体形成薄膜,或将物体浸在基体中,或将其喷上或倾倒上基体
a.对于薄膜,层的厚度为0.1~5mm,优选小于3mm。
b.对于薄垫子,层的厚度可直至3cm,优选厚度小于2cm。
c.对于厚垫子,层的厚度可直至50cm,优选厚度小于5cm。
iii.施加根据本发明的电场
iv.使用例如紫外光或热,使基体固化
v.任选减少基体,由此使导电路径暴露
vi.任选重复步骤ii~v
该方法还可以在待连接或层压的导电层或线的生产线中实施。所述生产线可以包括以下步骤:
i.使环氧与根据本发明的CB混合,形成基体
ii.使基体形成薄膜或膏体,并且可在层或部件或线之间需要导电性时将其用作胶合剂
iii.施加根据本发明的电场
iv.使用例如紫外光或热,使基体固化
实施例1
本实施例涉及导电颗粒和聚合物基体混合物的制备,所述聚合物基体为热固化聚合物粘合剂。它还显示导电率为颗粒装填量的函数,并且,导电率随着颗粒装填量增加而逐步增加的原因可以解释为,随着颗粒比例(fraction)增加形成接触点时,在颗粒之间形成了导电路径。
进一步,本实施例涉及当颗粒装填量比观察到的渗滤阈值低,例如低10倍时,所述混合物的制备,所述渗滤阈值为各向同性的非定向混合物不具导电性的极限;并且涉及该混合物使用电场的定向排列,这样定向颗粒形成导电路径,产生导电材料,例如低于非定向材料的渗滤阈值,所述导电材料的导电率是方向性的。更进一步,本实施例所示为改变所得到材料的粘度,例如通过固化,这样可保持在定向排列步骤中得到的定向排列和方向性导电率。
所使用的导电颗粒为Alfa Aesar的CB、n-Tec AS(挪威)的CNC材料和Sigma-Aldrich的氧化铁(FeO-Fe2O3)。
所使用的聚合物基体为通过低粘度环氧树脂的阿拉代胶AralditeAY 105-1(Huntsman Advanced Materials GmbH)与RenHY 5160(VanticoAG)组合形成的双组分低粘度粘合剂。
将导电颗粒在粘合剂中通过搅拌30分钟混合。由于混合物的粘度高,有效混合只能在至多20体积%下实现。
这些材料的估算渗滤阈值为~2体积%。混合物高于该阈值时导电,低于该阈值时绝缘。导电性是由于导电颗粒所致,而聚合物是绝缘体。
为了说明定向排列的好处,采用相同材料,并与上述类似进行制备,但使用低10倍的颗粒装填量。
图1使用光学显微图说明分散在实施例粘合剂中0.2体积%的CNC颗粒组合的混合、在电场定向排列和固化之前(图IA)和之后(图IB)的情况。
图例所示为实施定向排列(平面外)的几何结构(图1C)。该定向排列几何结构用来覆盖从10μm到几厘米的导电路径距离,优选到几毫米。对于平面外的定向排列,2mm x 3cm宽的材料层被注入到两个导电层(a)之间。
使用AC源对混合物进行定向,得到定向路径(b)。在本实施例中,使用1kHz AC场[0.6-4kV/cm(rms值)]的定向排列方法,对于>1mm的电极间距定向10分钟,对于<1mm的电极间距定向<10分钟。
图2所示为分散在粘合剂中的0.2体积%的CNC颗粒的DC导电率与定向排列时间的关系曲线图。实线是示意曲线。然后立即在100℃下进行固化6分钟。
固化后材料保持定向排列,并且保持定向排列得到的导电率水平。
实施例2
本实施例涉及定向排列条件的多种选择,并且说明了本发明如何不但可以与连接到定向材料的电极一起使用,而且可以与和材料在电气上分离的电极一起使用。
该方法在其它方面与实施例1中类似,除了材料不是直接连接到定向排列电极,而是电极通过绝缘层,例如0.127mm的Kapton
Figure BPA00001498604700101
箔,在电气上与材料断开。定向排列的产生与实施例1中完全一样。
该方法可以在定向排列之后除去电极,因此可得到自支撑定向薄膜,即使在基体为粘合剂的情况下。电极不接触材料时也能发生定向排列,因此定向排列可以远距离进行。当材料与电极在定向排列过程中连续或分步地彼此相对运动时,可以产生连续的定向排列处理。图3所示为在电极(a)和材料(b)之间含电触点(A-B)和不含电触点(C-D)的定向薄膜,举例说明了定向排列设置的三种可能选项。在情况(A)下,定向薄膜在电极之间形成永久连接。在情况(B)下,电极和材料仅松散连接在一起,可在定向排列后移动分开。在情况(C)下,材料与电极之间有绝缘层(c),甚至在材料为粘合剂的情况下它们也很容易在定向排列后移动分开。在此情况下,得到的材料是由定向层(b)和两个绝缘层(c)组成的复层。在情况(D)下,定向排列远距离进行,电极和薄膜的相互位置可以在定向排列过程中另外移动。
实施例3
本实施例涉及定向排列方法的适用性,定向排列用于特殊的紫外线固化应用。本实施例强调低的颗粒比例能使材料对于固化用紫外光更透明的优点。
该方法在其它方面与实施例1或2中类似,除了热固化的聚合物基体用紫外线可固化的Dymax Ultra Light-Weld
Figure BPA00001498604700102
3094粘合剂代替,并用波长300~500nm的紫外光完成固化步骤。
图4举例说明了平面外几何结构中0.2体积%的CNC分散体的定向排列。根据实施例1的指导(图4a)形成混合物,但使用RK印刷漆涂布机将其涂布到定向排列电极上,所述涂布机使用移动的鸟型涂布机将粘合层平整到预先确定的厚度(该想法在图4b中示意性地图示)。根据实施例2中概括的方法对混合物进行定向,但上电极通过利用诸如Kapton(图4c)的绝缘层不与材料接触;这使得能在定向排列后除去电极,因此即使在基体为粘合剂的情况下也能得到自支撑的定向薄膜。在定向排列后,除去定向排列上电极,并通过紫外线或蓝光固化定向的混合物(图4d)。可以任选除去下电极(图4e),形成完全自支撑的薄膜。
图4还给出了紫外线固化的示意图。导电颗粒随可UV固化的聚合物基体(a)分散。使用涂布机(b)在基底上散布该混合物,形成预先确定的层(也起到定向排列电极的作用)。使用下电极和不与材料(c)接触的另一个上电极,通过电场对材料进行定向。除去上电极,使用光源(UV/vis)固化定向混合物,产生半自支撑的定向薄膜(d)。如果需要,可以进一步除去下电极,得到完全自支撑的定向薄膜(e)。
实施例4
本实施例涉及定向排列几何结构的多种选择,并且举例说明了本发明如何不但可用于实施例1所示的几何结构,而且可用于(i)薄的膜和(ii)平面内的几何结构。本实施例强调了所述方法的通用原则。
材料是相同的,方法类似于实施例1,但使用平面内定向排列几何结构,而不是平面外定向排列几何结构。
对于平面内定向排列,通过旋涂或通过塑料抹刀在金属指杆格栅的1cm x 1cm的面积上涂布~10μm厚的层,其中指的厚度和宽度分别为50~200nm和2~10μm。指之间的间隔为10~100μm。
图5举例说明了平面内几何结构中的定向并固化的导电CNC粘合剂。图5a所示为0.2体积%的定向材料的光学显微图。示意图(图5b)举例说明了定向排列的设置。在该几何结构中定向排列典型地在数秒或数十秒的时间内发生。
在另一个型式中,定向排列电极为电绝缘的。定向排列在不含绝缘层时准确实现。
实施例5
本实施例涉及定向排列几何结构的多种选择,并且举例说明了本发明如何不但可用于含形状明确的扁平电极的平面外和平面内几何结构,而且可用于任意几何结构和电极形状的情况。本实施例强调了所述方法的通用性。本实施例也举例说明了定向排列不要求有平行于将产生的定向路径的表面或界面。
材料在其它方面相同,并且方法类似于实施例1、2、3或4中,但使用任意的几何结构和任意的电极形状,而不是平面外或平面内的定向排列几何结构和扁平的电极。图6所示为使用任意几何结构和任意电极形状时的定向材料的光学显微图。
实施例6
本实施例进一步涉及本发明的多用性,在制备接触面积非常大的树枝型分子表面的电极时使用电场定向排列。
方法在其它方面与实施例1、2、2、4或5中类似,除了定向排列在链从电极到达电极之前进行封端。图7所示为这样得到的含枝状表面的电极。
这可应用于电池或电容器用薄膜的制造。
实施例7
本实施例涉及实施例1、2、3、4、5或6所说明的方法的材料选择。
适用于所述用于地板的定向排列方法的包括聚氯乙烯树脂的聚合材料可以是均聚物或共聚物,其组成包括氯乙烯和其它的结构单元,如醋酸乙烯。为了保护聚合材料在加工过程中以及作为地板材料在使用过程中的降解,乙烯基化合物可以进行耐热和紫外线辐照影响的稳定处理,使用例如钡、钙和锌的脂肪酸盐(soap);有机锡化合物;环氧化的大豆油和树脂酸酯或有机亚磷酸酯。
聚合材料可以含有增塑剂,以提供柔韧性并方便加工。一种合适的增塑剂是邻苯二甲酸二辛酯(DOP)。其它合适的注塑剂可以包括邻苯二甲酸丁基苄酯(BBP)、烷基芳基磷酸酯、脂族和芳族醇的其它邻苯二甲酸酯、氯化烃类、和各种其它的高沸点酯。
经稳定处理并增塑的乙烯基配制物与可变量的无机填料混合,以合理的成本提供质量、颜色和厚度。填料可以是碳酸钙、滑石、粘土和长石粉。白颜料可以为二氧化钛,着色颜料优选为无机的。
可以使用其它的添加剂,避免在火灾中火焰传播和产生烟。这些化合物包括三水氧化铝、三氧化锑、磷酸盐或氯化烃类增塑剂、氧化锌、和硼化合物。含化学膨胀泡沫的缓冲地板可以与偶氮二甲酰胺发泡剂掺混。还可以使用各种其它的加工助剂和润滑剂。
填料的量可以低于1重量%或高达80重量%,而乙烯基树脂、其它树脂、增塑剂和稳定剂可以低于1%或总计20%。
实施例8
方法在其它方面与实施例1、2、3、4、5或6中类似,除了定向材料用于生产与地板材料层压的上层。
实施例9
方法在其它方面与实施例1、2、2、4、5或6中类似,除了定向材料用作家具或工作站的一部分。
实施例10
方法在其它方面与实施例1、2、2、4、5或6中类似,除了定向材料用作底垫(shoe)或衬垫一部分。
实施例11
方法在其它方面与实施例1、2、2、4、5或6中类似,除了定向材料用作包装材料的一部分。
实施例12
方法在其它方面与实施例1、2、2、4、5或6中类似,除了定向材料用作电池或电容器的一部分。
实施例13
方法在其它方面与实施例1、2、2、4、5或6中类似,除了定向材料制成板材,其厚度可直至5cm,优选小于1cm,并且宽度小于10m。然后可以保存所述片材,并将其用于可用于车辆、计算机和打印机的大型部件的生产,例如,通过切割或热成型。

Claims (21)

1.制造形成至少一个各向异性的导电层或耗散层的ESD装置的方法,所述层包括不导电基体和导电颗粒的混合物,其特征在于,
a.在ESD装置的第一表面上施加混合物的层,所述混合物具有能够使导电颗粒在层内重新排列的第一粘度;
b.在所述层上的两个定向排列电极之间施加电场,以使数个导电颗粒与电场定向排列,由此产生导电路径;
c.将层的粘度改变成第二粘度,所述第二粘度高于第一粘度,以使所述层在机械上稳定,并保护导电路径。
2.权利要求1的方法,其特征在于,基体包括一种或多种聚合物。
3.权利要求2的方法,其特征在于,基体是粘合剂。
4.权利要求1、2或3的方法,其特征在于,至少一个定向排列电极与所述层直接接触。
5.权利要求1、2或3的方法,其特征在于,定向排列电极与所述层绝缘。
6.前述权利要求之一的方法,其特征在于,电场为约0.05~20kV/cm,或约0.05~5kV/cm,或0.1~1kV,尤其是约0.1~1kV/cm。
7.前述权利要求之一的方法,其特征在于,电场为AC场。
8.权利要求1、2、3、4、5、6或7的方法,其特征在于,在第一表面和第二表面之间施加电场。
9.权利要求4、6、7或8的方法,其特征在于,在导电路径通过所述层到达并连接定向排列电极之前,中断定向排列步骤。
10.权利要求1和前述权利要求之一的方法,其特征在于,在步骤c之后将基体从所述层完全或部分除去。
11.前述权利要求之一的方法,其特征在于,导电颗粒在层中的浓度低于渗滤阈值。
12.ESD装置,其包括权利要求1~11之一的导电层。
13.权利要求12的ESD装置,其特征在于,所述装置包括导电片材或耗散片材或地板砖。
14.权利要求12或13的ESD装置,其特征在于,导电颗粒包括炭黑、碳纳米盘、碳纳米锥、金属、金属氧化物、和含胶体金属的颗粒的一种或多种。
15.权利要求12或13的ESD装置,其特征在于,基体是热塑性树脂,所述树脂包括聚氨酯、聚氯乙烯、聚烯烃和氯乙烯共聚物和烯烃共聚物的一种或多种。
16.权利要求12或13的ESD装置,其特征在于,导电层或耗散层的厚度为0.1~5mm,优选小于3mm。
17.权利要求12的ESD装置,其特征在于,所述装置是包装ESD敏感的电子产品的导电薄膜。
18.权利要求12的ESD装置,其特征在于,所述装置是ESD衬垫。
19.权利要求12的ESD装置,其特征在于,所述装置是片材,其厚度至多50cm,优选小于5cm,并且宽度小于10m。
20.权利要求12的ESD装置,其特征在于,所述装置是片材,其厚度至多3cm,优选小于2cm,并且宽度小于10m。
21.权利要求12的ESD装置,其特征在于,所述装置为用于电池或电容器的薄膜。
CN201080033253.9A 2009-06-22 2010-06-22 静电放电装置以及制造该装置的方法 Expired - Fee Related CN102483970B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20092381A NO333507B1 (no) 2009-06-22 2009-06-22 Fremgangsmate for a lage et anisotropisk, ledende lag og en derav frembrakt gjenstand
NO20092381 2009-06-22
PCT/NO2010/000241 WO2010151141A1 (en) 2009-06-22 2010-06-22 Electrostatic discharge device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN102483970A true CN102483970A (zh) 2012-05-30
CN102483970B CN102483970B (zh) 2015-02-18

Family

ID=41804771

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010800332524A Pending CN102483969A (zh) 2009-06-22 2010-06-22 太阳能电池集流条与太阳能电池主栅的连接以及由此制得的太阳能电池
CN201080033253.9A Expired - Fee Related CN102483970B (zh) 2009-06-22 2010-06-22 静电放电装置以及制造该装置的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010800332524A Pending CN102483969A (zh) 2009-06-22 2010-06-22 太阳能电池集流条与太阳能电池主栅的连接以及由此制得的太阳能电池

Country Status (14)

Country Link
US (5) US9437347B2 (zh)
EP (3) EP2446448A4 (zh)
JP (2) JP5536882B2 (zh)
KR (2) KR101858759B1 (zh)
CN (2) CN102483969A (zh)
AU (2) AU2010263367B2 (zh)
DK (1) DK2446447T3 (zh)
HR (1) HRP20190370T1 (zh)
HU (1) HUE042710T2 (zh)
LT (1) LT2446447T (zh)
NO (1) NO333507B1 (zh)
SG (2) SG177315A1 (zh)
SI (1) SI2446447T1 (zh)
WO (3) WO2010151148A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523860A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种多孔膨润土颗粒吸附微生物肥料及其制备方法
CN105523857A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种膨润土颗粒吸附肥料及其制备方法
CN105523856A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种蔬菜种植效果长久的有机基肥及其制备方法
CN105523858A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种可长期供给氮素的桃树肥料及其制备方法
CN105523859A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种旱地玉米种植保水型肥料及其制备方法
CN105967818A (zh) * 2016-02-24 2016-09-28 叶集试验区华农种植专业合作社 一种梨春季萌芽期适用肥料及其制备方法
CN105985191A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种改性膨润土吸附微量元素肥料及其制备方法
CN105985189A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种络合硅酸盐的有机根系肥料及其制备方法
CN105985094A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种液态发酵有机质吸附肥料及其制备方法
CN105985190A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种高效利用中草药提取液吸附肥料及其制备方法
CN105985197A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种富硒型缓释西瓜种植肥料及其制备方法
CN106459697A (zh) * 2014-05-21 2017-02-22 孔达利恩股份有限公司 其中颗粒路径的末端暴露的包含颗粒路径的物品的形成方法
CN113984844A (zh) * 2014-03-25 2022-01-28 宝洁公司 用于感测材料应变的设备

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO333507B1 (no) * 2009-06-22 2013-06-24 Condalign As Fremgangsmate for a lage et anisotropisk, ledende lag og en derav frembrakt gjenstand
CN102376793A (zh) * 2010-08-26 2012-03-14 宇威光电股份有限公司 太阳能电池模块
EP3598122B1 (en) 2010-12-08 2022-10-12 Condalign AS Sensor with conductive pathways formed from conductive particles
US9169601B2 (en) * 2010-12-15 2015-10-27 Condalign As Method for forming an anisotropic conductive paper and a paper thus formed
CN103517958A (zh) * 2010-12-15 2014-01-15 康达利恩股份公司 形成uv-可固化导电组合物的方法和由此形成的组合物
US20130276882A1 (en) * 2010-12-21 2013-10-24 Condalign As Method for forming conductive structures in a solar cell
WO2012085105A1 (en) 2010-12-21 2012-06-28 Condalign As Battery electrode material and method for making the same
DE102011078998A1 (de) * 2011-07-12 2013-01-17 Osram Opto Semiconductors Gmbh Lichtemittierendes Bauelement und Verfahren zum Herstellen eines lichtemittierenden Bauelements
US8673184B2 (en) 2011-10-13 2014-03-18 Flexcon Company, Inc. Systems and methods for providing overcharge protection in capacitive coupled biomedical electrodes
US9818499B2 (en) * 2011-10-13 2017-11-14 Flexcon Company, Inc. Electrically conductive materials formed by electrophoresis
US9775235B2 (en) 2013-03-15 2017-09-26 Flexcon Company, Inc. Systems and methods for providing surface connectivity of oriented conductive channels
KR101580113B1 (ko) * 2013-05-15 2015-12-29 한국항공우주연구원 전기장을 이용한 기능성 나노복합재 제조방법
KR101983161B1 (ko) * 2013-12-06 2019-05-28 삼성전기주식회사 이에스디 페이스트 및 그 제조 방법
CN103676331B (zh) * 2013-12-27 2017-01-04 京东方科技集团股份有限公司 一种导电取向层及制备方法、显示基板、显示装置
CA2968967A1 (en) * 2014-11-26 2016-06-02 The University Of Akron Electric field alignment in polymer solutions
KR102422077B1 (ko) * 2015-11-05 2022-07-19 삼성디스플레이 주식회사 도전성 접착 필름 및 이를 이용한 전자기기의 접착 방법
KR101932337B1 (ko) * 2017-04-12 2018-12-26 한국과학기술원 도전 입자의 이동을 제한하는 폴리머 층을 포함하는 이방성 전도 필름 및 수직 방향 초음파를 이용한 그 제조 방법
US20190355277A1 (en) 2018-05-18 2019-11-21 Aidmics Biotechnology (Hk) Co., Limited Hand-made circuit board
US20200015752A1 (en) * 2018-07-13 2020-01-16 John R Baxter Textile utilizing carbon nanotubes
KR102196530B1 (ko) * 2018-09-21 2020-12-29 포항공과대학교 산학협력단 전도성 입자 또는 강화 필러를 포함하는 신축성 기판의 제조방법 및 그를 포함하는 신축성 전자기기의 제조방법
RU2709609C1 (ru) * 2018-11-02 2019-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" Способ снижения электризации жидких углеводородов при обращении с ними
TWI736068B (zh) 2018-12-17 2021-08-11 美商電子墨水股份有限公司 非等向性導電水分障壁膜及具有此膜的電光總成
KR20200142622A (ko) * 2019-06-12 2020-12-23 삼성디스플레이 주식회사 기판 이송 장치 및 이를 이용한 기판 이송 방법
DE102020207986A1 (de) 2020-06-29 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Verkapselung elektrischer Bauteile, Verkapselungsmaterial zur Verwendung in diesem Verfahren sowie verkapseltes elektrisches Bauteil
WO2024062449A1 (en) * 2022-09-22 2024-03-28 Novocure Gmbh Electrode assembly with filler structure between electrode elements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009927A1 (en) * 2001-07-26 2003-02-06 Electrochemicals, Inc. Method to improve the stability of dispersions of carbon
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
WO2006026691A2 (en) * 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
WO2006052142A1 (en) * 2004-11-03 2006-05-18 Carbon Cones As Electricity and heat conductive composite
WO2008009779A1 (en) * 2006-07-21 2008-01-24 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
CN101323173A (zh) * 2006-06-13 2008-12-17 日东电工株式会社 复合材料片材及其制造方法
EP2058868A1 (en) * 2006-08-29 2009-05-13 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773684A (en) * 1964-06-29 1973-11-20 A Marks Dipolar electro-optic compositions and method of preparation
US4024318A (en) * 1966-02-17 1977-05-17 Exxon Research And Engineering Company Metal-filled plastic material
DE2230578A1 (de) 1972-06-22 1974-01-17 Dynamit Nobel Ag Antistatischer und/oder elektrisch leitfaehiger bodenbelag sowie verfahren zu seiner herstellung
US4269881A (en) 1976-10-18 1981-05-26 Ludlow Corporation Anti-static mats and carpets
US4170677A (en) * 1977-11-16 1979-10-09 The United States Of America As Represented By The Secretary Of The Army Anisotropic resistance bonding technique
US4265789A (en) * 1979-10-22 1981-05-05 Polymer Cencentrates, Inc. Conductive polymer processable as a thermoplastic
US4364752A (en) * 1981-03-13 1982-12-21 Fitch Richard A Electrostatic precipitator apparatus having an improved ion generating means
FR2522241A1 (fr) * 1982-02-22 1983-08-26 Thomson Csf Procede de fabrication de transducteurs polymeres piezoelectriques par forgeage
US4548862A (en) * 1984-09-04 1985-10-22 Minnesota Mining And Manufacturing Company Flexible tape having bridges of electrically conductive particles extending across its pressure-sensitive adhesive layer
US4657833A (en) * 1986-02-11 1987-04-14 E. I. Du Pont De Nemours And Company Photosensitive cathode for deposition of metal structures within organic polymeric films
US4740657A (en) * 1986-02-14 1988-04-26 Hitachi, Chemical Company, Ltd Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
US4724187A (en) 1986-03-25 1988-02-09 Nevamar Corporation Conductive laminate flooring
US4830903A (en) * 1986-08-29 1989-05-16 E. I. Du Pont De Nemours And Company Catalytic deposition of metals in solid matrices
JPS63257763A (ja) * 1987-04-15 1988-10-25 Hitachi Metals Ltd 画像記録方法
US4826912A (en) 1987-07-29 1989-05-02 Armstrong World Industries, Inc. Charge dissipative floor tiles
US5334330A (en) * 1990-03-30 1994-08-02 The Whitaker Corporation Anisotropically electrically conductive composition with thermal dissipation capabilities
US5348784A (en) 1991-11-04 1994-09-20 United Technical Products, Inc. Antistatic and conductive carpet tile system
US5429701A (en) 1992-04-14 1995-07-04 Industrial Technology Research Institute Method of electrically interconnecting conductors
US5443876A (en) * 1993-12-30 1995-08-22 Minnesota Mining And Manufacturing Company Electrically conductive structured sheets
DE69526287T2 (de) * 1994-01-27 2002-10-31 Loctite Ireland Ltd Zusammenstellungen und methoden zur anordnung anisotropisch leitender bahnen und verbindungen zwischen zwei sätzen von leitern
JPH10502677A (ja) * 1994-06-29 1998-03-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 異方性導電性の接着剤及び異方性導電性の接着剤の製造方法
US5700398A (en) 1994-12-14 1997-12-23 International Business Machines Corporation Composition containing a polymer and conductive filler and use thereof
US5777292A (en) * 1996-02-01 1998-07-07 Room Temperature Superconductors Inc. Materials having high electrical conductivity at room teperatures and methods for making same
US5817374A (en) * 1996-05-31 1998-10-06 Electrox Corporation Process for patterning powders into thick layers
EP0855049B1 (en) * 1996-08-01 2005-11-09 Loctite (Ireland) Limited A method of forming a monolayer of particles, and products formed thereby
US6190509B1 (en) * 1997-03-04 2001-02-20 Tessera, Inc. Methods of making anisotropic conductive elements for use in microelectronic packaging
US6088471A (en) * 1997-05-16 2000-07-11 Authentec, Inc. Fingerprint sensor including an anisotropic dielectric coating and associated methods
EP1051265A4 (en) * 1998-01-30 2004-04-07 Henkel Loctite Corp PROCESS FOR FORMING A COATING ON A SINGLE-LAYER OF PARTICLES AND PRODUCTS THUS OBTAINED
WO1999049108A1 (en) * 1998-03-24 1999-09-30 Drexel University Process of making bipolar electrodeposited catalysts and catalysts so made
US6552883B1 (en) * 1998-08-06 2003-04-22 Room Temperature Superconductors, Inc. Devices comprising thin films having temperature-independent high electrical conductivity and methods of making same
US20040246650A1 (en) * 1998-08-06 2004-12-09 Grigorov Leonid N. Highly conductive macromolecular materials and improved methods for making same
JP3379456B2 (ja) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 異方導電性接着フィルム
US6218629B1 (en) * 1999-01-20 2001-04-17 International Business Machines Corporation Module with metal-ion matrix induced dendrites for interconnection
US7635810B2 (en) * 1999-03-30 2009-12-22 Daniel Luch Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
GB2361479A (en) * 2000-04-11 2001-10-24 Secr Defence Electric-field structuring of composite materials
US6417245B1 (en) * 2000-07-20 2002-07-09 The Research Foundation Of State University Of Ny Method for the preparation of conjugated polymers
EP1362367A2 (en) * 2001-01-23 2003-11-19 Quantum Polymer Technologies, Inc. Conductive polymer materials and methods for their manufacture and use
US20050206028A1 (en) 2001-02-15 2005-09-22 Integral Technologies, Inc. Low cost electrically conductive flooring tile manufactured from conductive loaded resin-based materials
CN1543399B (zh) 2001-03-26 2011-02-23 艾考斯公司 含碳纳米管的涂层
US6733613B2 (en) * 2002-07-25 2004-05-11 S. Kumar Khanna Method for curing an anisotropic conductive compound
US7097757B1 (en) * 2002-07-30 2006-08-29 Fractal Systems, Inc. Polymers having an ordered structural state
US7034403B2 (en) * 2003-04-10 2006-04-25 3M Innovative Properties Company Durable electronic assembly with conductive adhesive
JP4039975B2 (ja) * 2003-04-25 2008-01-30 信越ポリマー株式会社 線材タイプの異方導電性コネクタ
US7062848B2 (en) * 2003-09-18 2006-06-20 Hewlett-Packard Development Company, L.P. Printable compositions having anisometric nanostructures for use in printed electronics
US7018917B2 (en) * 2003-11-20 2006-03-28 Asm International N.V. Multilayer metallization
US6970285B2 (en) * 2004-03-02 2005-11-29 Hewlett-Packard Development Company, L.P. Phase change electrophoretic imaging for rewritable applications
US8052932B2 (en) * 2006-12-22 2011-11-08 Research Triangle Institute Polymer nanofiber-based electronic nose
JP2005306992A (ja) * 2004-04-21 2005-11-04 Dainippon Ink & Chem Inc 機能性硬化膜
TWI463615B (zh) 2004-11-04 2014-12-01 Taiwan Semiconductor Mfg Co Ltd 以奈米管為基礎之具方向性導電黏著
US7595790B2 (en) * 2005-01-31 2009-09-29 Panasonic Corporation Pressure sensitive conductive sheet, method of manufacturing the same, and touch panel using the same
US8253179B2 (en) * 2005-05-13 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20080191174A1 (en) * 2005-07-08 2008-08-14 Cypak Ab Use Of Heat-Activated Adhesive For Manufacture And A Device So Manufactured
KR101396737B1 (ko) * 2005-10-31 2014-05-26 더 트러스티즈 오브 프린스턴 유니버시티 전기수력학적 인쇄 및 제조
US20070213429A1 (en) * 2006-03-10 2007-09-13 Chih-Min Cheng Anisotropic conductive adhesive
CN101029212A (zh) * 2007-04-28 2007-09-05 北京市航天焊接材料厂 一种环氧树脂各向异性导电胶
GB0710425D0 (en) * 2007-06-01 2007-07-11 Hexcel Composites Ltd Improved structural adhesive materials
US20090038832A1 (en) * 2007-08-10 2009-02-12 Sterling Chaffins Device and method of forming electrical path with carbon nanotubes
WO2009053470A1 (en) 2007-10-24 2009-04-30 Queen Mary And Westfield College, University Of London Conductive polymer composite
JP2010041040A (ja) * 2008-07-10 2010-02-18 Semiconductor Energy Lab Co Ltd 光電変換装置および光電変換装置の製造方法
EP2154312A1 (en) 2008-08-14 2010-02-17 Tarkett France Surface covering with static control properties
US10090076B2 (en) * 2009-06-22 2018-10-02 Condalign As Anisotropic conductive polymer material
NO333507B1 (no) * 2009-06-22 2013-06-24 Condalign As Fremgangsmate for a lage et anisotropisk, ledende lag og en derav frembrakt gjenstand
WO2011052382A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP3598122B1 (en) * 2010-12-08 2022-10-12 Condalign AS Sensor with conductive pathways formed from conductive particles
US9169601B2 (en) * 2010-12-15 2015-10-27 Condalign As Method for forming an anisotropic conductive paper and a paper thus formed
US20130276882A1 (en) * 2010-12-21 2013-10-24 Condalign As Method for forming conductive structures in a solar cell
US8673184B2 (en) * 2011-10-13 2014-03-18 Flexcon Company, Inc. Systems and methods for providing overcharge protection in capacitive coupled biomedical electrodes
US9775235B2 (en) * 2013-03-15 2017-09-26 Flexcon Company, Inc. Systems and methods for providing surface connectivity of oriented conductive channels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009927A1 (en) * 2001-07-26 2003-02-06 Electrochemicals, Inc. Method to improve the stability of dispersions of carbon
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
WO2006026691A2 (en) * 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
WO2006052142A1 (en) * 2004-11-03 2006-05-18 Carbon Cones As Electricity and heat conductive composite
CN101323173A (zh) * 2006-06-13 2008-12-17 日东电工株式会社 复合材料片材及其制造方法
WO2008009779A1 (en) * 2006-07-21 2008-01-24 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
EP2058868A1 (en) * 2006-08-29 2009-05-13 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984844A (zh) * 2014-03-25 2022-01-28 宝洁公司 用于感测材料应变的设备
CN106459697A (zh) * 2014-05-21 2017-02-22 孔达利恩股份有限公司 其中颗粒路径的末端暴露的包含颗粒路径的物品的形成方法
US11618186B2 (en) 2014-05-21 2023-04-04 Condalign As Method for forming an article comprising a pathway of particles wherein a termination of the pathway of particles exposed
CN105985191A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种改性膨润土吸附微量元素肥料及其制备方法
CN105523859A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种旱地玉米种植保水型肥料及其制备方法
CN105523860A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种多孔膨润土颗粒吸附微生物肥料及其制备方法
CN105985189A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种络合硅酸盐的有机根系肥料及其制备方法
CN105985094A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种液态发酵有机质吸附肥料及其制备方法
CN105985190A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种高效利用中草药提取液吸附肥料及其制备方法
CN105985197A (zh) * 2016-02-23 2016-10-05 安徽凤阳德诚科技有限公司 一种富硒型缓释西瓜种植肥料及其制备方法
CN105523858A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种可长期供给氮素的桃树肥料及其制备方法
CN105523856A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种蔬菜种植效果长久的有机基肥及其制备方法
CN105523857A (zh) * 2016-02-23 2016-04-27 安徽凤阳德诚科技有限公司 一种膨润土颗粒吸附肥料及其制备方法
CN105967818A (zh) * 2016-02-24 2016-09-28 叶集试验区华农种植专业合作社 一种梨春季萌芽期适用肥料及其制备方法

Also Published As

Publication number Publication date
NO20092381L (no) 2010-12-23
HRP20190370T1 (hr) 2019-05-03
EP2446447B1 (en) 2018-11-28
WO2010151141A1 (en) 2010-12-29
US20120240992A1 (en) 2012-09-27
US20120224285A1 (en) 2012-09-06
EP2446721B1 (en) 2022-03-30
US20120231178A1 (en) 2012-09-13
SG177314A1 (en) 2012-02-28
LT2446447T (lt) 2019-04-25
SG177315A1 (en) 2012-02-28
NO333507B1 (no) 2013-06-24
US10561048B2 (en) 2020-02-11
KR20120101627A (ko) 2012-09-14
EP2446448A4 (en) 2013-05-01
WO2010151142A1 (en) 2010-12-29
SI2446447T1 (sl) 2019-05-31
DK2446447T3 (en) 2019-03-25
EP2446447A4 (en) 2013-04-24
AU2010263367A1 (en) 2012-02-02
AU2010263367B2 (en) 2015-08-06
KR101858759B1 (ko) 2018-05-16
CN102483969A (zh) 2012-05-30
JP2012531026A (ja) 2012-12-06
EP2446447A1 (en) 2012-05-02
JP5536882B2 (ja) 2014-07-02
KR20120052938A (ko) 2012-05-24
AU2010263374A1 (en) 2012-02-02
EP2446721A1 (en) 2012-05-02
US9437347B2 (en) 2016-09-06
US20200245514A1 (en) 2020-07-30
WO2010151148A1 (en) 2010-12-29
CN102483970B (zh) 2015-02-18
US20170034964A1 (en) 2017-02-02
JP2012531060A (ja) 2012-12-06
EP2446448A1 (en) 2012-05-02
HUE042710T2 (hu) 2019-07-29

Similar Documents

Publication Publication Date Title
CN102483970B (zh) 静电放电装置以及制造该装置的方法
US10090076B2 (en) Anisotropic conductive polymer material
Prasse et al. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment
EP0312688B1 (en) Exothermic conductive coating
CN107646163B (zh) 用于电机的电晕屏蔽的防护覆层
CN103342027A (zh) 一种可设计的聚合物基多层介电复合材料的制备方法
CN103113732A (zh) 一种导电高分子复合材料及其制备方法
JP6479034B2 (ja) 導電性コロナシールドペーパ、特に外側コロナシールド用の導電性コロナシールドペーパ
KR20140114187A (ko) 표면이 평탄화된 코팅원단시트를 적용한 면상발열체 및 이의 제조방법
CN103380503A (zh) 半导体聚合物
US4691082A (en) Plastic cable
CN207008580U (zh) 具有由多个层制造的触摸屏的移动通信设备
KR20150091846A (ko) 배향된 탄소 구조체를 갖는 복합 필름 및 그 제조 방법
KR101551180B1 (ko) 면상 발열체 코팅을 위한 전도성 조성물 제조 방법, 그리고 면상 발열체 코팅을 위한 전도성 조성물
Mezdour et al. Dielectric and electrical properties investigation of polyamide/polyaniline composite films
Feng et al. Calculating permittivity of semi-conductor fillers in composites based on simplified effective medium approximation models
EP2669357A1 (en) Variable friction molding and variable friction structure
Flandin et al. Carbon black filled thermoset with controlled microstructure for electrical applications
Zhang et al. Ultrathin Films by Covalent Molecular Assembly: Polythiophene-Polyimide Composites with Reduced Surface Resistivity
CN106700069A (zh) 一种透明导电高聚物制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150218