CN102482638A - 制备己二酸的生物学方法 - Google Patents

制备己二酸的生物学方法 Download PDF

Info

Publication number
CN102482638A
CN102482638A CN2010800394770A CN201080039477A CN102482638A CN 102482638 A CN102482638 A CN 102482638A CN 2010800394770 A CN2010800394770 A CN 2010800394770A CN 201080039477 A CN201080039477 A CN 201080039477A CN 102482638 A CN102482638 A CN 102482638A
Authority
CN
China
Prior art keywords
activity
mikrobe
engineered
active
engineered mikrobe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800394770A
Other languages
English (en)
Inventor
S·皮卡塔吉
T·比尔兹利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verdezyne Inc
Original Assignee
Verdezyne Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verdezyne Inc filed Critical Verdezyne Inc
Publication of CN102482638A publication Critical patent/CN102482638A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明部分涉及产生己二酸的生物学方法和能进行此类生产的工程改造微生物。

Description

制备己二酸的生物学方法
相关专利申请
本专利申请要求2009年7月2日提交,名为“制备己二酸的生物学方法(BIOLOGICAL METHODS FOR PREPARING ADIPIC ACID)”的美国临时专利申请号61/222,902的优先权,该申请的发明人为Stephen Picataggio,代理人案卷号指定为VRD-1001-PV。在前专利申请的全部内容通过引用纳入本文,包括但不限于所有文本、表格和附图。
领域
本发明部分涉及产生己二酸的生物学方法和能进行此类生产的工程改造微生物。
背景
微生物利用各种酶驱动的生物学途径来支持它们自身的代谢和生长。细胞从脱氧核糖核酸(DNA)体内合成包括酶在内的天然蛋白质。DNA首先转录成包含编码蛋白质的核糖核苷酸序列的互补核糖核酸(RNA)。然后,RNA通过与各种细胞组分,例如核糖体相互作用指导所编码蛋白质的翻译。得到的酶作为生物催化剂参与涉及生物体产生分子的途径。
可利用这些途径收集天然产生的产物。还可改变这些途径以增加产量或产生商业上有价值的不同产物。重组分子生物学方法的进展使得研究人员能分离某一生物的DNA,将其插入另一生物,因而能改变酶或其它蛋白质的细胞合成。此类遗传工程改造能改变宿主生物的生物学途径,从而导致其产生所需产物。微生物工业生产能最大程度降低对腐蚀性化学品的使用和毒性副产物的产生,因而能提供某些化合物的“清洁”来源。
概述
本文提供产生六-碳有机分子,例如己二酸的工程改造微生物,产生此类微生物的方法和利用它们产生己二酸及其它六-碳有机分子的方法。
因此,在一些实施方式中,本文提供能产生己二酸的工程改造微生物,或产生己二酸(的方法),所述微生物包含选自下组的一种或多种改变的活性:醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性)、脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性)、己酸合酶活性和单加氧酶活性。在某些实施方式中,所述微生物包含增加或增强以下酶活性的遗传修饰:醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性)、脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性)、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。在一些实施方式中,还提供产生己二酸的工程改造微生物,所述微生物包含改变的单加氧酶活性。在一些实施方式中,本文提供包含降低酰基-CoA氧化酶活性的遗传修饰的工程改造微生物。
在一些实施方式中,工程改造的微生物包含遗传修饰,所述遗传修饰包含多拷贝的编码多肽的多核苷酸,所述多肽具有醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性)、脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性)、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。在一些实施方式中,微生物中存在2、3、4、5、6、7、8、9或10或更多拷贝的特定多核苷酸。在某些实施方式中,工程改造的微生物包含与编码多肽的多核苷酸功能性连接的异源启动子(和/或5’UTR),所述多肽具有醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性)、脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性)、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。在一些实施方式中,所述启动子是酵母菌(例如,念珠菌酵母菌株(如热带念珠菌(C.tropicalis)菌株))的POX4或POX5或单加氧酶启动子,或其它启动子。本文描述了可用的启动子的例子。启动子对于微生物或是外源性或是内源性的。
本文还提供产生己二酸的工程改造微生物,其中所述微生物包含改变的单加氧酶活性。在某些实施方式中,工程改造微生物包含改变单加氧酶活性的遗传修饰。在一些实施方式中,工程改造的微生物包含改变选自下组的单加氧酶活性的遗传修饰:CYP52A15活性,CYP52A16活性,或CYP52A15活性和CYP52A16活性。在一些实施方式中,所述单加氧酶活性由CYP52A15多核苷酸,CYP52A16多核苷酸,或CYP52A15和CYP52A16多核苷酸编码。在一些实施方式中,所述遗传修饰增加单加氧酶活性。在某些实施方式中,所述遗传修饰增加编码具有单加氧酶活性的多肽的内源性多核苷酸拷贝数(例如,2、3、4、5、6、7、8、9、10或更多拷贝的该多核苷酸)。在某些实施方式中,工程改造的微生物包含的多核苷酸含有启动子(例如,启动子和/或5’UTR)和编码具有单加氧酶活性的多肽。所述启动子对于微生物或是外源性或是内源性的。在某些实施方式中,工程改造的微生物包含编码具有单加氧酶活性的多肽的异源多核苷酸。在相关的实施方式中,所述异源多核苷酸来自酵母菌,例如某些实施方式中的念珠菌酵母(如热带念珠菌)。
在某些实施方式中,工程改造的微生物包含改变单加氧酶还原酶活性的遗传修饰。在一些实施方式中,所述遗传修饰增加编码具有单加氧酶还原酶活性的多肽的内源性多核苷酸拷贝数(例如,2、3、4、5、6、7、8、9、10或更多拷贝的该多核苷酸)。在某些实施方式中,工程改造的微生物包含与编码具有单加氧酶还原酶活性的多肽的多核苷酸功能性相连的异源启动子(例如,对于微生物内源性或外源性的启动子)。在一些实施方式中,所述多核苷酸来自酵母菌,在某些实施方式中,所述酵母菌是念珠菌酵母(如热带念珠菌)。
在一些实施方式中,工程改造的微生物包含改变的硫酯酶活性。在一些实施方式中,工程改造的微生物包含改变硫酯酶活性的遗传修饰,在某些实施方式中,所述工程改造的微生物包含增加或增强硫酯酶活性的遗传改变。在一些实施方式中,所述工程改造的微生物包含编码具有硫酯酶活性的多肽的异源多核苷酸。
在一些实施方式中,工程改造的微生物包含改变的脂肪醇氧化酶活性。在一些实施方式中,工程改造的微生物包含改变脂肪醇氧化酶活性的遗传修饰,在某些实施方式中,所述工程改造的微生物包含增加或增强脂肪醇氧化酶活性的遗传改变。在一些实施方式中,所述遗传修饰增加编码具有脂肪醇氧化酶活性的多肽的内源性多核苷酸拷贝数(例如,2、3、4、5、6、7、8、9、10或更多拷贝的该多核苷酸)。在某些实施方式中,工程改造的微生物包含与编码具有脂肪醇氧化酶活性的多肽的多核苷酸功能性相连的异源启动子(例如,对于微生物内源性或外源性的启动子)。在一些实施方式中,所述工程改造的微生物包含编码具有脂肪醇氧化酶活性的多肽的异源多核苷酸。在一些实施方式中,所述多核苷酸来自酵母菌,在某些实施方式中,所述酵母菌是念珠菌酵母(如热带念珠菌菌株)。
在一些实施方式中,工程改造的微生物包含改变的6-氧代己酸脱氢酶活性或改变的ω氧代脂肪酸脱氢酶活性。在一些实施方式中,工程改造的微生物包含增加或增强6-氧代己酸脱氢酶活性或ω氧代脂肪酸脱氢酶活性的遗传修饰,在某些实施方式中,工程改造的微生物包含编码具有6-氧代己酸脱氢酶活性或ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。在相关的实施方式中,所述异源多核苷酸有时来自细菌,例如在一些实施方式中,来自不动杆菌(Acinetobacter)、诺卡式菌(Nocardia)、假单胞菌(Pseudomonas)或黄单胞菌(Xanthobacter)细菌。
在一些实施方式中,工程改造的微生物包含改变的6-羟基己酸脱氢酶活性或改变的ω羟基脂肪酸脱氢酶活性。在一些实施方式中,工程改造的微生物包含增加或增强6-羟基己酸脱氢酶活性或ω羟基脂肪酸脱氢酶活性的遗传修饰,在某些实施方式中,工程改造的微生物包含编码具有6-羟基己酸脱氢酶活性或ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。在相关的实施方式中,所述异源多核苷酸来自细菌,例如在一些实施方式中,来自不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
在一些实施方式中,工程改造的微生物包含改变的己酸合酶活性。在一些实施方式中,工程改造的微生物包含改变己酸合酶活性的遗传修饰。在某些实施方式中,工程改造的微生物包含增加或增强己酸合酶活性的遗传改变。在一些实施方式中,工程改造的微生物包含编码具有己酸合酶活性的多肽的异源多核苷酸。在某些实施方式中,己酸合酶活性由具有己酸合酶活性的多肽提供。在某些实施方式中,己酸合酶活性由具有己酸合酶亚基A活性、己酸合酶亚基B活性或己酸合酶亚基A活性和己酸合酶亚基B活性的多肽提供。在一些实施方式中,所述异源多核苷酸来自真菌,例如在某些实施方式中,来自曲霉(Aspergillus)真菌(例如,寄生曲霉(Aparasiticus)、构巢曲霉(A nidulans))。
在某些实施方式中,工程改造的微生物包含导致通过单加氧酶活性充分(例如,主要)利用己酸的遗传修饰。在相关的实施方式中,所述遗传修饰降低聚酮化合物合酶活性。
在一些实施方式中,工程改造的微生物是非原核生物,有时是真核生物。在一些实施方式中,真核生物可以是酵母菌,例如念珠菌酵母(如热带念珠菌)。在某些实施方式中,真核生物是真菌,例如耶氏酵母(Yarrowia)真菌(例如解脂耶氏酵母(Y.lipolytica))或曲霉真菌(例如,寄生曲霉或构巢曲霉)。
在一些实施方式中,工程改造的微生物包含减少6-羟基己酸转化的遗传修饰。在相关的实施方式中,所述遗传修饰降低6-羟基己酸脱氢酶活性或ω羟基脂肪酸脱氢酶活性。
在某些实施方式中,工程改造的微生物包含降低β-氧化活性的遗传修饰,在一些实施方式中,所述遗传修饰使得β-氧化活性不可检测(例如,完全阻断β-氧化活性)。在某些实施方式中,所述遗传修饰部分降低β-氧化活性。在一些实施方式中,工程改造的微生物包含增强ω-氧化活性的遗传修饰。在一些实施方式中,工程改造的微生物包含改变β-氧化途径、ω氧化途径,或β-氧化和ω氧化途径中反向活性(reverse activity)的一种或多种遗传修饰,从而因一种或多种反向酶活性的降低而增加通过各途径的碳流量。
在许多生物中,酰基-CoA氧化酶(例如,也称为酰基-CoA氧化还原酶和脂肪酰基-辅酶A氧化酶)的活性可将脂肪酸-CoA衍生物或二羧酸-CoA衍生物转化成反式-2,3-脱氢酰基-CoA衍生物。在一些实施方式中,工程改造的微生物包含改变酰基-CoA氧化酶活性的特异性和/或降低其活性的遗传修饰。在某些实施方式中,所述遗传修饰破坏酰基-CoA氧化酶活性。在一些实施方式中,所述遗传修饰包括破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。在某些实施方式中,所述遗传修饰包括破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子和/或5’UTR。在一些实施方式中,具有酰基-CoA活性的多肽是POX多肽。在某些实施方式中,所述POX多肽是POX4多肽,POX5多肽,或POX4多肽和POX5多肽。在某些实施方式中,所述遗传修饰通过破坏POX4核苷酸序列,POX5核苷酸序列,或POX4和POX5核苷酸序列破坏酰基-CoA活性。
工程改造的微生物可包括编码提供上述活性的多肽的异源多核苷酸,所述异源多核苷酸可来自任何合适的微生物。本文描述了微生物的例子,例如念珠菌酵母、酵母、耶氏酵母、假单胞菌、芽孢杆菌、梭菌、真细菌和其它细菌,包括巨型球菌(Megasphaera)。
在一些实施方式中,还提供了制备己二酸的方法,包括在培养条件下培养本文所述的工程改造微生物,其中培养的微生物产生己二酸。在一些实施方式中,产生工程改造微生物的宿主微生物不产生可检测量的己二酸。在某些实施方式中,所述培养条件包括发酵条件,引入生物质,引入葡萄糖,引入石蜡(例如,基于植物或石油,如己烷或椰油)和/或它们的组合。在一些实施方式中,每加入1克葡萄糖的产生产量高于约0.3克的己二酸。在相关的实施方式中,方法包括从培养的微生物中纯化己二酸和/或修饰己二酸,从而产生修饰的己二酸。在某些实施方式中,方法包括将培养的微生物、己二酸或修饰的己二酸置于容器中,任选运输该容器。
某些实施方式还提供制备6-羟基己酸的方法,包括在培养条件下培养本文所述的工程改造微生物,其中培养的微生物产生6-羟基己酸。在一些实施方式中,产生工程改造微生物的宿主微生物不产生可检测量的6-羟基己酸。在某些实施方式中,所述培养条件包括发酵条件,引入生物质,引入葡萄糖,和/或引入己烷。在一些实施方式中,每加入1克葡萄糖的产生产量高于约0.3克的6-羟基己酸。在相关的实施方式中,方法包括从培养的微生物中纯化6-羟基己酸和/或修饰6-羟基己酸,从而产生修饰的6-羟基己酸。在某些实施方式中,方法包括将培养的微生物、6-羟基己酸或修饰的6-羟基己酸置于容器中,任选运输该容器。
一些实施方式还提供了制备产生己二酸的工程改造微生物的方法,包括:(a)将增加或增强单加氧酶活性的遗传修饰引入宿主生物,从而产生具有可检测和/或增加的单加氧酶活性的工程改造微生物;和(b)选择产生己二酸的工程改造微生物。在一些实施方式中,本文还提供制备产生己二酸的工程改造微生物的方法,包括:(a)用己烷作为营养源培养宿主生物,从而产生具有可检测单加氧酶活性的工程改造微生物;和(b)选择产生己二酸的工程改造微生物。在一些实施方式中,单加氧酶活性是将羟基部分掺入六-碳分子,在某些实施方式中,所述六-碳分子是己酸盐或酯。在相关的实施方式中,方法包括选择具有可检测量的单加氧酶活性的工程改造微生物。在一些实施方式中,方法包括引入增加或增强己酸合酶活性的遗传修饰,从而产生工程改造的微生物,和选择具有可检测的和/或增加的己酸合酶活性的工程改造微生物。在相关的实施方式中,遗传修饰编码具有己酸合酶亚基A活性,己酸合酶亚基B活性,或己酸合酶亚基A活性和己酸合酶亚基B活性的多肽。
在一些实施方式中,方法包括引入增加或增强醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性)的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的6-氧代己酸脱氢酶活性或ω氧代脂肪酸脱氢酶(活性)的工程改造微生物。在某些实施方式中,制备产生己二酸的微生物的方法包括选择具有选自下组的一种或多种可检测和/或增强活性的工程改造微生物:醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶)、脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基-脂肪酸脱氢酶)、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。
在某些实施方式中,方法包括引入增加或增强脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性)的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的6-羟基己酸脱氢酶活性或ω羟基脂肪酸脱氢酶活性的工程改造微生物。在一些实施方式中,方法包括引入增加或增强硫酯酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的硫酯酶活性的工程改造微生物。
在某些实施方式中,方法包括引入降低6-羟基己酸转化的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,6-羟基己酸转化降低的工程改造微生物。在一些实施方式中,方法包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。在某些实施方式中,方法包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。在一些实施方式中,方法包括引入增强ω-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,ω-氧化活性增强的工程改造微生物。
在某些实施方式中,本文还提供制备产生己二酸的微生物的方法,包括:(a)将增加或增强一种或多种活性的一种或多种遗传修饰引入宿主生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基-脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性,从而产生工程改造的微生物,和(b)选择产生己二酸的工程改造微生物。在一些实施方式中,方法包括选择相对于宿主微生物,具有一种或多种可检测和/或增强的活性的工程改造微生物,所述活性选自:6-氧代己酸脱氢酶活性、6-羟基己酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。
在某些实施方式中,方法包括引入降低6-羟基己酸转化的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,6-羟基己酸转化降低的工程改造微生物。在一些实施方式中,方法包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。在某些实施方式中,方法包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
一些实施方式还提供制备产生6-羟基己酸的微生物的方法,包括:(a)将增加或增强一种或多种活性的一种或多种遗传修饰引入宿主生物,所述活性选自:6-氧代己酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性,从而产生工程改造的微生物,(b)将降低6-羟基己酸转化的遗传修饰引入宿主生物,和(c)选择产生6-羟基己酸的工程改造微生物。在某些实施方式中,方法包括选择相对于宿主微生物,6-羟基己酸转化降低的工程改造微生物。在一些实施方式中,方法包括选择相对于宿主微生物,具有一种或多种可检测和/或增强的活性的工程改造微生物,所述活性选自:醛脱氢酶活性(例如,6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性)、脂肪醇氧化酶活性(例如,6-羟基己酸脱氢酶活性、ω羟基-脂肪酸脱氢酶活性)、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoAC-酰基转移酶活性。在某些实施方式中,方法包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。在一些实施方式中,方法包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
还提供的方法包括使得工程改造微生物接触包含一种或多种多糖的原料,其中所述工程改造微生物包含:(a)阻断β氧化活性的遗传改变,和(b)增加或增强单加氧酶活性的遗传改变或增加或增强己酸合酶活性的遗传改变,和在产生己二酸的培养条件下培养所述工程改造微生物。在一些实施方式中,工程改造的微生物包含增加或增强己酸合酶活性的遗传改变。在某些实施方式中,所述工程改造的微生物包含编码具有己酸合酶亚基A活性的多肽的异源多核苷酸,在一些实施方式中,所述工程改造的微生物包含编码具有己酸合酶亚基B活性的多肽的异源多核苷酸。在某些实施方式中,所述异源多核苷酸独立选自真菌。在一些实施方式中,所述真菌是曲霉,在某些实施方式中,所述曲霉是寄生曲霉。在一些实施方式中,所述微生物是念珠菌酵母,在某些实施方式中,所述微生物是热带念珠菌菌株。
还提供的方法包括使得工程改造微生物接触包含一种或多种石蜡的原料,其中所述工程改造微生物包含部分阻断β氧化活性的遗传改变,和在产生己二酸的条件下培养所述工程改造的微生物。在某些实施方式中,所述微生物包含增强单加氧酶活性的遗传改变。在一些实施方式中,所述微生物是念珠菌酵母,在某些实施方式中,所述微生物的热带念珠菌菌株。
在一些实施方式中,增强单加氧酶活性的遗传改变包括增强细胞色素P450还原酶活性的遗传改变。在某些实施方式中,所述遗传改变增加编码具有细胞色素P450还原酶活性的多肽的多核苷酸拷贝数。在一些实施方式中,所述遗传改变将启动子和/或5’UTR置于与编码具有细胞色素P450还原酶活性的多肽的多核苷酸功能性相连。在某些实施方式中,所述单加氧酶活性是CYP52A15活性,CYP52A16活性,或CYP52A15活性和CYP52A16活性。在一些实施方式中,所述遗传改变增加编码具有单加氧酶活性的多肽的多核苷酸拷贝数。在某些实施方式中,所述遗传改变将启动子和/或5’UTR置于与编码具有单加氧酶活性的多肽的多核苷酸功能性相连。
在某些实施方式中,阻断β氧化活性的遗传改变破坏酰基-CoA氧化酶活性。在一些实施方式中,遗传改变破坏POX4和/或POX5活性。在某些实施方式中,遗传改变破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。在一些实施方式中,遗传改变破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子和/或5’UTR。
在一些实施方式中,原料包含六-碳糖。在某些实施方式中,原料包含五-碳糖。在某些实施方式中,己二酸的产生水平是理论产量的约80%或更高。在一些实施方式中,检测己二酸的产量。在某些实施方式中,分离产生的己二酸(例如,部分或完全纯化的)。在一些实施方式中,培养条件包括将工程改造的微生物发酵。
本文还提供与原料接触的工程改造的微生物。在一些实施方式中,原料包含糖。在某些实施方式中,所述糖是单糖、多糖或单糖与多糖的混合物。在一些实施方式中,原料包含石蜡。在某些实施方式中,所述石蜡是饱和石蜡、不饱和石蜡、取代的石蜡、支链石蜡、线形石蜡或它们的组合。
在一些实施方式中,石蜡包含约1到约60个碳原子(例如,约1个碳原子、约2个碳原子、约3个碳原子、约4个碳原子、约5个碳原子、约6个碳原子、约7个碳原子、约8个碳原子、约9个碳原子、约10个碳原子、约12个碳原子、约14个碳原子、约16个碳原子、约18个碳原子、约20个碳原子、约22个碳原子、约24个碳原子、约26个碳原子、约28个碳原子、约30个碳原子、约32个碳原子、约34个碳原子、约36个碳原子、约38个碳原子、约40个碳原子、约42个碳原子、约44个碳原子、约46个碳原子、约48个碳原子、约50个碳原子、约52个碳原子、约54个碳原子、约56个碳原子、约58个碳原子到约60个碳原子)。在某些实施方式中,石蜡是石蜡的混合物。在一些实施方式中,石蜡混合物中的石蜡的平均碳原子数是约8个碳原子到约18个碳原子(例如,约8个碳原子、约9个碳原子、约10个碳原子、约11个碳原子、约12个碳原子、约13个碳原子、约14个碳原子、约15个碳原子、约16个碳原子、约17个碳原子或约18个碳原子)。在某些实施方式中,石蜡在蜡中,在一些实施方式中,石蜡在油中。在某些实施方式中,石蜡来自石油产品,在一些实施方式中,石油产品是石油馏出物。在某些实施方式中,石蜡来自植物或植物产品。
本文还提供选自下组的分离多核苷酸,包括:具有与SEQ ID NO:1所示核苷酸序列96%或更高(例如,96%或更高、97%或更高、98%或更高、99%或更高或100%)相同性的核苷酸序列的多核苷酸,具有编码SEQ ID NO:8所示多肽的核苷酸序列的多核苷酸,和具有与SEQ ID NO:1所示核苷酸序列96%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
本文还提供选自下组的分离多核苷酸,包括:具有与SEQ ID NO:2所示核苷酸序列98%或更高(例如,98%或更高、99%或更高或100%)相同性的核苷酸序列的多核苷酸,具有编码SEQ ID NO:10所示多肽的核苷酸序列的多核苷酸,和具有与SEQ ID NO:2所示核苷酸序列98%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
本文还提供选自下组的分离多核苷酸,包括:具有与SEQ ID NO:3所示核苷酸序列95%或更高(例如,95%或更高、96%或更高、97%或更高、98%或更高、99%或更高或100%)相同性的核苷酸序列的多核苷酸,具有编码SEQID NO:9所示多肽的核苷酸序列的多核苷酸,和具有与SEQ ID NO:3所示核苷酸序列95%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
本文还提供选自下组的分离多核苷酸,包括:具有与SEQ ID NO:4所示核苷酸序列83%或更高(例如,83%或更高、84%或更高、85%或更高、86%或更高、87%或更高、88%或更高、89%或更高、90%或更高、91%或更高、92%或更高、93%或更高、94%或更高、95%或更高、96%或更高、97%或更高、98%或更高、99%或更高或100%)相同性的核苷酸序列的多核苷酸,具有编码SEQ ID NO:11所示多肽的核苷酸序列的多核苷酸,和具有与SEQ ID NO:3所示核苷酸序列83%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
本文还提供选自下组的分离多核苷酸,包括:具有与SEQ ID NO:5所示核苷酸序列82%或更高(例如,82%或更高、83%或更高、84%或更高、85%或更高、86%或更高、87%或更高、88%或更高、89%或更高、90%或更高、91%或更高、92%或更高、93%或更高、94%或更高、95%或更高、96%或更高、97%或更高、98%或更高、99%或更高或100%)相同性的核苷酸序列的多核苷酸,具有编码SEQ ID NO:12所示多肽的核苷酸序列的多核苷酸,和具有与SEQID NO:3所示核苷酸序列82%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
在某些实施方式中,表达载体包含SEQ ID NO:1到5所示多核苷酸序列。在一些实施方式中,整合载体(integration vector)包含SEQ ID NO:1到5所示多核苷酸序列。在某些实施方式中,微生物包含表达载体,整合载体,或表达载体和整合载体,所述载体包含SEQ ID NO:1到5所示多核苷酸序列。在一些实施方式中,培养物包含含有表达载体,整合载体,或表达载体和整合载体的微生物,所述载体包含SEQ ID NO:1到5所示多核苷酸序列。在某些实施方式中,发酵装置包含含有表达载体,整合载体,或表达载体和整合载体的微生物,所述载体包含SEQ ID NO:1到5所示多核苷酸序列。本文还提供SEQ IDNO:1到5所示多核苷酸序列编码的或包含SEQ ID NO:1到5所示多核苷酸序列的表达载体产生的多肽。本文还提供特异性结合SEQ ID NO:1到5所示多核苷酸序列编码的或包含SEQ ID NO:1到5所示多核苷酸序列的表达载体产生的多肽的抗体。
以下说明书、实施例、权利要求和附图进一步描述了某些实施方式。
附图简述
附图说明了本发明的实施方式,其是非限制性的。为清楚和便于说明,附图并非按比例绘制,在一些情况中,各方面可以放大或扩大显示以便理解特定的实施方式。
图1显示产生己二酸的代谢途径。该途径可工程改造加入真核微生物,从而产生能产生己二酸的微生物。
图2显示了制备己二酸产生型微生物的方法的实施方式。该方法包括在产生己酸的宿主微生物中表达催化脂肪酸经ω氧化成二羧酸的一种或多种基因。在所述方法中,宿主生物,例如寄生曲霉或构巢曲霉内源性包含HEXA和HEXB(或STCJ和STCK)基因。在一个实施方式中,该方法包括敲除使己酸转向进入内源性途径(例如,真菌毒素产生)的基因或以其它方式使之无效。该方法的某些实施方式还包括插入异源细胞色素P450基因。该方法的一些实施方式包括利用己酸使培养物生长并筛选增加的P450表达。在某些实施方式中,己酸诱导P450的拷贝数可增加。在一些实施方式中,可改变微生物以增加通过最后两个氧化步骤的六碳底物流量。
图3显示了产生己二酸产生型生物的方法的实施方式。该方法包括在通过ω-氧化途径产生二羧酸的宿主微生物中表达编码己酸合酶的一种或多种基因。此类微生物可包括但不限于:热带念珠菌和麦芽糖念珠菌(C.maltosa)。如图所示,该方法包括将HEXA和HEXB基因插入宿主微生物。可从曲霉或另一合适的生物分离这些基因。在一些实施方式中,从本文所述替代序列合成这些基因,从而通过热带念珠菌的非标准翻译机理产生供体微生物酶的氨基酸序列。在一些实施方式中,该方法包括将异源细胞色素P450基因插入宿主生物。在某些实施方式中,可改变所述微生物以增加通过最终两个氧化步骤的六-碳底物流量。
图4显示了产生己二酸产生型生物的方法的实施方式。该方法包括在通过ω-氧化途径产生二羧酸的宿主微生物中表达编码己酸合酶的一种或多种基因。此类微生物可包括但不限于:热带念珠菌和麦芽糖念珠菌。在一些实施方式中,该方法包括利用己酸培养宿主微生物并筛选增加的P450表达。在某些实施方式中,己酸诱导P450的拷贝数可增加。可将HEXA和HEXB基因插入宿主微生物。在某些实施方式中,可改变宿主微生物以增加通过最后两个氧化步骤的六碳底物流量。
图5显示了将曲霉己酸合酶基因HEXA和HEXB插入热带念珠菌或解脂耶氏酵母的质粒图。
图6显示了将异源细胞色素P450单加氧酶基因和细胞色素P450还原酶基因插入热带念珠菌或解脂耶氏酵母的质粒图。
图7显示了将异源细胞色素P450单加氧酶基因和细胞色素P450还原酶基因插入寄生曲霉或构巢曲霉的质粒图。
图8显示了生物法产生目标产物的系统。如图所示,发酵罐接种经工程改造以产生目标产物的微生物。可变原料给发酵罐供应微生物的能源和营养源。在一些实施方式中,原料包含糖。在某些实施方式中,原料包含脂肪酸。原料还可包含生物质、工业废物和其它碳源。可将维生素、矿物质、酶和其它生长或生产增强剂加入原料。在某些实施方式中,发酵产生己二酸。发酵过程可产生其它新型化学物质。
图9显示了类似于图1所示途径的从糖或多糖碳源产生己二酸的代谢途径,但具有促进途径中间体代谢或增强途径中间体代谢的额外活性,从而可能增加己二酸产量。额外活性是单加氧酶还原酶活性(细胞色素P450还原酶或CPR)和脂肪醇氧化酶活性(FAO)。部分或全部该途径可工程改造加入真核微生物以产生能产生己二酸的微生物。
图10显示了如图2所示从石蜡、脂肪、油、脂肪酸或二羧酸制备己二酸的代谢途径的非限制性例子。根据已存在于宿主生物中的活性,部分或全部该途径可工程改造(例如,根据所需作用,加入、改变以增加或减少拷贝数,或增强或降低启动子活性)加入微生物以产生能产生己二酸的微生物。
图11A和11B显示了用于从各种碳源产生己二酸的ω和β氧化途径。如图11A所示,可采用ω氧化从石蜡、脂肪、油和糖代谢中间体产生己二酸。如图11A所示,还可采用β氧化从长链脂肪酸或二羧酸产生己二酸。图11B显示进入ω氧化途径的来自脂肪或糖代谢的共有中间体,从而最终产生己二酸。
图12显示免疫检测酿酒酵母(S.cerevisiae)BY4742中表达的6xHis-标记蛋白质的结果。菌株sAA061、sAA140、sAA141、sAA142含有6xHis-标记HEXA和HEXB蛋白。菌株sAA144含有6xHis-标记STCJ和STCK蛋白。菌株sAA048仅含有载体p425GPD和p426GPD。
图13显示免疫检测酿酒酵母(sAA144)或热带念珠菌(sAA103、sAA270、sAA269)中表达的6xHis-标记蛋白质的结果。菌株sAA269和sAA270中表达的6xHis标记HEXA和HEXB以箭头表示。包括菌株sAA144的6xHis标记STCJ和STCK作为阳性对照。菌株sAA103是sAA269和sAA270的亲代菌株,其不含表达6xHis-标记HEXA和HEXB的整合载体。
图14显示仅接触葡萄糖(Glc)、仅接触己烷(Hex)或仅接触己酸(HA)的热带念珠菌菌株sAA003培养物的RT-PCR结果。A15和A16等位基因的PCR产物显示己烷和己酸特异性诱导作用。
图15A-15C显示利用酰基-CoA酶制品作用于各种碳长度底物的酰基-CoA氧化酶(POX)酶活性试验的结果,所述酶制品来自POX基因未破坏(参见图15A)、POX4基因破坏(参见图15C)或POX5基因破坏(参见图15B)的热带念珠菌菌株。详述和实施例部分给出了实验结果和条件。
图16-34显示了在宿主生物或工程改造生物中克隆、表达或整合本文所述各种活性的各种质粒。图16显示了将异源HEXA基因插入酿酒酵母的质粒图。图17显示了将异源HEXB基因插入酿酒酵母的质粒图。图18显示了将异源HEXA-6xHis基因插入酿酒酵母的质粒图。图19显示了将异源HEXB-6xHis基因插入酿酒酵母的质粒图。
图20显示了将异源STCJ基因插入酿酒酵母的质粒图。图21显示了将异源STCK基因插入酿酒酵母的质粒图。图22显示了将异源STJC-6xHis基因插入酿酒酵母的质粒图。图23显示了将异源STCK-6xHis基因插入酿酒酵母的质粒图。
图24显示了将异源替代遗传密码(AGC)HEXA基因插入热带念珠菌的质粒图。图25显示了将异源AGC-HEXB基因插入热带念珠菌的质粒图。图26显示了将异源AGC-HEXA-6xHis基因插入热带念珠菌的质粒图。图27显示了将异源AGC-HEXB-6xHis基因插入热带念珠菌的质粒图。
图28显示了用于克隆热带念珠菌的POX5基因的质粒图。图29显示了用于克隆热带念珠菌的POX4基因的质粒图。图30显示了用于在热带念珠菌中进行URA选择而构建的质粒。图31显示了含有热带念珠菌的PGK启动子和终止子的质粒。图32显示了用于将CPR基因整合入热带念珠菌的质粒。图33显示了用于将CYP52A15基因整合入热带念珠菌的质粒。图34显示了用于将CYP52A16基因整合入热带念珠菌的质粒。
详述
己二酸是六-碳有机分子,是在生产工艺中用于制备某些聚酰胺、聚氨基甲酸酯和增塑剂的化学中间体,它们均广泛应用于制备地毯、涂层、粘合剂、弹性体、食品包装和润滑剂等物品。制备己二酸的一些大规模工艺包括(i)酮醇油(KA油)的液相氧化;(ii)用硼酸进行环己烷的空气氧化/水合以制备环己醇,然后用硝酸进行氧化;和(iii)丁二烯经氢氰化成戊烯腈混合物,然后进行己二腈的加氢异构化,再进行氢化。近来的各工艺需要利用有毒的化学品和/或溶剂,有些需要高温,均需要大量能量输入。此外,有些工艺排放有毒的副产物(例如,一氧化二氮),产生环境问题。
本文提供利用生物学系统产生己二酸和其它有机化学中间体的方法。此类生产系统对环境的影响明显小,与目前的制造系统相比在经济上有竞争力。因此,本文提供由工程改造的微生物制备己二酸的方法。在一些实施方式中,工程改造微生物使之含有至少一种编码酶的异源基因,其中所述酶是工程改造加入微生物的新型途径的成员。在某些实施方式中,可选择某生物活性升高的天然酶。
微生物
所选的微生物常适合遗传操作,常可在用于目标产物的工业生产的细胞密度下培养。所选的微生物可维持在发酵装置中。
本文所用的术语“工程改造的微生物”指包含一种或多种与用作起点的微生物(下文称为“宿主微生物”)中存在的活性不同的活性的修饰微生物。在一些实施方式中,工程改造的微生物包含异源多核苷酸,在某些实施方式中,工程改造的微生物经历相对于宿主微生物改变活性或引入活性的选择条件。因此,工程改造的微生物被人为直接或间接改变。宿主微生物有时是天然微生物,有时是经在某点上作工程改造的微生物。
在一些实施方式中,工程改造的微生物是单细胞生物,常能分裂和增殖。微生物可包含一种或多种以下特征:需氧、厌氧、丝状、非丝状、单倍体、双倍体、营养缺陷型和/或非营养缺陷型。在某些实施方式中,工程改造的微生物是原核微生物(例如,细菌),在某些实施方式中,工程改造的微生物是非原核微生物。在一些实施方式中,工程改造的微生物是真核微生物(例如,酵母菌、真菌、变形虫)。
可选择任何合适的酵母菌作为宿主微生物、工程改造的微生物或异源多核苷酸来源。酵母菌包括但不限于:耶氏酵母(例如解脂耶氏酵母(以前分类为解脂念珠菌(Candida lipolytica))、念珠菌酵母(例如,拉考夫念珠菌(C.revkaufi),铁红念珠菌(C.pulcherrima),热带念珠菌,产朊念珠菌(C.utilis))、红酵母(例如,粘红酵母(R.glutinus),禾本红酵母(R.graminis))、红冬孢酵母(例如,圆红冬孢酵母(R.toruloides))、酵母(例如,酿酒酵母(S.cerevisiae),贝酵母(S.bayanus),巴斯德酵母(S.pastorianus),卡尔酵母(S.carlsbergensis))、隐球酵母、丝孢酵母(例如,茁芽丝孢酵母(T.pullans),丝孢酵母(T.cutaneum))、毕赤酵母(例如,巴斯德毕赤酵母(P.pastoris))和油脂酵母Lipomyces yeast(例如,油脂酵母(L.starkeyii),产油油脂酵母(L.lipoferus))。在一些实施方式中,酵母是解脂耶氏酵母菌株,包括但不限于:ATCC20362、ATCC8862、ATCC18944、ATCC20228、ATCC76982和LGAM S(7)1菌株(Papanikolaou S.和Aggelis G.,Bioresour.Technol.82(1):43-9(2002))。在某些实施方式中,酵母是热带念珠菌菌株,包括但不限于:ATCC20336、ATCC20913、SU-2(ura3-/ura3-)、ATCC20962、H5343(β氧化阻断的;美国专利号5648247)菌株。
可选择任何合适的真菌作为宿主微生物、工程改造的微生物或异源多核苷酸来源。真菌的非限制性例子包括但不限于:曲霉(例如,寄生曲霉、构巢曲霉)、破囊壶菌(Thraustochytrium)、裂殖壶菌(Schizochytrium)和根霉菌(Rhizopus)(例如,无根根霉菌(R.arrhizus)、稻根霉菌(R.oryzae)、黑根霉(R.nigricans))。在一些实施方式中,真菌是寄生曲霉菌株,包括但不限于:菌株ATCC24690,在某些实施方式中,真菌是构巢曲霉菌株,包括但不限于菌株ATCC38163。
可选择任何合适的原核生物作为宿主微生物、工程改造的微生物或异源多核苷酸来源。可选择革兰氏阴性或革兰氏阳性细菌。细菌的例子包括但不限于:杆菌(例如,枯草芽胞杆菌(B.subtilis)、巨大芽孢杆菌(B.megaterium))、不动杆菌(Acinetobacter)、诺卡式菌(Norcardia)、黄单胞菌(Xanthobacter)、大肠埃希氏菌(Escherichia)(例如,大肠杆菌(E.coli)(如菌株DH10B、Stbl2、DH5-α、DB3、DB3.1)、DB4、DB5、JDP682和ccdA-over(例如,美国申请号09/518,188)))、链霉菌(Streptomyces)、欧文氏菌(Erwinia)、克雷伯菌(Klebsiella)、沙雷菌(Serratia)(例如,粘质沙雷菌(S.marcessans))、假单胞菌(Pseudomonas)(例如,铜绿假单胞菌(P.aeruginosa))、沙门氏菌(Salmonella)(例如,鼠伤寒沙门氏菌(S.typhimurium)、伤寒沙门氏菌(S.typhi))、巨型球菌(Megasphaera)(例如,埃氏巨球菌(Megasphaera elsdenii))。细菌还包括但不限于:光合作用细菌(例如,绿色非硫细菌(如,固氮菌(Choroflexus)(如,橙黄固氮菌(C.aurantiacus))、绿丝菌(Chloronema)(例如,巨大绿丝菌(C.gigateum)))、绿色硫细菌(例如,绿菌(Chlorobium)(例如,绿色硫黄细菌(C.limicola))、暗网菌(Pelodictyon)(例如,微黄暗网菌(P.luteolum))、紫色硫细菌(例如,着色菌(Chromatium)(例如,奥氏着色菌(C.okenii)))、和紫色非硫细菌(例如,红螺菌(Rhodospirillum)(例如,深红红螺菌(R.rubrum))、红细菌(Rhodobacter)(例如,类球红细菌(R.sphaeroides)、荚膜红细菌(R.capsulatus))、和红微菌(Rhodomicrobium)(例如,万尼氏红微菌(R.vanellii)))。
非微生物生物的细胞可用作宿主微生物、工程改造的微生物或异源多核苷酸来源。此类细胞的例子包括但不限于:昆虫细胞(例如,果蝇(如黑腹果蝇(D.melanogaster))、夜蛾(如草地贪夜蛾(S.frugiperda)Sf9或Sf21细胞)和粉纹夜蛾(Trichoplusa)(如High-Five细胞);线虫细胞(如秀丽线虫(C.elegans)细胞);禽类细胞;两栖动物细胞(如非洲爪蟾(Xenopus laevis)细胞);爬行动物细胞;和哺乳动物细胞(如NIH3T3、293、CHO、COS、VERO、C127、BHK、Per-C6、Bowes黑色素瘤和HeLa细胞)。
可商品化购得用作宿主生物或异源多核苷酸来源的微生物或细胞。本文所述的微生物和细胞及其它合适的微生物和细胞可购自,例如加利福尼亚州卡尔斯巴德的英杰公司(Invitrogen Corporation,Carlsbad,CA)、弗吉尼亚州马纳斯的美国模式培养物保藏所(American Type Culture Collection,Manassas,Virginia)和伊利诺斯州皮奥里亚市农业研究培养物保藏所(AgriculturalResearch Culture Collection,NRRL;Peoria,Illinois)。
可提供任何合适形式的宿主微生物和工程改造的微生物。例如,可在液体培养物或固体培养物(例如,气质培养基)中提供此类微生物,其可以是原代培养物或可传代(例如,稀释和培养的)一次或多次。还可提供冷冻形式或干燥形式(例如,冻干的)的微生物。可提供任何合适浓度的微生物。
碳加工途径和活性
图1和9显示了利用糖作为碳源起始材料制备己二酸的生物学途径的实施方式。任何合适的糖均可用作生物的原料(例如,6-碳糖(如,葡萄糖、果糖)、5-碳糖(如,木糖)等或它们的组合)。首先采用天然产生和/或工程改造途径代谢糖以产生丙二酰CoA,如图9所示其描述为进入ω氧化途径的分子。如图所示,己酸合酶将两分子的丙二酰CoA和一分子的乙酰基CoA转化成一分子的己酸。在一些实施方式中,细胞色素P450酶将己酸转化成6-羟基己酸,后者可经6-羟基己酸脱氢酶或脂肪醇氧化酶氧化成6-氧代己酸。6-氧代己酸可由6-氧代己酸脱氢酶转化成己二酸。
己酸合酶(HexS)由己酸合酶亚基α(HEXA)和己酸合酶亚基β(HEXB)基因编码。在一些实施方式中,HexS酶是宿主微生物内源性的。在某些实施方式中,可从合适的生物(例如,寄生曲霉)分离HEXA和HEXB基因。在一些实施方式中,还可从合适的生物(例如,构巢曲霉)分离HEXA和HEXB直向同源物,例如STCJ和STCK。
在一些实施方式中,细胞色素P450酶ω羟化己酸,从而产生六碳醇。在某些实施方式中,细胞色素P450酶是宿主微生物内源性的。在一些实施方式中,细胞色素P450基因从巨大芽孢杆菌(B.megaterium)分离,其编码单亚基、可溶性胞质酶。某些宿主生物的可溶性或膜结合细胞色素P450对6-碳底物具有特异性,可用于一些实施方式中。
细胞色素P450还原酶(CPR)的活性还原细胞色素P450,从而回收细胞色素P450以获得进一步的酶活性。在某些实施方式中,CPR酶是宿主微生物内源性的。在一些实施方式中,可通过增加CPR基因的拷贝数(例如,2、3、4、5、6、7、8、9、10或更多拷贝的基因),通过增强调控CPR基因转录的启动子活性,或通过增加CPR基因的拷贝数和增强调控CPR基因转录的启动子活性来增强宿主CPR活性,从而通过增加细胞色素P450的回收增加目标产物(例如,己二酸)的产量。在某些实施方式中,启动子可以是异源启动子(例如,内源性或外源性启动子)。在一些实施方式中,CPR基因是异源和外源性的,可从任何合适的生物分离。可分离CPR基因的生物的非限制性例子包括热带念珠菌、酿酒酵母和巨大芽孢杆菌。
可由脂肪醇氧化酶家族的酶(例如,6-羟基己酸脱氢酶、ω羟基脂肪酸脱氢酶)或醛脱氢酶家族的酶(例如,6-氧代己酸脱氢酶、ω氧代脂肪酸脱氢酶)将醇氧化成醛。6-氧代己酸脱氢酶或ω氧代脂肪酸脱氢酶可将醛氧化成羧酸己二酸。在一些实施方式中,宿主生物中存在6-羟基己酸脱氢酶、ω羟基脂肪酸脱氢酶、脂肪醇氧化酶、6-氧代己酸脱氢酶或ω氧代脂肪酸脱氢酶。有时可通过增加酶的拷贝数,或增强转录基因的启动子的活性来提高通过这两步骤的通量。在一些实施方式中,可从另一生物,例如不动杆菌、念珠菌、酵母或假单胞菌分离六碳底物的特异性醇和醛脱氢酶,并插入宿主生物。
图10显示了利用脂肪、油、二羧酸、石蜡(如,直链、支链、取代、饱和、不饱和等及它们的组合)、脂肪醇、脂肪酸等作为碳源起始材料制备己二酸的生物学途径的实施方式。任何合适的脂肪醇、脂肪酸、石蜡、二羧酸、脂肪或油可用作生物的原料(例如,己烷、己酸、油酸、椰油等或它们的组合)。可采用天然产生和/或工程改造途径代谢较长碳链(例如,8个碳或更长的)的碳源以产生可采用图10和图11A下部所示的β氧化途径进一步代谢的分子。在一些实施方式中,还可工程改造图10所示途径中的活性(例如,本文所述的)以增强代谢和目标产物形成。如图10中反应的第一步所示,酰基-CoA连接酶将长链脂肪醇、脂肪酸或二羧酸和一分子的乙酰基-CoA转化成长链脂肪醇、脂肪酸或二羧酸的酰基-CoA衍生物,伴有ATP转化成AMP和无机磷酸盐。本文所用的术语“β氧化途径”指用于代谢脂肪醇、脂肪酸或二羧酸的一系列酶活性。用于代谢脂肪醇、脂肪酸或二羧酸的活性包括但不限于:酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和乙酰基-CoA C-酰基转移酶活性。术语“β氧化活性”指用于代谢脂肪醇、脂肪酸或二羧酸β氧化途径中的任何活性。术语“ω氧化活性”指用于代谢脂肪醇、脂肪酸、二羧酸或糖的ω氧化途径中的任何活性。
在某些实施方式中,酰基-CoA连接酶将长链脂肪醇、脂肪酸或二羧酸转化成酰基-CoA衍生物,其可通过酰基CoA氧化酶(例如,也称为酰基CoA氧化还原酶和脂肪酰基-辅酶A氧化酶)的活性氧化成反式-2,3-脱氢酰基-CoA衍生物。反式-2,3-脱氢酰基-CoA衍生物长链脂肪醇、脂肪酸或二羧酸可通过烯酰基-CoA水合酶的活性进一步转化成3-羟基酰基-CoA。3-羟基酰基-CoA可通过3-羟基酰基-CoA脱氢酶的活性转化成3-氧代酰基-CoA。3-氧代酰基-CoA可通过乙酰基-CoA C-酰基转移酶(例如,也称为β-酮硫解酶)的活性转化成酰基-CoA分子(缩短2个碳)和乙酰基-CoA。在一些实施方式中,可通过β氧化反复缩短酰基-CoA分子直至产生所需碳链长度(例如,6碳、己二酸)。可采用ω氧化进一步加工缩短的脂肪酸以产生己二酸。
宿主生物有时编码酰基-CoA连接酶,可将其加入以产生工程改造的生物。在一些实施方式中,可通过增加酰基-CoA连接酶基因的拷贝数,通过增强调控酰基-CoA连接酶基因转录的启动子活性,或通过增加酰基-CoA连接酶基因的拷贝数和增强调控酰基-CoA连接酶基因转录的启动子活性来增强宿主酰基-CoA连接酶活性,从而目标产物(例如,己二酸)的产量因通过该途径的碳流量增加而增加。在某些实施方式中,可从任何合适的生物分离酰基-CoA连接酶基因。包含酰基-CoA连接酶或可用作酰基-CoA连接酶供体的生物的非限制性例子包括念珠菌、酵母或耶氏酵母。
烯酰基-CoA水合酶催化羟基和质子加入脂肪-酰基CoA的不饱和β碳,其有时由宿主生物编码,有时可加入以产生工程改造的生物。在某些实施方式中,宿主或工程改造生物中的烯酰基-CoA水合酶活性未变。在一些实施方式中,可通过增加烯酰基-CoA水合酶基因的拷贝数,通过增强调控烯酰基-CoA水合酶基因转录的启动子活性,或通过增加烯酰基-CoA水合酶基因的拷贝数和增强调控烯酰基-CoA水合酶基因转录的启动子活性来增强宿主烯酰基-CoA水合酶活性,从而目标产物(例如,己二酸)的产量因通过该途径的碳流量增加而增加。在某些实施方式中,可从任何合适的生物分离烯酰基-CoA水合酶基因。包含烯酰基-CoA水合酶或可用作烯酰基-CoA水合酶供体的生物的非限制性例子包括念珠菌、酵母或耶氏酵母。
3-羟基酰基-CoA脱氢酶通过除去烯酰基-CoA水合酶活性产生的新形成羟基的氢来催化3-酮基酰基-CoA形成。在一些实施方式中,该活性由宿主生物编码,有时可加入或增强以产生工程改造的生物。在某些实施方式中,宿主或工程改造生物中的3-羟基酰基-CoA活性未变。在一些实施方式中,可通过增加3-羟基酰基-CoA脱氢酶基因的拷贝数,通过增强调控3-羟基酰基-CoA脱氢酶基因转录的启动子活性,或通过增加该基因的拷贝数和增强调控该基因转录的启动子活性来增强宿主3-羟基酰基-CoA脱氢酶活性,从而目标产物(例如,己二酸)的产量因通过该途径的碳流量增加而增加。在某些实施方式中,可从任何合适的生物分离3-羟基酰基-CoA脱氢酶基因。包含3-羟基酰基-CoA脱氢酶或可用作3-羟基酰基-CoA脱氢酶供体的生物的非限制性例子包括念珠菌、酵母或耶氏酵母。
乙酰基-CoA C-酰基转移酶(例如,β-酮硫解酶)催化通过另一分子CoA的巯基切割3-酮酰基-CoA而缩短2个碳的脂肪酰基-CoA形成。在C-2和C-3之间插入巯基产生乙酰基CoA分子和短两个碳的酰基CoA分子。乙酰基-CoA C-酰基转移酶有时由宿主生物编码,有时可加入以产生工程改造的生物。在某些实施方式中,宿主或工程改造生物中的乙酰基-CoA C-酰基转移酶活性未变。在一些实施方式中,可通过增加乙酰基-CoA C-酰基转移酶基因的拷贝数,或通过增强调控乙酰基-CoA C-酰基转移酶基因转录的启动子活性来增强宿主乙酰基-CoA C-酰基转移酶活性,从而目标产物(例如,己二酸)的产量因通过该途径的碳流量增加而增加。在某些实施方式中,可从任何合适的生物分离乙酰基-CoA C-酰基转移酶基因。包含乙酰基-CoA C-酰基转移酶或可用作乙酰基-CoAC-酰基转移酶供体的生物的非限制性例子包括念珠菌、酵母或耶氏酵母。
可修饰和工程改造微生物以包括或调控己二酸途径中的一种或多种活性。本文所用的术语“活性”指微生物的天然或工程改造生物学途径起作用以产生包括己二酸及其前体在内的各种产物。在某些实施方式中,产生己二酸的活性可由任何非哺乳动物来源提供。此类来源包括但不限于:真核生物,例如酵母菌和真菌,和原核生物,例如细菌。在一些实施方式中,可朝产生目标产物(例如,己二酸)的方向改变(例如,破坏、降低)本文所述途径中的反向活性以增加通过β氧化途径、ω氧化途径、或β氧化和ω氧化途径中的碳流量。在一些实施方式中,遗传修饰破坏β氧化途径中的活性,或破坏编码进行β氧化途径中正向反应的多肽的多核苷酸,从而检测不到β氧化活性。本文所用的术语“检测不到”指采用已知的检测方法或试验时(例如本文所述的),低于检测下限的分析物含量。在某些实施方式中,遗传修饰部分降低β氧化活性。本文所用的术语“部分降低β氧化活性”指工程改造生物的活性水平低于宿主或起始生物中发现的活性水平。
本文提供的工程改造微生物中的活性包括一种或多种(例如,1、2、3、4、5、6、7、8、9、10或全部的)以下活性:6-氧代己酸脱氢酶活性;6-羟基己酸脱氢酶活性;己酸合酶活性;细胞色素P450活性;细胞色素P450还原酶活性;脂肪醇氧化酶活性;酰基-CoA连接酶活性、酰基-CoA氧化酶活性;烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和硫酯酶活性(例如,乙酰基-CoA C-酰基转移酶、β-酮硫解酶)。在某些实施方式中,通过遗传修饰的方式改变一种或多种(例如,1、2、3、4、5、6、7、8、9、10或全部)上述活性。在一些实施方式中,通过以下方式改变一种或多种(例如,1、2、3、4、5、6、7、8、9、10或全部)上述活性:(i)加入编码具有所述活性的多肽的异源多核苷酸,和/或(ii)改变或加入调控具有所述活性的多肽表达的调控序列。
本文所用的术语“6-氧代己酸脱氢酶活性”指将6-氧代己酸转化成己二酸。6-氧代己酸脱氢酶活性可由多肽提供。在一些实施方式中,所述多肽由引入宿主微生物的异源核苷酸序列编码。在某些实施方式中,具有6-氧代己酸脱氢酶活性的内源性多肽在宿主微生物中鉴定到,遗传改变该宿主微生物以增加多肽产量(例如,引入异源启动子与编码该多肽的多核苷酸操作性连接;增加编码该多肽的多核苷酸的拷贝数(例如,通过引入包含该多核苷酸的质粒))。可从许多来源,包括不动杆菌、诺卡式菌、假单胞菌和黄单胞菌获得赋予6-氧代己酸脱氢酶活性的核酸序列。本文提供具有6-氧代己酸脱氢酶活性的多肽的氨基酸序列,和编码该多肽的多核苷酸的核苷酸序列的例子。可通过本领域已知的任何合适的方法检测6-氧代己酸脱氢酶活性存在与否或含量。醇氧化酶或醇脱氢酶活性的检测方法的例子可参见Appl Environ Microbiol 70:4872。在一些实施方式中,宿主微生物中的6-氧代己酸脱氢酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
本文所用的术语“ω氧代脂肪酸脱氢酶活性”指将ω氧代脂肪酸转化成二羧酸。ω氧代脂肪酸脱氢酶活性可由多肽提供。在一些实施方式中,所述多肽由引入宿主微生物的异源核苷酸序列编码。在某些实施方式中,具有ω氧代脂肪酸脱氢酶活性的内源性多肽在宿主微生物中鉴定到,遗传改变该宿主微生物以增加多肽产量(例如,引入异源启动子与编码该多肽的多核苷酸操作性连接;增加编码该多肽的多核苷酸的拷贝数(例如,通过引入包含该多核苷酸的质粒))。可从许多来源,包括不动杆菌、诺卡式菌、假单胞菌和黄单胞菌获得赋予ω氧代脂肪酸脱氢酶活性的核酸序列。本文提供具有ω氧代脂肪酸脱氢酶活性的多肽的氨基酸序列,和编码该多肽的多核苷酸的核苷酸序列的例子。可通过本领域已知的任何合适的方法检测ω氧代脂肪酸脱氢酶活性存在与否或含量。在一些实施方式中,宿主微生物中的ω氧代脂肪酸脱氢酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
本文所用的术语“6-羟基己酸脱氢酶活性”指将6-羟基己酸转化成6-氧代己酸。6-羟基己酸脱氢酶活性可由多肽提供。在一些实施方式中,所述多肽由引入宿主微生物的异源核苷酸序列编码。在某些实施方式中,具有6-羟基己酸脱氢酶活性的内源性多肽在宿主微生物中鉴定到,遗传改变该宿主微生物以增加多肽产量(例如,引入异源启动子与编码该多肽的多核苷酸操作性连接;增加编码该多肽的多核苷酸的拷贝数(例如,通过引入包含该多核苷酸的质粒))。可从许多来源,包括不动杆菌、诺卡式菌、假单胞菌和黄单胞菌获得赋予6-羟基己酸脱氢酶活性的核酸序列。本文提供具有6-羟基己酸脱氢酶活性的多肽的氨基酸序列,和编码该多肽的多核苷酸的核苷酸序列的例子。可通过本领域已知的任何合适的方法检测6-羟基己酸脱氢酶活性存在与否或含量。此类方法的例子参见Methods inEnzymology,188:176。在一些实施方式中,宿主微生物中的6-羟基己酸脱氢酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
本文所用的术语“ω羟基脂肪酸脱氢酶活性”指将ω羟基脂肪酸转化成ω氧代脂肪酸。ω羟基脂肪酸脱氢酶活性可由多肽提供。在一些实施方式中,所述多肽由引入宿主微生物的异源核苷酸序列编码。在某些实施方式中,具有ω羟基脂肪酸脱氢酶活性的内源性多肽在宿主微生物中鉴定到,遗传改变该宿主微生物以增加多肽产量(例如,引入异源启动子与编码该多肽的多核苷酸操作性连接;增加编码该多肽的多核苷酸的拷贝数(例如,通过引入包含该多核苷酸的质粒))。可从许多来源,包括不动杆菌、诺卡式菌、假单胞菌和黄单胞菌获得赋予ω羟基脂肪酸脱氢酶活性的核酸序列。本文提供具有ω羟基脂肪酸脱氢酶活性的多肽的氨基酸序列,和编码该多肽的多核苷酸的核苷酸序列的例子。可通过本领域已知的任何合适的方法检测ω羟基脂肪酸脱氢酶活性存在与否或含量。在一些实施方式中,宿主微生物中的ω羟基脂肪酸脱氢酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
本文所用的术语“己酸合酶活性”指将乙酰基-CoA和丙二酰基-CoA转化成己酸。己酸合酶活性可由包含一个或两个亚基(下文称为“亚基A”和/或“亚基B”)的酶提供。己酸合酶活性可由多肽提供。在一些实施方式中,所述多肽由引入宿主微生物的异源核苷酸序列编码。可从许多来源,包括,例如寄生曲霉获得赋予己酸合酶活性的核酸序列。本文提供具有己酸合酶活性的多肽的氨基酸序列,和编码该多肽的多核苷酸的核苷酸序列的例子。在一些实施方式中,宿主微生物中的己酸合酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
可通过本领域已知的任何合适的方法检测己酸合酶活性存在与否或含量。此类方法的一个例子描述于己酸合酶+硫酯酶(Hexanoate synthase+thioesterase)(Chemistry and Biology 9:981-988)。简言之,可制备指示菌株。指示菌株可以是,例如含有启动子控制下的报道基因(β-半乳糖苷酶、绿色荧光蛋白等)的枯草芽胞杆菌(Bacillus subtilis),该启动子受LiaR调节。指示菌株还可以是热带念珠菌,其含有天然基因,例如过氧化物酶体3-酮基酰基辅酶A硫解酶基因(CT-T3A)的枯草芽胞杆菌LiaR可调节启动子或烷烃诱导型启动子。可将HexS功能提高,从而能产生更多己酸的突变体接种在指示菌株菌苔上。测试突变体和指示菌株温育和生长后,与对照菌株相比,出现与报道菌株的诱导相关的较大晕圈表明突变体的活性提高。在替代方法中,在有利于己酰CoA或己酸产生和(细胞)裂解的条件下培养突变体。用蛋白酶处理细胞裂解物可从PKS释放己酸。可将澄清的裂解液点样在指示菌株菌苔上来评估产量的改善情况。在另一替代方法中,在用己酸诱导时,在适合支持报道基因表达的条件下培养指示菌株。利用已知浓度的己酸稀释液测得标准曲线。制备在促进己酸产生的条件下培养的测试菌株的裂解液,将这些裂解液的稀释液加入指示菌株。将含裂解液的指示菌株置于与所用相同的条件下以测得标准曲线。与标准曲线相比时,可利用最不支持诱导的裂解液稀释液定量测定产量。
本文所用的术语“单加氧酶活性”指将O2的一个氧原子插入无机底物(RH),并将另一氧原子还原成水。在一些实施方式中,单加氧酶活性指将一个氧原子掺入六-碳有机底物。在某些实施方式中,单加氧酶活性指将己酸转化成6-羟基己酸。在某些实施方式中,可由任何合适的多肽,例如细胞色素P450多肽(下文称为“CYP450”)提供单加氧酶活性。可从许多来源,包括巨大芽孢杆菌获得赋予CYP450活性的核酸序列,可在以下生物中诱导,包括但不限于:热带念珠菌、解脂耶氏酵母、构巢曲霉和寄生曲霉。本文提供用于分离编码具有CYP450活性(例如,CYP52A15活性、CYP52A16活性或CYP52A15活性和CYP52A16活性)的多肽的多核苷酸序列的寡核苷酸序列的例子。在一些实施方式中,宿主微生物中的单加氧酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
可通过本领域已知的任何合适的方法检测细胞色素P450活性存在与否或含量。例如,可通过检验含有细胞色素P450(CYP52A家族)和NADPH-细胞色素P450还原酶的反应来进行检测(参见Appl Environ Microbiol69:5983和5992)。简言之,在标准条件下培养细胞,收集以便产生用于检测CYP活性的微粒体。在Tris-缓冲蔗糖(10mM Tris-HCl pH 7.5,1mMEDTA,0.25M蔗糖)中裂解细胞来制备微粒体。首先以25,000xg,然后以100,000xg进行差速离心以分别沉淀细胞碎片和微粒体。将微粒体沉淀物重悬在0.1M磷酸缓冲液(pH 7.5),1mM EDTA中至终浓度约为10毫克蛋白质/毫升。加入NADPH引发含有约0.3mg微粒体、0.1mM己酸钠、0.7mMNADPH、50mM Tris-HCl pH 7.5,1mL的反应混合物,37℃温育10分钟。加入0.25mL 5M HCl以终止反应,加入0.25mL 2.5ug/mL 10-羟基癸酸作为内标(3.3nmol)。NaCl-饱和条件下用4.5mL乙醚萃取混合物。将有机相转移至新的试管,蒸发至干。将残留物溶解于含有10mM 3-溴甲基-7-甲氧基-1,4-苯并噁嗪-2-酮(BrMB)和饱和0.1mL K2CO3饱和乙腈配制的15mg/mL 18-冠-6的乙腈中。将溶液在40℃温育30分钟,然后加入0.05mL 2%乙酸。通过HPLC拆分荧光标记的ω-羟基脂肪酸,430nm检测,355nm激发(Yamada等.,1991,AnalBiochem 199:132-136)。可任选通过Northern印迹和/或定量RT-PCR检测特异性诱导的CYP基因。(Craft等.,2003,AppEnvironMicro 69:5983-5991)。
本文所用的术语“单加氧酶还原酶活性”指将NAD(P)H、FMN或FAD的电子经由电子传递链传递,从而将细胞色素P450的三价血红素铁还原为亚铁状态。本文所用的术语“单加氧酶还原酶活性”还指将第二电子经由电子传递系统传递,从而将二氧加成物还原为带负电荷的过氧基团。在一些实施方式中,单加氧酶活性能在偶联的两步反应中从两电子供体NAD(P)H向细胞色素P450的血红素供电子(例如,单加氧酶活性),其中NAD(P)H能结合具有单加氧酶还原酶活性的多肽的NAD(P)H-结合域,而电子从NAD(P)H通过FAD和FMN向单加氧酶活性的血红素穿梭,从而再生活性单加氧酶活性(例如,细胞色素P450)。在某些实施方式中,可由任何合适的多肽,例如细胞色素P450还原酶多肽(下文称为“CPR”)提供单加氧酶还原酶活性。可从许多来源获得和/或在许多来源中诱导赋予CPR活性的核酸序列,包括但不限于:巨大芽孢杆菌、热带念珠菌、解脂耶氏酵母、构巢曲霉和寄生曲霉。本文提供用于分离编码具有CPR活性的多肽的多核苷酸序列的寡核苷酸序列的例子。在一些实施方式中,宿主微生物中的单加氧酶还原酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
可通过本领域已知的任何合适的方法检测CPR活性存在与否或含量。例如,可采用定量核酸检测方法(例如,Sourthern印迹、PCR、引物延伸等和它们的组合)检测与宿主微生物相比,编码CPR活性的基因数增加的工程改造微生物。可采用基于定量表达的分析(例如,RT-PCR、蛋白质印迹分析、Northern印迹分析等和它们的组合)检测与宿主微生物相比,编码CPR活性的基因表达增加的工程改造微生物。或者,可采用酶试验检测细胞色素P450还原酶活性,其中所述酶活性改变底物溶液在550纳米的吸光度(Masters,B.S.S.,Williams,C.H.,Kamin,H.(1967)Methods in Enzymology,X,565-573)。
本文所用的术语“脂肪醇氧化酶活性”指将O2的一个氧原子插入有机底物,并将另一氧原子还原成过氧化物。有时也将脂肪醇氧化酶活性称为“长链脂肪醇氧化酶活性”、“长链脂肪醇:氧氧化还原酶活性”、“脂肪醇:氧氧化还原酶活性”和“长链脂肪酸氧化酶活性”。在一些实施方式中,脂肪醇氧化酶活性指将一个氧原子掺入六-碳有机底物。在某些实施方式中,脂肪醇氧化酶活性指将6-羟基己酸转化成6-氧代己酸。在一些实施方式中,脂肪醇氧化酶活性指将ω羟基脂肪酸转化成ω氧代脂肪酸。脂肪醇氧化酶(FAO)活性可由任何合适的多肽提供,例如脂肪醇氧化酶肽、长链醇氧化酶肽、长链醇:氧氧化还原酶肽、脂肪醇:氧氧化还原酶肽和长链脂肪酸氧化酶肽。可从许多来源获得赋予FAO活性的核酸序列,包括但不限于:热带念珠菌、阴沟念珠菌(Candida cloacae)、解脂耶氏酵母和拟南芥(Arabidopsis thaliana)。本文提供具有FAO活性的多肽的氨基酸序列和编码该多肽的多核苷酸的核苷酸序列的例子。在一些实施方式中,宿主微生物中的脂肪醇氧化酶活性未变,在某些实施方式中,相比于宿主微生物,在工程改造的微生物中加入或增强该活性。
可通过本领域已知的任何合适的方法检测FAO活性存在与否或含量。例如,可采用定量核酸检测方法(例如,Sourthern印迹、PCR、引物延伸等和它们的组合)检测与宿主微生物相比,编码FAO活性的基因数增加的工程改造微生物。可采用定量表达分析(例如,RT-PCR、蛋白质印迹分析、Northern印迹分析等和它们的组合)检测与宿主微生物相比,编码FAO活性的基因表达增加的工程改造微生物。或者,可如Eirich等,2004所述,或如本文实施例改进的,采用酶试验检测脂肪醇氧化酶活性。
本文所用的术语“酰基-CoA氧化酶活性”指将长链脂肪-酰基CoA氧化成反式-2,3-脱氢酰基-CoA脂肪醇。在一些实施方式中,酰基-CoA活性来自过氧化物酶体。在某些实施方式中,酰基-CoA氧化酶活性是由POX多肽实施的过氧化物酶体酰基-CoA氧化酶(POX)活性。在一些实施方式中,酰基-CoA氧化酶活性由宿主生物编码,有时可作改变以产生工程改造的生物。酰基-CoA氧化酶活性由热带念珠菌的POX4和POX5基因编码。在某些实施方式中,可增加内源性酰基-CoA氧化酶活性。在一些实施方式中,可彼此独立地改变POX4多肽或POX5多肽的酰基-CoA氧化酶活性(例如,单独增加POX4活性、单独增加POX5活性、增加一个而破坏另一个,等等)。在某些实施方式中,增加一种POX活性,同时破坏另一种POX活性可改变酰基-CoA氧化酶对于碳链长度的比活性,同时维持或增加通过β氧化途径的总体通量。
图15A-15C图示了在特定链长的原料诱导的各种热带念珠菌菌株中酰基-CoA氧化酶活性的单位,以每毫克蛋白质的单位数(U)(Y轴)表示(Picataggio等.1991Molecular and Cellular Biology 11:4333-4339)。利用各种长度的碳链(X轴)检验所分离蛋白质的酰基-CoA氧化酶活性。图15A-15C中的X和Y轴显示了基本上相似的数据。图15A显示在具有完全互补POX基因(例如,POX4和POX5有活性)的菌株中检测的酰基-CoA氧化酶活性。图15B显示在POX5基因破坏的菌株中检测的酰基-CoA氧化酶活性。功能性POX4基因编码的活性显示碳链长度较短(例如,少于10个碳)的酰基-CoA分子的比活性较高。POX5破坏菌株的结果也以数值示于图15B的表格中。图15C显示在POX4基因破坏的菌株中检测的酰基-CoA氧化酶活性。功能性POX5基因编码的活性显示12个碳长度的酰基-CoA分子的高比活性的窄峰,10个碳长度的分子的比活性较低。POX4破坏菌株的结果也以数值示于图15C的表格中。
在某些实施方式中,可通过遗传改变(例如,增加)多肽的产量(例如,引入强转录或组成型表达的异源启动子以操作性连接编码该多肽的多核苷酸;增加编码该多肽的多核苷酸拷贝数(例如,引入包含该多核苷酸的质粒,将额外的拷贝整合入宿主基因组))来增加其中一种POX基因的宿主酰基-CoA氧化酶活性。在一些实施方式中,可通过破坏(例如,敲除、插入诱变等和它们的组合)酰基-CoA氧化酶基因,或降低转录酰基-CoA氧化酶基因的启动子活性(例如,向启动子或5’UTR加入阻遏序列)来降低宿主酰基-CoA氧化酶活性。
如上所述,破坏编码POX4、POX5、或POX4和POX5的核苷酸序列有时可改变不同长度碳链(例如,碳链包括长度约1到约60个碳的脂肪醇、脂肪酸、石蜡、二羧酸)代谢的途径效率、特异性和/或比活性。在一些实施方式中,用编码可选择标记的URA3核苷酸序列破坏POX4、POX5、或POX4和POX5的核苷酸序列,将其引入宿主微生物,从而产生POX4、POX5、或POX4和POX5活性缺陷的工程改造生物。可从许多来源,例如包括热带念珠菌获得编码POX4和POX5的核酸序列。本文提供POX4和POX5氨基酸序列和编码这些多肽的多核苷酸的核苷酸序列的例子。
可通过本领域已知的任何合适方法检测POX4和/或POX5活性存在与否或含量。例如,采用Shimizu等,1979所述和本文实施例所述的酶试验。或者,还可采用核酸检测方法(例如,PCR、引物延伸、核酸杂交等和它们的组合)或定量表达分析(例如,RT-PCR、蛋白质印迹、Northern印迹分析等和它们的组合)检测表示天然和/或破坏的POX4和POX5序列的核酸序列,其中工程改造的生物显示与宿主生物相比,RNA和/或多肽水平降低。
本文所用的“硫酯酶活性”指从己酸除去辅酶A。硫酯酶活性可由多肽提供。在一些实施方式中,所述多肽由引入宿主微生物的异源核苷酸序列编码。可从许多来源,包括披针叶萼距花(Cuphea lanceolata)获得赋予硫酯酶活性的核酸序列。此类多肽的例子包括但不限于披针叶萼距花的B型酰基-(ACP)硫酯酶,由国家生物技术信息中心(NCBI)的万维网统一资源定位器(URL)ncbi.nlm.nih.gov登录号为CAB60830的核苷酸序列编码。
可通过本领域已知的任何合适方法检测硫酯酶活性存在与否或含量。此类方法的例子描述于Chemistry and Biology 9:981-988。在一些实施方式中,宿主微生物中的硫酯酶活性未变,在某些实施方式中,相比于宿主微生物,可在工程改造的微生物中加入或增强该活性。在一些实施方式中,具有硫酯酶活性的多肽与另一多肽相关(例如,己酸合酶A或己酸合酶B多肽)。下文提供具有硫酯酶活性的多肽的氨基酸序列(单字母密码序列)的非限制性例子:
MVAAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNAGFQVKANASAHPKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKSIVRDGLVSRQSFLIRSYEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMASDWLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDQKLHKFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILEESMPIEVLETQELCSLTVEYRRECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTSTAKTSNGNSAS
本文所用的术语“导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰”指降低将己酸转化成另一产物的内源性活性的宿主微生物的遗传改变。在一些实施方式中,将己酸转化成毒素的内源性活性(例如,真菌中)降低。在某些实施方式中,聚酮合酶活性降低。此类改变可有利地增加终产物,例如己二酸产量。
本文所用的术语“聚酮合酶活性”指聚酮合酶(PKS)改变己酸作为产生包括霉菌毒素在内的其它产物中的一步。PKS活性可由多肽提供。此类多肽的例子包括但不限于:由国家生物技术信息中心(NCBI)的万维网统一资源定位器(URL)ncbi.nlm.nih.gov登录号为AAS66004的寄生曲霉的酶。在某些实施方式中,PKS酶利用己酸合酶产生的己酸作为底物和曲霉NorS多酶复合物的成分,其是参与合成包括霉菌毒素在内的各种产物的密切相关基因簇。因此,有时改变PKS活性以释放己酸以供工程改造的己二酸途径。在一些实施方式中,PKS活性降低或阻断。在某些实施方式中,PKS酶经工程改造用硫酯酶活性取代PKS活性。可通过本领域已知的任何合适方法,例如Watanabe C和Townsend C(2002)“黄曲霉素B1的生物合成中I型脂肪酸合酶和聚酮合酶多酶复合物NorS的初始表征”(Initial characterizationof a type I fatty acid synthase and polyketide synthase multienzyme complexNorS in the biosynthesis of aflatoxin B1).Chemistry and Biology 9:981-988所述方法检测PKS活性存在与否或含量。下文提供具有聚酮合酶活性的多肽的氨基酸序列(单字母密码序列)的非限制性例子:
MAQSRQLFLFGDQTADFVPKLRSLLSVQDSPILAAFLDQSHYVVRAQMLQSMNTVDHKLARTADLRQMVQKYVDGKLTPAFRTALVCLCQLGCFIREYEESGNMYPQPSDSYVLGFCMGSLAAVAVSCSRSLSELLPIAVQTVLIAFRLGLCALEMRDRVDGCSDDRGDPWSTIVWGLDPQQARDQIEVFCRTTNVPQTRRPWISCISKNAITLSGSPSTLRAFCAMPQMAQHRTAPIPICLPAHNGALFTQADITTILDTTPTTPWEQLPGQIPYISHVTGNVVQTSNYRDLIEVALSETLLEQVRLDLVETGLPRLLQSRQVKSVTIVPFLTRMNETMSNILPDSFISTETRTDTGRAIPASGRPGAGKCKLAIVSMSGRFPESPTTESFWDLLYKGLDVCKEVPRRRWDINTHVDPSGKARNKGATKWGCWLDFSGDFDPRFFGISPKEAPQMDPAQRMALMSTYEAMERAGLVPDTTPSTQRDRIGVFHGVTSNDWMETNTAQNIDTYFITGGNRGFIPGRINFCFEFAGPSYTNDTACSSSLAAIHLACNSLWRGDCDTAVAGGTNMIYTPDGHTGLDKGFFLSRTGNCKPYDDKADGYCRAEGVGTVFIKRLEDALADNDPILGVILDAKTNHSAMSESMTRPHVGAQIDNMTAALNTTGLHPNDFSYIEMHGTGTQVGDAVEMESVLSVFAPSETARKADQPLFVGSAKANVGHGEGVSGVTSLIKVLMMMQHDTIPPHCGIKPGSKINRNFPDLGARNVHIAFEPKPWPRTHTPRRVLINNFSAAGGNTALIVEDAPERHWPTEKDPRSSHIVALSAHVGASMKTNLERLHQYLLKNPHTDLAQLSYTTTARRWHYLHRVSVTGASVEEVTRKLEMAIQNGDGVSRPKSKPKILFAFTGQGSQYATMGKQVYDAYPSFREDLEKFDRLAQSHGFPSFLHVCTSPKGDVEEMAPVVVQLAITCLQMALTNLMTSFGIRPDVTVGHSLGEFAALYAAGVLSASDVVYLVGQRAELLQERCQRGTHAMLAVKATPEALSQWIQDHDCEVACINGPEDTVLSGTTKNVAEVQRAMTDNGIKCTLLKLPFAFHSAQVQPILDDFEALAQGATFAKPQLLILSPLLRTEIHEQGVVTPSYVAQHCRHTVDMAQALRSAREKGLIDDKTLVIELGPKPLISGMVKMTLGDKISTLPTLAPNKAIWPSLQKILTSVYTGGWDINWKKYHAPFASSQKVVDLPSYGWDLKDYYIPYQGDWCLHRHQQDCKCAAPGHEIKTADYQVPPESTPHRPSKLDPSKEAFPEIKTTTTLHRVVEETTKPLGATLVVETDISRKDVNGLARGHLVDGIPLCTPSFYADIAMQVGQYSMQRLRAGHPGAGAIDGLVDVSDMVVDKALVPHGKGPQLLRTTLTMEWPPKAAATTRSAKVKFATYFADGKLDTEHASCTVRFTSDAQLKSLRRSVSEYKTHIRQLHDGHAKGQFMRYNRKTGYKLMSSMARFNPDYMLLDYLVLNEAENEAASGVDFSLGSSEGTFAAHPAHVDAITQVAGFAMNANDNVDIEKQVYVNHGWDSFQIYQPLDNSKSYQVYTKMGQAKENDLVHGDVVVLDGEQIVAFFRGLTLRSVPRGALRVVLQTTVKKADRQLGFKTMPSPPPPTTTMPISPYKPANTQVSSQAIPAEATHSHTPPQPKHSPVPETAGSAPAAKGVGVSNEKLDAVMRVVSEESGIALEELTDDSNFADMGIDSLSSMVIGSRFREDLGLDLGPEFSLFIDCTTVRALKDFMLGSGDAGSGSNVEDPPPSATPGINPETDWSSSASDSIFASEDHGHSSESGADTGSPPALDLKPYCRPSTSVVLQGLPMVARKTLFMLPDGGGSAFSYASLPRLKSDTAVVGLNCPYARDPENMNCTHGAMIESFCNEIRRRQPRGPYHLGGWSSGGAFAYVVAEALVNQGEEVHSLIIIDAPIPQAMEQLPRAFYEHCNSIGLFATQPGASPDGSTEPPSYLIPHFTAVVDVMLDYKLAPLHARRMPKVGIVWAADTVMDERDAPKMKGMHFMIQKRTEFGPDGWDTIMPGASFDIVRADGANHFTLMQKEHVSIISDLIDRVMA
本文所用的术语“降低6-羟基己酸转化的遗传修饰”或“降低ω羟基脂肪酸转化的遗传修饰”指降低将6-羟基己酸转化成另一产物的内源性活性的宿主微生物的遗传改变。在一些实施方式中,内源性6-羟基己酸脱氢酶活性降低。此类改变可有利地增加可纯化和进一步加工的6-羟基己酸含量。
本文所用的术语“降低β-氧化活性的遗传修饰”指降低氧化含羧酸有机分子的β碳的内源性活性的宿主微生物的遗传改变。在某些实施方式中,有机分子是六碳分子,有时在分子的末端含有一个或两个羧酸部分(例如,己二酸)。此类改变可有利地增加终产物,例如己二酸产量。
多核苷酸和多肽
核酸(例如,本文也称为核酸试剂,目标核酸、目标核苷酸序列、感兴趣的核酸序列或感兴趣的核酸区域)可来自任何来源或组成,例如DNA、cDNA、gDNA(基因组DNA)、RNA、siRNA(短抑制性RNA)、RNAi、tRNA或mRNA,可以是任何形式(例如,线形、环形、超螺旋、单链、双链等)。核酸还可包含DNA或RNA类似物(例如,含有碱基类似物、糖类似物和/或非天然骨架等)。应该知道,术语“核酸”不指代或推断多核苷酸链的具体长度,因此该定义也包括多核苷酸和寡核苷酸。脱氧核糖核苷酸包括脱氧腺苷、脱氧胞苷、脱氧鸟苷和脱氧胸苷。对于RNA,尿嘧啶碱基是尿苷。
核酸有时是质粒、噬菌体、自主复制序列(ARS)、着丝粒、人工染色体、酵母人工染色体(例如,YAC)或能够在宿主细胞中复制或被复制的其它核酸。在某些实施方式中,核酸可来自文库或可得自酶消化、剪切或超声处理的感兴趣生物的基因组DNA(例如,片段化)。在一些实施方式中,经片段化或切割的核酸可具有的标称、平均长度为约5到约10,000个碱基对、约100到约1,000个碱基对、约100到约500个碱基对、或约10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、200、300、400、500、600、700、800、900、1000、2000、3000、4000、5000、6000、7000、8000、9000或10000个碱基对。可通过本领域任何合适方法产生片段,可由普通技术人员选择合适的产片段方法来控制核酸片段的平均或标称长度。在一些实施方式中,可筛选片段化DNA的尺寸以获得特定尺寸范围的核酸片段。
可通过普通技术人员已知的各种方法片段化核酸,包括但不限于:物理、化学和酶方法。此类方法的例子描述于美国专利申请公布号20050112590(2005年5月26日公布,名称为“序列变异检测和发现的片段化方法和系统(Fragmentation-based methods and systems for sequence variation detectionand discovery),”Van Den Boom等)。普通技术人员可选择某些方法以产生非特异性切割的片段或特异性切割的片段。可产生非特异性切割片段样品核酸的方法的例子包括但不限于:使样品核酸与能将核酸暴露于剪切力的设备接触(例如,使核酸流过注射器针头;利用弗氏压碎器(French press));将样品核酸暴露于辐射(例如,γ、x-射线、紫外射线;可通过辐射强度控制片段大小);在水中煮沸核酸(例如,产生约500碱基对的片段)和将核酸暴露于酸和碱水解过程。
可使核酸接触一种或多种特异性切割试剂来特异性切割核酸。本文所用的术语“特异性切割试剂”指能在一个或多个特定位点切割核酸的试剂,有时指化学品或酶。根据具体的核苷酸序列,特异性切割试剂常在特定位点进行特异性切割。酶特异性切割试剂的例子包括但不限于:核酸内切酶(例如,DNA酶(如,DNA酶I、II);RNA酶(例如,RNA酶E、F、H、P);CleavaseTM酶;Taq DNA聚合酶;大肠杆菌DNA聚合酶I和真核生物结构特异性内切核酸酶;小鼠FEN-1内切核酸酶;I、II或III型限制性内切核酸酶,如AccI、Afl III、Alu I、Alw44 I、Apa I、Asn I、Ava I、Ava II、BamH I、Ban II、Bcl I、Bgl I.Bgl II、Bln I、Bsm I、BssH II、BstE II、Cfo I、CIa I、Dde I、Dpn I、Dra I、EcIX I、EcoR I、EcoR I、EcoR II、EcoR V、Hae II、Hae II、Hind II、Hind III、Hpa I、Hpa II、Kpn I、Ksp I、Mlu I、MIuN I、Msp I、Nci I、Nco I、Nde I、Nde II、Nhe I、Not I、Nru I、Nsi I、Pst I、Pvu I、PvuII、Rsa I、Sac I、Sal I、Sau3A I、Sca I、ScrF I、Sfi I、Sma I、Spe I、SphI、Ssp I、Stu I、Sty I、Swa I、Taq I、Xba I、Xho I);糖基化酶(例如,尿嘧啶-DNA糖基化酶(UDG)、3-甲基腺嘌呤DNA糖基化酶、3-甲基腺嘌呤DNA糖基化酶II、嘧啶水合物-DNA糖基化酶、FaPy-DNA糖基化酶、胸腺嘧啶错配-DNA糖基化酶、次黄嘌呤-DNA糖基化酶、5-羟甲基尿嘧啶DNA糖基化酶(HmUDG)、5-羟甲基胞嘧啶DNA糖基化酶、或1,N6-亚乙烯基-腺嘌呤DNA糖基化酶);外切核酸酶(例如,外切核酸酶III);核酶、和DNA酶。可用化学试剂处理样品核酸,或用经修饰的核苷酸合成,可切割经修饰的核酸。在非限制性的例子中,可利用以下试剂处理样品核酸:(i)产生若干烷基化碱基的烷基化剂,例如甲基亚硝基脲,包括烷基嘌呤DNA糖基化酶识别并切割的N3-甲基腺嘌呤和N3-甲基鸟嘌呤;(ii)亚硫酸氢钠,其造成DNA中的胞嘧啶残基脱氨形成尿嘧啶N-糖基化酶可切割的尿嘧啶残基;和(iii)将鸟嘌呤转化成其氧化形式,8-羟基鸟嘌呤的化学试剂,甲酰胺基嘧啶DNA N-糖基化酶可切割8-羟基鸟嘌呤。化学切割方法的例子包括但不限于:烷基化(例如,硫代磷酸酯修饰核酸的烷基化);酸不稳定性切割含P3′-N5′-氨基磷酸酯的核酸;和四氧化锇与哌啶处理核酸。
本文所用的术语“互补切割反应”是指用不同切割试剂或者通过改变同一切割试剂的切割特异性在同一核酸上进行的切割反应,从而产生相同目标或参比核酸或蛋白质的不同切割模式。在某些实施方式中,可以用一种或多种特异性切割剂(例如1、2、3、4、5、6、7、8、9、10或更多种特异性切割剂)在一个或多个反应容器中处理感兴趣的核酸(例如用各种特异性切割剂在单独的容器内处理感兴趣核酸)。
有时可通过本领域已知的任何扩增方法(例如,PCR、RT-PCR等)扩增适用于本文所述实施方式的核酸。利用通常难以培养的生物时(例如,生长缓慢、需氧专门培养条件等),核酸扩增尤其有利。本文所用的术语“扩增”或“扩增反应”指扩增核酸的目标序列拷贝的任何体外过程。扩增有时指目标核酸的“指数”增加。然而,本文所用的“扩增”还可指所选核酸目标序列数量的线性增加,但不同于一次性的单引物延伸步骤。在一些实施方式中,可进行有限扩增反应,也称为预扩增。预扩增是一种因为进行的循环次数少,例如10个循环而发生有限量扩增的方法。预扩增可允许一定的扩增,但在指数期之前停止扩增,并通常产生约500拷贝所需核苷酸序列。采用预扩增还可限制标准PCR反应中反应物消耗相关的不精确性。
在一些实施方式中,有时将核酸试剂稳定地整合入宿主生物的染色体,或者在某些实施方式中,核酸试剂可以是宿主染色体的缺失部分(例如,遗传修饰的生物,其中宿主基因组改变赋予所需生物选择性或优先维持携带遗传修饰的能力)。可选择具有指导所需蛋白质或核酸分子产生的能力的此类核酸试剂(例如,核酸或遗传修饰的生物,其改变的基因组赋予该生物可选择的特征)。需要时,可改变核酸试剂,从而密码子编码(i)相同的氨基酸,利用不同于天然序列中指定的tRNA,或(ii)不同于正常的氨基酸,包括非常规或非天然氨基酸(包括可检测标记的氨基酸)。本文所用的术语“天然序列”指天然环境中发现的未修饰的核苷酸序列(例如,生物体中发现的核苷酸序列)。
核酸或核酸试剂可包含常根据该核酸的所需应用选择的某些元件。核酸试剂中可包括或排除任何以下元件。例如,核酸试剂可包含一个或多个或全部的以下核苷酸元件:一个或多个启动子元件、一个或多个5’非翻译区(5’UTR)、目标核苷酸序列可插入的一个或多个区域(“插入元件”)、一个或多个目标核苷酸序列、一个或多个3’非翻译区(3’UTR)和一个或多个选择元件。可给核酸试剂提供一个或多个此类元件,可先将其它元件插入核酸,再将该核酸引入所需生物。在一些实施方式中,提供的核酸试剂包含启动子、5’UTR、任选的3’UTR和将目标核苷酸序列插入(即,克隆)核酸试剂的一个或多个插入元件。在某些实施方式中,提供的核酸试剂包含启动子、一个或多个插入元件和任选的3’UTR,5’UTR/目标核苷酸序列与任选的3’UTR一起插入。这些元件可排列成适于在所选表达系统中表达(例如,在所选生物中表达,或在无细胞体系中表达)的任何顺序,在一些实施方式中,核酸试剂在5’到3’方向上包含以下元件:(1)启动子元件、5’UTR和一个或多个插入元件;(2)启动子元件、5’UTR和目标核苷酸序列;(3)启动子元件、5’UTR、一个或多个插入元件和3’UTR;和(4)启动子元件、5’UTR、目标核苷酸序列和3’UTR。
启动子元件通常是DNA合成和/或RNA合成所需。启动子元件常包含有助于特定基因转录的DNA区域,该区域提供起始位点以便合成对应于基因的RNA。在一些实施方式中,启动子通常接近它们所调节的基因,位于基因的上游(例如,基因的5’),并位于与该基因的有义链相同的DNA链上。在一些实施方式中,可从基因或生物体分离启动子元件,将其插入与多核苷酸序列功能性连接,从而能改变和/或调节表达。用于核酸表达的非天然启动子(例如,通常不与给定的核酸序列相连的启动子)常称为异源启动子。在某些实施方式中,可将异源启动子和/或5’UTR插入与编码具有本文所述所需活性的多肽的多核苷酸功能性连接。对于启动子,本文所用的术语“操作性连接”和“功能性连接”指编码序列和启动子元件之间的关系。当编码序列通过转录的表达受启动子元件调节或控制时,启动子与编码序列操作性连接或功能性连接。对于启动子元件,术语“操作性连接”和“功能性连接”在本文中可互换使用。
启动子常与RNA聚合酶相互作用。聚合酶是利用已经存在的核酸试剂催化核酸合成的酶。当模板是DNA模板时,先转录RNA分子,再合成蛋白质。适用于本发明方法的具有聚合酶活性的酶包括在所选系统中有活性,能结合所选模板合成蛋白质的任何聚合酶。在一些实施方式中,在本文中也称为启动子元件的启动子(例如,异源启动子)可操作性连接于核苷酸序列或开放读框(ORF)。从启动子元件开始转录可催化合成对应于操作性连接于该启动子的核苷酸序列或ORF序列的RNA,进而合成所需肽、多肽或蛋白质。
启动子元件有时对调节控制表现出反应性。有时还可通过选择性试剂调节启动子元件。即,从启动子元件开始的转录有时可由对环境、营养或内部条件或信号起反应而打开、关闭、上调或下调(例如,热诱导型启动子、光调节的启动子、反馈调节的启动子、激素影响的启动子、组织特异性启动子、氧和pH影响的启动子、对选择性试剂(例如,卡那霉素)起反应的启动子等)。环境、营养或内部信号影响的启动子常受结合于启动子或其附近并在某些条件下增加或降低目标序列表达的信号的影响(直接或间接)。
用于本文所述实施方式中,可影响从启动子开始转录的选择或调节试剂的非限制性例子包括但不限于:(1)编码提供抵御其它毒性化合物(例如,抗生素)的产物的核酸片段;(2)编码其它情况下在受者细胞中缺失的产物(例如,必需产物、tRNA基因、营养缺陷型标记)的核酸片段;(3)编码抑制基因产物活性的产物的核酸片段;(4)编码易于鉴定的产物(例如,表型标记,如抗生素(如β-内酰胺酶)、β-半乳糖苷酶、绿色荧光蛋白(GFP)、黄色荧光蛋白(YFP)、红色荧光蛋白(RFP)、青色荧光蛋白(CFP)和细胞表面蛋白)的核酸片段;(5)结合在其它情况下对细胞存活和/或功能有害的产物的核酸片段;(6)在其它情况下抑制以上1-5所述任何核酸片段的活性的核酸片段(例如,反义寡核苷酸);(7)结合修饰底物的产物(例如,限制性内切核酸酶)的核酸片段;(8)可用于分离或鉴定所需分子的核酸片段(例如,特异性蛋白质结合位点);(9)编码在其它情况下可能无功能的特异性核苷酸序列的核酸片段(例如,用于PCR扩增分子亚群);(10)如果不存在会直接或间接赋予对特定化合物的耐受性或敏感性的核酸片段;(11)编码有毒性或在受者细胞中将无毒化合物转化成有毒化合物的产物(例如,单纯疱疹病毒胸苷激酶,胞嘧啶脱氨酶)的核酸片段;(12)抑制含有它们的核酸分子复制、分割或遗传性的核酸片段;和/或(13)编码条件性复制功能的核酸片段,例如在某些宿主或宿主细胞株或在某些环境条件下(例如,温度、营养条件等)复制。在一些实施方式中,可加入调节或选择试剂以改变生物经历的现有生长条件(例如,在液体培养基中生长、在发酵罐中生长、在固体营养板上生长等)。
在一些实施方式中,可采用调节启动子元件以改变(例如,增强、增加、降低或基本上消除)肽、多肽或蛋白质(例如,酶活性)的活性。例如,在某些实施方式中,可通过遗传修饰工程改造微生物以表达可增加新型活性(例如,宿主生物中未正常发现的活性)的核酸试剂或通过增强操作性连接于感兴趣核苷酸序列(例如,感兴趣的同源或异源核苷酸序列)的同源或异源启动子转录来增强已有活性的表达。在一些实施方式中,可通过遗传修饰工程改造微生物以表达某种核酸试剂,在某些实施方式中,该核酸试剂能通过降低或基本上消除操作性连接于感兴趣的核苷酸序列的同源或异源启动子的转录来降低活性表达。
在一些实施方式中,可利用技术人员已知的重组DNA和遗传技术改变活性。下文进一步描述了工程改造微生物的方法。本文的表格提供了由氧上调的酵母启动子、由氧下调的酵母启动子、酵母转录阻遏物和它们的相关基因、采用MEME序列分析软件测定的DNA结合基序的非限制性清单。可利用程序MEME鉴定潜在的调节剂结合基序以检索过表达序列的调节剂结合基因间区域。对于各调节剂,提取p-值小于0.001的结合基因间区域的序列用作基序找寻的输入值。利用以下设置运行MEME软件:基序宽度为6-18碱基,“调制噪声(zoop)”分布模型,六阶Markov背景模型,找寻下限为20个基序。通过两个标准对所找寻序列基序的显著性评分:MEME计算的E-值和特异性评分。显示各调节剂的利用各度量的最佳评分基序。显示的所有基序源自丰富生长条件(rich growth condition)产生的数据库,除了用半乳糖培养的表位标记Gal4的早前公布数据库之外。
在一些实施方式中,可在选择活性的所需改变的条件下筛选生物来找寻改变的活性。例如,可利用含有代谢差或者甚至有毒物质的培养基,通过选择或筛选所研究生物来改进某些微生物以增加或降低活性。生物利用通常代谢差的物质生长的能力增加会导致,例如利用该物质的生长率增加。对毒性物质的敏感性降低可表现为,例如利用该毒性物质生长的浓度更高。以此方式鉴定的遗传修饰有时称为天然产生的突变,或者携带它们的生物有时称为天然产生的突变体。以此方式获得的修饰不限于启动子序列中的改变。即,通过上述选择压力筛选微生物可产生能在非启动子序列中发生,有时也可在不在感兴趣核苷酸序列中但在相关核苷酸序列中(例如,参与同一途径的不同步骤的基因、转运基因等)的序列中发生的遗传改变。在一些实施方式中,有时可从独特环境中分离天然产生的变体来找寻天然产生的突变体。
除了本文提供的调节启动子序列、调控序列和编码多核苷酸外,核酸试剂可包括与上述(或互补序列)有80%或更高相同性的多核苷酸序列。即,可利用与本文所述核苷酸序列有至少80%或更高、81%或更高、82%或更高、83%或更高、84%或更高、85%或更高、86%或更高、87%或更高、88%或更高、89%或更高、90%或更高、91%或更高、92%或更高、93%或更高、94%或更高、95%或更高、96%或更高、97%或更高、98%或更高、99%或更高相同性的核苷酸序列。本文所用的术语“相同”指彼此比较时具有基本上相同的核苷酸序列的两条或更多条核苷酸序列。测定两条核苷酸序列或氨基酸序列是否基本上相同的一种检验方法是测定共有的相同核苷酸序列或氨基酸序列的百分比。
可如下所示计算序列相同性。为最优比较目的比对序列(例如,为最优比对可在第一和第二氨基酸或核酸序列的一个或两个中引入空位,为比较目的可无视非同源性序列)。为比较目的,所比对的参比序列的长度有时是该参比序列长度的30%或更多、40%或更多、50%或更多、常是60%或更多,和更常见是70%或更多、80%或更多、90%或更多、或100%。然后在两条序列中分别比较相应核苷酸或多肽位置的核苷酸或氨基酸。当占据第一序列某位置的核苷酸或氨基酸与第二序列中相应位置的相同时,认为该核苷酸或氨基酸在该位置相同。考虑到为最优比对两条序列而引入的空位数和各空位长度,两条序列之间的相同性百分比与序列共有的相同位置数量呈函数关系。
可采用数学算法在两个序列间进行序列比较并确定相同性百分数。可采用纳入ALIGN程序(2.0版)的Meyers和Miller算法(CABIOS 4:11-17(1989)),利用PAM120权重残基表,空位长度罚分12和空位罚分4来测定两条氨基酸或核苷酸序列之间的相同性百分数。还可采用纳入GCG软件包中GAP程序(从http网址www.gcg.com获得)的Needleman和Wunsch算法(J.Mol.Biol.48:444-453(1970)),利用Blossum 62矩阵或PAM250矩阵,空位权重为16、14、12、10、8、6或4和长度权重为1、2、3、4、5或6来测定两条氨基酸序列之间的相同性百分数。可采用GCG软件包(可从http网址www.gcg.com获得)中的GAP程序,利用NWSgapdna.CMP矩阵和空位权重40、50、60、70或80以及长度权重1、2、3、4、5或6,来测定两条核苷酸序列之间的相同性百分数。常用的一组参数是Blossum 62评分矩阵,其中空位开放罚分12、空位延伸罚分为4、框架移动空位罚分为5。
还可通过在严谨性条件下进行杂交试验来测定序列相同性。本文所用的术语“严谨性条件”指杂交和洗涤条件。本领域技术人员已知严谨性条件,参见《当代分子生物学方案》(Current Protocols in Molecular Biology),约翰韦利父子公司(John Wiley & Sons),纽约.,6.3.1-6.3.6(1989)。可采用该参考文献中描述的任一种水性和非水性方法。严谨性杂交条件的例子是在约45℃下,在6X氯化钠/柠檬酸钠(SSC)中杂交,然后在50℃下用0.2X SSC、0.1%SDS洗涤一次或多次。严谨性杂交条件的另一例子是在约45℃下,在6X氯化钠/柠檬酸钠(SSC)中杂交,然后在55℃下用0.2X SSC、0.1%SDS洗涤一次或多次。严谨性杂交条件的又一例子是在约45℃下,在6X氯化钠/柠檬酸钠(SSC)中杂交,然后在60℃下用0.2X SSC、0.1%SDS洗涤一次或多次。严谨性杂交条件通常是在约45℃下在6X氯化钠/柠檬酸钠(SSC)中杂交,然后在65℃下用0.2X SSC、0.1%SDS洗涤一次或多次。更常见地,严谨性条件是在65℃下用0.5M磷酸钠、7%SDS处理,然后在65℃下用0.2X SSC、1%SDS洗涤一次或多次。
如上所述,核酸试剂还可包含一个或多个5’UTR和一个或多个3’UTR。5’UTR可包含衍生其的核苷酸序列的一个或多个内源性元件,有时包含一个或多个外源性元件。5’UTR可衍生自任何合适的核酸,例如任何合适生物(例如,病毒、细菌、酵母、真菌、植物、昆虫或哺乳动物)的基因组DNA、质粒DNA、RNA或mRNA。技术人员可依据所选的表达系统(例如,在所选生物中表达、或在无细胞体系中表达)为5’UTR选择合适的元件。5’UTR有时包含一个或多个技术人员已知的以下元件:增强子序列(例如,转录性或翻译性)、转录起始位点、转录因子结合位点、翻译调节位点、翻译起始位点、翻译因子结合位点、辅助蛋白质结合位点、反馈调节剂结合位点、Pribnow盒、TATA盒、-35元件、E-盒(螺旋-环-螺旋结合元件)、核糖体结合位点、复制子、内部核糖体进入位点(IRES)、沉默子元件等。在一些实施方式中,可分离启动子元件,从而适当的条件化调节所需的所有5’UTR元件均包含在启动子元件片段中,或在启动子元件片段的功能子序列中。
核酸试剂中的5’UTR可包含翻译增强子核苷酸序列。翻译增强子核苷酸序列常位于核酸试剂中的启动子和目标核苷酸序列之间。翻译增强子序列常结合核糖体,有时是18S rRNA-结合核糖核苷酸序列(即,40S核糖体结合序列),有时是内部核糖体进入位点(IRES)。IRES通常构成含有精确安置的RNA三级结构的RNA支架,该结构通过许多特异性分子间相互作用接触40S核糖体亚单位。技术人员已知并可鉴定核糖体增强子序列的例子(例如,Mignone等.,Nucleic Acids Research 33:D141-D146(2005);Paulous等.,Nucleic Acids Research 31:722-733(2003);Akbergenov等.,NucleicAcids Research 32:239-247(2004);Mignone等.,Genome Biology 3(3):reviews0004.1-0001.10(2002);Gallie,Nucleic Acids Research 30:3401-341l(2002);Shaloiko等.,http address www.interscience.wiley.com,DOI:10.1002/bit.20267;和Gallie等.,Nucleic Acids Research 15:3257-3273(1987))。
翻译增强子序列有时是真核序列,例如Kozak共有序列或其它序列(例如,水螅序列,GenBank登录号U07128)。翻译增强子序列有时是原核序列,例如Shine-Dalgarno共有序列。在某些实施方式中,翻译增强子序列是病毒核苷酸序列。翻译增强子序列有时来自植物病毒,例如烟草花叶病毒(TMV)、苜蓿花叶病毒(AMV);烟草腐蚀病毒(ETV);马铃薯病毒Y(PVY);芜菁花叶(poty)病毒和豌豆种传花叶病毒的5’UTR。在某些实施方式中,来自TMV的长约67个碱基的ω序列包含在核酸试剂中作为翻译增强子序列(例如,缺乏鸟苷核苷酸并包含25个核苷酸长的聚(CAA)中心区域)。
3’UTR可包含衍生其的核苷酸序列的一个或多个内源性元件,有时包含一个或多个外源性元件。3’UTR可衍生自任何合适的核酸,例如任何合适生物(例如,病毒、细菌、酵母、真菌、植物、昆虫或哺乳动物)的基因组DNA、质粒DNA、RNA或mRNA。技术人员可依据所选的表达系统(例如,在所选生物中表达)为3’UTR选择合适的元件。3’UTR有时包含一个或多个技术人员已知的以下元件:转录调节位点、转录起始位点、转录终止位点、转录因子结合位点、翻译调节位点、翻译终止位点、翻译起始位点、翻译因子结合位点、核糖体结合位点、复制子、增强子元件、沉默子元件和多聚腺苷尾。3’UTR通常包括多聚腺苷尾,有时不包括,如果存在多聚腺苷尾,那么该尾上可添加或去除一个或多个腺苷部分(例如可添加或去除约5个、约10个、约15个、约20个、约25个、约30个、约35个、约40个、约45个或约50个腺苷部分)。
在一些实施方式中,可采用修饰5’UTR和/或3’UTR改变(例如,增强、增加、减少或基本上消除)启动子的活性。通过从包含修饰的5’或3’UTR的操作性相连启动子元件开始改变感兴趣核苷酸序列的转录,改变启动子活性可进而改变肽、多肽或蛋白质的活性(例如,酶活性)。例如,在某些实施方式中,可通过遗传修饰工程改造微生物以表达包含修饰的5’或3’UTR的核酸试剂,从而能增加新型活性(例如,宿主生物中未正常发现的活性)或通过增强从操作性连接于感兴趣核苷酸序列(例如,感兴趣的同源或异源核苷酸序列)的同源或异源启动子开始的转录来增强已有活性的表达。在一些实施方式中,可通过遗传修饰工程改造微生物以表达包含修饰的5’或3’UTR的核酸试剂,从而能通过降低或基本上消除从操作性连接于感兴趣的核苷酸序列的同源或异源启动子开始的转录来降低活性表达。
核苷酸试剂有时可包含目标核苷酸序列。本文所用的“目标核苷酸序列”编码感兴趣的核酸、肽、多肽或蛋白质,其可以是核糖核苷酸序列或脱氧核糖核苷酸序列。目标核酸有时是非翻译核糖核酸,有时是翻译的核糖核酸。非翻译核糖核酸可包含但不限于:小干扰核糖核酸(siRNA)、短发夹核糖核酸(shRNA)、能进行RNA干扰(RNAi)的其它核糖核酸、反义核糖核酸或核酶。可翻译的目标核苷酸序列(例如,目标核糖核苷酸序列)有时编码肽、多肽或蛋白质,它们在本文中有时称为“目标肽”、“目标多肽”或“目标蛋白质”。
一种或多种肽、多肽或蛋白质催化的任何肽、多肽或蛋白质、或活性可由目标核苷酸序列编码,并可由用户选择。代表性蛋白质包括酶(例如,己酸合酶、硫酯酶、单加氧酶、单加氧酶还原酶、脂肪醇氧化酶、6-氧代己酸脱氢酶、6-羟基己酸脱氢酶等)、抗体、血清蛋白(例如,白蛋白)、膜结合蛋白、激素(例如,生长激素、促红细胞生成素、胰岛素等)、细胞因子等,包括天然产生的和外源性表达的多肽。代表性活性(例如,功能相关以提供某种活性的酶或酶组合)包括,例如己酸合酶活性、硫酯酶活性、单加氧酶活性、6-氧代己酸脱氢酶活性、6-羟基己酸脱氢酶活性、β-氧化活性等。本文所用的术语“酶”指可用作催化剂的蛋白质,其诱导其它化合物中的化学改变,从而自一种或多种底物产生一种或多种产物。
本文列出了可用于本文所述实施方式的具体多肽(例如,酶)。本文所用的术语“蛋白质”指具有肽键连接的氨基酸序列的分子。该术语包括融合蛋白、寡肽、肽、环肽、多肽和多肽衍生物,无论天然或是重组的,还包括它们的片段、衍生物、同源物和变体。蛋白质或多肽有时是胞内来源的(例如,位于体内宿主细胞的核、胞质或间质空间),有时是体内细胞膜蛋白。在一些实施方式中(上述的,进一步的细节见工程改造和改变方法),遗传修饰可修饰(例如,增加、充分增加、减少或充分减少)目标活性。
可翻译核苷酸序列通常位于起始密码子(核糖核酸中的AUG,脱氧核糖核酸中的ATG)和终止密码子(例如,核糖核酸中的UAA(赭石)、UAG(琥珀)或UGA(乳白)和脱氧核糖核酸中的TAA、TAG或TGA)之间,有时在本文称为“开放读框”(ORF)。有时,可翻译核苷酸序列(例如,ORF)在一种生物中的编码(例如,大多数生物将CTG编码为亮氨酸)与另一种生物不同(例如,热带念珠菌将CTG编码为丝氨酸)。在一些实施方式中,改变可翻译核苷酸序列以纠正核苷酸供者生物与核苷酸受者生物(例如,工程改造的生物)之间的其它遗传密码(例如,密码子使用)差异。在某些实施方式中,改变可翻译的核苷酸序列以改善:(i)密码子使用,(ii)转录效率,(iii)翻译效率,(iv)等等,和它们的组合。
核酸试剂有时包含一个或多个ORF。ORF可来自任何合适的来源,有时来自基因组DNA、mRNA、逆转录的RNA或互补DNA(cDNA)或包含以上一种或多种的核酸文库,来自含有感兴趣核酸序列、感兴趣蛋白质或感兴趣活性的任何生物种类。可获得ORF的生物的非限制性例子包括例如细菌、酵母菌、真菌、人、昆虫、线虫、牛、马、犬、猫、大鼠或小鼠。
核酸序列有时包含毗邻ORF、与该ORF一起翻译并编码氨基酸标签的核苷酸序列。编码标签的核苷酸序列位于核酸试剂的ORF中的3’和/或5’,从而编码该ORF编码的蛋白质或肽的C-末端或N-末端标签。可利用不消除体外转录和/或翻译的任何标签,技术人员可作适当选择。标签有助于从培养物或发酵培养基中分离和/或纯化所需ORF产物。
标签有时特异性结合,例如固相分子或部分或可检测标记物,从而能分离、纯化和/或检测ORF编码的蛋白质或肽。在一些实施方式中,标签包含一个或多个以下元件:FLAG(例如,DYKDDDDKG)、V5(例如,GKPIPNPLLGLDST)、c-MYC(例如,EQKLISEEDL)、HSV(例如,QPELAPEDPED)、流感血凝素、HA(例如,YPYDVPDYA)、VSV-G(例如,YTDIEMNRLGK)、细菌谷胱甘肽-S-转移酶、麦芽糖结合蛋白、链霉亲和素-或亲和素-结合标签(例如,pcDNATM6BioEaseTM Gateway
Figure BPA00001516349200461
生物素化系统(英杰公司))、硫氧还蛋白、β-半乳糖苷酶、VSV-糖蛋白、荧光蛋白(例如,绿色荧光蛋白或其多种颜色变体之一(例如,黄色、红色、蓝色))、聚赖氨酸或聚精氨酸序列、聚组氨酸序列(例如,His6)或螯合金属(例如,钴、锌、铜)的其它序列和/或结合含砷分子的富含半胱氨酸的序列。在某些实施方式中,富含半胱氨酸的标签包含氨基酸序列CC-Xn-CC,其中X是任何氨基酸,n是1到3,富含半胱氨酸的序列有时是CCPGCC。在某些实施方式中,标签包含富含半胱氨酸的元件和聚组氨酸元件(例如,CCPGCC和His6)。
标签常易于结合结合伴侣。例如,有些标签结合抗体(例如,FLAG),有时特异性结合小分子。例如,聚组氨酸标签特异性螯合二价金属,例如铜、锌和钴;聚赖氨酸或聚精氨酸标签特异性结合锌指;谷胱甘肽S-转移酶标签结合谷胱甘肽;富含半胱氨酸的标签特异性结合含砷分子。含砷分子包括LUMIOTM试剂(英杰公司,加利福尼亚州),例如FlAsHTM(EDT2[4′,5′-二(1,3,2-二硫砷烷(dithioarsolan)-2-基)荧光素-(1,2-乙二硫醇)2])和ReAsH试剂(例如,授予Tsien等的美国专利5,932,474,名称为“合成分子的目标序列(Target Sequences for Synthetic Molecules)”;授予Tsien的美国专利6,054,271,名称为“利用合成分子和目标序列的方法(Methods ofUsing Synthetic Molecules and Target Sequences)”;美国专利6,451,569和6,008,378;公布的美国专利申请2003/0083373和公布的PCT专利申请WO99/21013,均属于Tsien等,名称均为“与目标序列特异性反应的合成分子(Synthetic Molecules that Specifically React with Target Sequences)”)。此类抗体和小分子有时连接于固相以利于分离目标蛋白质或目标肽。
标签有时包含将翻译的蛋白质或肽定位于系统中某组分的序列,该序列称为“信号序列”或“定位信号序列”。信号序列常掺在目标蛋白质或目标肽的N-末端,有时掺在C-末端。技术人员已知信号序列的例子,它们易于掺入核酸试剂,常根据进行核酸试剂表达的生物作出选择。在一些实施方式中,信号序列将翻译的蛋白质或肽定位于细胞膜。信号序列的例子包括但不限于:核靶向信号(例如,类固醇受体序列和SV40病毒大T抗原的N-末端序列);线粒体靶向信号(例如,形成两亲螺旋的氨基酸序列);过氧化物酶体靶向信号(例如,酿酒酵母的YFG的C-末端序列);和分泌信号(例如,酿酒酵母中转化酶、配对因子α、PHO5和SUC2的N-末端序列;枯草芽胞杆菌蛋白的多个N-末端序列(例如,Tjalsma等.,Microbiol.Molec.Biol.Rev.64:515-547(2000));α淀粉酶信号序列(例如,美国专利号6,288,302);果胶酸裂合酶信号序列(例如,美国专利号5,846,818);precollagen signal sequence(例如,美国专利号5,712,114);OmpA信号序列(例如,美国专利号5,470,719);lam beta信号序列(例如,美国专利号5,389,529);短芽胞杆菌(B.brevis)信号序列(例如,美国专利号5,232,841);和巴斯德毕赤酵母(P.pastoris)信号序列(例如,美国专利号5,268,273))。
标签有时直接毗连ORF编码的氨基酸序列(即,没有间插序列),标签有时基本上毗连ORF编码的氨基酸序列(例如,存在间插序列)。间插序列有时包含蛋白酶的识别位点,以便用于从目标蛋白质或肽上切割标签。在一些实施方式中,例如,因子Xa(如识别位点I(E/D)GR)、凝血酶(例如,识别位点LVPRGS)、肠激酶(例如,识别位点DDDDK)、TEV蛋白酶(例如,识别位点ENLYFQG)或PreScissionTM蛋白酶(例如,识别位点LEVLFQGP)切割间插序列。
有时本文将间插序列称为“接头序列”,技术人员可选择任何合适的长度。接头序列有时长约1到约20个氨基酸,有时长约5到约10个氨基酸。技术人员可选择接头长度以基本上保留目标蛋白质或肽功能(例如,除非有接头隔开,否则标签可降低目标蛋白质或肽功能),在蛋白酶切割位点存在时增强标签与目标蛋白质或肽的解离(例如,接头存在时可增强切割),增强标签/目标蛋白质产品与固相的相互作用。接头可具有任何合适的氨基酸含量,常包含较高比例的具有较短侧链的氨基酸(例如,甘氨酸、丙氨酸、丝氨酸和苏氨酸)。
核酸试剂有时在标签元件和插入元件或ORF之间包含终止密码子,从而可用于翻译含或不含标签的ORF。识别终止密码子(上述)的突变型tRNA分子阻遏翻译终止,从而称为“阻遏型tRNA”。阻遏型tRNA能插入氨基酸,跨过终止密码子继续翻译(例如,2004年7月14日提交的美国专利申请号60/587,583,名称为″通过无细胞蛋白质合成产生融合蛋白(Productionof Fusion Proteins by Cell-Free Protein Synthesis)″;Eggertsson等.,(1988)Microbiological Review 52(3):354-374,和Engleerg-Kukla等.,(1996)刊于“大肠杆菌和沙门菌细胞和分子生物学”(Escherichia coli and SalmonellaCellular and Molecular Biology),第60章,第909-921页,Neidhardt等编.,ASM出版社,华盛顿,哥伦比亚特区)。已知许多阻遏型tRNA,包括但不限于:supE、supP、supD、supF和supZ阻遏物,其抑制琥珀终止密码子的翻译终止;supB、glT、supL、supN、supC和supM阻遏物,其抑制赭石终止密码子的功能和glyT、trpT和Su-9阻遏物,其抑制乳白终止密码子的功能。阻遏型tRNA通常在tRNA的反-密码子环中含有一个或多个突变,所述反密码子环使得该tRNA与通常用作终止密码子的密码子碱基配对。遇到终止密码子时,突变型tRNA加载其相关氨基酸残基,所述相关氨基酸残基插入翻译多肽。已经鉴定了提高终止阻遏物效率(即,增加终止密码子读过(read-through))的突变。这些包括但不限于:uar基因中的突变(也称为prfA基因),ups基因中的突变,sueA、sueB和sueC基因中的突变,rpsD(ramA)和rpsE(spcA)基因中的突变以及rplL基因中的突变。
因此,在ORF和标签之间包含终止密码子的核酸试剂在翻译系统中不存在阻遏型tRNA时仅能产生翻译的ORF,在系统中存在阻遏型tRNA时能产生翻译的ORF-标签融合体。可在用编码tRNA的核酸转染的细胞中产生阻遏型tRNA(例如,可将含有人tRNA-Ser阻遏型基因的复制缺陷型腺病毒转染入细胞,或可将含有酵母或细菌tRNA阻遏型基因的YAC转染入酵母细胞)。技术人员可利用合成阻遏型tRNA和翻译含或不含标签的ORF的载体(例如,Tag-On-DemandTM试剂盒(英杰公司,加利福尼亚州);Tag-On-DemandTM阻遏上清液使用手册,B版,2003年6月6日,http地址www.invitrogen.com/content/sfs/manuals/tagondemand_supernatant_man.pdf;Tag-On-DemandTM Gateway载体使用手册,B版,2003年6月20日,http地址www.invitrogen.com/content/sfs/manuals/tagondemand_vectors_man.pdf;和Capone等.,“衍生自人丝氨酸tRNA基因的琥珀、赭石和乳白阻遏型tRNA基因”(Amber,ochre and opal suppressor tRNA genes derived froma human serine tRNA gene).EMBO J.4:213,1985)。
可采用本领域已知的任何方便的克隆策略将元件,例如ORF掺入核酸试剂。可采用已知的方法独立于插入元件将元件插入模板,例如(1)在一个或多个已有的限制性酶切位点处切割模板并连接感兴趣的元件和(2)通过杂交包含一个或多个合适的限制性酶切位点的寡核苷酸引物将限制性酶切位点加入模板并通过聚合酶链式反应扩增(本文详述的)。其它克隆策略利用存在的或插入核酸试剂的一个或多个插入位点,例如用于PCR的寡核苷酸引物杂交位点和本文所述的其它位点。在一些实施方式中,可联用克隆策略与遗传操作,例如重组(例如,将核酸试剂与感兴趣的核酸序列重组入待修饰生物的基因组,如本文进一步描述的)。在一些实施方式中,用一个或多个感兴趣的ORF工程改造微生物,克隆的ORF可产生(直接或间接)己二酸,所述微生物包含选自下组的一种或多种改变活性:6-氧代己酸脱氢酶活性、6-羟基己酸脱氢酶活性、己酸合酶活性和单加氧酶活性。
在一些实施方式中,所述核酸试剂包含一个或多个重组插入位点。重组插入位点是核酸分子上通过重组蛋白质参与整合/重组反应的识别序列。例如,Cre重组酶的重组位点是loxP,其是34碱基对序列,由侧接8碱基对核心序列的两个13碱基对反向重复(用作重组酶结合位点)构成(例如,Sauer,B.,Curr.Opin.Biotech.5:521-527(1994)的图1)。重组位点的其它例子包括attB、attP、attL和attR序列和它们的突变体、片段、变体和衍生物,它们由重组蛋白λInt和辅助蛋白整合宿主因子(IHF)、FIS和截除酶(Xis)识别(例如,美国专利号5,888,732;6,143,557;6,171,861;6,270,969;6,277,608;和6,720,140;2000年3月2日提交的美国专利申请号09/517,466和2003年8月14日提交的09/732,914,和美国专利申请号2002-0007051-A1;Landy,Curr.Opin.Biotech.3:699-707(1993))。
克隆核酸的重组酶的例子见Gateway
Figure BPA00001516349200492
系统(英杰公司,加利福尼亚州),包括至少一个重组位点以便体内或体外克隆所需核酸分子。在一些实施方式中,该系统利用含有常基于噬菌体λ系统的至少两个不同的位点特异性重组位点(例如,att1和att2)并从野生型(att0)位点突变的载体。各突变的位点对其同一类型的相关伴侣att位点(即,其结合伴侣重组位点)具有独特的特异性(例如,attB1与attP1,或attL1与attR1),而不会与其它突变型的重组位点或野生型att0位点交叉反应。不同的位点特异性能定向克隆或连接所需分子,因而能提供所克隆分子的所需取向。利用Gateway
Figure BPA00001516349200501
系统,通过替换受者质粒分子,有时称为目的载体上侧接att位点的可选择标记(例如,ccdB)来克隆和亚克隆侧接重组位点的核酸片段。然后通过转化ccdB敏感性宿主菌株和正选择受者分子上的标记来选择所需克隆。可在其它生物中采用负选择的相似方案(例如,利用毒性基因),例如哺乳动物和昆虫中的胸苷激酶(TK)。
用于工程改造酵母的重组系统简述如下。系统利用URA3基因(例如,酿酒酵母和白色念珠菌)或URA4和URA5基因(例如,粟酒裂殖酵母(S.pombe))和核苷酸类似物5-氟乳清酸(5-FOA)的毒性。URA3或URA4和URA5基因编码乳清苷-5’-一磷酸(OMP)二羧酸酶。含有活性URA3或URA4和URA5基因(表型上Ura+)的酵母将5-FOA转化成对酵母细胞有毒的氟脱氧尿苷。如果培养基中还补充了尿嘧啶,在一个或多个合适基因中携带突变或敲除一个或多个合适基因的酵母可在5-FOA存在下生长。
可制备核酸工程改造构建物,其包含URA3基因或盒(对于酿酒酵母),各侧侧接同一取向的同一核苷酸序列。URA3盒包含启动子、URA3基因和功能转录终止子。加入将构建物引导至待工程改造生物中感兴趣的特定核酸区域的目标序列,从而该目标序列毗邻并邻接URA3盒任一侧的侧翼序列。可用工程改造构建物转化酵母,接种在不含尿嘧啶的极限培养基上。通过PCR筛选菌落以测定工程改造构建物插入基因组中合适位置的那些转化体。先检查插入位置再选择ura3盒的重组可减少携带至随后程序阶段的错误克隆数。然后可将正确插入的转化体重复接种在含有5-FOA的极限培养基上以从构建物中选出URA3盒的重组,从而留下破坏的基因和可用于验证破坏的基因是否存在的可鉴定足迹(例如,核酸序列)。所述技术可用于破坏或“敲除”基因功能,但也可用于将基因或构建物以靶向、序列特异性模式插入宿主生物基因组。
在某些实施方式中,核酸试剂包含一个或多个拓扑异构酶插入位点。拓扑异构酶插入位点是由位点特异性拓扑异构酶识别和结合的指定核苷酸序列。例如,核苷酸序列5′-(C/T)CCTT-3′是大多数痘病毒拓扑异构酶(包括牛痘病毒DNA拓扑异构酶I)特异性结合的拓扑异构酶识别位点。与识别序列结合后,拓扑异构酶大多在识别位点的3’-胸苷处切割该链,产生包含5′-(C/T)CCTT-PO4-TOPO的核苷酸序列,通过拓扑异构酶中的酪氨酸共价结合于3’磷酸的拓扑异构酶复合物(例如,Shuman,J.Biol.Chem.266:11372-11379,1991;Sekiguchi和Shuman,Nucl.Acids Res.22:5360-5365,1994;美国专利号5,766,891;PCT/US95/16099;和PCT/US98/12372)。相比之下,核苷酸序列5′-GCAACTT-3′是IA型大肠杆菌拓扑异构酶III的拓扑异构酶识别位点。待插入的元件常与拓扑异构酶反应模板组合,从而掺入核酸试剂(例如,万维网URL invitrogen.com/downloads/F-13512_Topo_Flyer.pdf;万维网URL invitrogen.com/content/sfs/brochures/710_021849%20_B_TOPOCloning_bro.pdf;TOPO TA Cloning
Figure BPA00001516349200511
试剂盒和Zero Blunt
Figure BPA00001516349200512
TOPO
Figure BPA00001516349200513
克隆试剂盒产品信息)。
核酸试剂有时含有一个或多个复制起始(ORI)元件。在一些实施方式中,模板包含两个或更多个ORI,其中一个在一种生物(例如,细菌)中有效起作用,另一个在另一生物(例如,真核生物,如酵母)中有效起作用。在一些实施方式中,ORI可在一种物种(例如,酿酒酵母)中有效起作用,另一ORI可在不同物种(例如,粟酒裂殖酵母)中有效起作用。核酸试剂有时还包含一个或多个转录调控位点。
核酸试剂可包含一个或多个选择元件(例如,选择核酸试剂是否存在,而非活化可选择性调节的启动子元件的元件)。常可利用选择元件,采用已知的方法测定核酸试剂是否包含在细胞中。在一些实施方式中,核酸试剂包含两个或更多个选择元件,其中一个在一种生物中有效起作用,另一个在另一生物中有效起作用。选择元件的例子包括但不限于:(1)编码产物的核酸区段,所述产物对其它情况下有毒性的化合物(例如,抗生素)提供耐受性;(2)编码产物的核酸区段,所述产物在其它情况下在受者细胞中缺失(例如,必需产物、tRNA基因、营养缺陷型标记);(3)编码产物的核酸区段,所述产物抑制基因产物活性;(4)编码产物的核酸区段,所述产物易于鉴定(例如,表型标记,如抗生素(如,β-内酰胺酶)、β-半乳糖苷酶、绿色荧光蛋白(GFP)、黄色荧光蛋白(YFP)、红色荧光蛋白(RFP)、青色荧光蛋白(CFP)和细胞表面蛋白);(5)结合产物的核酸区段,所述产物在其它情况下对细胞存活和/或功能有害;(6)在其它情况下抑制以上1-5号所述任一核酸区段的活性的核酸区段(例如,反义寡核苷酸);(7)结合修饰底物的产物(例如,限制性核酸内切酶)的核酸区段;(8)可用于分离或鉴定所需分子的核酸区段(例如,特异性蛋白质结合位点);(9)编码其它情况下无功能的特定核苷酸序列的核酸区段(例如,用于PCR扩增分子亚群);(10)不存在时直接或间接赋予特定化合物耐受性或敏感性的核酸区段;(11)编码产物的核酸区段,所述产物在受者细胞中有毒性或将相对无毒化合物转化成毒性化合物(例如,单纯疱疹病毒胸苷激酶,胞嘧啶脱氨酶);(12)抑制含有它们的核酸分子复制、分割或遗传性的核酸区段;和/或(13)编码条件性复制功能的核酸区段,例如在某些宿主或宿主细胞株或在某些环境条件下(例如,温度、营养条件等)复制。
核酸试剂是可用于体内转录和/或翻译的任何形式。核酸有时是质粒,例如超螺旋质粒,有时是酵母人工染色体(例如,YAC),有时是线形核酸(例如,PCR或限制性消化产生的线形核酸),有时是单链,有时是双链。有时通过扩增方法,例如聚合酶链式反应(PCR)方法或转录介导的扩增方法(TMA)制备核酸试剂。在TMA中,等温反应中利用两种酶来产生通过光发射检测的扩增产物(参见,例如Biochemistry 1996年6月25日;35(25):8429-38和http地址www.devicelink.com/ivdt/archive/00/11/007.html)。标准PCR方法是已知的(例如,美国专利号4,683,202;4,683,195;4,965,188;和5,656,493),通常循环进行。各循环包括热变性,其中杂交核酸解离;冷却,其中引物寡核苷酸杂交;和聚合酶(即,Taq聚合酶)使得寡核苷酸延伸。PCR循环过程的例子是95℃处理样品5分钟;重复进行45个循环的95℃,1分钟,59℃,1分10秒和72℃,1分30秒;然后在72℃处理样品5分钟。常利用可商品化购得的热循环仪进行多个循环。有时在较低温度下(例如,4℃)保存PCR扩增产物一段时间,有时冷冻(例如,在-20℃),再分析。
在一些实施方式中,分离或纯化本文所述的核酸试剂、蛋白质试剂、蛋白质片段试剂或其它试剂。本文所用的术语“分离”指从其原始环境(例如,天然环境,如果其是天然产生的话,或宿主细胞,如果其是外源性表达的话)中取出的材料,因此通过“人工手段”将其从其原始环境中改变。指代分子的本文所用术语“纯化”不指绝对纯度。“纯化”是指与其所源自的样品相比,含有较少同一类型的物质种类(例如,核酸或蛋白质种类)的组合物中的物质,而非感兴趣物质。例如,如果指核酸或蛋白质,“纯化”指与其所源自的样品相比,含有较少核酸种类或蛋白质种类的组合物中的物质,而非感兴趣核酸或蛋白质。蛋白质或核酸有时是“基本上纯的”,表明以组合物的质量计,该蛋白质或核酸占至少50%的蛋白质或核酸。以组合物的质量计,基本上纯的蛋白质或核酸常是至少75%,有时是至少95%。
工程改造和改变方法
可利用本文所述的方法和组合物(例如,核酸试剂)产生工程改造的微生物。如上所述,本文所用的术语“工程改造的微生物”指修饰的生物,其包含不同于用作修饰起点的微生物(例如,宿主微生物或未修饰的生物)的一种或多种活性。工程改造的微生物通常是遗传修饰所致,常采用易得技术由本领域技术人员引入或选择。用于产生改变活性的方法的非限制性例子包括引入异源多核苷酸(例如,核酸或基因整合,也称为“敲入”),除去内源性多核苷酸,改变已有内源性核酸序列的序列(例如,定点诱变),破坏已有内源性核酸序列(例如,敲除和转座子或插入元件介导的诱变),选择改变的活性,其中所述选择导致天然产生活性中可稳定遗传的改变(例如,导致生物的基因组核酸序列中或外生核酸中的改变,所述改变可复制或传代到子细胞),PCR诱变,等等。本文所用的术语“诱变”指核酸(例如,核酸试剂,或宿主染色体)的任何修饰,随后用于在宿主或修饰的生物中产生产物。诱变的非限制性例子包括缺失、插入、取代、重排、点突变、阻遏突变等。诱变方法是本领域已知的,技术人员不难采用。本文描述了诱变方法的非限制性例子,也可参见Maniatis,T.,E.F.Fritsch和J.Sambrook(1982)《分子克隆:实验室手册》(Molecular Cloning:a Laboratory Manual);冷泉港实验室,冷泉港,纽约。可根据生产商的使用说明书利用加利福尼亚州圣迭戈的斯特拉塔基因公司(Stratagene,SanDiego,CA)的“快变(QuickChange)”试剂盒实施诱变的另一非限制性例子。
本文所用的术语“遗传修饰”指有助于在工程改造的微生物中产生目标产物(例如,己二酸、6-羟基己酸)的任何合适的核酸添加、除去或改变。遗传修饰包括但不限于:在宿主生物的天然核酸的一个或多个位置插入一个或多个核苷酸,删除宿主生物的天然核酸的一个或多个位置的一个或多个核苷酸,修饰或取代宿主生物的天然核酸的一个或多个位置的一个或多个核苷酸,将非天然核酸插入宿主生物(例如,插入自主复制载体)和除去宿主生物中的非天然核酸(例如,除去载体)。
在一些实施方式中,本文所用的术语“异源多核苷酸”指宿主微生物中不存在的核苷酸序列。在某些实施方式中,异源多核苷酸的存在量不同于宿主微生物中的(例如,不同的拷贝数),可通过,例如将更多拷贝的特定核苷酸序列引入宿主微生物(例如,特定核苷酸序列可以在宿主染色体的自主核酸中,或可插入染色体)来实现。在一些实施方式中,异源多核苷酸可来自不同生物,在某些实施方式中,来自同一类型、但外部来源(例如,重组来源)的生物。
在一些实施方式中,采用本文所述方法和核酸试剂工程改造的生物可产生己二酸。在某些实施方式中,产生己二酸的本文所述工程改造微生物可包含选自下组的一种或多种改变的活性:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性。在一些实施方式中,本文所述的工程改造生物可包含增加或增强以下活性的遗传修饰:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性。
在某些实施方式中,本文所述的工程改造微生物可包含改变的硫酯酶活性。在一些实施方式中,所述工程改造的微生物可包含增加或增强硫酯酶活性的遗传改变。在一些实施方式中,包含增加或增强硫酯酶活性的遗传改变的所述工程改造微生物还可包含编码具有硫酯酶活性的多肽的异源多核苷酸。
本文所用的术语“改变的活性”指与宿主微生物相比,工程改造的微生物中的活性得到增加或修饰(例如,增加、增强、降低、抑制或除去活性)。可将遗传修饰引入宿主微生物产生活性增加、增强、降低、抑制或除去的工程改造微生物来改变活性。
增加的活性常是宿主微生物中检测不到的活性。增强的活性通常是宿主微生物中可检测到,但在工程改造微生物中增强的活性。可将活性增强至任何合适的水平以便产生目标产物(例如,己二酸、6-羟基己酸),包括但不限于:增强不到2-倍(例如,增强约10%到约99%;增强约20%、30%、40%、50%、60%、70%、80%、90%)、2-倍、3-倍、4-倍、5-倍、6-倍、7-倍、8-倍、9-倍、10-倍,或增强大于约10-倍。降低或抑制的活性通常是宿主微生物中可检测到,但在工程改造微生物中降低或抑制的活性。活性在一些实施方式中可以降低至不可检测的水平,或在某些实施方式中是可检测水平。可将活性降低至任何合适的水平以便产生目标产物(例如,己二酸、6-羟基己酸),包括但不限于:降低不到2-倍(例如,降低约10%到约99%;降低约20%、30%、40%、50%、60%、70%、80%、90%)、2-倍、3-倍、4-倍、5-倍、6-倍、7-倍、8-倍、9-倍、10-倍,或降低大于约10-倍。
改变的活性有时是在宿主生物中检测不到,但加入工程改造生物的活性。改变的活性也可以是宿主生物中可检测到,但在工程改造生物中增强的活性。在一些实施方式中,可通过增加编码具有目标活性的多肽的多核苷酸拷贝数来增加或增强活性。在某些实施方式中,可将编码具有增加活性的多肽的异源多核苷酸插入宿主微生物来增加或增强活性。在某些实施方式中,可将异源多核苷酸插入宿主微生物来增加或增强活性,所述异源多核苷酸(i)操作性连接于编码具有增加活性的多肽的另一多核苷酸,和(ii)上调该多核苷酸产生。因此,可通过插入或修饰操作性连接于编码具有目标活性的多肽的另一多核苷酸的调控多核苷酸来增加或增强活性。在某些实施方式中,可使宿主微生物经历选择环境并筛选具有可检测水平的目标活性的微生物来增加或增强活性。选择环境的例子包括但不限于:含有宿主生物可加工的底物的培养基和缺乏宿主生物可加工的底物的培养基。
改变的活性有时是宿主生物中可检测,但在工程改造生物中降低、抑制或除去(即,检测不到)的活性。在一些实施方式中,可通过减少编码具有目标活性的多肽的多核苷酸拷贝数来降低或除去活性。在一些实施方式中,可通过以下方式降低或除去活性:(i)将某多核苷酸插入编码具有目标活性的多肽的多核苷酸内(破坏性插入),和/或(ii)除去编码具有目标活性的多肽的多核苷酸的一部分或全部(分别是缺失或敲除)。在某些实施方式中,可将异源多核苷酸插入宿主微生物来降低或除去活性,所述异源多核苷酸(i)操作性连接于编码具有目标活性的多肽的另一多核苷酸,和(ii)下调该多核苷酸产生。因此,可通过插入或修饰操作性连接于编码具有目标活性的多肽的另一多核苷酸的调控多核苷酸来降低或除去活性。
还可通过以下方式降低或除去活性:(i)抑制编码具有该活性的多肽的多核苷酸或(ii)抑制操作性连接于编码具有该活性的多肽的另一多核苷酸的多核苷酸。可通过本领域已知的合适技术抑制多核苷酸,例如将该多核苷酸编码的RNA与特异性抑制性RNA(例如,RNAi、siRNA、核酶)接触。还可通过将具有某活性的多肽与特异性抑制该活性的分子(例如,酶抑制剂、抗体)接触来降低或除去该活性。在某些实施方式中,可使宿主微生物经历选择环境并筛选目标活性水平降低或除去的微生物来降低或除去活性。
在一些实施方式中,可利用非翻译核糖核酸或cDNA降低特定活性或酶的表达。例如,可产生与编码感兴趣活性的感兴趣核酸序列部分或基本同源的RNA分子,从而通过遗传修饰工程改造微生物以表达降低活性表达的核酸试剂。在某些实施方式中,该RNA分子可结合感兴趣的核酸序列并抑制该核酸序列执行其天然功能。在一些实施方式中,该RNA可采用感兴趣的核酸序列不再能执行其天然功能的方式(例如,核酶的作用)来改变编码感兴趣活性的感兴趣核酸序列。
在某些实施方式中,有时将核苷酸序列加入一个或多个核酸试剂元件,或从一个或多个核酸试剂元件中修饰或除去,例如启动子、5’UTR、目标序列或3’UTR元件,从而在此类元件掺入核酸试剂之前或之后增强、可能增强、降低或可能降低转录和/或翻译。在一些实施方式中,可修饰或除去一种或多种以下序列,如果它们存在于5’UTR的话:形成稳定的二级结构(例如,四链结构或茎环茎结构(例如,EMBL序列X12949、AF274954、AF139980、AF152961、S95936、U194144、AF116649或形成此类茎环茎结构的基本上相同的序列))的序列;目标核苷酸序列起始密码子上游的翻译起始密码子;目标核苷酸序列翻译起始密码子上游的终止密码子;目标核苷酸序列翻译起始密码子上游的ORF;铁效应元件(IRE)等序列;和5’末端寡聚嘧啶通道(TOP,例如由毗邻帽的5-15个嘧啶组成)。有时将翻译增强子序列和/或内部核糖体进入位点(IRES)插入5’UTR(例如,EMBL核苷酸序列J04513、X87949、M95825、M12783、AF025841、AF013263、AF006822、M17169、M13440、M22427、D14838和M17446及基本上相同的核苷酸序列)。
有时从3’UTR除去,或修饰3’UTR中无义密码子后的富含AU元件(ARE,例如AUUUA重复)和/或剪接点。有时将聚腺苷尾插入3’UTR(如果不存在的话),有时除去(如果存在的话),有时将腺苷部分加入3’UTR中存在的聚腺苷尾或从中除去。因此,一些实施方式涉及的方法包括:测定元件中是否存在增强、可能增强、降低或可能降低翻译效率的任何核苷酸序列,和加入、除去或修饰一个或多个此类序列(如果鉴定到的话)。某些实施方式涉及的方法包括:测定元件中是否不存在增强或可能增强翻译效率的任何核苷酸序列,和将此类序列掺入核酸试剂。
在一些实施方式中,可通过修饰ORF的核苷酸序列来改变活性。有时突变或修饰ORF(例如,通过点突变、缺失突变、插入突变、PCR诱变等)来改变、增强或增加、降低、可能降低或消除所编码蛋白质或肽的活性。修饰的ORF所编码的蛋白质或肽有时产量较低或者产生水平检测不到,在其它实施方式中,修饰的ORF编码的产物或蛋白质的产生水平较高(例如,有时修饰密码子,从而它们与宿主生物或工程改造生物中优先使用的tRNA相容)。为测定相对活性,可比较突变ORF(或含有它的细胞)的产物的活性与未修饰ORF(或含有它的细胞)编码的产物或蛋白质的活性。
在一些实施方式中,有时突变或修饰ORF核苷酸序列以改变用于编码氨基酸的三联核苷酸序列(例如,氨基酸密码子三联体)。有时采用修饰ORF的核苷酸序列来改变密码子三联体以变更原始序列中发现的密码子,从而更好地匹配要表达该ORF或核酸试剂的生物中的优选密码子使用。细菌中的密码子使用以及由此的核酸序列编码的密码子三联体可能不同于真核生物,例如酵母菌或植物中的优选密码子使用。细菌种类之间的优选密码子使用也可能不同。在某些实施方式中,有时修饰ORF核苷酸序列以消除该ORF核苷酸序列编码的mRNA的翻译期间可能导致暂停的密码子配对和/或消除mRNA二级结构。mRNA中存在核酸二级结构时有时发生翻译暂停,有时因存在密码子配对而发生,所述密码子配对因导致核糖体暂停而减缓翻译速度。在一些实施方式中,由于将负载的tRNA加载入核糖体翻译机器所需的暂停时间减少,利用丰度较低的密码子三联体可减少翻译暂停。因此,为增加细菌中的转录和翻译效率(例如,转录和翻译同时发生)或为增加真核细胞中的翻译效率(例如,转录和翻译在功能上分开),可改变感兴趣核苷酸序列的核苷酸序列,从而更好地适应宿主和/或遗传修饰微生物的转录和/或翻译机器。在某些实施方式中,由于正确折叠的蛋白质增加和包涵体形成减少,利用减缓或暂停核糖体的丰度较低密码子减缓翻译速度可导致所需产物的产率较高。
可根据给定生物的优选使用,通过测定核苷酸序列供体生物的密码子分布并比较该密码子分布与受者或宿主生物中的密码子分布来改变和优化密码子。然后可采用本文所述的技术(例如,定点诱变等)相应地改变密码子。可通过手工,或利用技术人员可商品化购得的核酸分析软件进行密码子使用的比较。
还可采用修饰ORF的核苷酸序列来校正在不同生物中相异的密码子三联序列。例如,某些酵母(例如,热带念珠菌和麦芽糖念珠菌)利用氨基酸三联体CUG(例如,DNA序列中的CTG)编码丝氨酸。CUG通常在大多数生物中编码亮氨酸。为在所得多肽或蛋白质中维持正确的氨基酸,必须改变CUG密码子以反映要表达核酸试剂的生物。因此,如果要在上述念珠菌酵母株中表达细菌供者的ORF,必须首先将异源核苷酸序列改变或修饰成合适的亮氨酸密码子。因此,在一些实施方式中,有时改变或修饰ORF的核苷酸序列以校正不同生物之间氨基酸密码子三联体进化中产生的差异。在一些实施方式中,如果与原始编码的氨基酸相比,所编码氨基酸是氨基酸的保守性或中性改变,则特定氨基酸密码子处的核苷酸序列可维持不变。
在一些实施方式中,可通过修饰翻译调控信号,例如终止密码子来改变活性。有时将ORF末端的终止密码子修饰成另一终止密码子,例如上述琥珀终止密码子。在一些实施方式中,有时通过插入或突变已有密码子将终止密码子引入ORF。包含修饰的末端终止密码子和/或内部终止密码子的ORF常在包含识别终止密码子的阻遏tRNA的系统中翻译。包含终止密码子的ORF有时在包含阻遏tRNA的系统中翻译,所述阻遏tRNA在目标蛋白质或目标肽的翻译期间掺入非天然氨基酸。将非天然氨基酸掺入目标蛋白质或肽的方法是已知的,包括,例如利用异源tRNA/合成酶配对的方法,其中所述tRNA识别琥珀终止密码子并加载非天然氨基酸(例如万维网URL iupac.org/news/prize/2003/wang.pdf)。
根据选择用于改变(例如,通过诱变、引入或缺失)的核酸试剂的部分(例如,启动子、5’或3’UTR、ORI、ORF等),上述修饰可通过以下方式改变给定的活性:(i)增加或降低反馈抑制机制,(ii)增加或降低启动子启动,(iii)增加或降低翻译启动,(iv)增加或降低翻译效率,(v)修饰本文所述核酸试剂表达的肽或产物的定位,(vi)增加或减少感兴趣核苷酸序列的拷贝数,(vii)表达反义RNA、RNAi、siRNA、核酶等。在一些实施方式中,改变核酸试剂或核苷酸序列可改变参与反馈抑制的区域(例如,5’UTR、启动子等)。有时可作出修饰以增加或增强反馈调节剂的结合,有时可作出修饰以降低、抑制或消除反馈调节剂的结合。
在某些实施方式中,改变核酸试剂或核苷酸序列可改变参与转录启动的序列(例如,启动子、5’UTR等)。有时可作出修饰以增强或增加内源或异源启动子元件的启动。有时可作出修饰以除去或破坏增加或增强转录启动的序列,从而降低或消除从内源或异源启动子元件开始的转录。
在一些实施方式中,改变核酸试剂或核苷酸序列可改变参与翻译启动或转录效率的序列(例如,5’UTR、3’UTR、丰度较高或较低的密码子三联体、翻译终止序列等)。例如,有时可作出修饰来增加或降低翻译启动、修饰核糖体结合位点。有时可作出修饰以增加或降低翻译效率。除去或增加形成发夹的序列并将密码子三联体改变成更优选或更不优选的密码子是为改变翻译启动和翻译效率而可作出的遗传修饰的非限制性例子。
在某些实施方式中,改变核酸试剂或核苷酸序列可改变参与肽、蛋白质或其它所需产物(例如,己二酸)定位的序列。有时可作出修饰以改变、增加或除去负责将多肽、蛋白质或产物靶向到胞内细胞器、周质、细胞膜或胞外的序列。将异源产物运输到不同的胞内空间或胞外有时可降低或消除包涵体(例如,所需产物的不可溶聚集物)的形成。
在一些实施方式中,改变核酸试剂或核苷酸序列可改变参与增加或减少感兴趣核苷酸序列拷贝数的序列。有时可作出修饰以增加或减少稳定整合入生物基因组或外遗传核酸试剂上的ORF拷贝数。可增加感兴趣序列拷贝数的改变的非限制性例子包括通过复制基因组中的各区域来增加感兴趣序列的拷贝(例如,通过重组或导致宿主基因组的基因扩增来增加额外的拷贝),将额外拷贝的序列克隆到核酸试剂上,或改变ORI以增加外遗传核酸试剂的拷贝数。可减少感兴趣序列拷贝数的改变的非限制性例子包括通过删除或破坏基因组中各区域来除去感兴趣序列的拷贝,从外遗传核酸试剂除去额外拷贝的序列,或改变ORI以减少外遗传核酸试剂的拷贝数。
在某些实施方式中,还可通过改变、增加或除去参与反义RNA、RNAi、siRNA、核酶等表达的序列来实现增加或降低感兴趣核苷酸序列的表达。可采用上述方法修饰反义RNA、RNAi、siRNA、核酶等的表达。
可利用本文所述的方法和核酸试剂产生遗传修饰的微生物,其中参与己二酸合成的细胞过程中的活性改变。在一些实施方式中,本文所述的工程改造微生物可包含编码具有6-氧代己酸脱氢酶活性的多肽的异源多核苷酸,在某些实施方式中,本文所述的工程改造微生物可包含编码具有ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。在一些实施方式中,本文所述的工程改造微生物可包含编码具有6-羟基己酸脱氢酶活性的多肽的异源多核苷酸,在某些实施方式中,本文所述的工程改造微生物可包含编码具有ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。在一些实施方式中,所述异源多核苷酸可来自细菌。在一些实施方式中,所述细菌可以是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌。
在某些实施方式中,本文所述的工程改造微生物可包含编码具有己酸合酶亚基A活性的多肽的异源多核苷酸。在一些实施方式中,本文所述的工程改造微生物可包含编码具有己酸合酶亚基B活性的多肽的异源多核苷酸。在某些实施方式中,所述异源多核苷酸独立选自真菌。在一些实施方式中,所述真菌可以是曲霉真菌。在某些实施方式中,所述曲霉真菌是寄生曲霉。
在一些实施方式中,本文所述的工程改造微生物可包含编码具有单加氧酶活性的多肽的异源多核苷酸。在某些实施方式中,所述异源多核苷酸可来自细菌。在一些实施方式中,所述细菌可以是芽孢杆菌。在某些实施方式中,所述芽孢杆菌是巨大芽孢杆菌。
在一些实施方式中,本文所述的工程改造微生物可包含导致单加氧酶活性充分利用己酸盐或酯的遗传修饰。在某些实施方式中,所述遗传修饰可降低聚酮化合物合酶活性。在一些实施方式中,所述工程改造微生物可以是真核生物。在某些实施方式中,所述真核生物可以是酵母。在一些实施方式中,所述真核生物可以是真菌。在某些实施方式中,所述酵母可以是念珠菌酵母。在一些实施方式中,念珠菌酵母可以是热带念珠菌。在某些实施方式中,所述真菌可以是耶氏酵母。在一些实施方式中,所述耶氏酵母可以是解脂耶氏酵母。在某些实施方式中,所述真菌可以是曲霉真菌。在一些实施方式中,所述曲霉真菌可以是寄生曲霉或构巢曲霉。
在某些实施方式中,本文所述的工程改造微生物可包含降低6-羟基己酸转化的遗传修饰。在一些实施方式中,所述遗传修饰可降低6-羟基己酸脱氢酶活性。在某些实施方式中,本文所述的工程改造微生物可包含降低β-氧化活性的遗传修饰。在一些实施方式中,遗传修饰可降低本文所述的目标活性。
在某些实施方式中,本文所述的产生己二酸的工程改造微生物可包含改变的单加氧酶活性。在一些实施方式中,本文所述的工程改造微生物可包含改变单加氧酶活性的遗传修饰。在某些实施方式中,所述遗传修饰可导致单加氧酶活性实质性利用己酸盐或酯。在一些实施方式中,所述遗传修饰可降低聚酮化合物合酶活性。在某些实施方式中,本文所述的工程改造微生物可包含编码具有单加氧酶活性的多肽的异源多核苷酸。在某些实施方式中,所述异源多核苷酸可来自细菌。在一些实施方式中,所述细菌可以是芽孢杆菌。在某些实施方式中,所述芽孢杆菌是巨大芽孢杆菌。
在一些实施方式中,本文所述的工程改造微生物可包含改变的己酸合酶活性。在某些实施方式中,改变的己酸合酶活性是改变的己酸合酶亚基A活性、改变的己酸合酶亚基B活性,或改变的己酸合酶亚基A活性和改变的己酸合酶亚基B活性。在一些实施方式中,所述工程改造的微生物可包含增加或增强己酸合酶活性的遗传改变。在某些实施方式中,所述工程改造的微生物可包含编码具有己酸合酶活性的多肽的异源多核苷酸。在一些实施方式中,所述异源多核苷酸可来自真菌。在某些实施方式中,所述真菌可以是曲霉真菌。在一些实施方式中,所述曲霉真菌是寄生曲霉。
在某些实施方式中,本文所述的产生己二酸的工程改造微生物可包含改变的硫酯酶活性。在一些实施方式中,所述工程改造的微生物可包含增加或增强硫酯酶活性的遗传修饰。在某些实施方式中,所述工程改造的微生物可包含编码具有硫酯酶活性的多肽的异源多核苷酸。
在一些实施方式中,硫酯酶活性改变的工程改造微生物可包含改变的6-氧代己酸脱氢酶活性,或改变的ω氧代脂肪酸脱氢酶活性。在某些实施方式中,硫酯酶活性改变的工程改造微生物可包含增加或增强6-氧代己酸脱氢酶活性的遗传修饰,或增加或增强ω氧代脂肪酸脱氢酶活性的遗传修饰。在一些实施方式中,所述工程改造的微生物可包含编码具有改变的6-氧代己酸脱氢酶活性的多肽的异源多核苷酸,在一些实施方式中,所述工程改造的微生物可包含编码具有改变的ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。在某些实施方式中,所述异源多核苷酸可来自细菌。在一些实施方式中,所述细菌可以是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌。
在某些实施方式中,本文所述的产生己二酸的工程改造微生物可包含改变的6-羟基己酸脱氢酶活性,在一些实施方式中,可包含改变的ω羟基脂肪酸脱氢酶活性。在某些实施方式中,所述工程改造的微生物可包含增加或增强6-羟基己酸脱氢酶活性的遗传修饰,在一些实施方式中,所述工程改造的微生物可包含增加或增强ω羟基脂肪酸脱氢酶活性的遗传修饰。在某些实施方式中,所述工程改造的微生物可包含编码具有改变的6-羟基己酸脱氢酶活性的多肽的异源多核苷酸,在一些实施方式中,所述工程改造的微生物可包含编码具有改变的ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。在一些实施方式中,所述异源多核苷酸来自细菌。在某些实施方式中,所述细菌可以是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌。在一些实施方式中,所述工程改造微生物可以是真核生物。在某些实施方式中,所述真核生物可以是酵母。在一些实施方式中,所述真核生物可以是真菌。在某些实施方式中,所述酵母可以是念珠菌酵母。在一些实施方式中,念珠菌酵母可以是热带念珠菌。在某些实施方式中,所述真菌可以是耶氏酵母。在一些实施方式中,所述耶氏酵母可以是解脂耶氏酵母。在某些实施方式中,所述真菌可以是曲霉真菌。在一些实施方式中,所述曲霉真菌可以是寄生曲霉或构巢曲霉。
在一些实施方式中,本文所述的工程改造微生物可包含降低6-羟基己酸转化的遗传修饰。在某些实施方式中,所述遗传修饰可降低6-羟基己酸脱氢酶活性。在一些实施方式中,所述遗传修饰可降低β-氧化活性。在某些实施方式中,所述遗传修饰可降低本文所述的目标活性。
可通过在宿主基因组中或在稳定维持的外遗传核酸试剂中改变、引入或除去核苷酸序列来制备工程改造的微生物,如上所述。可采用本文所述或技术人员已知的方法制备用于改变、引入或除去宿主基因组或外遗传核酸中的核苷酸序列的核酸试剂。
可采用已知参考手册中(例如,Maniatis,T.,E.F.Fritsch和J.Sambrook(1982)《分子克隆:实验室手册》(Molecular Cloning:a Laboratory Manual);冷泉港实验室,冷泉港,纽约)描述的裂解和核酸纯化方法或利用可商品化购得的细胞裂解和DNA纯化试剂和试剂盒,从合适生物的细胞分离具有所需活性的核酸序列。在一些实施方式中,可提供用于工程改造微生物的核酸以便在将生物加工成含有该核酸后实施本文所述方法。例如,可提取、分离、纯化或扩增样品(例如,感兴趣生物或含有多种感兴趣生物,如酵母或细菌的培养物)的感兴趣核酸。本文所用的术语“分离”指将核酸从其原始环境中(例如,如果其是天然产生的,则是天然环境,如果其是外源性表达的,则是宿主细胞)取出,因此称“通过人工”从其原始环境改变。与来源样品中的组分含量相比,分离的核酸一般含较少的非核酸组分(例如,蛋白质、脂质)。包含分离样品核酸的组合物可以是基本分离的(例如,约90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或大于99%不含非核酸组分)。本文所用的术语“纯化”指与获得样品核酸的样品来源相比,提供的样品核酸包含更少的核酸种类。包含样品核酸的组合物可以是基本纯的(例如,约90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或大于99%不含其它核酸种类)。本文所用的术语“扩增”指对细胞、生物或样品的核酸进行处理,从而线性或指数地产生核苷酸序列与样品中核酸的核苷酸序列或其部分序列相同或基本相同的扩增子核酸。如上所述,可对用于制备本文所述核酸试剂的核酸进行片段化或切割。
处理难以培养的生物时,有时需要扩增核酸。需要扩增时,可采用任何适当的扩增技术。扩增多核苷酸的方法的非限制性例子包括聚合酶链式反应(PCR);连接扩增(或连接酶链式反应(LCR));利用Q-β复制酶或模板依赖性聚合酶的扩增方法(参见美国专利公布号US20050287592);解旋酶依赖性等温扩增(Vincent等.,″解旋酶依赖性等温DNA扩增(Helicase-dependent isothermal DNA amplification)″.EMBO reports 5(8):795-800(2004));链置换扩增(SDA);嗜热SDA基于核酸序列的扩增(3SR或NASBA)以及转录相关扩增(TAA)。PCR扩增方法的非限制性例子包括标准PCR、AFLP-PCR、等位基因特异性PCR、Alu-PCR、不对称PCR、集落PCR(Colony PCR)、热启动PCR、反向PCR(IPCR)、原位PCR(ISH)、序列间特异性PCR(ISSR-PCR)、长PCR、多重化PCR、嵌套式PCR、定量PCR、逆转录酶PCR(RT-PCR)、实时PCR、单细胞PCR、固相PCR、它们的组合等。进行PCR的试剂和硬件可商品化购得。
技术人员不难知晓实施上述各种类型PCR的方案。PCR条件可取决于引物序列、靶的丰度、所需扩增量,因此本领域技术人员可从多种可用PCR方案中选择(参见例如,美国专利第4,683,195和4,683,202号;《PCR方案:方法和应用指南》(PCR Protocols:A Guide to Methods and Applications),Innis等编,1990)。PCR通常用热稳定性酶自动进行。该过程中,反应混合物的温度在变性区、引物退火区与延伸反应区自动循环。特别适于该目的机器可商品化购得。适于本文所述实施方式的PCR方案的非限制性例子为,样品在95℃处理5分钟;重复以下循环45轮:95℃、1分钟,59℃、1分钟、10秒钟,和72℃、1分30秒;然后样品在72℃处理5分钟。实施例部分描述了其它PCR方案。通常利用可商品化购得的热循环仪进行多轮循环。在某些实施方式中,也可应用本领域普通技术人员已知和选择的合适等温扩增方法。在一些实施方式中,可利用依据本文所述序列设计的寡核苷酸或引物,从具有所需活性的生物扩增所需序列来分离编码具有所需活性的多肽的核酸。
可将扩增、分离和/或纯化的核酸克隆入本文附图所述的重组DNA载体或克隆入合适的可商品化购得的重组DNA载体。将感兴趣的核酸序列克隆入重组DNA载体有助于核酸的进一步操作以便制备核酸试剂(例如,通过诱变、同源重组、扩增等改变核苷酸序列)。标准克隆过程(例如,酶消化、连接等)是已知的(例如,Maniatis,T.,E.F.Fritsch和J.Sambrook(1982)《分子克隆:实验室手册》;冷泉港实验室,冷泉港,纽约中所述的)。
在一些实施方式中,无需任何进一步的修饰即可利用通过分离或扩增制备的核酸序列而将某种活性加入微生物,从而产生遗传修饰或工程改造的微生物。在某些实施方式中,可遗传修饰通过分离或扩增制备的核酸序列来改变(例如,增加或降低)所需活性。在一些实施方式中,有时遗传修饰用于将某种活性加入生物的核酸以优化编码所需活性(例如,多肽或蛋白质)的异源多核苷酸序列。本文所用的术语“优化”可指通过优选的密码子使用作出改变以增加或增强表达。术语优化还可指修饰氨基酸序列以增强多肽或蛋白质的活性,从而与该多肽或蛋白质的“天然”形式相比,该活性表现出更高催化活性。
可采用本领域已知的方法遗传修饰感兴趣的核酸序列。诱变技术特别适用于小规模(例如,1、2、5、10或更多的核苷酸)或大规模(例如,50、100、150、200、500或更多个核苷酸)遗传修饰。诱变使得技术人员能通过天然(例如,采用选择和筛选作分离)或利用化学物质、辐射或不精确的DNA复制(例如,PCR诱变)通过实验而稳定地改变生物的遗传信息。在一些实施方式中,可利用天然核苷酸序列作为参比序列,修饰能导致活性发生所需改变的核苷酸,从而通过核酸的全规模合成进行遗传修饰。诱变方法有时是特异性的或靶向特定区域或核苷酸(例如,定点诱变、PCR定点诱变和体外诱变技术,如移转(transplacement)和体内寡核苷酸定点诱变)。就遗传修饰的位置而言,诱变方法有时是非特异性或随机的(例如,化学诱变、插入元件(例如,插入或转座子元件)和不精确的基于PCR的方法)。
定点诱变是DNA分子中一个或多个特定核苷酸突变或改变的过程。通常利用克隆入环状质粒载体的感兴趣核酸序列进行定点诱变。定点诱变要求野生型序列是已知的并可用作遗传改变的平台。有时将定点诱变称为寡核苷酸指导的诱变,因为可利用在感兴趣核苷酸序列的互补序列中掺入所需遗传修饰的寡核苷酸实施该技术。野生型序列和改变的核苷酸(序列)能杂交,利用DNA聚合酶延伸和复制杂交的核酸。将双链核酸引入宿主(例如,大肠杆菌),体内再进行数轮复制。然后选择和/或筛选携带突变核酸序列的转化细胞中携带正确诱变序列的那些细胞。盒式诱变和基于PCR的定点诱变是定点诱变技术的改进型。还可在体内进行定点诱变(例如,移转“移入移出(pop-in pop-out)”,利用合成寡核苷酸的体内定点诱变等)。
可利用含有一个或多个所需突变的寡核苷酸引物,采用PCR进行基于PCR的诱变。该技术起作用的方式类似于标准定点诱变,除了利用热循环仪和PCR条件替代在微生物宿主中复制和选择克隆。由于基于PCR的诱变还利用环状质粒载体,可在足够轮次的热循环仪扩增后,采用标准电泳方法从含有模板序列的质粒中分离掺入遗传修饰的扩增片段(例如,线形核酸分子)。该方法的改进形式利用线形扩增方法和扩增整个质粒的一对诱变引物。该方法利用大肠杆菌Dam甲基化酶体系,该体系导致体内复制的DNA对限制性内切核酸酶DpnI敏感。PCR合成的DNA未甲基化,因此耐受DpnI。该方法能消化模板质粒,留下待分离和转化入用于DNA修复和复制的宿主细菌的遗传修饰PCR合成质粒,从而有助于随后的克隆和鉴定步骤。可利用部分简并引物在基于PCR的定点诱变中加入一定随机性。
重组有时可用作诱变的工具。同源重组使得技术人员能利用宿主生物天然DNA复制和修复酶特异性靶向已知序列中插入异源核苷酸序列的诸区域。同源重组方法有时称为“移入移出”诱变、移转、敲除诱变或敲入诱变。将核酸序列整合入宿主基因组是插入整个核酸试剂的单一交换事件(例如,移入)。第二交换事件几乎切除全部核酸试剂,只留下一部分,从而留下异源序列,常称为“足迹”(例如,移出)。通过插入(例如,敲入)或通过双重重组留下破坏性异源核酸(例如,敲除)的诱变均用于破坏或“敲除”发生插入的基因或核酸序列的功能。通过组合可选择标记和/或营养缺陷型标记与设计提供适当核酸目标序列的核酸试剂,技术人员能将可选择核酸试剂靶向特定区域,然后选择“移出”所插入(例如,“移入”)核酸试剂一部分的重组事件。
此类方法利用专门设计的核酸试剂,该核酸试剂在感兴趣的核酸或基因组区域处或其附近具有已知的目标核酸序列。移出通常留下重组事件后保留的残留序列(left over sequence)的“足迹”。残留序列可破坏基因,从而降低或敲除该基因的表达。在一些实施方式中,该方法可用于在基因的上游或下游插入序列,而这些序列能导致该基因表达增强或降低。在某些实施方式中,可采用类似的重组或“移入”方法将新基因引入宿主生物的基因组。上文简单描述了利用ura3基因和5-FOA的酵母重组系统的例子,本文提供了进一步的细节。
修饰方法描述于Alani等.,“能够在多重破坏酵母菌株的构建中反复利用URA3选择的基因破坏方法(A method for gene disruption that allowsrepeated use of URA3 selection in the construction of multiply disrupted yeaststrains)”,Genetics 116(4):541-5451987年8月。原始方法利用Ura3盒,其中相同核苷酸序列的1000碱基对(bp)以相同取向克隆入URA3盒的任一侧。将约50bp的靶向序列加入构建物的各侧。双链靶向序列与宿主生物基因组中的序列互补。靶向序列能在感兴趣区域中进行位点特异性重组。该原始技术的改进型用两个200bp同向重复替代两个1000bp序列同向重复。该改进方法还利用50bp靶向序列。该改进减少或消除了第一诱变中留下的1000bp重复中的第二敲除重组,因此能扩增敲除的酵母。此外,本文所用的200bp序列是留下可鉴定足迹的独特设计自装配序列。设计序列所用的技术掺入设计特征,例如与酵母菌基因组的相同性低和彼此的相同性低。因此,可产生自装配序列文库,从而能在同一生物中进行多重敲除,同时降低或消除以前敲除中可能的整合。
如上所述,URA3盒利用5-FOA在携带功能性URA3基因的酵母中的毒性。采用标准酵母转化方案,用修饰的URA3盒转化尿嘧啶合成缺陷型酵母,转化的细胞接种于不含尿嘧啶的极限培养基。在一些实施方式中,可采用PCR验证是否正确插入宿主基因组的感兴趣区域,在某些实施方式中,可省去PCR步骤。包含PCR步骤可减少需要作逆选择以“移出”URA3盒的转化体数量。然后可用含5-FOA的培养基对转化体(例如,所有或通过PCR确定是正确的)作逆选择,选择重组不含(例如,移出)URA3盒的,因而再次赋予酵母菌ura3缺陷型和对5-FOA毒性的耐受性。本文提供了用于在特定区域引导重组事件的靶向序列。可采用上述方法的改进形式将基因整合入染色体,重组后功能基因留在染色体中200bp足迹旁。
在一些实施方式中,可利用其它营养缺陷型或显性选择标记替代URA3(例如,营养缺陷型可选择标记),而选择培养基和选择试剂作适当改变。营养缺陷型可选择标记用于合成所需生物分子(例如,氨基酸或核苷)有缺陷的菌株。其它营养缺陷型标记的非限制性例子包括:HIS3、TRP1、LEU2、LEU2-d和LYS2。某些营养缺陷型标记(例如,URA3和LYS2)能作逆选择以选出只留下重组构建物的一个同向重复的第二重组事件。HIS3编码参与组氨酸合成的活性。TRP1编码参与色氨酸合成的活性。LEU2编码参与亮氨酸合成的活性。LEU2-d是LEU2的低表达形式,其选择拷贝数(例如,基因或质粒拷贝数)增加,从而能在不含亮氨酸的极限培养基上存活。LYS2编码参与赖氨酸合成的活性,利用α-氨基己二酸酯逆选择不含LYS2基因的重组情况。
可用显性可选择标记,因为它们也能将工业和/或原养型菌株用于遗传操作。此外,显性可选择标记提供的优势在于丰富培养基可用于接种和培养物生长,因而能显著提高生长速度。显性可选择标记的非限制性例子包括Tn903kanr、Cmr、Hygr、CUP1和DHFR。Tn903kanr编码参与卡那霉素耐受性的活性(例如,通常是新霉素磷酸转移酶II或NPTII)。Cmr编码参与氯霉素耐受性的活性(例如,通常是氯霉素乙酰基转移酶或CAT)。Hygr编码通过磷酸化潮霉素B而参与潮霉素耐受性的活性(例如,潮霉素磷酸转移酶或HPT)。CUP1编码参与重金属(例如,铜)毒性耐受性的活性。DHFR编码赋予氨甲蝶呤和磺胺化合物耐受性的二氢叶酸还原酶活性。
与定点或特异性诱变相反,随机诱变无需任何序列信息,可通过多种不同方法实施。随机诱变常用于产生可用于筛选所需基因型或表型的突变体文库。随机诱变的非限制性例子包括:化学诱变、UV-诱导的诱变、插入元件或转座子-介导诱变、DNA改组、易错PCR诱变等等。
化学诱变常涉及化学物质,例如甲磺酸乙酯(EMS)、亚硝酸、丝裂霉素C、N-甲基-N-亚硝基脲(MNU)、二环氧基丁烷(DEB)、1,2,7,8-二环氧基辛烷(DEO)、甲磺酸甲酯(MMS)、N-甲基-N’-硝基-N-亚硝基胍(MNNG)、4-硝基喹啉1-氧化物(4-NQO)、2-甲氧基-6-氯-9(3-[乙基-2-氯乙基]-氨基丙基氨基)-吖啶二氢盐酸盐(ICR-170)、2-氨基嘌呤(2AP)和羟胺(HA),本文提供的是非限制性例子。这些化学物质能导致碱基对取代、移框突变、缺失、易位突变、转位突变、不正确的复制等。在一些实施方式中,可在体内进行诱变。诱变过程有时涉及利用宿主生物DNA复制和修复机制来掺入和复制一个或多个诱变的碱基。
另一类化学诱变涉及利用碱基类似物。利用碱基类似物导致不正确的碱基配对,与起始序列相比,其在随后的复制轮中校正为错配的核苷酸。碱基类似物诱变为随机诱变引入少许非随机性,因为可选择能掺入起始序列中某些核苷酸处的特定碱基类似物。校正错配通常产生已知的取代。例如,溴-脱氧尿苷(BrdU)可掺入DNA,取代序列中的T。宿主DNA修复和复制机器有时可校正该缺陷,但有时用G错配BrdU。随后的复制轮导致天然序列中的原始A-T转换为G-C。
当紫外线照射两个毗邻胸苷残基之间的化学键时,胸苷二聚体的形成导致紫外线(UV)诱导的诱变。宿主生物的切除修复机制校正DNA中的该损伤,但有时该损伤被错误修复,通常导致C转为T。
插入元件或转座子介导的诱变利用天然产生的可移动遗传元件或修饰天然产生的可移动遗传元件。除了转座所需的活性(例如,利用转座酶活性移动),转座子常编码辅助活性。在许多例子中,转座子辅助活性是抗生素耐受性标记(例如,参见上述的Tn903kanr)。插入元件通常仅编码移动核酸序列所需的活性。插入元件和转座子介导的诱变常可天然发生,然而已知一些转座子的具体靶序列。可移动遗传元件,例如IS元件或转座子(Tn)常侧接转座基因的编码区具有反向重复、同向重复或同时具有反向和同向重复。转座酶催化的重组事件导致元件将自身从基因组中除去并移动至新的位置,从而留下一部分反向或同向重复。转座子的经典例子是在玉米中发现的“可移动遗传元件”。可商品化购得转座子诱变试剂盒,其设计成留下5密码子插入物(例如,芬扎姆公司的突变产生系统试剂盒(MutationGeneration System kit,Finnzymes),万维网URL finnzymes.us)。这使得技术人员能鉴定插入位点,而无需完全破坏大多数基因的功能。
DNA改组是利用突变体文库成员的DNA片段并将这些片段随机重配产生新的突变体序列组合的方法。通常利用DNA酶I,然后通过随机退火和采用自启PCR再连接产生所述片段。随机片段退火产生的DNA突出端为PCR过程提供“引物”序列。改组可应用于任何上述诱变方法产生的文库。
易错PCR及其衍生方法,滚环易错PCR联用浓度增加的镁和锰与限制量的一个或两个核苷酸来降低Taq聚合酶的保真度。比较得到的突变型序列与野生型起始序列时,适当条件下的错误率可以高达2%。扩增后,必须将突变体编码序列文库克隆入合适的质粒。虽然点突变是易错PCR中最常见的突变类型,缺失和移框突变也是可能的。可商品化购得许多易错PCR试剂盒,包括斯特拉塔基因公司(Stratagene)和克隆技术公司(Clontech)(例如,万维网URL strategene.com和万维网URL clontech.com)。滚环易错PCR是易错PCR的改变形式,其中首先将野生型序列克隆入质粒,然后在易错条件下扩增完整的质粒。
如上所述,还可采用遗传选择和筛选用选择性培养基刺激的生物或从独特环境中鉴定天然产生的变体来分离活性改变的生物。例如,2-脱氧-D-葡萄糖是毒性葡萄糖类似物。用该物质培养酵母产生葡萄糖不受控的突变体。利用2-脱氧-D-葡萄糖分离了许多突变体,包括转运突变体和能同时用葡萄糖及半乳糖发酵的突变体,而不是先用葡萄糖,在葡萄糖耗尽后再用半乳糖。类似的技术已用于在实验室条件或从独特的环境分离能代谢塑料(例如,来自垃圾场的)、石油化学品(例如,来自油轮漏油)等的突变型微生物。
在一些实施方式中,当所选生物中活性的存在水平较低或几乎检测不到时,可采用类似方法分离所需活性中的天然产生突变。所述方法通常包括在液体培养基中培养生物至特定密度,浓缩细胞,将细胞接种在对其的代谢活性需要增强的各种浓度的物质上。将细胞在中等生长温度下温育5-10天。为提高选择过程,将平板在低温下再保存5-10天。有时低温使得获得活性或活性增强的菌株继续生长,而其它菌株的生长在该低温下受抑制。最初选择和低温下的第二生长后,可将平板反复接种在较高或较低浓度的选择物质上以便进一步选择所需活性。
可将天然、异源或诱变的多核苷酸引入核酸试剂以便引入宿主生物,从而产生工程改造的微生物。技术人员可采用标准重组DNA技术(限制性酶消化、连接等)将感兴趣的诱变核酸组合入能(i)通过宿主生物中选择而稳定维持,或(ii)整合入宿主生物基因组的合适核酸试剂。如上所述,核酸试剂有时包含两个复制起点,从而能在终产物最终引入宿主生物(例如,酵母或真菌)之前在细菌中操作同一核酸试剂。标准分子生物学和重组DNA方法是已知的(例如,Maniatis,T.,E.F.Fritsch和J.Sambrook(1982)《分子克隆:实验室手册》;冷泉港实验室,冷泉港,纽约中描述的)。
可采用各种技术将核酸试剂引入微生物。用于将异源核酸引入各种生物的方法的非限制性例子包括转化、转染、转导、电穿孔、超声介导的转化、粒子轰击等。在一些例子中,虽然通过常规方法通常较难转化,但加入运载体分子(例如,双-苯并咪唑基化合物,参见美国专利5595899)能增加细胞中DNA的摄取。转化的常规方法是已知的(例如,Maniatis,T.,E.F.Fritsch和J.Sambrook(1982)《分子克隆:实验室手册》;冷泉港实验室,冷泉港,纽约中描述的)。
培养、生产和工艺方法
通常在优化目标分子(例如,6-碳目标分子)产率的条件下培养工程改造的微生物。此类目标分子的非限制性例子是己二酸和6-羟基己酸。培养条件常优化一种或多种以下活性:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。通常,可优化的条件的非限制性例子包括碳源的类型和用量,氮源的类型和用量,碳-氮比,氧水平,生长温度,pH,生物质产生期的长度,目标产物累积期的长度和细胞收集时间。
培养基通常含有合适的碳源。用于培养微生物和/或发酵过程的碳源有时称为原料。本文所用的术语“原料”指提供给生物的含碳源组合物,生物用其产生用于生长的能量和代谢产物。原料可以是天然物质、“人工物质”、纯化或分离的物质、纯化物质的混合物、未纯化物质的混合物或它们的组合。常由人制备原料和/或由人提供给生物,常先配制原料再给予生物。碳源可包括但不限于一种或多种以下物质:单糖(例如,也称为“糖”,包括6-碳糖(如葡萄糖、果糖)、5-碳糖(如木糖和其它戊糖)等)、二糖(例如,乳糖、蔗糖)、寡糖(例如,聚糖、单糖的均聚物)、多糖(例如,淀粉、纤维素、单糖的异质聚合物或它们的混合物)、糖醇(例如,甘油)和可再生的原料(例如,干酪乳清渗过物、玉米浆、甜菜糖蜜、大麦麦芽)。碳源还可选自一种或多种以下非限制性例子:石蜡(例如,饱和石蜡、不饱和石蜡、取代的石蜡、线形石蜡、支链石蜡或它们的组合);烷烃(例如,己烷)、烯烃或炔烃,它们各自可以是线形、支链、饱和、不饱和、取代的或其组合(下文更详细描述);线形或支链醇(例如,己醇);脂肪酸(例如,约1个碳到约60个碳,包括游离脂肪酸、皂类);脂肪酸的酯;单酸甘油酯;甘油二酯;甘油三酯;磷脂。制备原料的产品的非限制性商业来源包括植物或植物产品(例如,植物油(如杏仁油、菜籽油、可可油、椰油、玉米油、棉籽油、亚麻籽油、葡萄籽油、雾冰草脂(illipe)、橄榄油、棕榈油、棕榈油精、棕榈仁油、红花油、花生油、大豆油、芝麻油、乳木果油(shea nut oil)、葵花籽油、胡桃油等和它们的组合)和动物脂肪(例如,牛脂、乳脂肪、猪油、鳕鱼肝油)。碳源可包括石油产品和/或石油馏出物(例如,柴油、燃油、汽油、煤油、石蜡、石蜡油、石油化学产品)。
本文所用的术语“石蜡”指烷烃的常用名,而无论来源(例如,植物来源、石油来源、化学合成的、微生物发酵的)或碳链长度。碳源有时包含石蜡,在一些实施方式中,碳源主要是石蜡(例如,约75%、80%、85%、90%或95%石蜡)。石蜡有时是饱和的(例如,完全饱和的),有时包含一个或多个不饱和性(例如,约1、2、3、4、5、6、7、8、9、10个不饱和性),有时用一个或多个非氢取代基取代。非氢取代基的非限制性例子包括但不限于:卤素、乙酰基、=O、=N-CN、=N-OR、=NR、OR、NR2、SR、SO2R、SO2NR2、NRSO2R、NRCONR2、NRCOOR、NRCOR、CN、COOR、CONR2、OOCR、COR和NO2,其中各R独立地是H、C1-C8烷基、C2-C8杂烷基、C1-C8酰基、C2-C8杂酰基、C2-C8烯基、C2-C8杂烯基、C2-C8炔基、C2-C8杂炔基、C6-C10芳基或C5-C10杂芳基,各R任选地被以下基团取代:卤素、=O、=N-CN、=N-OR’、=NR’、OR’、NR’2、SR’、SO2R’、SO2NR’2、NR’SO2R’、NR’CONR’2、NR’COOR’、NR’COR’、CN、COOR’、CONR’2、OOCR’、COR’和NO2,其中各R’独立地是H、C1-C8烷基、C2-C8杂烷基、C1-C8酰基、C2-C8杂酰基、C6-C10芳基或C5-C10杂芳基。
在一些实施方式中,根据待培养的工程改造微生物的基因型和/或表型选择原料。例如,可利用富含12-碳脂肪酸、12-碳二羧酸或12-碳石蜡或10-碳和12-碳化合物的混合物的原料培养包含改变的酵母菌株,所述改变通过破坏POX4活性部分阻断β氧化,如本文所述。具有10和/或12个碳的碳源的非限制性例子包括脂肪(例如,椰油、棕榈仁油)、具有10或12个碳的石蜡(例如,烷烃、烯烃或炔烃)(例如,癸烷、十二烷(也称为月桂烷12、联己基、二己基和十二碳烷)、烯烃和炔烃衍生物)、脂肪酸(癸酸、十二烷酸)、脂肪醇(癸醇、十二烷醇)等,它们的无毒取代衍生物或组合。
碳源有时包含烷基、烯基或炔基化合物或分子(例如,包含烷基、烯基或炔基部分的化合物(例如,烷烃、烯烃或炔烃))。在某些实施方式中,碳源中主要是烷基、烯基或炔基分子或它们的组合(例如,约75%、80%、85%、90%或95%的此类分子)。本文所用的术语“烷基”、“烯基”和“炔基”包括直链(本文称为“线形”)、支链(本文称为“非线形”)、环状单价烃基和它们的组合,当它们未取代时仅含有C和H。烷基部分的非限制性例子包括甲基、乙基、异丁基、环己基、环戊基乙基、2-丙烯基、3-丁炔基等。仅含有C和H原子且未取代的烷基有时称为“饱和的”。烯基或炔基通常是“不饱和的”,因其分别含有一个或多个双键或三键。烯基可包含任何数量的双键,例如1、2、3、4或5个双键。炔基可包含任何数量的三键,例如1、2、3、4或5个三键。烷基、烯基或炔基分子有时含有约2-约60个碳原子(C)。例如,烷基、烯基和炔基分子可包含约1个碳原子、约2个碳原子、约3个碳原子、约4个碳原子、约5个碳原子、约6个碳原子、约7个碳原子、约8个碳原子、约9个碳原子、约10个碳原子、约12个碳原子、约14个碳原子、约16个碳原子、约18个碳原子、约20个碳原子、约22个碳原子、约24个碳原子、约26个碳原子、约28个碳原子、约30个碳原子、约32个碳原子、约34个碳原子、约36个碳原子、约38个碳原子、约40个碳原子、约42个碳原子、约44个碳原子、约46个碳原子、约48个碳原子、约50个碳原子、约52个碳原子、约54个碳原子、约56个碳原子、约58个碳原子或约60个碳原子。在一些实施方式中,石蜡的平均碳原子数为约8-约18个碳原子(例如,约8个碳原子、约9个碳原子、约10个碳原子、约11个碳原子、约12个碳原子、约13个碳原子、约14个碳原子、约15个碳原子、约16个碳原子、约17个碳原子和约18个碳原子)。单独一个基团可包含多于一类的多重键,或多于一个多重建。当此类基团含有至少一个碳碳双键时,它们包括在术语“烯基”的定义中,当此类基团含有至少一个碳碳三键时,它们包括在术语“炔基”的定义中。烷基、烯基和炔基分子包括含有烷基、烯基和/或炔基部分的分子,包括由烷基、烯基或炔基部分组成的分子(即,烷烃、烯烃和炔烃分子)。
烷基、烯基和炔基取代基有时含有1-20C(烷基)或2-20C(烯基或炔基)。在一些实施方式中,它们可含有约8-14个C或约10-14个C。单独一个基团可包含多于一类的多重键,或多于一个多重建。当此类基团含有至少一个碳-碳双键时,它们包括在术语“烯基”的定义中,当此类基团含有至少一个碳-碳三键时,它们包括在术语“炔基”的定义中。
有时,烷基、烯基和炔基或化合物有一定程度的取代,此类取代可合成,可存在。典型的取代基包括但不限于:卤素、乙酰基、=O、=N-CN、=N-OR、=NR、OR、NR2、SR、SO2R、SO2NR2、NRSO2R、NRCONR2、NRCOOR、NRCOR、CN、COOR、CONR2、OOCR、COR和NO2,其中各R独立地是H、C1-C8烷基、C2-C8杂烷基、C1-C8酰基、C2-C8杂酰基、C2-C8烯基、C2-C8杂烯基、C2-C8炔基、C2-C8杂炔基、C6-C11芳基或C5-C11杂芳基,各R任选地被以下基团取代:卤素、=O、=N-CN、=N-OR’、=NR’、OR’、NR’2、SR’、SO2R’、SO2NR’2、NR’SO2R’、NR’CONR’2、NR’COOR’、NR’COR’、CN、COOR’、CONR’2、OOCR’、COR’和NO2,其中各R’独立地是H、C1-C8烷基、C2-C8杂烷基、C1-C8酰基、C2-C8杂酰基、C6-C10芳基或C5-C10杂芳基。烷基、烯基和炔基还可被C1-C8酰基、C2-C8杂酰基、C6-C 10芳基或C5-C 10杂芳基取代,这些取代基各自可以被适合具体基团的取代基取代。
“乙炔”或“乙酰基”取代基是任选被取代的2-10C炔基,如式-C≡C-Ri所示,其中Ri是H或C1-C8烷基、C2-C8杂烷基、C2-C8烯基、C2-C8杂烯基、C2-C8炔基、C2-C8杂炔基、C1-C8酰基、C2-C8杂酰基、C6-C10芳基、C5-C10杂芳基、C7-C12芳基烷基或C6-C12杂芳基烷基,各Ri基任选被一个或多个选自下组的取代基取代:卤素、=O、=N-CN、=N-OR’、=NR’、OR’、NR’2、SR’、SO2R’、SO2NR’2、NR’SO2R’、NR’CONR’2、NR’COOR’、NR’COR’、CN、COOR’、CONR’2、OOCR’、COR’和NO2,其中各R’独立地是H、C1-C6烷基、C2-C6杂烷基、C1-C6酰基、C2-C6杂酰基、C6-C10芳基、C5-C10杂芳基、C7-12芳基烷基或C6-12杂芳基烷基,这些取代基各自任选被一个或多个选自下组的基团取代:卤素、C1-C4烷基、C1-C4杂烷基、C1-C6酰基、C1-C6杂酰基、羟基、氨基和=O;其中两个R’可连接形成3-7元环,该环任选含有选自N、O或S的最多三个杂原子。在一些实施方式中,-C≡C-Ri中的Ri是H或Me。
有时,碳源包含杂烷基、杂烯基和/或杂炔基分子或化合物(例如,包含杂烷基、杂烯基和/或杂炔基部分(如,杂烷烃、杂烯烃或杂炔烃))。“杂烷基”、“杂烯基”和“杂炔基”等的定义与相应的烃基(烷基、烯基和炔基)类似,但是‘杂’术语表示该基团在它们的主链中含有1-3个O、S或N杂原子或它们的组合;因此相应烷基、烯基或炔基中的至少一个碳原子被指定的杂原子之一代替,形成杂烷基、杂烯基或杂炔基。烷基、烯基和炔基的杂化形式的典型尺寸通常与相应的烃基相同,存在于杂化形式上的取代基与上述烃基相同。出于化学稳定性的考虑,还应理解,除非另有说明,这些基团不包括多于两个的相邻杂原子,除非在N或S上存在氧,例如硝基或磺酰基。
本文所用的术语“烷基”包括环烷基和环烷基烷基和化合物,本文利用术语“环烷基”可描述通过环碳原子连接的碳环非芳族化合物或基团,“环烷基烷基”可用于描述通过烷基连接基团与分子连接的碳环非芳族化合物或基团。类似地,可使用“杂环基”描述含有至少一个杂原子作为环成员且通过环原子(可以是C或N)与分子连接的非芳族环基;可使用“杂环基烷基”描述通过连接基团与另一分子连接的此类基团。适用于环烷基、环烷基烷基、杂环基和杂环基烷基的尺寸和取代基与上述烷基的相同。本文所用的这些术语还包括含有一个或两个双键的环,只要该环是非芳族的。
有时,碳源包含酰基化合物或部分(例如,包含酰基部分的化合物)。本文所用的“酰基”包括这样一类基团,该基团包含烷基、烯基、炔基、芳基或烷基芳基,它们连接在羰基碳原子的两个可利用价位之一,杂酰基指羰基碳之外的至少一个碳被选自N、O或S的杂原子代替的相应基团。因此,杂酰基包括,例如-C(=O)OR和-C(=O)NR2以及-C(=O)-杂芳基。
酰基和杂酰基通过羰基碳原子的开放价位与任何基团或分子连接。它们通常是C1-C8酰基,包括甲酰基、乙酰基、新戊酰基和苯甲酰基,C2-C8杂酰基,包括甲氧基乙酰基、乙氧基羰基和4-吡啶酰基。包含酰基或杂酰基的此类基团的烃基、芳基和杂原子可被本文所述作为通常适合酰基或杂酰基的各相应组分的取代基的取代基取代。
有时,碳源包含一个或多个芳族部分和/或杂芳族部分。“芳族”部分或“芳基”部分指具有熟知芳香性的单环或稠合双环部分;例子包括苯基和萘基。类似地,“杂芳族”和“杂芳基”指含有一个或多个选自O、S或N的杂原子作为环成员的此类单环或稠合双环体系。包含杂原子可以保持5元环以及6元环的芳香性。典型的杂芳族体系包括单环C5-C6芳族基,例如吡啶基、嘧啶基、吡嗪基、噻吩基、呋喃基、吡咯基、吡唑基、噻唑基、噁唑基和咪唑基,通过这些单环基团之一与苯环或任何杂芳族单环基团稠合形成的稠合双环部分形成C8-C10双环基团,例如吲哚基、苯并咪唑基、吲唑基、苯并三唑基、异喹啉基、喹啉基、苯并噻唑基、苯并呋喃基、吡唑并吡啶基、喹唑啉基、喹喔啉基、噌啉基等。就整个环体系的电子分布而言,具有特征芳香性的任何单环或稠合双环体系都包括在该定义中。该定义还包括双环基团,其中至少直接连接在分子残余部分上的环具有特征芳香性。环体系通常含有5-12个环原子。单环杂芳基有时含有5-6个环成员,双环杂芳基有时含有8-10个环成员。
芳基和杂芳基部分可被各种取代基取代,包括C1-C8烷基、C2-C8烯基、C2-C8炔基、C5-C12芳基、C1-C8酰基和它们的杂化形式,这些取代基各自可进一步被取代;用于芳基和杂芳基部分的其它取代基包括:卤素、OR、NR2、SR、SO2R、SO2NR2、NRSO2R、NRCONR2、NRCOOR、NRCOR、CN、COOR、CONR2、OOCR、COR和NO2,其中各R独立地是H、C1-C8烷基、C2-C8杂烷基、C2-C8烯基、C2-C8杂烯基、C2-C8炔基、C2-C8杂炔基、C6-C10芳基、C5-C10杂芳基、C7-C12芳基烷基或C6-C12杂芳基烷基,各R任选如所述烷基那样被取代。芳基或杂芳基上的取代基可进一步被本文所述作为适合此类取代基中各类的或适合取代基各组分的基团取代。因此,例如,芳基烷基取代基可以在芳基部分上被通常用于芳基取代基取代,它可以进一步在烷基部分上被通常或适合用于烷基的取代基取代。
类似地,“芳基烷基”和“杂芳基烷基”指芳环和杂芳环体系,所述体系是独立的分子(例如,苯或取代的苯、吡啶或取代的吡啶)或通过连接基团与连接点相连,所述连接基团例如是亚烷基,包括取代或未取代的、饱和或不饱和的、有环或无环的连接基团。连接基团通常是C1-C8烷基或它们的杂化形式。这些连接基团还可包括羰基,因而它们能提供作为酰基或杂酰基部分的取代基。芳基烷基或杂芳基烷基中的芳环或杂芳环可被上述用于芳基的相同取代基取代。有时,芳基烷基包括任选被上述用于芳基的基团取代的苯环和未取代的或被一个或两个C1-C4烷基或杂烷基取代的C1-C4亚烷基,其中所述烷基或杂烷基可任选环化形成环丙烷、二氧戊环或氧杂环戊烷之类的环。类似地,杂芳基烷基常包括任选被一个或多个上述基团作为芳基上的常见取代基取代的C5-C6单环杂芳基和未取代的C1-C4亚烷基。有时,杂芳基烷基被一个或两个C1-C4烷基或杂烷基取代,或包括任选取代的苯环或C5-C6单环杂芳基和未取代的或被一个或两个C1-C4烷基或杂烷基取代的C1-C4杂亚烷基,其中所述烷基或杂烷基可任选环化形成环丙烷、二氧戊环或氧杂环戊烷之类的环。
当将芳基烷基或杂芳基烷基描述为任选被取代时,取代基可以在该基团的烷基或杂烷基部分上或者在芳基或杂芳基部分上。有时,任选存在于烷基或杂烷基部分上的取代基有时与上述用于烷基的那些相同,任选存在于芳基或杂芳基部分上的取代基常与上述通常用于芳基的那些相同。
本文所用的“芳基烷基”如果未被取代,则是烃基,用环和亚烷基或类似连接基团中的碳原子总数进行描述。因此,苄基是C7-芳基烷基,苯基乙基是C8-芳基烷基。
上述“杂芳基烷基”指包含通过连接基团连接的芳基的部分,与“芳基烷基”的区别在于芳基部分的至少一个环原子或连接基团的一个原子是选自N,O或S的杂原子。本文依据环和连接基团的总原子数描述杂芳基烷基,它们包括通过杂烷基连接基团连接的芳基;通过烃基连接基团(例如亚烷基)连接的杂芳基;通过杂烷基连接基团连接的杂芳基。因此,例如C7-杂芳基烷基包括吡啶基甲基、苯氧基和N-吡咯基甲氧基。
本文所用的“亚烷基”指二价烃基。由于亚烷基是二价的,其能将两个其它基因连接在一起。亚烷基通常称为-(CH2)n-,其中n可以是1-20、1-10、1-8或1-4,但是在特别指出时,亚烷基也可以被其它基团取代,可以为其它长度,开放的化合价不一定在链相对端。因此,-CH(Me)-和-C(Me)2-也可以称为亚烷基,环基如环丙-1,1-二基也可以称为亚烷基。亚烷基被取代时,取代基包括本文所述常存在于烷基上的那些。
氮可自无机(例如,(NH4)2SO4)或有机来源(例如,脲或谷氨酸)供应。除合适的碳源和氮源外,培养基还可含有适合微生物培养的适当矿物质、盐、辅因子、缓冲剂、维生素、金属离子(例如,Mn+2、Co+2、Zn+2、Mg+2)和其它组分。
有时用复合培养基(例如,酵母提取物-蛋白胨-右旋糖肉汤(YPD))培养工程改造的微生物。在一些实施方式中,在缺乏生长所必需组分的成分限定的极限培养基中培养工程改造的微生物,从而迫使选出所需表达盒(例如,酵母氮基料(DIFCO实验室,底特律,密歇根州))。在一些实施方式中,培养基是可商品化制备的常见培养基,例如酵母氮基料(DIFCO实验室,底特律,密歇根州)。还可利用其它成分限定的或合成的生长培养基,用于特定微生物生长的合适培养基是已知的。可选择各种宿主生物以便产生工程改造的微生物。非限制性例子包括酵母(例如,热带念珠菌(如ATCC20336、ATCC20913、ATCC20962)、解脂耶氏酵母(如ATCC20228))和丝状真菌(例如,构巢曲霉(如ATCC38164)和寄生曲霉(如ATCC 24690))。在具体的实施方式中,在YPD培养基(10g/L Bacto酵母提取物、20g/L Bacto蛋白胨和20g/L右旋糖)中培养酵母菌。在特定的实施方式中,在含以下成分的CM(完全培养基)中培养丝状真菌:10g/L右旋糖、2g/L Bacto蛋白胨、1g/L Bacto酵母提取物、1g/L酪蛋白氨基酸、50mL/L 20X硝酸盐(120g/L NaNO3,10.4g/L KCl,10.4g/L MgSO4·7H2O)、1mL/L 1000X痕量元素(22g/L ZnSO4·7H2O,11g/L H3BO3,5g/LMnCl2·7H2O,5g/L FeSO4·7H2O,1.7g/L CoCl2·6H2O,1.6g/L CuSO4·5H2O,1.5g/L Na2MoO4·2H2O和50g/L Na4EDTA)和1mL/L维生素溶液(生物素、吡哆醇、硫胺素、核黄素、对氨基苯甲酸和烟酸各100mg,100mL水)。
发酵的合适pH范围常在约pH 4.0-约pH 8.0,其中初始培养条件常利用约pH 5.5-约pH 7.0的pH范围。依据宿主生物,可在需氧或厌氧条件下进行培养,其中有时维持微需氧条件。可采用两阶段工艺,其中一个阶段促进微生物增殖,而另一阶段促进目标分子产生。在两阶段工艺中,第一阶段可在需氧条件下进行(例如,引入空气和/或氧),第二阶段可在厌氧条件下进行(例如,不将空气或氧引入培养条件)。在一些实施方式中,第一阶段可在厌氧条件下进行,第二阶段可在需氧条件下进行。在某些实施方式中,两阶段工艺可包括两种或更多种生物,例如,一种生物在一个阶段产生中间体产物(例如,由巨型球菌(Megasphera)产生己酸),而另一生物在另一阶段将中间体产物加工成目标产物(例如己二酸)。
可将各种发酵工艺用于商品化生物学生产目标产物。在一些实施方式中,例如,利用分批,分批补料或连续发酵工艺从重组微生物宿主商品化生产目标产物。
分批发酵工艺常是封闭体系,其中培养基组合物在工艺开始时加入,除了维持pH和氧水平所需的物质外,工艺期间不再加料。培养工艺开始时用所需生物接种培养基,产生生长或代谢活性而不向培养基中加入任何原料(即,碳源和氮源)。在分批工艺中,体系的代谢物和生物质组成持续改变直至培养终止时。在典型的分批工艺中,细胞从静态滞后期进行到高速生长对数期,最后到稳定期,其中生长速度降低或停止。不作处理的话,稳定期的细胞最终会死亡。
标准分批工艺的改进是补料-分批工艺,其中发酵过程中碳源持续加入发酵罐。当分解代谢阻遏易于抑制细胞代谢或者需要随时限制培养基中的碳源含量时,可采用补料-分批工艺。可根据可检测因素,例如pH、溶氧和废气(例如,CO2)分压的改变估计补料-分批系统中的碳源。
分批和补料-分批培养方法是本领域已知的。此类方法的例子可见Thomas D.Brock刊于《生物技术:工业微生物教材》(Biotechnology:ATextbook of Industrial Microbiology),第2版.,(1989)Sinauer Associates桑德兰,马萨诸塞州.和Deshpande,Mukund V.,Appl.Biochem.Biotechnol.,36:227(1992)。
在连续发酵工艺中,常将成分限定的培养基连续加入生物反应器,同时除去等量体积的培养物以便回收产物。连续培养通常将细胞维持在对数生长期,细胞密度恒定。连续或半连续培养方法能调节影响细胞生长或终产物浓度的一个因素或任何数量的因素。例如,某种方法可限制碳源并使所有其它参数为适度代谢。在一些系统中,可连续改变影响生长的许多因素,同时由培养基浊度检测的细胞浓度维持恒定。连续系统常维持稳态生长,因此细胞生长速度常与从培养物中抽离培养基所致的细胞损失达到平衡。为连续培养工艺调节营养和生长因子的方法以及最大程度提高产物形成速度的技术是已知的,Brock(上文)详述了各种方法。
在涉及发酵的一些实施方式中,可利用两种或更多种微生物(例如,宿主微生物、工程改造的微生物、分离的天然产生微生物等和它们的组合)进行发酵,其中发酵中的一种或多种生物部分或完全利用原料(例如,混合发酵),细胞呼吸或一种或多种生物代谢的产物可由一种或多种其它生物进一步代谢,从而产生所需目标产物(例如,己二酸、己酸)。在某些实施方式中,各生物可独立发酵,将细胞呼吸或代谢的产物纯化并与另一生物接触以产生所需目标产物。在一些实施方式中,部分或完全阻断一种或多种生物的代谢途径(例如,β氧化、ω氧化等或它们的组合),从而产生可用作一种或多种其它生物原料的所需产物。可利用微生物的任何合适组合进行混合发酵或顺序发酵。适用于混合发酵或顺序发酵的生物组合和原料的非限制性例子是利用长链二羧酸作为埃氏巨球菌发酵培养基以产生己酸,而如本文所述工程改造的热带念珠菌从埃氏巨球菌产生的己酸产生己二酸,其中第一生物的发酵后培养基用作第二生物的原料。埃氏巨球菌是兼性厌氧菌。不想受理论的束缚,但据信,厌氧呼吸导致埃氏巨球菌天然累积己酸。热带念珠菌能需氧和厌氧生长。在一些实施方式中,埃氏巨球菌产生的己酸可用作热带念珠菌的原料以产生己二酸。在某些实施方式中,先纯化(例如,部分、完全纯化)埃氏巨球菌产生的己酸,再将其用作热带念珠菌的原料。
在各种实施方式中,从培养基分离或纯化或从工程改造微生物提取己二酸。在一些实施方式中,通过本文所述方法发酵原料,目标产物(例如,己二酸)的产生水平可以是理论产量的约80%或更高(例如,理论产量的80%或更高、81%或更高、82%或更高、83%或更高、84%或更高、85%或更高、86%或更高、87%或更高、88%或更高、89%或更高、90%或更高、91%或更高、92%或更高、93%或更高、94%或更高、95%或更高、96%或更高、97%或更高、98%或更高、或99%或更高)。本文所用的术语“理论产量”指如果反应100%完成,可从起始材料制备的产物量。理论产量是基于反应的化学计量特征和起始材料完全消耗、不发生不良副反应、不发生逆反应和后处理流程中没有损失的理想条件。当浓度达到预定水平时,可检验培养基的目标产物(例如,己二酸)浓度并抽离。检测方法是本领域已知的,包括但不限于B Stieglitz和P J Weimer,“检测1,4-丁二醇、乙二醇和己二酸的新型微生物筛选”(Novel microbial screen fordetection of 1,4-butanediol,ethylene glycol,and adipic acid),Appl EnvironMicrobiol.198中所列的。目标产物(例如,己二酸)可以以本文所述的水平范围存在。
有时,目标产物在培养过程完成后维持在工程改造的微生物中,在某些实施方式中,目标产物从微生物分泌至培养基中。对于后一实施方式,(i)可从培养系统抽出培养基并补充新鲜培养基,和/或(ii)可在培养期间或在培养过程完成后从培养基提取目标产物。可利用固体、半固体或液体培养基培养工程改造的微生物。在一些实施方式中,从附着于平板的细胞中排出培养基。在某些实施方式中,离心液体-细胞混合物,离心速度足以沉淀细胞但不破坏细胞,从而能提取培养基,这是本领域已知的。然后将细胞重悬在新鲜培养基中。可按照已知方法从培养基中纯化目标产物,例如美国专利号6,787,669和美国专利号5,296,639所述那些方法。
在某些实施方式中,从培养的工程改造微生物提取目标产物。可离心浓缩微生物细胞,离心速度足以剪切细胞膜。在一些实施方式中,可物理破坏(例如,剪切力,超声处理)或化学破坏(例如,接触去污剂或其它裂解试剂)细胞。通过离心或本领域已知的其它方法分离各相,按照已知方法分离目标产物。
有时提供基本上纯化形式(例如,90%纯或更高、95%纯或更高、99%纯或更高或99.5%纯或更高)的商品级目标产物。在一些实施方式中,可将目标产物修饰成多种下游产物中的任一种。例如,己二酸可与己二胺缩聚产生尼龙。可将尼龙进一步加工成纤维以便应用于毛毯、汽车轮胎帘布和衣物。己二酸还用于制备增塑剂、润滑剂组分和聚氨酯系统的聚酯多元醇。食品级己二酸用作凝结助剂、酸化剂、发酵剂和缓冲剂。己二酸具有两个羧酸(-COOH)基团,能产生两类盐。通过进一步的取代、催化还原、金属氢化物还原、二硼烷还原、与有机金属试剂形成酮、氧的亲电键合和缩合反应,其衍生物、酰基卤化物、酯、酰胺和腈用于制备下游产物,例如调味剂、内部增塑剂、杀虫剂、染料、织物处理剂、杀真菌剂和药物。
可在含有目标产物的经培养微生物内提供目标产物,经培养的微生物可新鲜提供或冷冻在液体介质中或是干燥的。新鲜或冷冻的微生物可装在合适的防潮容器中,如需要也可控温。有时可在基本上不含细胞的培养基中提供目标产物。在一些实施方式中,提供从微生物中纯化的目标产物或修饰的目标产物,有时提供基本上纯化形式的目标产物。在某些实施方式中,提供结晶或粉末化的的目标产物。结晶己二酸是融点为360℉的白色粉末,可以在各种容器中运输,包括一吨纸板箱、圆筒、50磅袋子等。
在某些实施方式中,目标产物(例如,己二酸、6-羟基己酸)的产量是发酵过程中每加入1克葡萄糖得到约0.30克目标产物或更高(例如,每加入1克葡萄糖得到约0.31克目标产物或更高;每加入1克葡萄糖得到约0.32克目标产物或更高;每加入1克葡萄糖得到约0.33克目标产物或更高;每加入1克葡萄糖得到约0.34克目标产物或更高;每加入1克葡萄糖得到约0.35克目标产物或更高;每加入1克葡萄糖得到约0.36克目标产物或更高;每加入1克葡萄糖得到约0.37克目标产物或更高;每加入1克葡萄糖得到约0.38克目标产物或更高;每加入1克葡萄糖得到约0.39克目标产物或更高;每加入1克葡萄糖得到约0.40克目标产物或更高;每加入1克葡萄糖得到约0.41克目标产物或更高;每加入1克葡萄糖得到0.42克目标产物或更高;每加入1克葡萄糖得到0.43克目标产物或更高;每加入1克葡萄糖得到0.44克目标产物或更高;每加入1克葡萄糖得到0.45克目标产物或更高;每加入1克葡萄糖得到0.46克目标产物或更高;每加入1克葡萄糖得到0.47克目标产物或更高;每加入1克葡萄糖得到0.48克目标产物或更高;每加入1克葡萄糖得到0.49克目标产物或更高;每加入1克葡萄糖得到0.50克目标产物或更高;每加入1克葡萄糖得到0.51克目标产物或更高;每加入1克葡萄糖得到0.52克目标产物或更高;每加入1克葡萄糖得到0.53克目标产物或更高;每加入1克葡萄糖得到0.54克目标产物或更高;每加入1克葡萄糖得到0.55克目标产物或更高;每加入1克葡萄糖得到0.56克目标产物或更高;每加入1克葡萄糖得到0.57克目标产物或更高;每加入1克葡萄糖得到0.58克目标产物或更高;每加入1克葡萄糖得到0.59克目标产物或更高;每加入1克葡萄糖得到0.60克目标产物或更高;每加入1克葡萄糖得到0.61克目标产物或更高;每加入1克葡萄糖得到0.62克目标产物或更高;每加入1克葡萄糖得到0.63克目标产物或更高;每加入1克葡萄糖得到0.64克目标产物或更高;每加入1克葡萄糖得到0.65克目标产物或更高;每加入1克葡萄糖得到0.66克目标产物或更高;每加入1克葡萄糖得到0.67克目标产物或更高;每加入1克葡萄糖得到0.68克目标产物或更高;每加入1克葡萄糖得到0.69或0.70克目标产物或更高)。
实施例
以下列出的实施例说明某些实施方式而不限制本发明。以下列出的某些实施例采用本领域已知的标准重组DNA和其它生物技术方案。许多此类技术描述于Maniatis,T.,E.F.Fritsch和J.Sambrook(1982)《分子克隆:实验室手册》;冷泉港实验室,冷泉港,纽约。可按照生产商的使用说明书,利用加利福尼亚州圣迭戈市斯特拉塔基因公司的“快变(QuickChange)”试剂盒实现DNA诱变。
实施例1:克隆己酸合酶(“HexS”)亚基基因
利用德克萨斯州奥斯丁市安比昂公司的RiboPureTM酵母菌试剂盒(RiboPureTM kit,Ambion,Austin,TX)制备寄生曲霉的总RNA。采用两步RT-PCR方法,利用加利福尼亚州卡尔斯巴德市生命技术公司的上标III逆转录酶(Superscript III reverse transcriptase,Life Technologies,Carlsbad,CA)从该总RNA分离编码己酸合酶的两个亚基的基因(称为“hexA”和“hex B”),凝胶纯化诸片段。用于各RT-PCR反应的引物如下所示:
Figure BPA00001516349200841
将各片段分别插入质粒pCRBlunt II(生命技术公司,卡尔斯巴德,加利福尼亚州),从而得到各含不同hexA基因片段的4个hexA质粒,和各含不同hexB基因片段的5个hex B质粒。验证各hexA和hexB片段的序列,随后PCR克隆各质粒的片段。然后采用重叠PCR产生全长hexA和hexB基因。将hexA基因插入具有LEU2可选择标记和甘油醛3-磷酸脱氢酶启动子的载体p425GPD(美国模式培养物保藏所),将hexB全长基因插入具有URA3可选择标记和甘油醛3-磷酸脱氢酶启动子的p426GPD(美国模式培养物保藏所)。
实施例2:用HexA和HexB基因转化酿酒酵母
约30℃下,用标准YPD(10g酵母提取物,20g Bacto-蛋白胨,20g葡萄糖,总计1L)培养基培养酿酒酵母细胞(菌株BY4742,ATCC登录号201389)约3天。将含有hexA和hexB基因的质粒共同转化入酿酒酵母。利用1μg质粒DNA,用Zymo试剂盒(目录号T2001;ZR公司(Zymo ResearchCorp.),奥伦奇,加利福尼亚州92867)实现转化,在约30℃下,用含葡萄糖的SC除去(drop out)培养基(减去尿嘧啶和减去亮氨酸)(20g葡萄糖;2.21gSC(-URA,-LEU)干燥混合物,6.7g酵母氮基料,总计1L)培养2-3天。
SC(-URA)混合物含有:
0.4g硫酸腺嘌呤(Adenine hemisulfate)
3.5g精氨酸
1g谷氨酸
0.433g组氨酸
0.4g肌醇
5.2g异亮氨酸
0.9g赖氨酸
1.5g甲硫氨酸
0.8g苯丙氨酸
1.1g丝氨酸
1.2g苏氨酸
0.8g色氨酸
0.2g酪氨酸
1.2g缬氨酸
需要时:
0.263g亮氨酸
0.2g尿嘧啶
选择共同转化子,在标准条件下用YPD培养基将其制成液体培养物。
实施例3:产生合成的HexA和HexB基因
设计合成己酸合酶亚基基因以便用于热带念珠菌。该生物利用备选遗传密码,其中密码子“CTG”编码丝氨酸而非亮氨酸。因此,用密码子“TTG”替代所有“CTG”密码子以确保热带念珠菌翻译这些基因时,其会产生氨基酸序列与寄生曲霉中所见野生型多肽相同的多肽。由于各亚基体积较大,将各亚基合成为4个片段,将各片段插入载体pUC57。采用PCR克隆各片段,然后采用重叠延伸PCR产生各全长基因。
各己酸合酶亚基的合成基因的序列如下所示。编码hexA亚基的合成基因称为hexA-AGC(“替代遗传密码”),编码hexB亚基的合成基因称为hexB-AGC。
>热带念珠菌的hexA-AGC
atggtcatccaagggaagagattggccgcctcctctattcagcttctcgcaagctcgttagacgcgaagaagctttgttatgagtatgacgagaggcaagccccaggtgtaacccaaatcaccgaggaggcgcctacagagcaaccgcctctctctacccctccctcgctaccccaaacgcccaatatttcgcctataagtgcttcaaagatcgtgatcgacgatgtggcgctatctcgagtgcaaattgttcaggctcttgttgccagaaagttgaagacggcaattgctcagcttcctacatcaaagtcaatcaaagagttgtcgggtggtcggtcttctttgcagaacgagctcgtgggggatatacacaacgagttcagctccatcccggatgcaccagagcagatcttgttgcgggactttggcgacgccaacccaacagtgcaattggggaaaacgtcctccgcggcagttgccaaactaatctcgtccaagatgcctagtgacttcaacgccaacgctattcgagcccacctagcaaacaagtggggtctaggacccttgcgacaaacagcggtgttgctctacgccattgcgtcagaacccccatcgcgtttagcttcatcgagcgcagcggaagagtactgggacaacgtgtcatccatgtacgccgaatcgtgtggcatcaccctccgcccgagacaagacactatgaatgaagatgctatggcatcgtcggcgattgatccggctgtggtagccgagttttccaaggggcaccgtaggctcggagttcaacagttccaagcgctagcagaatacttacaaattgatttgtcggggtctcaagcctctcagtcggatgctttggtggcggaacttcagcagaaagtcgatctctggacggccgaaatgacccccgagtttctcgccgggatatcaccaatgttggatgtaaagaagtcgcgacgctatggctcgtggtggaacatggcacggcaggatgtcttggccttctatcgccgtccttcctacagtgaattcgtggacgacgccttggccttcaaagtttttctcaatcgtctctgtaaccgagctgatgaggccctcctcaacatggtacgcagtctttcctgtgacgcctacttcaagcaaggttctttgcccggatatcatgccgcctcgcgactccttgagcaggccatcacatccacagtggcggattgcccgaaggcacgcctcattctcccggcggtgggcccccacaccaccattacaaaggacggcacgattgaatacgcggaggcaccgcgccagggagtgagtggtcccactgcgtacatccagtctctccgccaaggcgcatctttcattggtctcaagtcagccgacgtcgatactcagagcaacttgaccgacgctttgcttgacgccatgtgcttagcactccataatggaatctcgtttgttggtaaaacctttttggtgacgggagcgggtcaggggtcaataggagcgggagtggtgcgtctattgttagagggaggagcccgagtattggtgacgacgagcagggagccggcgacgacatccagatacttccagcagatgtacgataatcacggtgcgaagttctccgagttgcgggtagttccttgcaatctagccagcgcccaagattgcgaagggttgatccggcacgtctacgatccccgtgggctaaattgggatttggatgccatccttcccttcgctgccgcgtccgactacagcaccgagatgcatgacattcggggacagagcgagttgggccaccggctaatgttggtcaatgtcttccgcgtgttggggcatatcgtccactgtaaacgagatgccggggttgactgccatccgacgcaggtgttgttgccattgtcgccaaatcacggcatcttcggtggcgatgggatgtatccggagtcaaagctagcccttgagagcttgttccatcgcatccgatcagagtcttggtcagaccagttatctatatgcggcgttcgtatcggttggacccggtcgaccggtctaatgacggcgcatgatatcatagccgaaacggtcgaggaacacggaatacgcacattttccgtggccgagatggcactcaacatagccatgttgttaacccccgactttgtggcccattgtgaagatggacctttggatgccgatttcaccggcagcttgggaacattgggtagcatccccggtttcctagcccaattgcaccagaaagtccagttggcagccgaggtgatccgtgccgtgcaggccgaggatgagcatgagagattcttgtctccgggaacaaaacctaccttgcaagcacccgtggccccaatgcacccccgcagtagccttcgtgtaggctatccccgtctccccgattatgagcaagagattcgcccgttgtccccacggttggaaaggttgcaagatccggccaatgctgtggtggtggtcgggtactcggagttggggccatggggtagcgcgcgattacggtgggaaatagagagccagggccagtggacttcagccggttatgtcgaacttgcctggttgatgaacctcatccgccacgtcaacgatgaatcctacgtcggctgggtggatactcagaccggaaagccagtgcgggatggcgagatccaggcattgtacggggaccacattgacaaccacaccggtatccgtcctatccagtccacctcgtacaacccagagcgcatggaggtcttgcaggaggtcgctgtcgaggaggatttgcccgagtttgaagtatctcaacttaccgccgacgccatgcgtctccgccatggagctaacgtttccatccgccccagtggaaatcccgacgcatgccacgtgaagcttaaacgaggcgctgttatccttgttcccaagacagttccctttgtttggggatcgtgtgccggtgagttgccgaagggatggactccagccaagtacggcatccctgagaacctaattcatcaggtcgaccccgtcacgctctatacaatttgctgcgtggcggaggcattttacagtgccggtataactcaccctcttgaggtctttcgacacattcacctctcggaactaggcaactttatcggatcctccatgggtgggccgacgaagactcgtcagctctaccgagatgtctacttcgaccatgagattccgtcggatgttttgcaagacacttatctcaacacacctgctgcctgggttaatatgctactccttggctgcacggggccgatcaaaactcccgtcggcgcatgtgccaccggggtcgagtcgatcgattccggctacgagtcaatcatggcgggcaagacaaagatgtgtcttgtgggtggctacgacgatttgcaggaggaggcatcgtatggattcgcacaacttaaggccacggtcaacgttgaagaggagatcgcctgcggtcgacagccctcggagatgtcgcgccccatggctgagagtcgtgctggctttgtcgaggcgcatggctgcggtgtacagttgttgtgtcgaggtgacatcgccttgcaaatgggtcttcctatctatgcggtcattgccagctcagccatggccgccgacaagatcggttcctcggtgccagcaccgggccagggcattctaagcttctcccgtgagcgcgctcgatccagtatgatatccgtcacgtcgcgcccgagtagccgtagcagcacatcatctgaagtctcggacaaatcatccttgacctcaatcacctcaatcagcaatcccgctcctcgtgcacaacgcgcccgatccaccactgatatggctccgttgcgagcagcgcttgcgacttgggggttgactatcgacgacttggatgtggcctcattgcacggcacctcgacgcgcggtaacgatctcaatgagcccgaggtgatcgagacgcagatgcgccatttaggtcgcactcctggccgccccttgtgggccatctgccaaaagtcagtgacgggacaccctaaagccccagcggccgcatggatgctcaatggatgcttgcaagtattggactcggggttggtgccgggcaaccgcaatcttgacacgttggacgaggccttgcgcagcgcgtctcatctctgcttccctacgcgcaccgtgcagctacgtgaggtcaaggcattcttgttgacctcatttggcttcggacagaaggggggccaagtcgtcggcgttgcccccaagtacttctttgctacgctcccccgccccgaggttgagggctactatcgcaaggtgagggttcgaaccgaggcgggtgatcgcgcctacgccgcggcggtcatgtcgcaggcggtggtgaagatccagacgcaaaacccgtacgacgagccggatgccccccgcatttttctcgatcccttggcacgtatctcccaggatccgtcgacgggccagtatcggtttcgttccgatgccactcccgccctcgatgatgatgctttgccacctcccggcgaacccaccgagctagtgaagggcatctcctccgcctggatcgaggagaaggtgcgaccgcatatgtctcccggcggcacggtgggcgtggacttggttcctctcgcctccttcgacgcatacaagaatgccatctttgttgagcgcaattatacggtaagggagcgcgattgggctgaaaagagtgcggatgtgcgcgcggcctatgccagtcggtggtgtgcaaaagaggcggtgttcaaatgtctccagacacattcacagggcgcgggggcagccatgaaagagattgagatcgagcatggaggtaacggcgcaccgaaagtcaagctccggggtgctgcgcaaacagcggcgcggcaacgaggattggaaggagtgcaattgagcatcagctatggcgacgatgcggtgatagcggtggcgttggggttgatgtctggtgcttcataa
>用于热带念珠菌的hexB-AGC
atgggttccgttagtagggaacatgagtcaatccccatccaggccgcccagagaggcgctgcccggatctgcgctgcttttggaggtcaagggtctaacaatttggacgtgttaaaaggtctattggagttatacaagcggtatggcccagatttggatgagctactagacgtggcatccaacacgctttcgcagttggcatcttcccctgctgcaatagacgtccacgaaccctggggtttcgacctccgacaatggttgaccacaccggaggttgctcctagcaaagaaattcttgccttgccaccacgaagctttcccttaaatacgttacttagcttggcgctctattgtgcaacttgtcgagagcttgaacttgatcctgggcaatttcgatccctccttcatagttccacggggcattcccaaggcatattggcggcggtggccatcacccaagccgagagctggccaaccttttatgacgcctgcaggacggtgctccagatctctttctggattggactcgaggcttacctcttcactccatcctccgccgcctcggatgccatgatccaagattgcatcgaacatggcgagggccttctttcctcaatgctaagtgtctccgggctctcccgctcccaagttgagcgagtaattgagcacgtcaataaagggctcggagaatgcaaccgatgggttcacttggccttggttaactcccacgaaaagttcgtcttagcgggaccacctcaatccttatgggccgtttgtcttcatgtccgacggatcagagcagacaatgacctcgaccagtcgcgtatcttgttccgcaaccgaaagcctatagtggatatattatttcttcccatatccgcaccatttcacacaccgtacttggacggtgttcaagatcgcgttatcgaggctttgagctctgcttcgttggctctccattccatcaaaatccccctctatcacacgggcactgggagcaacctacaagaactacaaccacatcagctaatcccgactcttatccgcgccattaccgtggaccaattggactggccgttggtttgccggggcttgaacgcaacgcacgtgttggactttggacctggacaaacatgcagtcttattcaggagctcacacaaggaacaggtgtatcagtgatccagttgactactcaatcgggaccaaaacccgttggaggccatttggcggcagtgaactgggaggccgagtttggcttacgacttcatgccaatgtccacggtgcagctaaattgcacaaccgtatgacaacattgcttgggaagcctcctgtgatggtagccggaatgacacctactacggtgcgctgggactttgtcgctgccgttgctcaagctggataccacgtcgaattggctggtggtggctaccacgcagagcgccagttcgaggccgagattcggcgcttggcaactgccatcccagcagatcatggcatcacctgcaatctcctctacgccaagcctacgactttttcctggcagatctctgtcatcaaggatttggtgcgccagggagttcccgtggaaggaatcaccatcggcgccggcatcccttctccggaggtcgtccaagaatgtgtacagtccatcggactcaagcacatctcattcaagcctgggtctttcgaagccattcaccaagtcatacagatcgcgcgtacccatcctaactttttgatcgggttgcaatggaccgcaggacgagggggaggacatcattcctgggaagacttccatggacctattttggcaacctacgctcaaatccgatcatgtccgaatattctcctcgttgtaggtagtggattcggtggaggcccggacacgtttccctacctcacgggccaatgggcccaggcctttggctatccatgcatgcccttcgacggagtgttgctcggcagtcgcatgatggtggctcgggaagcccatacgtcagcccaggcaaaacgcttgattatagatgcgcaaggcgtgggagatgcagattggcacaagtctttcgatgagcctaccggcggcgtagtgacggtcaactcggaattcggtcaacctatccacgttctagctactcgcggagtgatgttgtggaaagaactcgacaaccgggtcttttcaatcaaagacacttctaagcgcttagaatatttgcgcaaccaccggcaagaaattgtgagccgtcttaacgcagactttgcccgtccctggtttgccgttgacggacacggacagaatgtggagttggaggacatgacctacctcgaggttctccgccgtttgtgcgatctcacgtatgtttcccaccagaagcgatgggtagatccatcatatcgaatattattgttggacttcgttcatttgcttcgagaacgattccaatgcgctattgacaaccccggcgaatatccactcgacatcatcgtccgggtggaagagagcttgaaggataaagcataccgcacgctttatccagaagatgtctctcttctaatgcatttgttcagccgacgtgacatcaagcccgtaccattcatccccaggttggatgagcgttttgagacctggtttaaaaaagactcattgtggcaatccgaagatgtggaggcggtaattggacaggacgtccagcgaatcttcatcattcaagggcctatggccgttcagtactcaatatccgacgatgagtctgttaaagacattttacacaatatttgtaatcattacgtggaggctctacaggctgattcaagagaaacttctatcggcgatgtacactcgatcacgcaaaaacctctcagcgcgtttcctgggctcaaagtgacgacaaatagggtccaagggctctataagttcgagaaagtaggagcagtccccgaaatggacgttctttttgagcatattgtcggattgtcgaagtcatgggctcggacatgtttgatgagtaaatcggtctttagggacggttctcgtttgcataaccccattcgcgccgcactccagctccagcgcggcgacaccatcgaggtgcttttaacagcagactcggaaattcgcaagattcgacttatttcacccacgggggatggtggatccacttctaaggtcgtattagagatagtctctaacgacggacaaagagttttcgccaccttggcccctaacatcccactcagccccgagcccagcgtcgtcttttgcttcaaggtcgaccagaagccgaatgagtggacccttgaggaggatgcgtctggccgggcagagaggatcaaggcattatacatgagtttgtggaacttgggctttccgaacaaggcctctgttttgggtcttaattcgcaattcacgggagaagaattgatgatcacaacggacaagattcgtgatttcgaaagggtattgcggcaaaccagtcctcttcagttgcagtcatggaacccccaaggatgtgtacctatcgactactgcgtggtcatcgcctggtctgctcttaccaagcctttgatggtctcctctttgaaatgcgacctcttggatttgctccacagcgctataagcttccactatgctccatctgtcaaaccattgcgggtgggcgatattgtcaaaacctcatcccgtatcctagcggtctcggtgagacctaggggaactatgttgacggtgtcggcggacattcagcgccagggacaacatgtagtcactgtcaaatcagatttctttctcggaggccccgttttggcatgtgaaacccctttcgaactcactgaggagcctgaaatggttgtccatgtcgactctgaagtgcgccgtgctattttacacagccgcaagtggctcatgcgagaagatcgcgcgctagatttgctagggaggcagctcctcttcagattaaagagcgaaaaattgttcaggccagacggccagctagcattgttacaggtaacaggttccgtgttcagctacagccccgatgggtcaacgacagcattcggtcgcgtatacttcgaaagcgagtcttgtacagggaacgtggtgatggacttcttgcaccgctacggtgcacctcgggcgcagttgttggagttgcaacatcccgggtggacgggcacctctactgtggcagtaagaggtcctcgacgcagccaatcctacgcacgcgtctccctcgatcataatcccatccatgtttgtccggcctttgcgcgatacgctggtctctcgggtcccattgtccatgggatggaaacctctgccatgatgcgcagaattgccgaatgggccatcggagatgcagaccggtctcggttccggagctggcatatcaccttgcaagcacccgtccaccccaacgaccctttgcgggtggagttgcagcataaggccatggaggacggggaaatggttttgaaagtacaagcatttaacgaaaggacggaagaacgcgtagcggaggcagatgcccatgttgagcaggaaactacggcttacgtcttctgtggccagggcagtcaacgacaggggatgggaatggacttgtacgtcaactgtccggaggctaaagcgttgtgggctcgcgccgacaagcatttgtgggagaaatatgggttctccatcttgcacattgtgcaaaacaaccctccagccctcactgttcactttggcagccagcgagggcgccgtattcgtgccaactatttgcgcatgatgggacagccaccgatagatggtagacatccgcccatattgaagggattgacgcggaattcgacctcgtacaccttctcctattcccaggggttgttgatgtccacccagttcgcccagcccgcattggcgttgatggaaatggctcagttcgaatggctcaaagcccagggagtcgttcagaagggtgcgcggttcgcgggacattcgttgggagaatatgccgcccttggagcttgtgcttccttcctctcatttgaagatctcatatctctcatcttttatcggggcttgaagatgcagaatgcgttgccgcgcgatgccaacggccacaccgactatggaatgttggctgccgatccatcgcggataggaaaaggtttcgaggaagcgagtttgaaatgtcttgtccatatcattcaacaggagaccggctggttcgtggaagtcgtcaactacaacatcaactcgcagcaatacgtctgtgcaggccatttccgagccctttggatgttgggtaagatatgcgatgacctttcatgccaccctcaaccggagactgttgaaggccaagagctacgggccatggtctggaagcatgtcccgacggtggagcaggtgccccgcgaggatcgcatggaacgaggtcgagcgaccattccgttgccggggatcgatatcccataccattcgaccatgttacgaggggagattgagccttatcgtgaatatttgtctgaacgtatcaaggtgggggatgtgaagccgtgcgaattggtgggacgctggatccctaatgttgttggccagcctttctccgtcgataagtcttacgttcagttggtgcacggcatcacaggtagtcctcggcttcattccttgcttcaacaaatggcgtga
实施例4:用合成的己酸合酶亚基基因转化热带念珠菌
30℃,在标准条件下用YPD培养基培养热带念珠菌细胞(ATCC编号20962)。采用标准PCR扩增技术扩增编码hexA和hexB的合成基因。线形DNA构建物从5’到3’包含TEF(转录延伸因子)启动子、hexA-AGC基因、TEF启动子、hexB-AGC基因和URA3标记物。将该构建物的各端设计成含有迷你(mini)-URA-Blaster以便将构建物整合入热带念珠菌基因组DNA(Alani E,Cao L,Kleckner N.“能在多重破坏酵母菌株的构建中反复采用URA3选择的基因破坏方法”(A method for gene disruption that allowsrepeated use of URA3 selection in the construction of multiply disrupted yeaststrains).Genetics.1987年8月;116(4):541-545)。
采用标准技术扩增构建物。采用标准电穿孔技术,例如美国专利号5,648,247或5,204,252所述那些,用该线形构建物转化热带念珠菌细胞。利用仅有转化子能存活的上述SC-URA培养基接种和培养转化的细胞来选择转化子。为除去URA盒,随后将验证的菌株再次接种到含有5-氟乳清酸(5-FOA)的SC完全培养基上,并验证URA盒的损失。
实施例5:检验热带念珠菌中对6碳链有活性的细胞色素P450
用YPD培养基将热带念珠菌的培养物培养至对数后期,然后接触最高约0.1%(v/v)各种浓度的己烷以诱导对6碳底物有特异性活性的细胞色素p450基因表达。接触己烷溶液约2小时后,收集细胞,采用上述技术分离RNA。可通过Northern印迹和/或定量RT-PCT检测特异性诱导的基因。
在标准条件下培养要分析细胞色素P450活性的细胞,收集细胞以便产生微粒体。在Tris-缓冲蔗糖(10mM Tris-HCl pH 7.5,1mM EDTA,0.25M蔗糖)中裂解细胞来制备微粒体。进行差速离心以分别沉淀细胞碎片和微粒体,先是25,000xg,然后是100,000xg。将微粒体沉淀物重悬在0.1M磷酸缓冲液(pH 7.5)中,加入1mM EDTA至终浓度约为10毫克蛋白质/毫升。
加入NADPH启动含有约0.3mg微粒体、0.1mM己酸钠、0.7mMNADPH、50mM Tris-HCl pH 7.5的反应混合物(1mL),37℃温育10分钟。加入0.25mL 5M HCl终止反应,加入0.25mL 2.5ug/mL 10-羟基癸酸作为内标(3.3nmol)。在NaCl-饱和条件下用4.5mL乙醚萃取混合物。将有机相转移至新试管,蒸发至干。将残留物溶解于乙腈,其中含有10mM 3-溴甲基-7-甲氧基-1,4-苯并噁嗪-2-酮(BrMB)和K2CO3饱和乙腈配制的0.1mL15mg/mL 18-冠-6。40℃,温育溶液30分钟,然后加入0.05mL 2%乙酸。通过HPLC分辨荧光标记的ω-羟基脂肪酸,430nm检测,355nm激发。
实施例6:多核苷酸调节剂的例子
下文表格提供了可用于本文实施方式中的调节剂多核苷酸的非限制性例子。此类多核苷酸可采取天然形式使用,或可作修饰以便用于本文。调节剂多核苷酸的例子包括由体系中氧水平调节的那些(例如,由较高氧水平或较低氧水平上调或下调)。
调节型酵母启动子-氧上调
Figure BPA00001516349200931
Figure BPA00001516349200941
调节型酵母启动子-氧下调
Figure BPA00001516349200942
Figure BPA00001516349200951
已知和推定的DNA结合基序
Figure BPA00001516349200952
Figure BPA00001516349200961
Figure BPA00001516349200971
转录阻遏物
Figure BPA00001516349200982
Figure BPA00001516349200991
Figure BPA00001516349201001
转录激活物
Figure BPA00001516349201002
Figure BPA00001516349201011
Figure BPA00001516349201021
Figure BPA00001516349201051
实施例7:克隆HEXA和HEXB基因
在麦芽提取物肉汤培养基(15g/L麦芽提取物肉汤,迪夫可公司(Difco))中培养寄生曲霉(ATCC 24690)培养物,25℃振荡3天。将寄生曲霉沉淀物转移至1.5mL试管以使沉淀物体积等于约500uL。在干冰乙醇浴中冷冻菌丝体,转移至研钵(研杵),磨成细粉。将粉末置于含约500uL0.7mm氧化锆珠的1.5mL试管中,按照生产商的推荐,利用安比昂公司的Ribopure Plant试剂盒制备总RNA。
用基因特异性引物oAA0031(用于HEXA)和oAA0041(用于HEXB),在含有0.2uL基因特异性引物(10uM)、300ng总RNA、1.0uL dNTP(10mM),无菌水将体积补至13uL的反应中进行cDNA第一链的合成。65℃加热总RNA/引物混合物5分钟,然后在冰上冷却5分钟,再加入4uL 5X第一链缓冲液、1uL 0.1M DTT、1uL H20和1uL Superscript III RT(英杰公司)。55℃,温育第一链合成反应1小时,然后在70℃灭活酶15分钟,将反应冷却至4℃。将用于分离HEXA和HEXB基因的引物设计成独立扩增各片段中的HEXA和HEXB基因,片段长度为约1.0千碱基(kb)到约1.6kb,其中片段之间有约200bp的重叠序列。序列示于下表。
Figure BPA00001516349201071
Figure BPA00001516349201081
利用上述产生的cDNA,通过加入5uL 10X Pfu反应缓冲液、1.0uLdNTP(10mM)、1.0uL有义和反义引物混合物(10uM)、1.0uL Pfu UltraFusion HS(安捷仑公司(Agilent))、2.0uL cDNA、40uL无菌H20来PCR扩增HEXA和HEXB基因片段。用于扩增HEXA和HEXB基因的热循环参数是94℃、5分钟,40个循环的94℃、30秒,62℃、40秒,72℃、4分钟,然后是72℃、10分钟和4℃维持。大小正确的PCR产物作凝胶纯化,连接入pCR-钝端(Blunt)II-TOPO(英杰公司),转化入感受态TOP10大肠杆菌细胞(英杰公司),测序含PCR插入物的克隆以证实正确的DNA序列。
利用pCR-BluntII中经序列验证的片段作为模板,PCR扩增HEXA和HEXB的DNA片段以产生覆盖HEXA和HEXB的完整序列的重叠DNA片段。在含有0.2nM各DNA片段、0.2uM各有义和反义引物、1X Pfu反应缓冲液、1.0uL Pfu Ultra Fusion HS聚合酶和0.2mM dNTP的50uL重叠延伸PCR反应中组合各基因的重叠DNA片段。将独特的限制性位点掺入有义和反义引物以便将HEXA和HEXB基因分别克隆入p425GPD和p426GPD。用于HEXA的限制性位点是SpeI/SmaI,用于HEXB的限制性位点是SpeI/PmeI。将HEXA和HEXB基因连接入p425GPD和p426GPD分别产生质粒pAA020和pAA021。利用编码6xHis序列的反义引物构建掺入了C-末端6xHis标签的HEXA和HEXB基因的变体。将HEXA-6xHis和HEXB-6xHis基因连接入p425GPD和p426GPD分别产生质粒pAA031和pAA032。利用载体pAA020、pAA021、pAA031和pAA032证明酿酒酵母中的蛋白质表达,如图11和12所示。
实施例8:克隆STCJ和STCK基因
如实施例1所示制备构巢曲霉(ATCC 38163)的总RNA。在含有0.2uL基因特异性引物(10uM)、300ng总RNA、1.0uL dNTP(10mM),无菌水将体积补至13uL的反应中进行cDNA第一链的合成。65℃加热总RNA/引物混合物5分钟,然后在冰上冷却5分钟,再加入4uL 5X第一链缓冲液、1uL 0.1M DTT、1uL H20和1uL Superscript III RT(英杰公司)。55℃,温育第一链合成反应1小时,然后在70℃灭活酶15分钟,将反应冷却至4℃。采用基本类似于本文所述那些的引物设计方案扩增片段中的STCJ和STCK基因,片段长度为约1.1kb到约1.6kb,其中片段之间有约200bp的重叠序列。用于扩增STCJ和STCK基因的引物示于下表。
Figure BPA00001516349201091
Figure BPA00001516349201101
利用上述产生的cDNA,在含有5uL 10X Pfu反应缓冲液、1.0uL dNTP(10mM)、1.0uL有义和反义引物混合物(10uM)、1.0uL Pfu Ultra FusionHS(安捷仑公司)、2.0uL cDNA、40uL无菌H20的PCR反应中扩增STCJ和STCK片段。利用的热循环参数是94℃、5分钟,40个循环的94℃、30秒,62℃、40秒,72℃、4分钟,然后是72℃、10分钟和4℃维持。大小正确的PCR产物作凝胶纯化,连接入pCR-钝端II-TOPO(英杰公司),转化入感受态TOP10大肠杆菌细胞(英杰公司)。测序PCR插入物以证实正确的DNA序列。利用pCR-BluntII中经序列验证的片段作为模板,PCR扩增STCJ和STCK的DNA片段以产生覆盖STCJ和STCK的完整序列的重叠DNA片段。在含有0.2nM各DNA片段、0.2uM各有义和反义引物、1X Pfu反应缓冲液、1.0uL Pfu Ultra Fusion HS聚合酶和0.2mM dNTP的50uL重叠延伸PCR反应中组合各基因的重叠DNA片段。
设计有义和反义引物以掺入独特的限制性位点从而将STCJ和STCK基因分别克隆入p425GPD和p426GPD。用于STCJ的限制性位点是SpeI/XmaI,用于STCK的限制性位点是SpeI/SmaI。将STCJ和STCK基因连接入p425GPD和p426GPD分别产生质粒pAA040和pAA042。利用编码6xHis序列的反义引物构建掺入了C-末端6xHis标签的STCJ和STCK基因的变体。将STCJ-6xHis和STCK-6xHis基因连接入p425GPD和p426GPD分别产生质粒pAA041和pAA043。利用载体pAA040、pAA0421、pAA042和pAA043证明酿酒酵母中的蛋白质表达,如图11和12所示。
实施例9:设计和克隆热带念珠菌备选遗传密码的HEXA和HEXB基因
HEXA和HEXB基因含有多个CTG密码子,通常编码亮氨酸。然而,某些生物,例如热带念珠菌将CTG翻译为丝氨酸。制备用TTG密码子替换所有CTG密码子的HEXA和HEXB的DNA序列,所述TTG密码子在热带念珠菌中翻译为亮氨酸。选择TTG密码子是因为其是热带念珠菌中最常用的亮氨酸密码子。将备选遗传密码(AGC)HEXA和HEXB基因合成为含200bp重叠的大小相等片段并连接入pUC57载体(整合DNA技术公司(Integrated DNA Technologies))。利用pUC57中的片段作为模板PCR扩增AGC-HEXA和AGC-HEXB的DNA片段以产生覆盖AGC-HEXA和AGC-HEXB的完整序列的重叠DNA片段。
在含有0.2nM各DNA片段、0.2uM各有义和反义引物、1X Pfu反应缓冲液、1.0uL Pfu Ultra Fusion HS聚合酶和0.2mM dNTP的50uL重叠延伸PCR反应中组合各基因的重叠DNA片段。将独特的SapI限制性位点掺入有义和反义引物以便将AGC-HEXA和AGC-HEXB基因克隆入pAA105从而分别产生质粒pAA127和pAA129。将含有C-末端6xHis标签的AGC-HEXA和AGC-HEXB的基因变体连接入pAA105,分别得到质粒pAA128和pAA130。用于改变HEXA和HEXB的热带念珠菌表达的亮氨酸密码子的备选遗传密码引物示于下表。
Figure BPA00001516349201111
Figure BPA00001516349201121
实施例10:酿酒酵母的转化程序
按照生产商的使用说明书,利用Frozen-EZ酵母转化II试剂盒(ZR公司)制备酿酒酵母菌株BY4742的感受态细胞。-80℃储存感受态细胞的50uL等份试样待用。按照Frozen-EZ酵母转化II试剂盒(ZR公司)所说明的,加入0.5-1.0ug完整的质粒DNA转化感受态细胞。接种于选择培养基,SC-URA(用于基于p426的载体)或SC-LEU(用于基于p425的载体)来选择转化体。
实施例11:热带念珠菌的转化程序
用热带念珠菌单菌落接种5mL YPD起始培养基,30℃下以约200rpm振荡温育过夜。第二天,接种含0.05%消泡剂B的25mL新鲜YPD培养基,初始OD600nm为0.4,30℃以约200rpm振荡温育培养物直至OD600nm达到1.0-2.0。4℃,以1,000x g离心沉淀细胞10分钟。将细胞在10mL无菌水中重悬、沉淀进行洗涤,在1mL无菌水中重悬,转移至1.5mL微量离心管。然后用1mL无菌TE/LiOAC溶液(pH 7.5)洗涤细胞,沉淀,重悬在0.25mL TE/LiOAC溶液中,30℃振荡温育30分钟。
在1.5mL试管中将细胞溶液分成50uL等份试样,向其中加入5-8ug线形化DNA和5uL载体DNA(煮沸和冷却的鲑鱼精子DNA,10mg/mL)。加入300uL无菌PEG溶液(40%PEG 3500,1X TE,1X LiOAC),彻底混合,30℃温育60分钟,其中每15分钟轻柔混合。加入40uL DMSO,彻底混合,42℃温育细胞溶液15分钟。然后以1,000x g离心30秒来沉淀细胞,重悬在500uL YPD培养基中,30℃,约200rpm振荡温育2小时。然后离心沉淀细胞,重悬在1mL 1X TE中,再次沉淀细胞,重悬在0.2mL 1X TE中并接种于选择性培养基。30℃温育平板以便培养转化体。
实施例12:在酿酒酵母中表达HEXA和HEXB
将质粒pAA031和pAA032独立和组合转化入感受态BY4742酿酒酵母细胞。利用SC-LEU平板选择含有pAA031的转化体。利用SC-URA平板选择含有pAA032的转化体。利用SC-URA-LEU平板选择同时含有pAA031和pAA032的转化体。利用单菌落接种5mL SC除去培养基,30℃如本文所述振荡培养过夜。12,000rpm离心2分钟来收集3mL过夜培养物的细胞。-80℃温育细胞沉淀物直至冷冻。
将约500uL冷的0.7mm氧化锆珠(安比昂公司)加入冷冻细胞沉淀物的顶部。加入酵母裂解缓冲液(50mM Tris pH 8.0,0.1%曲通X100,0.5mMEDTA,1X ProCEASE蛋白酶抑制剂[GB公司(G Biosciences)])以充满试管,试管中留下的空气尽可能少,操作期间将试管置于冰上。利用BS公司(BioSpec)的Bead Beater破碎细胞,三轮,每轮两分钟,诸轮之间在冰上静置1分钟。将200uL全细胞提取物(WCE)移至新试管,4℃下,以16,000xg离心其余的全细胞提取物15分钟以沉淀不可溶的碎片。将上清液移至新试管作为可溶性细胞提取物(SCE)。通过皮尔斯公司(Pierce)的Bradford试验测定可溶性细胞提取物中的蛋白质含量。加入4体积的冷却100%丙酮来沉淀含50ug蛋白质的一定体积的SCE(和相同体积的WCE)。4℃,16,000x g离心15分钟后,小心移去上清液,用200uL冷却的80%丙酮洗涤沉淀物,再次离心。再次小心除去上清液,空气干燥细胞沉淀物5分钟。
然后在含有50mM DTT(英杰公司)的1X LDS样品缓冲液中重悬蛋白质沉淀物,70℃温育,约1200rpm振荡。简单离心并冷却至室温后,通过SDS PAGE分离样品(20ug),转移至硝酸纤维素(膜)以便用小鼠抗-6xHis抗体(阿伯坎公司(Abcam))作免疫检测。室温下以1∶5,000与一抗温育过夜,室温下以1∶5,000与驴抗-小鼠HRP偶联物二抗温育3小时,用皮尔斯公司的SuperSignal West Pico化学发光底物作检测。多个克隆显示己酸合酶的HEXA和HEXB亚基的可溶性表达。如图11所示,所表达蛋白的大部分与不可溶沉淀物一起分级。菌株sAA061、sAA140、sAA141、sAA142含有6xHis-标记的HEXA和HEXB蛋白。菌株sAA048仅含有载体p425GPD和p426GPD。
实施例13:酿酒酵母中的STCJ和STCK表达
将质粒pAA041和pAA043共同转化入感受态BY4742酿酒酵母。用SC-URA-LEU平板选择同时含有pAA041和pAA043的转化体。如本文所述进行培养、细胞提取物制备、SDS PAGE和免疫检测。一个克隆显示STCJ和STCK亚单位的可溶性表达。如图11所示,所表达蛋白的大部分与不可溶沉淀物一起分级。菌株sAA144含有6xHis-标记的STCJ和STCK蛋白。菌株sAA048仅含有载体p425GPD和p426GPD。
实施例14:热带念珠菌中的HEXA和HEXB表达
利用ClaI线形化质粒pAA128和pAA130,将它们共同转化入感受态sAA103细胞(ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::ura3)。由于与dam甲基化重叠,阻断HEXA和HEXB ORF中ClaI识别位点。用SC-URA平板选择含有整合载体DNA的转化体。利用HEXA和HEXB特异性引物,通过PCR证实载体整合。选择HEXA和HEXB的PCR阳性转化体以便分析目标蛋白质表达。如本文所述进行过夜培养。接种过夜培养物的5mL新鲜YPD培养物,初始OD600nm为0.4,温育直至OD600nm达到约5-8,此时收集培养物。如本文所述进行细胞提取物制备、SDS PAGE和免疫检测。菌株sAA269和sAA270含有整合入基因组的质粒pAA128和pAA130以便表达6xHis-标记的HEXA和HEXB蛋白质。两种菌株均显示6xHis-标记HEXA和HEXB亚基的可溶性表达,如图12所示。菌株sAA269和sAA270中表达的6xHis标记HEXA和HEXB用箭头表示。包括菌株sAA144的6xHis标记STCJ和STCK作为阳性对照。菌株sAA103是sAA269和sAA270的亲代菌株,其不含有表达6xHis标记HEXA和HEXB的整合载体。
实施例15:回收URA3标记的过程
与酿酒酵母相比,热带念珠菌具有数量有限的可选择标记,因此,“回收”URA3标记以便利用URA3进行多轮选择。为将URA3标记反复用于后续的热带念珠菌工程改造,将具有Ura+表型的单菌落接种入3mLYPD,30℃振荡培养过夜。离心收集过夜培养物,重悬于1mL YNB+YE(6.7g/L酵母氮肉汤,3g/L酵母提取物)。然后用YNB+YE连续稀释重悬的细胞,将100uL等份试样接种于YPD平板(30℃温育过夜)以测定原始悬液的滴度。此外,将未稀释悬液的100uL等份试样以3种不同浓度(0.5、0.75、1mg/mL)一式三份接种于SC右旋糖(Bacto琼脂20g/L,尿嘧啶0.3g/L,右旋糖20g/L,酵母氮肉汤6.7g/L,氨基酸去除混合物2.14g/L)和5-FOA。
30℃,温育平板至少5天。将SC右旋糖+5-FOA平板上产生的菌落重悬在50uL无菌蒸馏水中,利用5uL在YPD和SC-URA平板(不含尿嘧啶的SC右旋糖培养基)上划线。然后将仅在YPD上而不在SC-URA平板上生长的菌落接种入3mL YPD,30℃振荡培养过夜。离心收集过夜培养物,将其重悬于1.5mL YNB(6.7g/L酵母氮肉汤)。用YNB连续稀释重悬的细胞,将100uL等份试样接种于YPD平板,30℃温育过夜以测定原始滴度。还将1mL未稀释的各细胞悬液接种于SC-URA,30℃温育最多7天。SC-URA平板上的菌落是回复体,利用回复频率最低(<10-7)的分离物作后续菌株工程改造。
实施例16:己烷和己酸ω氧化成己二酸
如本文所述,用YPD2.0(1%酵母提取物,2%蛋白胨,2%右旋糖)培养菌株sAA003的起始培养物过夜。利用起始培养物接种100mL新鲜的YPD2.0至起始OD600nm为0.4,30℃下,以约200rpm振荡温育过夜。23℃,以4,000x g离心沉淀100mL培养液10分钟,重悬于100mL新鲜的YPD0.1培养基(1%酵母提取物、1%蛋白胨、0.1%右旋糖)。将培养液分成4x 25mL培养液,向其中加入1%己烷、0.05%己酸、1.0%己酸或不加入其它碳源。菌株sAA003的β-氧化完全阻断,因此,发酵检验了β-氧化途径氧化C6底物的能力。采用公开的己二酸检测方法(Cheng等.,2000),通过LC-MS(斯克利普斯质谱中心(Scripps Center for Mass Spectrometry))分析在24、48和72小时获取的样品。下表所示72小时时间点的数据证明菌株sAA003能将己酸和己烷氧化成己二酸。这些结果还表明1%己酸水平对细胞有毒性,从而导致己酸产量不高于背景水平。
Figure BPA00001516349201161
实施例17:鉴定通过接触己烷或己酸诱导的P450等位基因
从3mL YPD过夜培养物(1%酵母提取物,2%蛋白胨,2%右旋糖)中接种YNB-盐+2.0%葡萄糖(6.7g/L酵母氮肉汤,3.0g/L酵母提取物,3.0g/L硫酸铵,3.0g/L磷酸二氢钾,0.5g/L氯化钠和20g/L右旋糖)中生长的350mL过夜培养物,用于制备RNA。离心收集培养物。将各沉淀物重悬于100mL不含葡萄糖的YNB-盐培养基中。对于RNA分离,取1mL等份试样作为第0时对照。向100mL的各悬液中加入不同诱导物,1%葡萄糖、1%己烷或0.05%己酸,等分成2份50mL,加入250mL带挡板烧瓶,30℃振荡温育2或4小时。在第2小时和第4小时,通过离心收集1烧瓶各诱导物,重悬在其自身的废培养基中以破坏培养基泡沫。通过离心各1mL培养液分离1mL样品,按照生产商的指导,利用RiboPure-酵母试剂盒制备RNA,其中在裂解和用酚∶氯仿∶异戊醇(25∶24∶1)提取后,向水相中加入1体积的氯仿∶异戊醇(24∶1)再次提取原始RNA制品。
再次按照生产商的推荐,通过乙醇沉淀进一步纯化各RNA制品,用DNA酶I处理。通过电泳以及不能引发URA3基因的PCR产物,所有RNA制品显示不含污染性基因组DNA。如本文所述,利用Superscript III逆转录酶(英杰公司)完成各RNA制品的第一链合成反应。各样品的反应体系构成为:1uL oAA0542(多聚T 10uM)、1uL dNTP混合物(各10mM)、1μgRNA,13uL无菌蒸馏水。将RNA/引物混合物加热至65℃,5分钟,在冰上放置1分钟。产生扩增各细胞色素P450的充分独特区域的引物,这些引物示于下表。
对2小时诱导cDNA进行PCR反应,并与第0时和基因组DNA对照比较。各cDNA和引物对组合的PCR反应体系构成为:0.5uL模板、各0.4uM的有义和反义引物、1X Taq DNA聚合酶缓冲液(新英格兰生物实验室(New England Biolabs))、0.1uL Taq DNA聚合酶和0.2mM dNTP,无菌蒸馏水补充至25uL。所用的循环参数为95℃、5分钟,30个循环的95℃、30秒,50℃、40秒,72℃、2分钟,然后是72℃、5分钟和4℃维持。用1.2%琼脂糖凝胶对PCR反应作电泳以鉴定所用诱导物导致的差异表达。几种P450显示有己烷或己酸存在下的诱导增加,然而,这些结果不是定量的。两种细胞色素P450,CYP52A15和CYP52A16显示仅在己烷和己酸存在下诱导,在葡萄糖存在下不诱导,如图13所示。用于PCR分析诱导表达的引物示于下表。
Figure BPA00001516349201171
Figure BPA00001516349201181
实施例18:热带念珠菌脂肪醇氧化酶(FAO)等位基因的克隆和分析
分离热带念珠菌的脂肪醇氧化酶基因
利用为扩增覆盖FAO1序列(FAO1的GenBank登录号为AY538780)的启动子、脂肪醇氧化酶基因(FAO)和终止子的序列区域而制备的引物,通过PCR扩增分离热带念珠菌(ATCC20336)脂肪醇氧化酶基因。用于扩增热带念珠菌菌株ATCC20336的脂肪醇氧化酶核苷酸序列的引物示于下表。
PCR反应含有25uL 2X主混合物、1.5uL oAA0144和oAA0145(10uM)、3.0uL基因组DNA和19uL无菌H20。所用的热循环参数为98℃、2分钟,35个循环的98℃、20秒,52℃、20秒,72℃、1分钟,然后是72℃、5分钟和4℃维持。
大小正确的PCR产物作凝胶纯化,连接入pCR-钝端II-TOPO(英杰公司),转化入感受态TOP10大肠杆菌细胞(英杰公司)。测序含PCR插入物的克隆以证实正确的DNA序列。自序列分析鉴定了4个FAO等位基因,命名为FAO-13、FAO-17、FAO-18和FAO-20。命名为FAO-18的克隆的序列基本上与GenBank的FAO1序列相同。4个等位基因的所得质粒分别命名为pAA083、pAA084、pAA059和pAA085。本文所述分离的FAO基因的序列相同性比较示于下表。
Figure BPA00001516349201183
Figure BPA00001516349201191
大肠杆菌中FAO等位基因的表达
为测定FAO对各种碳源的酶活性水平,在大肠杆菌中进一步克隆和过表达四种分离的FAO等位基因。利用上述质粒作为DNA模板,采用本文所述的条件,通过PCR扩增FAO,其中FAO-13和FAO-20的引物是oAA0268和oAA0269,FAO-17和FAO-18的引物是oAA0268和oAA0282。大小正确的PCR产物作凝胶纯化,连接入pET11a载体的NdeI和BamHI位点之间,转化入BL21(DE3)大肠杆菌细胞。通过DNA测序证实含有相应FAO的菌落。还将未修饰的pET11a载体转化入BL21(DE3)细胞作为对照。得到的菌株和质粒分别命名为sAA153(pET11a)、sAA154(含有FAO-13的pAA079)、sAA155(含有FAO-17的pAA080)、sAA156(含有FAO-18的pAA081)和sAA157(含有FAO-20的pAA082)。利用这些菌株和质粒在大肠杆菌中过表达FAO。将各菌株的一个菌落转移入含有100μg/mL氨苄青霉素的5mL LB培养基,37℃以200rpm培养过夜。利用过夜培养物接种新培养液,达到含100μg/mL氨苄青霉素的25mL LB中OD600nm为0.2。用0.3mM IPTG诱导OD600nm为0.8的细胞3小时,4℃,1,050x g离心10分钟进行收集。-20℃储存细胞沉淀物。
在热带念珠菌中表达FAO
根据含过表达FAO的大肠杆菌可溶性细胞提取物酶试验测定的底物特异性概况,选择两种等位基因,FAO-13和FAO-20在热带念珠菌中扩增。分别利用质粒pAA079和pAA082作为DNA模板,通过PCR扩增含FAO-13和FAO-20的DNA片段,引物为oAA0421和oAA0422。大小正确的PCR产物作凝胶纯化,连接入pCR-钝端II-TOPO(英杰公司),转化入感受态TOP10大肠杆菌细胞(英杰公司),测序含FAO插入物的克隆以证实正确的DNA序列。用SapI消化含FAO-13和FAO-20的质粒,连接入载体pAA105,其包含热带念珠菌PGK启动子和终止子。通过限制性消化和DNA测序证实得到的质粒,分别命名为pAA115(FAO-13)和pAA116(FAO-20)。用SpeI线形化质粒pAA115和pAA116,转化入感受态热带念珠菌Ura-菌株sAA002(SU-2,ATCC20913)和sAA103。利用引物oAA0429和oAA0281,通过集落PCR证实FAO-13和FAO-20的整合情况。得到的菌株命名为sAA278(pAA115整合入菌株sAA002)、sAA280(pAA116整合入sAA002),sAA282(pAA115整合入sAA103)和sAA284(pAA116整合入sAA103),用于在热带念珠菌中的脂肪醇氧化酶过表达。
如本文所述,将各菌株的一个菌落接种入5mL YPD,培养过夜。利用过夜培养物接种25mL新的YPD培养液直至OD600nm约为0.5。FAO过表达由PGK启动子/终止子调节,由培养基中的葡萄糖诱导,组成型表达。包括菌株sAA002和sAA103(例如,未转化的起始菌株)作为FAO过表达的阴性对照。4℃,以1,050x g离心10分钟收集对数早期的细胞(OD600nm=约3到约5)。-20℃储存细胞沉淀物。
从大肠杆菌制备细胞提取物
将25mL表达FAO的大肠杆菌培养物的细胞沉淀物重悬在含50mM磷酸钾缓冲液(pH 7.6)、20%甘油、1mM苯基甲基磺酰氟(PMSF)、2uL苯25U/uL、20uL 10mg/mL溶菌酶的10mL磷酸-甘油缓冲液中。然后在室温下,利用旋转振荡器温育50分钟来裂解细胞,4℃,以15,000x g离心细胞悬液30分钟。将上清液等分加入1.5ml微量离心管,-20℃储存以供FAO酶活性试验。
从热带念珠菌制备细胞提取物
将冷冻的热带念珠菌细胞沉淀物重悬在含50mM磷酸钾缓冲液(pH7.6)、20%甘油、1mM苯基甲基磺酰氟(PMSF)的1.2ml磷酸甘油缓冲液中。在冰上,将重悬的细胞转移至含有约500uL氧化锆珠的1.5mL螺旋盖试管中。利用BS公司的Bead Beater裂解细胞,采用两分钟脉冲,1分钟冰上静置间隔。该过程重复3次。然后将完整的细胞提取物转移至新的1.5ml试管,4℃,16,000x g离心15分钟。将上清液转移至新试管,用于FAO酶活性试验。
蛋白质浓度测定
按照生产商的推荐,利用Bradford试剂(目录号23238,热科学公司(Thermo scientific))测定细胞提取物中的蛋白质浓度。
FAO酶活性试验
采用Eirich等(2004)的改进方法进行FAO酶活性试验。该试验利用双-酶偶联反应(例如,FAO和辣根过氧化物酶(HRP)),可通过分光光度法监测。1-十二烷醇用作脂肪醇氧化酶活性试验的标准底物。FAO将十二烷醇氧化为十二烷醛,同时将分子氧还原为过氧化氢。HRP在双-酶偶联反应中还原(2,2′-连氮基(azino)-双3-乙基苯并噻唑啉-6-磺酸;ABTS),其中电子得自将过氧化氢氧化成ABTS,可通过分光光度法在405nm处检测。利用氨基三唑(AT)改进该试验以免内源性过氧化氢酶破坏H2O2,因而无需微粒体分级。FAO酶试验的最终反应混合物(1.0mL)构成为:500μL 200mMHEPES缓冲液,pH 7.6;50μL 10mg/mL ABTS的去离子水溶液;10μL 5mM十二烷醇的丙酮溶液;40μL 1M AT和5μL 2mg/mL辣根过氧化物酶溶液,50mM磷酸钾缓冲液,pH 7.6配制。加入提取物后,室温下检测405nm的吸光度10分钟来检测反应活性。反应混合物中提取物的加入量不同,因而活性在0.2到1.0ΔA405nm/分钟的范围内。对于大肠杆菌表达的FAO-13,提取物的实际用量是约1.69U/mg,大肠杆菌表达的FAO-17是0.018U/mg,大肠杆菌表达的FAO-18(例如,FAO1)是0.35U/mg,大肠杆菌表达的FAO-20是0.47U/mg,热带念珠菌(菌株sAA278)表达的FAO-13是0.036U/mg,热带念珠菌(菌株sAA282)表达的FAO-13是0.016U/mg,热带念珠菌(菌株sAA280)表达的FAO-20是0.032U/mg,热带念珠菌(菌株sAA284)表达的FAO-20是0.029U/mg。FAO活性报道为活性单位/总蛋白毫克数(1单位=氧化1微摩尔底物/分钟)。用于ABTS的405nm消光系数为18.4,等于0.5mM氧化的底物。活性试验的结果示于下表。
Figure BPA00001516349201221
实施例19:构建热带念珠菌穿梭载体pAA061
从pUC19主链构建载体pAA061使之含有热带念珠菌菌株ATCC20336的可选择标记URA3以及修饰从而能插入热带念珠菌启动子和终止子。利用下表所示的引物oAA0124和oAA0125扩增含有热带念珠菌菌株ATCC20336的URA3的启动子、ORF和终止子的1,507bp DNA片段。用NdeI/MluI消化URA3PCR产物,连接入NdeI/BsmBI消化的pUC19的2,505bp片段(BsmBI产生的MluI相容突出端)。为用短的21bp接头序列替代lac启动子,用SphI/SapI消化得到的质粒,填入寡聚物oAA0173和oAA0174退火产生的接头。得到的质粒命名为pAA061,如图30所示。
实施例20:克隆热带念珠菌PGK启动子和终止子
从基础载体pAA061构建载体pAA105,使之包含热带念珠菌ATCC20336的磷酸甘油酸激酶(PGK)启动子和终止子区域以及间插多克隆位点(MCS)以便插入开放读框(ORF)。利用下表所示引物oAA0347和oAA0348,通过PCR扩增PGK启动子区域。用限制性酶PstI/XmaI消化含有PGK启动子的1,029bp DNA片段。利用下表所示引物oAA0351和oAA0352,通过PCR扩增PGK终止子区域。用限制性酶XmaI/EcoRI消化含有PGK终止子的396bp DNA片段。将pAA061的3,728bp PstI/EcoRIDNA片段用于含PGK启动子和终止子区域的三片连接反应中以产生pAA105。PGK启动子和终止子之间的序列含有限制性位点以便掺入要通过功能性连接的组成型PGK启动子控制的ORF。
实施例21:克隆POX4基因座
对于从热带念珠菌菌株ATCC20336制备的基因组DNA的YSAPOX4基因座,产生引物oAA0138和oAA0141(下表所示)来扩增NCBI登录号M12160的完整序列。将2,845bp PCR产物克隆入载体,pCR-钝端II-TOPO(英杰公司),测序并命名为pAA052,如图29所示。
Figure BPA00001516349201232
实施例22:克隆POX5基因座
对于从热带念珠菌菌株ATCC20336制备的基因组DNA的YSAPOX5基因座,产生引物oAA0179和oAA0182(下表所示)来扩增NCBI登录号M12161的完整序列。将2,624bp PCR产物克隆入载体,pCR-钝端II-TOPO(英杰公司),测序并命名为pAA049,如图28所示。
Figure BPA00001516349201241
实施例23:构建菌株sAA105和sAA106
通过用POX4线形DNA转化sAA003在热带念珠菌sAA003中(ATCC20962;ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::URA3)回复功能POX4等位基因,从而用功能等位基因替代ura3-破坏的基因座。利用质粒pAA052作为模板,利用引物oAA0138和oAA0141(实施例21所述)通过PCR扩增2,845bp DNA片段,其含有POX4ORF以及该ORF上游的531bp和下游的184bp。利用纯化的PCR产物转化感受态sAA003细胞,将该细胞接种于补充十六烷蒸气作为碳源的YNB-琼脂平板(例如,将浸透十六烷的滤纸置于倒置培养皿的盖中),30℃温育4-5天。用十六烷作为唯一碳源培养的菌落在YPD-琼脂上再次划线,30℃温育。用YPD培养液培养单菌落,用于制备基因组DNA。
用寡聚物oAA0138和oAA0141对从转化体制备的DNA进行PCR分析。URA3-破坏的POX4会产生5,045bp的PCR产物,而功能POX4会产生2,845bp的PCR产物。在菌株sAA105中,仅扩增大小为2,845bp的一种PCR产物,表明两种POX4等位基因的功能均得到回复。在菌株sAA106中,2,845bp和5,045bp的PCR产物均扩增,表明一种POX4等位基因的功能得到回复,而另一POX4等位基因依旧被URA3破坏。得到的菌株基因型是:sAA105(ura3/ura3,POX4/POX4,pox5::ura3/pox5::URA3)和sAA106(ura3/ura3,POX4/pox4::ura3,pox5::ura3/pox5::URA3)。
实施例24:构建菌株sAA152
通过用PmlI-线形化的质粒pAA086(含有POX5启动子、基因、终止子和URA3标记)转化sAA103在热带念珠菌sAA103中(ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::ura3)回复功能POX5等位基因。通过接种在SC-URA琼脂板上来选择转化体。利用引物oAA179和oAA182(实施例22所述),通过PCR验证质粒整合。2,584bp的PCR产物显示有质粒整合,表明存在功能POX5等位基因。sAA152中的其它POX5等位基因被ura3基因破坏,从而将无功能等位基因的PCR产物大小增加至4,734bp。菌株sAA152的基因型是ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::ura3,ura3::POX5,URA3。
实施例25:构建菌株sAA232
通过用POX5线形DNA转化sAA003在热带念珠菌sAA003中回复功能POX5等位基因,从而用功能等位基因替代URA3-破坏的基因座。利用质粒pAA049作为模板,利用引物oAA0179和oAA0182(实施例22所述)通过PCR扩增2,584bp DNA片段,其含有POX5ORF以及该ORF上游的456bp和下游的179bp。利用纯化的PCR产物转化感受态sAA003细胞,将该细胞接种于SC+URA+5FOA平板,30℃温育3-4天。菌落在YPD-琼脂上再次划线,30℃温育。用YPD培养液培养单菌落,用于制备基因组DNA。用寡聚物oAA0179和oAA0182对从转化体制备的基因组DNA进行PCR分析。ura3-破坏的POX5会产生4,784bp的PCR产物,而功能POX5会产生2,584bp的PCR产物。在菌株sAA232中,2,584bp和4,784bp的PCR产物均扩增,表明一种POX5等位基因的功能得到回复,而另一POX5等位基因依旧被ura3破坏。菌株sAA232的所得基因型是ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/POX5。5-FOA选择回复了被功能URA3破坏的POX5等位基因,得到sAA232菌株Ura-
实施例26:构建菌株sAA235
通过用POX5线形DNA转化sAA003在热带念珠菌sAA003中回复功能POX5等位基因,从而用功能等位基因替代URA3-破坏的基因座。利用质粒pAA049作为模板,利用引物oAA0179和oAA0182(实施例22所述)通过PCR扩增2,584bp DNA片段,其含有POX5ORF以及该ORF上游的456bp和下游的179bp。利用纯化的PCR产物转化感受态sAA003细胞,将该细胞接种于补充十二烷蒸气作为碳源的YNB-琼脂平板(例如,将浸透十二烷的滤纸置于倒置培养皿的盖中),30℃温育4-5天。用十二烷作为唯一碳源培养的菌落在YPD-琼脂上再次划线,30℃温育。用YPD培养液培养单菌落,用于制备基因组DNA。用寡聚物oAA0179和oAA0182对从转化体制备的基因组DNA进行PCR分析。ura3-破坏的POX5会产生4,784bp的PCR产物,而功能POX5会产生2,584bp的PCR产物。在菌株sAA235中,2,584bp的PCR产物得到扩增,表明两种POX5等位基因的功能均得到回复。该选择方案(含十二烷的YNB-琼脂)的非计划结果是细胞反向回复成Ura+表型。不想受任何理论的束缚,但据信,固体培养基中缺乏尿嘧啶和唯一的功能URA3替换迫使细胞将其它ura3基因座回复突变成功能等位基因。因此,据信菌株sAA235的基因型是URA3/ura3,pox4::ura3/pox4::ura3,POX5/POX5。对哪个基因座是功能URA3的验证正在进行中。
实施例27:构建含扩增的CPR和CYP52基因的菌株
构建细胞色素P450还原酶(CPR)和/或细胞色素P450单加氧酶(CYP52)基因拷贝数增加的菌株以测定CPR和CYP52过表达如何影响二酸产生。
CPR基因的克隆和整合
利用引物oAA0171和oAA0172(见下表),通过PCR扩增编码热带念珠菌ATCC750的CPR启动子、ORF和终止子的3,019bp DNA片段,从而掺入SapI和SphI位点。用所示限制性酶切割扩增的DNA片段,连接入质粒pAA061(示于图30),从而产生质粒pAA067(示于图32)。用ClaI线形化质粒pAA067,转化入热带念珠菌Ura-菌株sAA103(ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::ura3)。单用质粒pAA067和联用包含CYP52A15或CYP52A16基因的质粒进行转化,如下所述。
CYP52A15基因的克隆和整合
利用引物oAA0175和oAA0178(见下表),通过PCR扩增编码热带念珠菌ATCC20336的CYP52A15启动子、ORF和终止子的2,842bp DNA片段,将其克隆入pCR-钝端II-TOPO以供DNA序列验证。用XbaI/BamHI作限制性消化分离克隆的CYP52A15 DNA片段(2,742bp),连接入质粒pAA061(示于图30),从而产生质粒pAA077(示于图33)。用PmlI线形化质粒pAA077,转化入热带念珠菌Ura-菌株sAA103(ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::ura3)。含有CPR基因的质粒pAA067与pAA077共同转化。
CYP52A15基因的克隆和整合
利用引物oAA0177和oAA0178(见下表),通过PCR扩增编码热带念珠菌ATCC20336的CYP52A15启动子、ORF和终止子的2,728bp DNA片段,将其克隆入pCR-钝端II-TOPO以供DNA序列验证。用引物oAA0260和oAA0261(见下表)扩增克隆的CYP52A16 DNA片段,从而掺入独特的SacI/XbaI限制性位点。用SacI和XbaI限制性酶消化扩增的DNA片段,连接入质粒pAA061,从而产生质粒pAA078(示于图34)。用ClaI线形化质粒pAA078,转化入热带念珠菌Ura-菌株sAA103(ura3/ura3,pox4::ura3/pox4::ura3,pox5::ura3/pox5::ura3)。含有CPR基因的质粒pAA067与pAA078共同转化。
Figure BPA00001516349201271
制备基因组DNA
制备转化体的基因组DNA以供PCR验证和Sourthern印迹分析。将分离的菌落接种入3mL YPD,30℃振荡培养过夜。离心沉淀细胞。向各沉淀物中加入200uL破坏缓冲液(2%Triton X-100,1%SDS,100mM NaCl,10mM Tris pH 8和1mM EDTA),将沉淀物重悬,转移至含有200uL 0.5mm氧化锆/二氧化硅珠的新鲜试管。将200uL苯酚∶氯仿∶异戊醇(25∶24∶1)加入各试管,然后涡旋振荡1分钟。向各试管中加入无菌蒸馏水(200uL),以13000rpm离心各管10分钟。乙醇沉淀水层,用70%乙醇洗涤。干燥后,将沉淀物重悬于100-200μl 10mM Tris。利用相同的程序对基因组DNA制品作sourthern印迹分析,各菌落测试25mL培养液。
表征含扩增的CPR和CYP52基因的菌株
利用引物oAA0252和oAA0256(CPR)、oAA0231和oAA0281(CYP52A15)以及oAA242和oAA0257(CYP52A16),通过PCR验证整合体。用于验证的引物示于下表。
采用Sourthern分析测定CPR、CYP52A15和CYP52A15基因的拷贝数。利用新英格兰生物实验室的NEBlot Phototope试剂盒(目录号N7550S),依据下表所示各基因靶标产生的PCR产物制备含基因特异性寡核苷酸的生物素化DNA探针。采用标准方法进行Sourthern杂交(例如,Sambrook,J.和Russell,D.W.(2001)《分子克隆:实验室手册》(MolecularCloning:A Laboratory Manual),(第3版),第6.33-6.64页.冷泉港实验室出版社)。采用新英格兰生物实验室的Phototope-Star检测试剂盒(目录号N7020S)检测杂交探针。通过所得条带的光密度分析测定拷贝数。
Figure BPA00001516349201282
实施例28:部分β-氧化阻断菌株的菌株评估
月桂酸甲酯原料的发酵
30℃,在SP92培养基(6.7g/L Difco酵母氮基料,3.0g/L Difco酵母提取物,3.0g/L硫酸铵,1.0g/L磷酸二氢钾,1.0g/L磷酸氢二钾,75g/L右旋糖)中振荡温育5mL起始培养物过夜,用其接种含25mL SP92培养基的烧瓶,起始OD600nm为约0.4。30℃,以约200rpm振荡温育培养物约18小时。4℃,以4,000x g离心10分钟以沉淀细胞,然后重悬在补充了0.1%右旋糖和2%月桂酸甲酯的SP92-D培养基中(6.7g/L Difco酵母氮基料,3.0g/LDifco酵母提取物,3.0g/L硫酸铵,1.0g/L磷酸二氢钾,1.0g/L磷酸氢二钾)。在30℃下继续振荡温育培养物,取样品,通过气相色谱(GC)分析脂肪酸和二酸。
将0.8mL 6.0M HCl加入1mL全培养物样品来制备GC样品,将样品储存于4℃待处理。样品处理为:在60℃水浴中温育5分钟,然后向1.8mL酸化的全培养物样品中加入4.0mL MTBE,涡流振荡20秒。室温下,分相10分钟。取出1mL MTBE相,用硫酸钠干燥。用BSTFA试剂(里格斯技术公司(Regis Technologies Inc.))衍生MTBE相的等份试样,通过装配有火焰电离检测器(Flame Ionization Detector)的GC分析。气相色谱的结果示于下表。
Figure BPA00001516349201291
肉豆蔻酸甲酯和油酸原料的发酵
基本上如月桂酸甲酯所述进行发酵,除了用2%肉豆蔻酸甲酯或2%油酸取代2%月桂酸甲酯。气相色谱的结果示于下表。
Figure BPA00001516349201292
Figure BPA00001516349201301
还利用椰油作为原料进行发酵。椰油含有不同碳链长度的脂肪酸混合物。脂肪酸的重量组成百分数是约6%癸酸(C10:0,其中0指双键或不饱和键的数目)、约47%月桂酸(C12:0)、约18%肉豆蔻酸(C14:0)、约9%棕榈酸(C16:0)、约3%硬脂酸(C18:0)、约6%油酸(C18:1,其中1指双键数)和约2%亚油酸(ω-6脂肪酸,C18:2)。在一些实施方式中,棕榈仁油可取代椰油。棕榈仁油的脂肪酸分布类似于椰油的。除了所用原料,基本上如本文所述进行发酵和GC。利用椰油作为原料进行发酵的结果如下所示。
Figure BPA00001516349201302
Figure BPA00001516349201311
实施例29:完全β-氧化阻断菌株的菌株评估
还利用肉豆蔻甲酯作为原料进行发酵。除了所用原料,基本上如本文所述进行发酵和GC。利用椰油作为原料进行发酵的结果如下所示。
Figure BPA00001516349201312
实施例30:新型脂肪醇氧化酶基因的核酸和氨基酸序列
如上所述,鉴定和克隆了新型脂肪醇氧化酶基因。本文提供了所述新型序列的核苷酸和氨基酸序列。实施例18显示了核苷酸和氨基酸序列相同性比较。
核苷酸序列
FAO-13(SEQ ID NO:1)
atggctccatttttgcccgaccaggtcgactacaaacacgtcgacacccttatgttattatgtgacgggatcatccacgaaaccaccgtcgaccaaatcaaagacgttattgctcctgacttccctgctgacaagtacgaagagtacgtcaggacattcaccaaaccctccgaaaccccagggttcagggaaaccgtctacaacacagtcaacgcaaacaccacggacgcaatccaccagttcattatcttgaccaatgttttggcatccagggtcttggctccagctttgaccaactcgttgacgcctatcaaggacatgagcttggaagaccgtgaaaaattgttggcctcgtggcgcgactccccaatcgctgccaaaaggaagttgttcaggttggtttctacgcttaccttggtcacgttcacgagattggccaatgagttgcatttgaaagccattcattatccaggaagagaagaccgtgaaaaggcttatgaaacccaggagattgacccttttaagtaccagtttttggaaaaaccgaagttttacggcgctgagttgtacttgccagatattgatgtgatcattattggatctggtgccggtgctggtgttgtggcccacactttggccaacgatggcttcaagagtttggttttggaaaagggcaaatactttagcaactccgagttgaactttgatgacaaggacggcgttcaagaattataccaaagtggaggtactttgactacagtcaaccaacagttgtttgttcttgctggttccacttttggtggcggtaccactgtcaattggtcagcctgtcttaagacgccattcaaggtgcgtaaggaatggtatgatgagtttggtgttgactttgctgctgatgaagcatacgataaagcgcaggattatgtttggcagcaaatgggagcttctaccgaaggcatcacccactctttggctaacgagattattattgaaggtggtaagaaattaggttacaaggccaaggtattagaccaaaacagcggtggtcatcctcagcacagatgcggtttctgttatttgggctgtaagcacggtatcaagcagggttctgttaataactggtttagagacgcagctgcccacggttcccagttcatgcaacaggttagagttttgcaaatacttaacaagaaggggatcgcttacggtatcttgtgtgaggatgttgtaaccggcgccaagttcaccattactggccccaaaaagtttgttgttgctgccggtgctttgaacactccatctgtgttggtcaactccggcttcaagaacaagaacatcggtaagaacttaactttgcacccagtttctgtcgtgtttggtgattttggcaaagacgttcaagcagaccacttccacaactccatcatgactgccctttgttcagaagccgctgatttagacggcaagggccatggatgcagaattgaaaccatcttgaacgctccattcatccaggcttcattcttaccatggagaggtagtaacgaggctagacgagacttgttgcgttacaacaacatggtggcgatgttgctccttagtcgtgacaccaccagtggttccgtttctgctcatccaaccaaacctgaagctttggttgtcgagtacgacgtgaacaagtttgacagaaactcgatcttgcaggcattgttggtcactgctgacttgttgtatatccaaggtgccaagagaatccttagtccacaggcatgggtgccaatttttgaatccgacaagccaaaggataagagatcaatcaaggacgaggactatgtcgaatggagagccaaggttgccaagattcctttcgacacctacggctcaccttatggttcggcacatcaaatgtcttcttgccgtatgtcaggtaagggtcctaaatacggtgctgttgacaccgatggtagattgtttgaatgttcgaatgtttatgttgccgatgcaagtcttttgccaactgcaagcggtgccaaccctatggtcaccaccatgactcttgccagacatgttgcgttaggtttggcagactccttgaagaccaaagccaagttgtag
FAO-17(SEQ ID NO:2)
atggctccatttttgcccgaccaggtcgactacaaacacgtcgacacccttatgttattatgtgacgggatcatccacgaaaccaccgtggacgaaatcaaagacgtcattgcccctgacttccccgccgacaaatacgaggagtacgtcaggacattcaccaaaccctccgaaaccccagggttcagggaaaccgtctacaacaccgtcaacgcaaacaccatggatgcaatccaccagttcattatcttgaccaatgttttgggatcaagggtcttggcaccagctttgaccaactcgttgactcctatcaaggacatgagcttggaagaccgtgaaaagttgttagcctcgtggcgtgactcccctattgctgctaaaaggaagttgttcaggttggtttctacgcttaccttggtcacgttcacgagattggccaatgagttgcatttgaaagccattcattatccaggaagagaagaccgtgaaaaggcttatgaaacccaggagattgacccttttaagtaccagtttttggaaaaaccgaagttttacggcgctgagttgtacttgccagatattgatgtgatcattattggatctggtgccggtgctggtgttgtggcccacactttggccaacgatggcttcaagagtttggttttggaaaagggcaaatactttagcaactccgagttgaactttgatgacaaggacggcgttcaagaattataccaaagtggaggtactttgactacagtcaaccaacagttgtttgttcttgctggttccacttttggtggcggtaccactgtcaattggtcagcctgtcttaagacgccattcaaggtgcgtaaggaatggtatgatgagtttggtgttgactttgctgctgatgaagcatacgataaagcgcaggattatgtttggcagcaaatgggagcttctaccgaaggcatcacccactctttggctaacgagattattattgaaggtggtaagaaattaggttacaaggccaaggtattagaccaaaacagcggtggtcatcctcagcacagatgcggtttctgttatttgggttgtaagcacggtatcaagcagggctctgttaataactggtttagagacgcagctgcccacggttctcagttcatgcaacaggttagagttttgcaaatccttaacaagaagggcatcgcttatggtatcttgtgtgaggatgttgtaaccggtgccaagttcaccattactggccccaaaaagtttgttgttgccgccggcgccttaaacactccatctgtgttggtcaactccggattcaagaacaagaacatcggtaagaacttaactttgcatccagtttctgtcgtgtttggtgattttggcaaagacgttcaagcagaccacttccacaactccatcatgactgccctttgttcagaagccgctgatttagacggcaagggccatggatgcagaattgaaaccatcttgaacgctccattcatccaggcttcattcttaccatggagaggtagtaacgaggctagacgagacttgttgcgttacaacaacatggtggcgatgttgctccttagtcgtgacaccaccagtggttccgtttctgctcatccaaccaaacctgaagctttggttgtcgagtacgacgtgaacaagtttgacagaaactcgatcttgcaggcattgttggtcactgctgacttgttgtatatccaaggtgccaagagaatccttagtccacaggcatgggtgccaatttttgaatccgacaagccaaaggataagagatcaatcaaggacgaggactatgtcgaatggagagccaaggttgccaagattcctttcgacacctacggctcaccttatggttcggcacatcaaatgtcttcttgccgtatgtcaggtaagggtcctaaatacggtgctgttgacaccgatggtagattgtttgaatgttcgaatgtttatgttgccgatgcaagtcttttgccaactgcaagcggtgccaaccctatggtcaccaccatgactcttgcaagacatgttgcgttaggtttggcagactccttgaagaccaaggccaagttgtag
FAO-20(SEQ ID NO:3)
atggctccatttttgcccgaccaggtcgactacaaacacgtcgacacccttatgttattatgtgacgggatcatccacgaaaccaccgtcgaccaaatcaaagacgttattgctcctgacttccctgctgacaagtacgaagagtacgtcaggacattcaccaaaccctccgaaaccccagggttcagggaaaccgtctacaacacagtcaacgcaaacaccacggacgcaatccaccagttcattatcttgaccaatgttttggcatccagggtcttggctccagctttgaccaactcgttgacgcctatcaaggacatgagcttggaagaccgtgaaaaattgttggcctcgtggcgcgactccccaatcgctgccaaaaggaaattgttcaggttggtttccacgcttaccttggttactttcacgagattggccaatgagttgcatttgaaagccattcactatccaggaagagaagaccgtgaaaaggcttatgaaacccaggagattgaccctttcaagtaccagtttatggaaaagccaaagtttgacggcgctgagttgtacttgccagatattgatgttatcattattggatctggtgccggtgctggtgttgtggcccacactttggccaacgatggcttcaagagtttggttttggaaaagggcaaatactttagcaactccgagttgaactttgatgacaaggacggcgttcaagaattataccaaagtggaggtactttgactacagtcaaccaacagttgtttgttcttgctggttccacttttggtggcggtaccactgtcaattggtcagcctgtcttaagacgccattcaaggtgcgtaaggaatggtatgatgagtttggtgttgactttgctgctgatgaagcatacgataaagcgcaggattatgtttggcagcaaatgggagcttctaccgaaggcatcacccactctttggctaacgagattattattgaaggtggtaagaaattaggttacaaggccaaggtattagaccaaaacagcggtggtcatcctcagcacagatgcggtttctgttatttgggctgtaagcacggtatcaagcagggttctgttaataactggtttagagacgcagctgcccacggttcccagttcatgcaacaggttagagttttgcaaatacttaacaagaaggggatcgcttacggtatcttgtgtgaggatgttgtaaccggcgccaagttcaccattactggccccaaaaagtttgttgttgctgccggtgctttgaacactccatctgtgttggtcaactccggcttcaagaacaagaacatcggtaagaacttaactttgcacccagtttctgtcgtgtttggtgattttggcaaagacgttcaagcagaccacttccacaactccatcatgactgccctttgttcagaagccgctgatttagacggcaagggccatggatgcagaattgaaaccatcttgaacgctccattcatccaggcttcattcttaccatggagaggtagtaacgaggctagacgagacttgttgcgttacaacaacatggtggcgatgttgctccttagtcgtgacaccaccagtggttccgtttctgctcatccaaccaaacctgaagctttggttgtcgagtacgacgtgaacaagtttgacagaaactcgatcttgcaggcattgttggtcactgctgacttgttgtatatccaaggtgccaagagaatccttagtccacaggcatgggtgccaatttttgaatccgacaagccaaaggataagagatcaatcaaggacgaggactatgtcgaatggagagccaaggttgccaagattcctttcgacacctacggctcaccttatggttcggcacatcaaatgtcttcttgccgtatgtcaggtaagggtcctaaatacggtgctgttgacaccgatggtagattgtttgaatgttcgaatgtttatgttgccgatgcaagtcttttgccaactgcaagcggtgccaaccctatggtcaccaccatgactcttgccagacatgttgcgttaggtttggcagactccttgaagaccaaagccaagttgtag
FAO2a(SEQ ID NO:4)
atgaataccttcttgccagacgtgctcgaatacaaacacgtcgacacccttttgttattgtgtgacgggatcatccacgaaaccacagtcgatcagatcaaggacgccattgctcccgacttccctgaggaccagtacgaggagtatctcaagaccttcaccaagccatctgagacccctgggttcagagaagccgtctacgacacgatcaacgccaccccaaccgatgccgtgcacatgtgtattgtcttgaccaccgcattggactccagaatcttggcccccacgttgaccaactcgttgacgcctatcaaggatatgaccttgaaggagcgtgaacaattgttggcctcttggcgtgattccccgattgcggcaaagagaagattgttcagattgatttcctcgcttaccttgacgacgtttacgagattggccagcgaattgcacttgaaagccatccactaccctggcagagacttgcgtgaaaaggcgtatgaaacccaggtggttgaccctttcaggtacctgtttatggagaaaccaaagtttgacggcgccgaattgtacttgccagatatcgacgtcatcatcattggatcaggcgccggtgctggtgtcatggcccacactctcgccaacgacgggttcaagaccttggttttggaaaagggaaagtatttcagcaactccgagttgaactttaatgacgctgatggcgtgaaagagttgtaccaaggtaaaggtgctttggccaccaccaatcagcagatgtttattcttgccggttccactttgggcggtggtaccactgtcaactggtctgcttgccttaaaacaccatttaaagtgcgtaaggagtggtacgacgagtttggtcttgaatttgctgccgatgaagcctacgacaaagcgcaggattatgtttggaaacaaatgggtgcttcaacagatggaatcactcactccttggccaacgaagttgtggttgaaggaggtaagaagttgggctacaagagcaaggaaattgagcagaacaacggtggccaccctgaccacccatgtggtttctgttacttgggctgtaagtacggtattaaacagggttctgtgaataactggtttagagacgcagctgcccacgggtccaagttcatgcaacaagtcagagttgtgcaaatcctcaacaagaatggcgtcgcttatggtatcttgtgtgaggatgtcgaaaccggagtcaggttcactattagtggccccaaaaagtttgttgtttctgctggttctttgaacacgccaactgtgttgaccaactccggattcaagaacaagcacattggtaagaacttgacgttgcacccagtttccaccgtgtttggtgactttggcagagacgtgcaagccgaccatttccacaaatctattatgacttcgctttgttacgaggttgctgacttggacggcaagggccacggatgcagaatcgaaaccatcttgaacgctccattcatccaagcttctttgttgccatggagaggaagtgacgaggtcagaagagacttgttgcgttacaacaacatggtggccatgttgcttatcacgcgtgataccaccagtggttcagtttctgctgacccaaagaagcccgacgctttgattgtcgactatgagattaacaagtttgacaagaatgccatcttgcaagctttcttgatcacttccgacatgttgtacattgaaggtgccaagagaatcctcagtccacagccatgggtgccaatctttgagtcgaacaagccaaaggagcaaagaacgatcaaggacaaggactatgttgagtggagagccaaggctgctaagatacctttcgacacctacggttctgcatatgggtccgcacatcaaatgtccacctgtcgtatgtccggaaagggtcctaaatacggtgctgttgatactgatggtagattgtttgaatgttcgaatgtctatgttgctgatgctagtgttttgcctactgccagcggtgccaacccaatgatatccaccatgacctttgctagacagattgcgttaggtttggctgactccttgaagaccaaacccaagttgtag
FAO2b(SEQ ID NO:5)
atgaataccttcttgccagacgtgctcgaatacaaacacgtcgatacccttttgttattatgtgacgggatcatccacgaaaccacagtcgaccagatcagggacgccattgctcccgacttccctgaagaccagtacgaggagtatctcaagaccttcaccaagccatctgagacccctgggttcagagaagccgtctacgacacgatcaacagcaccccaaccgaggctgtgcacatgtgtattgtattgaccaccgcattggactcgagaatcttggcccccacgttgaccaactcgttgacgcctatcaaggatatgaccttgaaagagcgtgaacaattgttggctgcctggcgtgattccccgatcgcggccaagagaagattgttcagattgatttcctcacttaccttgacgacctttacgagattggccagcgacttgcacttgagagccatccactaccctggcagagacttgcgtgaaaaggcatatgaaacccaggtggttgaccctttcaggtacctgtttatggaaaaaccaaagtttgacggcaccgagttgtacttgccagatatcgacgtcatcatcattggatccggtgccggtgctggtgtcatggcccacactttagccaacgacgggtacaagaccttggttttggaaaagggaaagtatttcagcaactccgagttgaactttaatgatgccgatggtatgaaagagttgtaccaaggtaaatgtgcgttgaccaccacgaaccagcagatgtttattcttgccggttccactttgggcggtggtaccactgttaactggtctgcttgtcttaaaacaccatttaaagtgcgtaaggagtggtacgacgagtttggtcttgaatttgctgccgacgaagcctacgacaaagcacaagactatgtttggaaacaaatgggcgcttctaccgaaggaatcactcactctttggcgaacgcggttgtggttgaaggaggtaagaagttgggttacaagagcaaggaaatcgagcagaacaatggtggccatcctgaccacccctgtggtttctgttacttgggctgtaagtacggtattaagcagggttctgtgaataactggtttagagacgcagctgcccacgggtccaagttcatgcaacaagtcagagttgtgcaaatcctccacaataaaggcgtcgcttatggcatcttgtgtgaggatgtcgagaccggagtcaaattcactatcagtggccccaaaaagtttgttgtttctgcaggttctttgaacacgccaacggtgttgaccaactccggattcaagaacaaacacatcggtaagaacttgacgttgcacccagtttcgaccgtgtttggtgactttggcagagacgtgcaagccgaccatttccacaaatctattatgacttcgctctgttacgaagtcgctgacttggacggcaagggccacggatgcagaatcgagaccatcttgaacgctccattcatccaagcttctttgttgccatggagaggaagcgacgaggtcagaagagacttgttgcgttacaacaacatggtggccatgttgcttatcacccgtgacaccaccagtggttcagtttctgctgacccaaagaagcccgacgctttgattgtcgactatgacatcaacaagtttgacaagaatgccatcttgcaagctttcttgatcacctccgacatgttgtacatcgaaggtgccaagagaatcctcagtccacaggcatgggtgccaatctttgagtcgaacaagccaaaggagcaaagaacaatcaaggacaaggactatgtcgaatggagagccaaggctgccaagatacctttcgacacctacggttctgcctatgggtccgcacatcaaatgtccacctgtcgtatgtccggaaagggtcctaaatacggcgccgttgataccgatggtagattgtttgaatgttcgaatgtctatgttgctgatgctagtgttttgcctactgccagcggtgccaacccaatgatctccaccatgacgtttgctagacagattgcgttaggtttggctgactctttgaagaccaaacccaagttgtag
除了分离的新型FAO基因,还分离了与上述引物设计所用序列基本上相同的序列。下文显示了基因的核苷酸序列。
FAO-18(SEQ ID NO:6)
atggctccatttttgcccgaccaggtcgactacaaacacgtcgacacccttatgttattatgtgacgggatcatccacgaaaccaccgtggacgaaatcaaagacgtcattgcccctgacttccccgccgacaaatacgaggagtacgtcaggacattcaccaaaccctccgaaaccccagggttcagggaaaccgtctacaacaccgtcaacgcaaacaccatggatgcaatccaccagttcattatcttgaccaatgttttgggatcaagggtcttggcaccagctttgaccaactcgttgactcctatcaaggacatgagcttggaagaccgtgaaaagttgttagcctcgtggcgtgactcccctattgctgctaaaaggaagttgttcaggttggtttctacgcttaccttggtcacgttcacgagattggccaatgagttgcatttgaaagccattcattatccaggaagagaagaccgtgaaaaggcttatgaaacccaggagattgacccttttaagtaccagtttttggaaaaaccgaagttttacggcgctgagttgtacttgccagatattgatgtgatcattattggatctggggccggtgctggtgtcgtggcccacactttgaccaacgacggcttcaagagtttggttttggaaaagggcagatactttagcaactccgagttgaactttgatgacaaggacggggttcaagaattataccaaagtggaggtactttgaccaccgtcaaccagcagttgtttgttcttgctggttccacttttggtggtggtaccactgtcaattggtcggcctgtcttaaaacgccattcaaggtgcgtaaggaatggtatgatgagtttggcgttgactttgctgccgatgaagcctacgacaaagcacaggattatgtttggcagcaaatgggagcttctaccgaaggcatcacccactctttggctaacgagattattattgaaggtggcaagaaattaggttacaaggccaaggtattagaccaaaacagcggtggtcatcctcatcacagatgcggtttctgttatttgggttgtaagcacggtatcaagcagggctctgttaataactggtttagagacgcagctgcccacggttctcagttcatgcaacaggttagagttttgcaaatccttaacaagaagggcatcgcttatggtatcttgtgtgaggatgttgtaaccggtgccaagttcaccattactggccccaaaaagtttgttgttgccgccggcgccttaaacactccatctgtgttggtcaactccggattcaagaacaagaacatcggtaagaacttaactttgcatccagtttctgtcgtgtttggtgattttggcaaagacgttcaagcagatcacttccacaactccatcatgactgctctttgttcagaagccgctgatttagacggcaagggtcatggatgcagaattgaaaccatcttgaacgctccattcatccaggcttcattcttaccatggagaggtagtaacgaggctagacgagacttgttgcgttacaacaacatggtggccatgttacttcttagtcgtgataccaccagtggttccgtttcgtcccatccaactaaacctgaagcattagttgtcgagtacgacgtgaacaagtttgacagaaactccatcttgcaggcattgttggtcactgctgacttgttgtacattcaaggtgccaagagaatccttagtccccaaccatgggtgccaatttttgaatccgacaagccaaaggataagagatcaatcaaggacgaggactatgtcgaatggagagccaaggttgccaagattccttttgacacctacggctcgccttatggttcggcgcatcaaatgtcttcttgtcgtatgtcaggtaagggtcctaaatacggtgctgttgataccgatggtagattgtttgaatgttcgaatgtttatgttgctgacgctagtcttttgccaactgctagcggtgctaatcctatggtcaccaccatgactcttgcaagacatgttgcgttaggtttggcagactccttgaagaccaaggccaagttgtag
簇核苷酸序列比对
CLUSTAL 2.0.12多序列比对
Figure BPA00001516349201351
Figure BPA00001516349201361
Figure BPA00001516349201371
Figure BPA00001516349201381
Figure BPA00001516349201391
Figure BPA00001516349201401
氨基酸序列
FAO-1-SEQ ID NO:7
MAPFLPDQVDYKHVDTLMLLCDGIIHETTVDEIKDVIAPDFPADKYEEYVRTFTKPSETPGFRETVYNTVNANTMDAIHQFIILTNVLGSRVLAPALTNSLTPIKDMSLEDREKLLASWRDSPIAAKRKLFRLVSTLTLVTFTRLANELHLKAIHYPGREDREKAYETQEIDPFKYQFLEKPKFYGAELYLPDIDVIIIGSGAGAGVVAHTLTNDGFKSLVLEKGRYFSNSELNFDDKDGVQELYQSGGTLTTVNQQLFVLAGSTFGGGTTVNWSACLKTPFKVRKEWYDEFGVDFAADEAYDKAQDYVWQQMGASTEGITHSLANEIIIEGGKKLGYKAKVLDQNSGGHPHHRCGFCYLGCKHGIKQGSVNNWFRDAAAHGSQFMQQVRVLQILNKKGIAYGILCEDVVTGAKFTITGPKKFVVAAGALNTPSVLVNSGFKNKNIGKNLTLHPVSVVFGDFGKDVQADHFHNSIMTALCSEAADLDGKGHGCRIETILNAPFIQASFLPWRGSNEARRDLLRYNNMVAMLLLSRDTTSGSVSSHPTKPEALVVEYDVNKFDRNSILQALLVTADLLYIQGAKRILSPQPWVPIFESDKPKDKRSIKDEDYVEWRAKVAKIPFDTYGSPYGSAHQMSSCRMSGKGPKYGAVDTDGRLFECSNVYVADASLLPTASGANPMVTTMTLARHVALGLADSLKTKAKL
FAO-13-SEQ ID NO:8
MAPFLPDQVDYKHVDTLMLLCDGIIHETTVDQIKDVIAPDFPADKYEEYVRTFTKPSETPGFRETVYNTVNANTTDAIHQFIILTNVLASRVLAPALTNSLTPIKDMSLEDREKLLASWRDSPIAAKRKLFRLVSTLTLVTFTRLANELHLKAIHYPGREDREKAYETQEIDPFKYQFLEKPKFYGAELYLPDIDVIIIGSGAGAGVVAHTLANDGFKSLVLEKGKYFSNSELNFDDKDGVQELYQSGGTLTTVNQQLFVLAGSTFGGGTTVNWSACLKTPFKVRKEWYDEFGVDFAADEAYDKAQDYVWQQMGASTEGITHSLANEIIIEGGKKLGYKAKVLDQNSGGHPQHRCGFCYLGCKHGIKQGSVNNWFRDAAAHGSQFMQQVRVLQILNKKGIAYGILCEDVVTGAKFTITGPKKFVVAAGALNTPSVLVNSGFKNKNIGKNLTLHPVSVVFGDFGKDVQADHFHNSIMTALCSEAADLDGKGHGCRIETILNAPFIQASFLPWRGSNEARRDLLRYNNMVAMLLLSRDTTSGSVSAHPTKPEALVVEYDVNKFDRNSILQALLVTADLLYIQGAKRILSPQAWVPIFESDKPKDKRSIKDEDYVEWRAKVAKIPFDTYGSPYGSAHQMSSCRMSGKGPKYGAVDTDGRLFECSNVYVADASLLPTASGANPMVTTMTLARHVALGLADSLKTKAKL
FAO-20-SEQ ID NO:9
MAPFLPDQVDYKHVDTLMLLCDGIIHETTVDQIKDVIAPDFPADKYEEYVRTFTKPSETPGFRETVYNTVNANTTDAIHQFIILTNVLASRVLAPALTNSLTPIKDMSLEDREKLLASWRDSPIAAKRKLFRLVSTLTLVTFTRLANELHLKAIHYPGREDREKAYETQEIDPFKYQFMEKPKFDGAELYLPDIDVIIIGSGAGAGVVAHTLANDGFKSLVLEKGKYFSNSELNFDDKDGVQELYQSGGTLTTVNQQLFVLAGSTFGGGTTVNWSACLKTPFKVRKEWYDEFGVDFAADEAYDKAQDYVWQQMGASTEGITHSLANEIIIEGGKKLGYKAKVLDQNSGGHPQHRCGFCYLGCKHGIKQGSVNNWFRDAAAHGSQFMQQVRVLQILNKKGIAYGILCEDVVTGAKFTITGPKKFVVAAGALNTPSVLVNSGFKNKNIGKNLTLHPVSVVFGDFGKDVQADHFHNSIMTALCSEAADLDGKGHGCRIETILNAPFIQASFLPWRGSNEARRDLLRYNNMVAMLLLSRDTTSGSVSAHPTKPEALVVEYDVNKFDRNSILQALLVTADLLYIQGAKRILSPQAWVPIFESDKPKDKRSIKDEDYVEWRAKVAKIPFDTYGSPYGSAHQMSSCRMSGKGPKYGAVDTDGRLFECSNVYVADASLLPTASGANPMVTTMTLARHVALGLADSLKTKAKL
FAO-17-SEQ ID NO:10
MAPFLPDQVDYKHVDTLMLLCDGIIHETTVDEIKDVIAPDFPADKYEEYVRTFTKPSETPGFRETVYNTVNANTMDAIHQFIILTNVLGSRVLAPALTNSLTPIKDMSLEDREKLLASWRDSPIAAKRKLFRLVSTLTLVTFTRLANELHLKAIHYPGREDREKAYETQEIDPFKYQFLEKPKFYGAELYLPDIDVIIIGSGAGAGVVAHTLANDGFKSLVLEKGKYFSNSELNFDDKDGVQELYQSGGTLTTVNQQLFVLAGSTFGGGTTVNWSACLKTPFKVRKEWYDEFGVDFAADEAYDKAQDYVWQQMGASTEGITHSLANEIIIEGGKKLGYKAKVLDQNSGGHPQHRCGFCYLGCKHGIKQGSVNNWFRDAAAHGSQFMQQVRVLQILNKKGIAYGILCEDVVTGAKFTITGPKKFVVAAGALNTPSVLVNSGFKNKNIGKNLTLHPVSVVFGDFGKDVQADHFHNSIMTALCSEAADLDGKGHGCRIETILNAPFIQASFLPWRGSNEARRDLLRYNNMVAMLLLSRDTTSGSVSAHPTKPEALVVEYDVNKFDRNSILQALLVTADLLYIQGAKRILSPQAWVPIFESDKPKDKRSIKDEDYVEWRAKVAKIPFDTYGSPYGSAHQMSSCRMSGKGPKYGAVDTDGRLFECSNVYVADASLLPTASGANPMVTTMTLARHVALGLADSLKTKAKl
FAO-2a-SEQ ID NO:11
MNTFLPDVLEYKHVDTLLLLCDGIIHETTVDQIKDAIAPDFPEDQYEEYLKTFTKPSETPGFREAVYDTINATPTDAVHMCIVLTTALDSRILAPTLTNSLTPIKDMTLKEREQLLASWRDSPIAAKRRLFRLISSLTLTTFTRLASELHLKAIHYPGRDLREKAYETQVVDPFRYSFMEKPKFDGAELYLPDIDVIIIGSGAGAGVMAHTLANDGFKTLVLEKGKYFSNSELNFNDADGVKELYQGKGALATTNQQMFILAGSTLGGGTTVNWSACLKTPFKVRKEWYDEFGLEFAADEAYDKAQDYVWKQMGASTDGITHSLANEVVVEGGKKLGYKSKEIEQNNGGHPDHPCGFCYLGCKYGIKQGSVNNWFRDAAAHGSKFMQQVRVVQILNKNGVAYGILCEDVETGVRFTISGPKKFVVSAGSLNTPTVLTNSGFKNKHIGKNLTLHPVSTVFGDFGRDVQADHFHKSIMTSLCYEVADLDGKGHGCRIETILNAPFIQASLLPWRGSDEVRRDLLRYNNMVAMLLITRDTTSGSVSADPKKPDALIVDYEINKFDKNAILQAFLITSDMLYIEGAKRILSPQPWVPIFESNKPKEQRTIKDKDYVEWRAKAAKIPFDTYGSAYGSAHQMSTCRMSGKGPKYGAVDTDGRLFECSNVYVADASVLPTASGANPMISTMTFARQIALGLADSLKTKPKL
FAO-2b -SEQ ID NO:12
MNTFLPDVLEYKHVDTLLLLCDGIIHETTVDQIRDAIAPDFPEDQYEEYLKTFTKPSETPGFREAVYDTINSTPTEAVHMCIVLTTALDSRILAPTLTNSLTPIKDMTLKEREQLLAAWRDSPIAAKRRLFRLISSLTLTTFTRLASDLHLRAIHYPGRDLREKAYETQVVDPFRYSFMEKPKFDGTELYLPDIDVIIIGSGAGAGVMAHTLANDGYKTLVLEKGKYFSNSELNFNDADGMKELYQGKCALTTTNQQMFILAGSTLGGGTTVNWSACLKTPFKVRKEWYDEFGLEFAADEAYDKAQDYVWKQMGASTEGITHSLANAVVVEGGKKLGYKSKEIEQNNGGHPDHPCGFCYLGCKYGIKQGSVNNWFRDAAAHGSKFMQQVRVVQILHNKGVAYGILCEDVETGVKFTISGPKKFVVSAGSLNTPTVLTNSGFKNKHIGKNLTLHPVSTVFGDFGRDVQADHFHKSIMTSLCYEVADLDGKGHGCRIETILNAPFIQASLLPWRGSDEVRRDLLRYNNMVAMLLITRDTTSGSVSADPKKPDALIVDYDINKFDKNAILQAFLITSDMLYIEGAKRILSPQAWVPIFESNKPKEQRTIKDKDYVEWRAKAAKIPFDTYGSAYGSAHQMSTCRMSGKGPKYGAVDTDGRLFECSNVYVADASVLPTASGANPMISTMTFARQIALGLADSLKTKPKL
簇氨基酸序列比对
Figure BPA00001516349201421
Figure BPA00001516349201431
实施例31:实施方式的例子
下文提供了某些实施方式的非限制性例子。
A1.一种能产生己二酸的工程改造微生物,所述微生物包含选自下组的一种或多种改变的活性:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性和乙酰基-CoA C-酰基转移酶活性。
A1.1如实施方式1所述的工程改造微生物,其包含增加或增强以下活性的遗传修饰:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。
A1.2如实施方式1所述的工程改造微生物,其包含降低酰基-CoA氧化酶活性的遗传修饰。
A1.3如实施方式1.1所述的工程改造微生物,所述遗传修饰包括编码具有以下活性的多肽的多核苷酸拷贝增加:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性或乙酰基-CoA C-酰基转移酶活性。
A1.4如实施方式1.1所述的工程改造微生物,所述遗传修饰包括将与编码具有以下活性的多肽的多核苷酸功能性连接的异源启动子和/或5′UTR插入所述微生物的基因组DNA:6-氧代己酸脱氢酶活性、6-羟基已酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性或乙酰基-CoA C-酰基转移酶活性。
A2.如实施方式A1到A1.4中任一项所述的工程改造微生物,其包含改变的硫酯酶活性。
A2.1如实施方式A2所述的工程改造微生物,其包含增加或增强硫酯酶活性的遗传改变。
A2.2如实施方式A2.1所述的工程改造微生物,其包含编码具有硫酯酶活性的多肽的异源多核苷酸。
A3.如实施方式A1到A2.2中任一项所述的工程改造微生物,其包含编码具有6-氧代己酸脱氢酶活性的多肽的异源多核苷酸。
A3.1如实施方式A1到A3中任一项所述的工程改造微生物,其包含编码具有ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。
A4.如实施方式A3和A3.1所述的工程改造微生物,其中所述异源多核苷酸来自细菌。
A5.如实施方式A4所述的工程改造微生物,其中所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
A6.如实施方式A1或A2所述的工程改造微生物,其包含编码具有6-羟基己酸脱氢酶活性的多肽的异源多核苷酸。
A6.1如实施方式A1或A2所述的工程改造微生物,其包含编码具有ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。
A7.如实施方式A6或A6.1所述的工程改造微生物,其中所述异源多核苷酸来自细菌。
A8.如实施方式A7所述的工程改造微生物,其中所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
A9.如实施方式A1或A2所述的工程改造微生物,其包含编码具有己酸合酶亚基A活性的多肽的异源多核苷酸。
A10.如实施方式A1或A2所述的工程改造微生物,其包含编码具有己酸合酶亚基B活性的多肽的异源多核苷酸。
A11.如实施方式A9或A10所述的工程改造微生物,其包含独立选自细菌的异源多核苷酸。
A12.如实施方式A11所述的工程改造微生物,其中所述细菌是芽胞杆菌。
A13.如实施方式A12所述的工程改造微生物,其中所述芽孢杆菌是巨大芽孢杆菌。
A14.如实施方式A1或A2所述的工程改造微生物,其包含编码具有单加氧酶活性的多肽的异源多核苷酸。
A15.如实施方式A14所述的工程改造微生物,其中所述异源多核苷酸来自真菌。
A16.如实施方式A15所述的工程改造微生物,其中所述真菌是曲霉真菌。
A17.如实施方式A16所述的工程改造微生物,其中所述曲霉真菌是寄生曲霉。
A18.如实施方式A1或A2所述的工程改造微生物,其包含导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰。
A19.如实施方式A18所述的工程改造微生物,其中所述遗传修饰降低聚酮化合物合酶活性。
A20.如实施方式A1-A19中任一项所述的工程改造微生物,其是真核生物。
A21.如实施方式A20所述的工程改造微生物,其是酵母菌。
A22.如实施方式A21所述的工程改造微生物,其中所述酵母菌是念珠菌酵母。
A23.如实施方式A22所述的工程改造微生物,其中所述念珠菌酵母是热带念珠菌菌株。
A24.如实施方式A20所述的工程改造微生物,其是真菌。
A25.如实施方式A24所述的工程改造微生物,其中所述真菌是耶氏酵母真菌。
A26.如实施方式A25所述的工程改造微生物,其中所述耶氏酵母真菌是解脂耶氏酵母。
A27.如实施方式A24所述的工程改造微生物,其中所述真菌是曲霉真菌。
A28.如实施方式A27所述的工程改造微生物,其中所述曲霉真菌是寄生曲霉菌株或构巢曲霉菌株。
A29.如实施方式A1-A28中任一项所述的工程改造微生物,其包含减少6-羟基己酸转化的遗传修饰。
A30.如实施方式A29所述的工程改造微生物,其中所述遗传修饰降低6-羟基己酸脱氢酶活性。
A31.如实施方式A1-A30中任一项所述的工程改造微生物,其包含降低β-氧化活性的遗传修饰。
A32.如实施方式A31所述的工程改造微生物,所述遗传修饰使得β-氧化活性不可检测。
A33.如实施方式A31所述的工程改造微生物,其中所述遗传修饰部分降低β-氧化活性。
A34.如实施方式A31-A33中任一项所述的工程改造微生物,其中所述遗传修饰包括破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。
A35.如实施方式A31-A33中任一项所述的工程改造微生物,其中所述遗传修饰包括破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子。
A36.如实施方式A34或A35所述的工程改造微生物,其中所述具有酰基-CoA氧化酶活性的多肽是POX多肽。
A37.如实施方式A36所述的工程改造微生物,其中所述POX多肽是POX4多肽,POX5多肽,或POX4多肽和POX5多肽。
A38.如实施方式A1-A37中任一项所述的工程改造微生物,其与原料接触。
A39.如实施方式A38所述的工程改造微生物,其中所述原料包含糖。
A40.如实施方式A39所述的工程改造微生物,其中所述糖是单糖、多糖或单糖与多糖的混合物。
A41.如实施方式A38所述的工程改造微生物,其中所述原料包含石蜡。
A42.如实施方式A41所述的工程改造微生物,其中所述石蜡是饱和石蜡、不饱和石蜡、取代的石蜡、支链石蜡、线形石蜡或它们的组合。
A43.如实施方式A41或A42所述的工程改造微生物,其中所述石蜡包含约1到约60个碳原子。
A44.如实施方式A41-A43中任一项所述的工程改造微生物,其中所述石蜡是石蜡的混合物。
A45.如实施方式A44所述的工程改造微生物,其中所述石蜡混合物中石蜡的平均碳原子数是约8个碳原子到约18个碳原子。
A46.如实施方式A45所述的工程改造微生物,其中所述平均碳原子数是约10到约16个碳原子。
A46.1如实施方式A46所述的工程改造微生物,其中所述平均碳原子数是约12个原子。
A47.如实施方式A41-A46.1中任一项所述的工程改造微生物,其中所述石蜡在蜡中。
A48.如实施方式A41-A46.1中任一项所述的工程改造微生物,其中所述石蜡在油中。
A49.如实施方式A41-A48中任一项所述的工程改造微生物,其中所述石蜡来自石油产品。
A50.如实施方式A49所述的工程改造微生物,其中所述石油产品是石油馏出物。
A51.如实施方式A41-A48中任一项所述的工程改造微生物,其中所述石蜡来自植物或植物产品。
B1.一种产生己二酸的工程改造微生物,所述微生物包含改变的单加氧酶活性。
B1.1如实施方式B1所述的工程改造微生物,其包含改变单加氧酶活性的遗传修饰。
B1.2如实施方式B1或B1.1所述的工程改造微生物,其包含改变选自下组的单加氧酶活性的遗传修饰。
B2.如实施方式B1.1所述的工程改造微生物,其包含编码具有单加氧酶活性的多肽的异源多核苷酸。
B3.如实施方式B2所述的工程改造微生物,其中所述异源多核苷酸来自真菌。
B4.如实施方式B3所述的工程改造微生物,其中所述真菌是曲霉真菌。
B5.如实施方式B4所述的工程改造微生物,其中所述曲霉真菌是寄生曲霉。
B6.如实施方式B1-B5中任一项所述的工程改造微生物,其包含导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰。
B7.如实施方式B6所述的工程改造微生物,其中所述遗传修饰降低聚酮化合物合酶活性。
B8.如实施方式B1-B5中任一项所述的工程改造微生物,其包含改变的己酸合酶活性。
B9.如实施方式B8所述的工程改造微生物,其中所述改变的己酸合酶活性是改变的己酸合酶亚基A活性、改变的己酸合酶亚基B活性、或改变的己酸合酶亚基A活性和改变的己酸合酶亚基B活性。
B9.1如实施方式B9所述的工程改造微生物,其包含增加或增强己酸合酶活性的遗传改变。
B10.如实施方式B8、B9或B9.1所述的工程改造微生物,其包含编码具有己酸合酶活性的多肽的异源多核苷酸。
B11.如实施方式B10所述的工程改造微生物,其中所述异源多核苷酸来自真菌。
B12.如实施方式B11所述的工程改造微生物,其中所述真菌是曲霉真菌。
B13.如实施方式B11所述的工程改造微生物,其中所述曲霉真菌是寄生曲霉。
B14.如实施方式B1到B13中任一项所述的工程改造微生物,其包含改变的硫酯酶活性。
B14.1如实施方式B14所述的工程改造微生物,其包含增加或增强硫酯酶活性的遗传修饰。
B14.2如实施方式B14或B14.1所述的工程改造微生物,其包含编码具有硫酯酶活性的多肽的异源多核苷酸。
B15.如实施方式B1到B14.2中任一项所述的工程改造微生物,其包含改变的6-氧代己酸脱氢酶活性。
B15.1如实施方式B15所述的工程改造微生物,其包含增加或增强6-氧代己酸脱氢酶活性的遗传修饰。
B15.2如实施方式B1到B15.1中任一项所述的工程改造微生物,其包含改变的ω氧代脂肪酸脱氢酶活性。
B15.3如实施方式B15.2所述的工程改造微生物,其包含增加或增强ω氧代脂肪酸脱氢酶活性的遗传修饰。
B16.如实施方式B15-B15.3中任一项所述的工程改造微生物,其包含编码具有6-氧代己酸脱氢酶活性的多肽的异源多核苷酸。
B16.1如实施方式B15-B16中任一项所述的工程改造微生物,其包含编码具有ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。
B17.如实施方式B16或B16.1所述的工程改造微生物,其中所述异源多核苷酸来自细菌。
B18.如实施方式B17所述的工程改造微生物,其中所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
B19.如实施方式B1-B18中任一项所述的工程改造微生物,其包含改变的6-羟基己酸脱氢酶活性。
B19.1如实施方式B19所述的工程改造微生物,其包含增加或增强6-羟基己酸脱氢酶活性的遗传修饰。
B19.2如实施方式B1-B19.1中任一项所述的工程改造微生物,其包含改变的ω羟基脂肪酸脱氢酶活性。
B19.3如实施方式B19.2所述的工程改造微生物,其包含增加或增强ω羟基脂肪酸脱氢酶活性的遗传修饰。
B20.如实施方式B19-B19.3中任一项所述的工程改造微生物,其包含编码具有6-羟基己酸脱氢酶活性的多肽的异源多核苷酸。
B20.1如实施方式B19-B20中任一项所述的工程改造微生物,其包含编码具有ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。
B21.如实施方式B20或B20.1所述的工程改造微生物,其中所述异源多核苷酸来自细菌。
B22.如实施方式B21所述的工程改造微生物,其中所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
B23.如实施方式B1-B22中任一项所述的工程改造微生物,其是真核生物。
B24.如实施方式B23所述的工程改造微生物,其是酵母菌。
B25.如实施方式B24所述的工程改造微生物,其中所述酵母菌是念珠菌酵母。
B26.如实施方式B25所述的工程改造微生物,其中所述念珠菌酵母是热带念珠菌。
B27.如实施方式B23所述的工程改造微生物,其是真菌。
B28.如实施方式B27所述的工程改造微生物,其中所述真菌是耶氏酵母。
B29.如实施方式B28所述的工程改造微生物,其中所述耶氏酵母真菌是解脂耶氏酵母。
B30.如实施方式B27所述的工程改造微生物,其中所述真菌是曲霉。
B31.如实施方式B30所述的工程改造微生物,其中所述曲霉真菌是寄生曲霉或构巢曲霉。
B32.如实施方式B1-B31中任一项所述的工程改造微生物,其包含降低6-羟基己酸转化的遗传修饰。
B33.如实施方式B32所述的工程改造微生物,其中所述遗传修饰降低6-羟基己酸脱氢酶活性。
B34.如实施方式B1-B33中任一项所述的工程改造微生物,其包含降低β-氧化活性的遗传修饰。
B35.如实施方式B34所述的工程改造微生物,所述遗传修饰使得β-氧化活性不可检测。
C1.一种产生己二酸的方法,包括在培养条件下培养实施方式A1-B35中任一项所述的工程改造微生物,其中经培养的微生物产生己二酸。
C1.1如实施方式C1所述的方法,其中产生工程改造微生物的宿主微生物不产生可检测量的己二酸。
C2.如实施方式C1或C1.1所述的方法,其中所述培养条件包括发酵条件。
C3.如实施方式C1-C2中任一项所述的方法,其中所述培养条件包括引入生物质。
C4.如实施方式C1或C2所述的方法,其中所述培养条件包括引入葡萄糖。
C5.如实施方式C1或C2所述的方法,其中所述培养条件包括引入己烷。
C6.如实施方式C1-C5中任一项所述的方法,其中每加入1克葡萄糖的己二酸产量高于约0.3克。
C7.如实施方式C1-C6中任一项所述的方法,包括从经培养的微生物中纯化己二酸。
C8.如实施方式C7所述的方法,包括修饰己二酸,从而产生修饰的己二酸。
C9.如实施方式C1-C8中任一项所述的方法,包括将经培养的微生物、己二酸或修饰的己二酸置于容器中。
C10.如实施方式C9所述的方法,包括运输所述容器。
D1.一种制备6-羟基己酸的方法,包括在培养条件下培养实施方式A29、A30、B32或B33中任一项所述的工程改造微生物,其中经培养的微生物产生6-羟基己酸。
D1.1如实施方式D1所述的方法,其中产生工程改造微生物的宿主微生物不产生可检测量的6-羟基己酸。
D2.如实施方式D1或D1.1所述的方法,所述培养条件包括发酵条件。
D3.如实施方式D1-D2中任一项所述的方法,其中所述培养条件包括引入生物质。
D4.如实施方式D1或D2所述的方法,其中所述培养条件包括引入葡萄糖。
D5.如实施方式D1或D2所述的方法,其中所述培养条件包括引入己烷。
D6.如实施方式D1-D5中任一项所述的方法,其中每加入1克葡萄糖的6-羟基己酸产量高于约0.3克。
D7.如实施方式D1-D6中任一项所述的方法,包括从经培养的微生物中纯化6-羟基己酸。
D8.如实施方式D7所述的方法,包括修饰6-羟基己酸,从而产生修饰的6-羟基己酸。
D9.如实施方式D1-D8中任一项所述的方法,包括将培养的微生物、6-羟基己酸或修饰的6-羟基己酸置于容器中。
D10.如实施方式D9所述的方法,包括运输所述容器。
E1.一种制备产生己二酸的工程改造微生物的方法,包括:
(a)将增加或增强单加氧酶活性的遗传修饰引入宿主生物,从而产生具有可检测和/或增加的单加氧酶活性的工程改造微生物;和
(b)选择产生己二酸的工程改造微生物。
E1.1如实施方式E1所述的方法,其中所述单加氧酶活性是将羟基部分掺入六-碳分子。
E1.2如实施方式E1或E1.1所述的方法,其中所述六-碳分子是己酸盐或酯。
E2.一种制备产生己二酸的工程改造微生物的方法,包括:
(a)用己烷作为营养源培养宿主生物,从而产生具有可检测单加氧酶活性的工程改造微生物;和
(b)选择产生己二酸的工程改造微生物。
E2.1如实施方式E2所述的方法,其中所述单加氧酶活性是将羟基部分掺入六-碳分子。
E2.2如实施方式E2或E2.1所述的方法,其中所述六-碳分子是己酸盐或酯。
E3.如实施方式E1-E2.2中任一项所述的方法,包括选择具有可检测量的单加氧酶活性的工程改造微生物。
E4.如实施方式E1-E3中任一项所述的方法,包括引入增加或增强己酸合酶活性的遗传修饰,从而产生工程改造的微生物,和选择具有可检测的和/或增加的己酸合酶活性的工程改造微生物。
E5.如实施方式E4所述的方法,其中所述遗传修饰编码具有己酸合酶亚基A活性,己酸合酶亚基B活性,或己酸合酶亚基A活性和己酸合酶亚基B活性的多肽。
E6.如实施方式E1-E5中任一项所述的方法,包括引入增加或增强6-氧代己酸脱氢酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的6-氧代己酸脱氢酶活性的工程改造微生物。
E7.如实施方式E1-E6中任一项所述的方法,包括引入增加或增强6-羟基己酸脱氢酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的6-羟基己酸脱氢酶活性的工程改造微生物。
E7.1如实施方式E1-E7中任一项所述的方法,包括引入增加或增强6-羟基己酸脱氢酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的ω羟基脂肪酸脱氢酶活性的工程改造微生物。
E8.如实施方式E1-E7.1中任一项所述的方法,包括引入增加或增强硫酯酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的硫酯酶活性的工程改造微生物。
E9.如实施方式E1-E8中任一项所述的方法,包括引入减少6-羟基己酸转化的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,6-羟基己酸转化减少的工程改造微生物。
E10.如实施方式E1-E9中任一项所述的方法,包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。
E11.如实施方式E1-E11中任一项所述的方法,包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
F1.一种制备产生己二酸的微生物的方法,包括:(a)将增加或增强一种或多种活性的一种或多种遗传修饰引入宿主生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性,从而产生工程改造的微生物,和(b)选择产生己二酸的工程改造微生物。
F2.如实施方式F1所述的方法,包括选择相对于宿主微生物,具有一种或多种可检测和/或增强的活性的工程改造微生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性。
F3.如实施方式F1或F2所述的方法,包括引入减少6-羟基己酸转化的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,6-羟基己酸转化减少的工程改造微生物。
F4.如实施方式F1-F3中任一项所述的方法,包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。
F5.如实施方式F1-F4中任一项所述的方法,包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
G1.一种制备产生6-羟基己酸的微生物的方法,包括:(a)将增加或增强一种或多种活性的一种或多种遗传修饰引入宿主生物,所述活性选自:6-氧代己酸脱氢酶活性、己酸合酶活性和单加氧酶活性,从而产生工程改造的微生物,(b)将减少6-羟基己酸转化的遗传修饰引入宿主生物,和(c)选择产生6-羟基己酸的工程改造微生物。
G2.如实施方式G1所述的方法,包括选择相对于宿主微生物,6-羟基己酸转化减少的工程改造微生物。
G3.实施方式G1或G2所述的方法,包括选择相对于宿主微生物,具有一种或多种可检测和/或增强的活性的工程改造微生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基-脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性。
G4.如实施方式G1-G3中任一项所述的方法,包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。
G5.如实施方式G1-G4中任一项所述的方法,包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
H1.一种方法,包括:
使得工程改造微生物接触包含一种或多种多糖的原料,其中所述工程改造微生物包含:
(a)阻断β氧化活性的遗传改变,和
(b)增加或增强单加氧酶活性的遗传改变或增加或增强己酸合酶活性的遗传改变,和
在产生己二酸的条件下培养所述工程改造微生物。
H1.1如实施方式H1所述的方法,其中所述工程改造的微生物包含增加或增强己酸合酶活性的遗传改变。
H1.2如实施方式H1.1所述的方法,其中所述工程改造的微生物包含编码具有己酸合酶亚基A活性的多肽的异源多核苷酸。
H1.3如实施方式H1.1所述的方法,其中所述工程改造的微生物包含编码具有己酸合酶亚基B活性的多肽的异源多核苷酸。
H1.4如实施方式H1.2或H1.3所述的方法,其中所述异源多核苷酸独立选自细菌。
H1.5如实施方式H1.4所述的方法,其中所述细菌是芽孢杆菌。
H1.6如实施方式H1.5所述的方法,其中所述芽孢杆菌是巨大芽孢杆菌。
H2.如实施方式H1或H1.6所述的方法,其中所述微生物是念珠菌酵母。
H3.如实施方式H2所述的方法,所述微生物是热带念珠菌菌株。
H4.如实施方式H1-H3所述的方法,其中增强单加氧酶活性的遗传改变包括增强细胞色素P450还原酶活性的遗传改变。
H5.如实施方式H4所述的方法,其中所述遗传改变增加编码具有细胞色素P450还原酶活性的多肽的多核苷酸拷贝数。
H6.如实施方式H4所述的方法,所述遗传改变将启动子置于与编码具有细胞色素P450还原酶活性的多肽的多核苷酸功能性相连。
H7.如实施方式H1-H6中任一项所述的方法,其中所述单加氧酶活性是CYP52A15活性,CYP52A16活性,或CYP52A15活性和CYP52A16活性。
H8.如实施方式H1-H7中任一项所述的方法,其中所述遗传改变增加编码具有单加氧酶活性的多肽的多核苷酸拷贝数。
H9.如实施方式H1-H7中任一项所述的方法,其中所述遗传改变将启动子置于与编码具有单加氧酶活性的多肽的多核苷酸功能性相连。
H10.如实施方式H1-H7中任一项所述的方法,其中阻断β氧化活性的遗传改变破坏酰基-CoA氧化酶活性。
H11.如实施方式H10所述的方法,其中所述遗传改变破坏POX4和POX5活性。
H12.如实施方式H10或H11所述的方法,其中所述遗传改变破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。
H13.如实施方式H10或H11所述的方法,其中所述遗传改变破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子。
H14.如实施方式H1-H13中任一项所述的方法,其中所述原料包含六-碳糖。
H15.如实施方式H1-H13中任一项所述的方法,其中所述原料包含五-碳糖。
H16.如实施方式H1-H15中任一项所述的方法,其中所述己二酸的产生水平是理论产量的约80%或更高。
H17.如实施方式H1-H16中任一项所述的方法,包括检测己二酸的产量。
H18.如实施方式H1-H17中任一项所述的方法,包括分离产生的己二酸。
H19.如实施方式H1-H18中任一项所述的方法,其中所述培养条件包括发酵工程改造的微生物。
I1.一种方法,包括:
使得工程改造微生物接触包含一种或多种石蜡的原料,其中所述工程改造微生物包含部分阻断β氧化活性的遗传改变,和
在产生己二酸的条件下培养所述工程改造微生物。
I1.1如实施方式I1所述的方法,其中所述微生物包含增加单加氧酶活性的遗传改变。
I2.如实施方式I1或I1.1所述的方法,其中所述微生物是念珠菌酵母。
I3.如实施方式I2所述的方法,其中所述微生物是热带念珠菌菌株。
I4.如实施方式I1-I3中任一项所述的方法,其中增强单加氧酶活性的遗传改变包括增强细胞色素P450还原酶活性的遗传改变。
I5.如实施方式I4所述的方法,其中所述遗传改变增加编码具有细胞色素P450还原酶活性的多肽的多核苷酸拷贝数。
I6.如实施方式I4所述的方法,所述遗传改变将启动子置于与编码具有细胞色素P450还原酶活性的多肽的多核苷酸功能性相连。
I7.如实施方式I1-I6中任一项所述的方法,其中所述单加氧酶活性是CYP52A15活性,CYP52A16活性,或CYP52A15活性和CYP52A16活性。
I8.如实施方式I1-I7中任一项所述的方法,其中所述遗传改变增加编码具有单加氧酶活性的多肽的多核苷酸拷贝数。
I9.如实施方式I1-I7中任一项所述的方法,其中所述遗传改变将启动子置于与编码具有单加氧酶活性的多肽的多核苷酸功能性相连。
I10.如实施方式I1-I7中任一项所述的方法,其中阻断β氧化活性的遗传改变破坏酰基-CoA氧化酶活性。
I11.如实施方式I10所述的方法,其中所述遗传改变破坏POX4或POX5活性。
I12.如实施方式I10或I11所述的方法,其中所述遗传改变破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。
I13.如实施方式I10或I11所述的方法,其中所述遗传改变破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子。
I14.如实施方式I1-I13中任一项所述的方法,其中所述己二酸的产生水平是理论产量的约80%或更高。
I15.如实施方式I1-I14中任一项所述的方法,包括检测己二酸的产量。
I16.如实施方式I1-I15中任一项所述的方法,包括分离产生的己二酸。
I17.如实施方式I1-I16中任一项所述的方法,其中所述培养条件包括发酵工程改造的微生物。
I18.如实施方式I1-I17中任一项所述的方法,其中所述石蜡是饱和石蜡、不饱和石蜡、取代的石蜡、支链石蜡、线形石蜡或它们的组合。
I19.如实施方式I1-I18中任一项所述的方法,其中所述石蜡包含约1到约60个碳原子。
I20.如实施方式I1-I19中任一项所述的方法,其中所述石蜡是石蜡的混合物。
I21.如实施方式I20所述的方法,其中所述石蜡混合物中石蜡的平均碳原子数是约8个碳原子到约18个碳原子。
I22.如实施方式I21所述的工程改造微生物,其中所述平均碳原子数是约10到约16个碳原子。
I23.如实施方式I22所述的方法,其中所述平均碳原子数是约12个原子。
I24.如实施方式I1-I23中任一项所述的方法,其中所述石蜡在蜡中。
I25.如实施方式I1-I23中任一项所述的方法,其中所述石蜡在油中。
I26.如实施方式I1-I25中任一项所述的方法,其中所述石蜡来自石油产品。
I27.如实施方式I26所述的方法,其中所述石油产品是石油馏出物。
I28.如实施方式I1-I27中任一项所述的方法,其中所述石蜡来自植物或植物产品。
J1.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:1所示核苷酸序列96%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:8所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:1所示核苷酸序列96%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
J2.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:2所示核苷酸序列98%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:10所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:2所示核苷酸序列98%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
J3.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:3所示核苷酸序列95%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:9所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:3所示核苷酸序列95%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
J3.1一种选自下组的分离多核苷酸:
具有与SEQ ID NO:4所示核苷酸序列83%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:11所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:4所示核苷酸序列83%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
J3.2一种选自下组的分离多核苷酸:
具有与SEQ ID NO:5所示核苷酸序列82%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:12所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:5所示核苷酸序列82%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
J4.一种表达载体,其包含实施方式J1-J3.2中任一项所述的多核苷酸。
J5.一种整合载体,其包含实施方式J1-J3.2中任一项所述的多核苷酸。
J6.一种微生物,其包含实施方式J4所述表达载体或实施方式J5所述整合载体。
J7.一种培养物,其包含实施方式J6所述的微生物。
J8.一种发酵装置,其包含实施方式中J7所述微生物。
J10.一种多肽,其由实施方式中J1-J3中任一项所述的多核苷酸编码或由实施方式中J4所述的表达载体或实施方式J6所述微生物产生。
J11.一种抗体,其特异性结合实施方式J10所示多肽。
***
本文述及的各专利、专利申请、出版物和文件通过引用全文纳入本文。引用上述专利、专利申请、出版物和文件并非承认它们属于现有技术,也不视作承认这些出版物或文件的内容或日期。
可对以上内容作出改进而不脱离本发明的基本方面。虽然本发明根据一个或多个具体实施方式得到了充分详细的描述,但本领域普通技术人员应该知道,可对本申请专门公开的实施方式作出改变,而这些改变和改进仍落在本发明的范围和构思内。
本文示范性描述的本发明可在缺乏本文未专门指出的任一元素的前提下适当实施。因此,例如在本文的各例子中,术语“包含”、“基本上由…构成”和“由…构成”中的任一个可替换另两个术语中的任一个。所用的术语和表述方式是为了描述而非限制,利用此类术语和表述方式不排除所示和所述特征或其诸部分的任何等同方式,在本发明要求保护的范围内可能有各种改进形式。术语“一个”或“一种”可指其所修饰的一个或多个元素(例如,“一个试剂”可表示一个或多个试剂),除非上下文明确描述所述元素中的一个或所述元素中的多个。本文所用的术语“约”指在基础参数的10%以内的数值(即,加或减10%),在一串数值开始处利用术语“约”修饰各数值(即,“约1、2和3”指约1、约2和约3)。例如,“约100克”的重量可包括90克-110克之间的重量。此外,在本文描述数值列表之时(例如,约50%、60%、70%、80%、85%或86%),该列表包括所有中间值和其分数值(例如,54%、85.4%)。因此,应该知道,虽然通过代表性实施方式和任选特征专门描述了本发明,但本领域技术人员可想到本文所公开概念的改进和改变形式,此类改进和改变形式应视作落在本发明的范围内。
本发明的某些实施方式列于权利要求中。

Claims (213)

1.一种产生己二酸的工程改造微生物,所述微生物包含选自下组的一种或多种改变的活性:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性和乙酰基-CoA C-酰基转移酶活性。
2.如权利要求1所述的工程改造微生物,其特征在于,其包含增加或增强以下活性的遗传修饰:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性和/或乙酰基-CoA C-酰基转移酶活性。
3.如权利要求1所述的工程改造微生物,其特征在于,其包含降低酰基-CoA氧化酶活性的遗传修饰。
4.如权利要求2所述的工程改造微生物,其特征在于,所述遗传修饰包括编码具有以下活性的多肽的多核苷酸拷贝增加:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性或乙酰基-CoA C-酰基转移酶活性。
5.如权利要求2所述的工程改造微生物,其特征在于,所述遗传修饰包括将与编码具有以下活性的多肽的多核苷酸功能性连接的异源启动子和/或5’UTR插入所述微生物的基因组DNA:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性、单加氧酶活性、单加氧酶还原酶活性、脂肪醇氧化酶活性、酰基-CoA连接酶活性、酰基-CoA氧化酶活性、烯酰基-CoA水合酶活性、3-L-羟基酰基-CoA脱氢酶活性或乙酰基-CoA C-酰基转移酶活性。
6.如权利要求1到5中任一项所述的工程改造微生物,其特征在于,其包含改变的硫酯酶活性。
7.如权利要求6所述的工程改造微生物,其特征在于,其包含增加或增强硫酯酶活性的遗传改变。
8.如权利要求7所述的工程改造微生物,其特征在于,其包含编码具有硫酯酶活性的多肽的异源多核苷酸。
9.如权利要求1到8中任一项所述的工程改造微生物,其特征在于,其包含编码具有6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性或6-氧代己酸脱氢酶活性和ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。
10.如权利要求9所述的工程改造微生物,其特征在于,所述异源多核苷酸来自细菌。
11.如权利要求10所述的工程改造微生物,其特征在于,所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
12.如权利要求1或6所述的工程改造微生物,其特征在于,其包含编码具有6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性或6-羟基己酸脱氢酶活性和ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。
13.如权利要求12所述的工程改造微生物,其特征在于,所述异源多核苷酸来自细菌。
14.如权利要求13所述的工程改造微生物,其特征在于,所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
15.如权利要求1或6所述的工程改造微生物,其特征在于,其包含编码具有己酸合酶亚基A活性的多肽的异源多核苷酸。
16.如权利要求1或6所述的工程改造微生物,其特征在于,其包含编码具有己酸合酶亚基B活性的多肽的异源多核苷酸。
17.如权利要求15或16所述的工程改造微生物,其特征在于,所述异源多核苷酸独立选自细菌。
18.如权利要求17所述的工程改造微生物,其特征在于,所述细菌是芽胞杆菌。
19.如权利要求18所述的工程改造微生物,其特征在于,所述芽孢杆菌是巨大芽孢杆菌。
20.如权利要求1或6所述的工程改造微生物,其特征在于,其包含编码具有单加氧酶活性的多肽的异源多核苷酸。
21.如权利要求20所述的工程改造微生物,其特征在于,所述异源多核苷酸来自真菌。
22.如权利要求21所述的工程改造微生物,其特征在于,所述真菌是曲霉真菌。
23.如权利要求22所述的工程改造微生物,其特征在于,所述曲霉真菌是寄生曲霉。
24.如权利要求1或2所述的工程改造微生物,其特征在于,其包含导致通过单加氧酶活性主要利用己酸盐或酯的遗传修饰。
25.如权利要求24所述的工程改造微生物,其特征在于,所述遗传修饰降低聚酮化合物合酶活性。
26.如权利要求1-25中任一项所述的工程改造微生物,其特征在于,其是真核生物。
27.如权利要求26所述的工程改造微生物,其特征在于,其是酵母菌。
28.如权利要求27所述的工程改造微生物,其特征在于,所述酵母菌是念珠菌酵母。
29.如权利要求28所述的工程改造微生物,其特征在于,所述念珠菌酵母是热带念珠菌菌株。
30.如权利要求26所述的工程改造微生物,其特征在于,其是真菌。
31.如权利要求30所述的工程改造微生物,其特征在于,所述真菌是耶氏酵母真菌。
32.如权利要求31所述的工程改造微生物,其特征在于,所述耶氏酵母真菌是解脂耶氏酵母。
33.如权利要求30所述的工程改造微生物,其特征在于,所述真菌是曲霉真菌。
34.如权利要求33所述的工程改造微生物,其特征在于,所述曲霉真菌是寄生曲霉菌株或构巢曲霉菌株。
35.如权利要求1-34中任一项所述的工程改造微生物,其特征在于,其包含减少6-羟基己酸转化的遗传修饰。
36.如权利要求35所述的工程改造微生物,其特征在于,所述遗传修饰降低6-羟基己酸脱氢酶活性。
37.如权利要求1-36中任一项所述的工程改造微生物,其特征在于,其包含降低β-氧化活性的遗传修饰。
38.如权利要求37所述的工程改造微生物,其特征在于,所述遗传修饰使得β-氧化活性不可检测。
39.如权利要求37所述的工程改造微生物,其特征在于,所述遗传修饰部分降低β-氧化活性。
40.如权利要求37-39中任一项所述的工程改造微生物,其特征在于,所述遗传修饰包括破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。
41.如权利要求37-39中任一项所述的工程改造微生物,其特征在于,所述遗传修饰包括破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子。
42.如权利要求40或41所述的工程改造微生物,其特征在于,所述具有酰基-CoA活性的多肽是POX多肽。
43.如权利要求42所述的工程改造微生物,其特征在于,所述POX多肽是POX4多肽,POX5多肽,或POX4多肽和POX5多肽。
44.如权利要求1-43中任一项所述的工程改造微生物,其特征在于,其与原料接触。
45.如权利要求44所述的工程改造微生物,其特征在于,所述原料包含糖。
46.如权利要求45所述的工程改造微生物,其特征在于,所述糖是单糖、多糖或单糖与多糖的混合物。
47.如权利要求44所述的工程改造微生物,其特征在于,所述原料包含石蜡。
48.如权利要求47所述的工程改造微生物,其特征在于,所述石蜡是饱和石蜡、不饱和石蜡、取代的石蜡、支链石蜡、线形石蜡或它们的组合。
49.如权利要求47或48所述的工程改造微生物,其特征在于,所述石蜡包含约1到约60个碳原子。
50.如权利要求47-49中任一项所述的工程改造微生物,其特征在于,所述石蜡是石蜡的混合物。
51.如权利要求50所述的工程改造微生物,其特征在于,所述石蜡混合物中石蜡的平均碳原子数是约8个碳原子到约18个碳原子。
52.如权利要求51所述的工程改造微生物,其特征在于,所述平均碳原子数是约10到约16个碳原子。
53.如权利要求52所述的工程改造微生物,其特征在于,所述平均碳原子数是约12个原子。
54.如权利要求47-53中任一项所述的工程改造微生物,其特征在于,所述石蜡在蜡中。
55.如权利要求47-53中任一项所述的工程改造微生物,其特征在于,所述石蜡在油中。
56.如权利要求47-55中任一项所述的工程改造微生物,其特征在于,所述石蜡来自石油产品。
57.如权利要求56所述的工程改造微生物,其特征在于,所述石油产品是石油馏出物。
58.如权利要求47-55中任一项所述的工程改造微生物,其特征在于,所述石蜡来自植物或植物产品。
59.一种产生己二酸的工程改造微生物,所述微生物包含改变的单加氧酶活性。
60.如权利要求59所述的工程改造微生物,其特征在于,其包含改变单加氧酶活性的遗传修饰。
61.如权利要求59或60所述的工程改造微生物,其特征在于,其包含改变选自下组的单加氧酶活性的遗传修饰:CYP5215活性,CYP5216活性,或CYP5215活性和CYP5216活性。
62.如权利要求60所述的工程改造微生物,其特征在于,其包含编码具有单加氧酶活性的多肽的异源多核苷酸。
63.如权利要求62所述的工程改造微生物,其特征在于,所述异源多核苷酸来自真菌。
64.如权利要求63所述的工程改造微生物,其特征在于,所述真菌是曲霉真菌。
65.如权利要求64所述的工程改造微生物,其特征在于,所述曲霉真菌是寄生曲霉。
66.如权利要求59-65中任一项所述的工程改造微生物,其特征在于,其包含导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰。
67.如权利要求66所述的工程改造微生物,其特征在于,所述遗传修饰降低聚酮化合物合酶活性。
68.如权利要求59-65中任一项所述的工程改造微生物,其特征在于,其包含改变的己酸合酶活性。
69.如权利要求68所述的工程改造微生物,其特征在于,所述改变的己酸合酶活性是改变的己酸合酶亚基A活性、改变的己酸合酶亚基B活性、或改变的己酸合酶亚基A活性和改变的己酸合酶亚基B活性。
70.如权利要求69所述的工程改造微生物,其特征在于,其包含增加或增强己酸合酶活性的遗传改变。
71.如权利要求68、69或70所述的工程改造微生物,其特征在于,其包含编码具有己酸合酶活性的多肽的异源多核苷酸。
72.如权利要求71所述的工程改造微生物,其特征在于,所述异源多核苷酸来自真菌。
73.如权利要求72所述的工程改造微生物,其特征在于,所述真菌是曲霉真菌。
74.如权利要求72所述的工程改造微生物,其特征在于,所述曲霉真菌是寄生曲霉。
75.如权利要求59到74中任一项所述的工程改造微生物,其特征在于,其包含改变的硫酯酶活性。
76.如权利要求75所述的工程改造微生物,其特征在于,其包含增加或增强硫酯酶活性的遗传修饰。
77.如权利要求75或76所述的工程改造微生物,其特征在于,其包含编码具有硫酯酶活性的多肽的异源多核苷酸。
78.如权利要求59到77中任一项所述的工程改造微生物,其特征在于,其包含改变的6-氧代己酸脱氢酶活性、改变的ω氧代脂肪酸脱氢酶活性或改变的6-氧代己酸脱氢酶活性和改变的ω氧代脂肪酸脱氢酶活性。
79.如权利要求78所述的工程改造微生物,其特征在于,其包含增加或增强6-氧代己酸脱氢酶活性、增加或增强ω氧代脂肪酸脱氢酶活性或增加或增强6-氧代己酸脱氢酶活性和ω氧代脂肪酸脱氢酶活性的遗传修饰。
80.如权利要求78或79所述的工程改造微生物,其特征在于,其包含编码具有6-氧代己酸脱氢酶活性的多肽的异源多核苷酸、编码具有ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸、或编码具有6-氧代己酸脱氢酶活性的多肽的异源多核苷酸和编码具有ω氧代脂肪酸脱氢酶活性的多肽的异源多核苷酸。
81.如权利要求80所述的工程改造微生物,其特征在于,所述异源多核苷酸来自细菌。
82.如权利要求81所述的工程改造微生物,其特征在于,所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
83.如权利要求59-82中任一项所述的工程改造微生物,其特征在于,其包含改变的6-羟基己酸脱氢酶活性、改变的ω羟基脂肪酸脱氢酶活性,或改变的6-羟基己酸脱氢酶活性和改变的ω羟基脂肪酸脱氢酶活性。
84.如权利要求83所述的工程改造微生物,其特征在于,其包含增加或增强6-羟基己酸脱氢酶活性、增加或增强ω羟基脂肪酸脱氢酶活性或增加或增强6-羟基己酸脱氢酶活性和ω羟基脂肪酸脱氢酶活性的遗传修饰。
85.如权利要求83或84所述的工程改造微生物,其特征在于,其包含编码具有6-羟基己酸脱氢酶活性的多肽的异源多核苷酸、编码具有ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸、或编码具有6-羟基己酸脱氢酶活性的多肽的异源多核苷酸和编码具有ω羟基脂肪酸脱氢酶活性的多肽的异源多核苷酸。
86.如权利要求85所述的工程改造微生物,其特征在于,所述异源多核苷酸来自细菌。
87.如权利要求86所述的工程改造微生物,其特征在于,所述细菌是不动杆菌、诺卡式菌、假单胞菌或黄单胞菌细菌。
88.如权利要求59-87中任一项所述的工程改造微生物,其特征在于,其是真核生物。
89.如权利要求88所述的工程改造微生物,其特征在于,其是酵母菌。
90.如权利要求89所述的工程改造微生物,其特征在于,所述酵母菌是念珠菌酵母。
91.如权利要求90所述的工程改造微生物,其特征在于,所述念珠菌酵母是热带念珠菌。
92.如权利要求88所述的工程改造微生物,其特征在于,其是真菌。
93.如权利要求92所述的工程改造微生物,其特征在于,所述真菌是耶氏酵母。
94.如权利要求93所述的工程改造微生物,其特征在于,所述耶氏酵母真菌是解脂耶氏酵母。
95.如权利要求92所述的工程改造微生物,其特征在于,所述真菌是曲霉。
96.如权利要求95所述的工程改造微生物,其特征在于,所述曲霉真菌是寄生曲霉或构巢曲霉。
97.如权利要求59-96中任一项所述的工程改造微生物,其特征在于,其包含降低6-羟基己酸转化的遗传修饰。
98.如权利要求97所述的工程改造微生物,其特征在于,所述遗传修饰降低6-羟基己酸脱氢酶活性。
99.如权利要求59-98中任一项所述的工程改造微生物,其特征在于,其包含降低β-氧化活性的遗传修饰。
100.如权利要求99所述的工程改造微生物,其特征在于,所述遗传修饰使得β-氧化活性不可检测。
101.一种产生己二酸的方法,包括在培养条件下培养权利要求1-100中任一项所述的工程改造微生物,其中经培养的微生物产生己二酸。
102.如权利要求101所述的方法,其特征在于,产生工程改造微生物的宿主微生物不产生可检测量的己二酸。
103.如权利要求101或102所述的方法,其特征在于,所述培养条件包括发酵条件。
104.如权利要求101-103中任一项所述的方法,其特征在于,所述培养条件包括引入生物质。
105.如权利要求101或103所述的方法,其特征在于,所述培养条件包括引入葡萄糖。
106.如权利要求101或103所述的方法,其特征在于,所述培养条件包括引入己烷。
107.如权利要求101-106中任一项所述的方法,其特征在于,每加入1克葡萄糖的己二酸产量高于约0.3克。
108.如权利要求101-107中任一项所述的方法,其特征在于,包括从经培养的微生物中纯化己二酸。
109.如权利要求108所述的方法,其特征在于,包括修饰己二酸,从而产生修饰的己二酸。
110.如权利要求101-109中任一项所述的方法,包括将经培养的微生物、己二酸或修饰的己二酸置于容器中。
111.如权利要求110所述的方法,包括运输所述容器。
112.一种制备6-羟基己酸的方法,包括在培养条件下培养权利要求35、36、97或98中任一项所述的工程改造微生物,其中,经培养的微生物产生6-羟基己酸。
113.如权利要求112所述的方法,其特征在于,产生工程改造微生物的宿主微生物不产生可检测量的6-羟基己酸。
114.如权利要求112或113所述的方法,其特征在于,所述培养条件包括发酵条件。
115.如权利要求112-114中任一项所述的方法,其特征在于,所述培养条件包括引入生物质。
116.如权利要求112或114所述的方法,其特征在于,所述培养条件包括引入葡萄糖。
117.如权利要求112或114所述的方法,其特征在于,所述培养条件包括引入己烷。
118.如权利要求112-117中任一项所述的方法,其特征在于,每加入1克葡萄糖的6-羟基己酸产量高于约0.3克。
119.如权利要求112-118中任一项所述的方法,其特征在于,包括从经培养的微生物中纯化6-羟基己酸。
120.如权利要求119所述的方法,其特征在于,包括修饰6-羟基己酸,从而产生修饰的6-羟基己酸。
121.如权利要求112-120中任一项所述的方法,其特征在于,包括将培养的微生物、6-羟基己酸或修饰的6-羟基己酸置于容器中。
122.如权利要求121所述的方法,其特征在于,包括运输所述容器。
123.一种制备产生己二酸的工程改造微生物的方法,包括:
(a)将增加或增强单加氧酶活性的遗传修饰引入宿主生物,从而产生具有可检测和/或增加的单加氧酶活性的工程改造微生物;和
(b)选择产生己二酸的工程改造微生物。
124.如权利要求E1所述的方法,其特征在于,所述单加氧酶活性是将羟基部分掺入六-碳分子。
125.如权利要求123或124所述的方法,其特征在于,所述六-碳分子是己酸盐或酯。
126.一种制备产生己二酸的工程改造微生物的方法,包括:
(a)用己烷作为营养源培养宿主生物,从而产生具有可检测单加氧酶活性的工程改造微生物;和
(b)选择产生己二酸的工程改造微生物。
127.如权利要求126所述的方法,其特征在于,所述单加氧酶活性是将羟基部分掺入六-碳分子。
128.如权利要求126或127所述的方法,其特征在于,所述六-碳分子是己酸盐或酯。
129.如权利要求126-128中任一项所述的方法,其特征在于,包括选择具有可检测量的单加氧酶活性的工程改造微生物。
130.如权利要求126-129中任一项所述的方法,其特征在于,包括引入增加或增强己酸合酶活性的遗传修饰,从而产生工程改造的微生物,和选择具有可检测的和/或增加的己酸合酶活性的工程改造微生物。
131.如权利要求130所述的方法,其特征在于,所述遗传修饰编码具有己酸合酶亚基A活性,己酸合酶亚基B活性,或己酸合酶亚基A活性和己酸合酶亚基B活性的多肽。
132.如权利要求123-131中任一项所述的方法,其特征在于,包括引入增加或增强6-氧代己酸脱氢酶活性、增加或增强ω氧代脂肪酸脱氢酶活性,或增加或增强6-氧代己酸脱氢酶活性和ω氧代脂肪酸脱氢酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的6-氧代己酸脱氢酶活性和/或ω氧代脂肪酸脱氢酶活性的工程改造微生物。
133.如权利要求123-132中任一项所述的方法,其特征在于,包括引入增加或增强6-羟基己酸脱氢酶活性、增加或增强ω羟基脂肪酸脱氢酶活性,或增加或增强6-羟基己酸脱氢酶活性和ω羟基脂肪酸脱氢酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的6-羟基己酸脱氢酶活性和/或ω羟基脂肪酸脱氢酶活性的工程改造微生物。
134.如权利要求123-133中任一项所述的方法,其特征在于,包括引入增加或增强硫酯酶活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,具有可检测的和/或增强的硫酯酶活性的工程改造微生物。
135.如权利要求123-134中任一项所述的方法,包括引入减少6-羟基己酸转化的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,6-羟基己酸转化减少的工程改造微生物。
136.如权利要求123-135中任一项所述的方法,其特征在于,包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。
137.如权利要求123-136中任一项所述的方法,其特征在于,包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
138.一种制备产生己二酸的微生物的方法,包括:(a)将增加或增强一种或多种活性的一种或多种遗传修饰引入宿主生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性,从而产生工程改造的微生物,和(b)选择产生己二酸的工程改造微生物。
139.如权利要求138所述的方法,其特征在于,包括选择相对于宿主微生物,具有一种或多种可检测和/或增强的活性的工程改造微生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性。
140.如权利要求138或139所述的方法,其特征在于,包括引入减少6-羟基己酸转化的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,6-羟基己酸转化减少的工程改造微生物。
141.如权利要求138-140中任一项所述的方法,其特征在于,包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。
142.如权利要求138-141中任一项所述的方法,其特征在于,包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
143.一种制备产生6-羟基己酸的微生物的方法,包括:(a)将增加或增强一种或多种活性的一种或多种遗传修饰引入宿主生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性,从而产生工程改造的微生物,(b)将减少6-羟基己酸转化的遗传修饰引入宿主生物,和(c)选择产生6-羟基己酸的工程改造微生物。
144.如权利要求143所述的方法,其特征在于,包括选择相对于宿主微生物,6-羟基己酸转化减少的工程改造微生物。
145.如权利要求143或144所述的方法,其特征在于,包括选择相对于宿主微生物,具有一种或多种可检测和/或增强的活性的工程改造微生物,所述活性选自:6-氧代己酸脱氢酶活性、ω氧代脂肪酸脱氢酶活性、6-羟基己酸脱氢酶活性、ω羟基脂肪酸脱氢酶活性、己酸合酶活性和单加氧酶活性。
146.如权利要求143-145中任一项所述的方法,其特征在于,包括引入降低β-氧化活性的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,β-氧化活性降低的工程改造微生物。
147.如权利要求143-146中任一项所述的方法,其特征在于,包括引入导致通过单加氧酶活性充分利用己酸盐或酯的遗传修饰,从而产生工程改造的微生物,和选择相对于宿主微生物,通过单加氧酶活性充分利用己酸盐或酯的工程改造微生物。
148.一种方法,包括:
使得工程改造微生物接触包含一种或多种多糖的原料,其中,所述工程改造微生物包含:
(a)阻断β氧化活性的遗传改变,和
(b)增加或增强单加氧酶活性的遗传改变或增加或增强己酸合酶活性的遗传改变,和
在产生己二酸的条件下培养所述工程改造微生物。
149.如权利要求148所述的方法,其特征在于,所述工程改造的微生物包含增加或增强己酸合酶活性的遗传改变。
150.如权利要求149所述的方法,其特征在于,所述工程改造的微生物包含编码具有己酸合酶亚基A活性的多肽的异源多核苷酸。
151.如权利要求149所述的方法,其特征在于,所述工程改造的微生物包含编码具有己酸合酶亚基B活性的多肽的异源多核苷酸。
152.如权利要求150或151所述的方法,其特征在于,所述异源多核苷酸独立选自细菌。
153.如权利要求152所述的方法,其特征在于,所述细菌是芽孢杆菌。
154.如权利要求153所述的方法,其特征在于,所述芽孢杆菌是巨大芽孢杆菌。
155.如权利要求149或154所述的方法,其特征在于,所述微生物是念珠菌酵母。
156.如权利要求155所述的方法,其特征在于,所述微生物是热带念珠菌菌株。
157.如权利要求148-156所述的方法,其特征在于,增强单加氧酶活性的遗传改变包括增强细胞色素P450还原酶活性的遗传改变。
158.如权利要求157所述的方法,其特征在于,所述遗传改变增加编码具有细胞色素P450还原酶活性的多肽的多核苷酸拷贝数。
159.如权利要求157所述的方法,所述遗传改变将启动子置于与编码具有细胞色素P450还原酶活性的多肽的多核苷酸功能性相连。
160.如权利要求148-159中任一项所述的方法,其特征在于,所述单加氧酶活性是CYP5215活性,CYP5216活性,或CYP5215活性和CYP5216活性。
161.如权利要求148-160中任一项所述的方法,其特征在于,所述遗传改变增加编码具有单加氧酶活性的多肽的多核苷酸拷贝数。
162.如权利要求148-160中任一项所述的方法,其特征在于,所述遗传改变将启动子置于与编码具有单加氧酶活性的多肽的多核苷酸功能性相连。
163.如权利要求148-160中任一项所述的方法,其特征在于,阻断β氧化活性的遗传改变破坏酰基-CoA氧化酶活性。
164.如权利要求163所述的方法,其特征在于,所述遗传改变破坏POX4和POX5活性。
165.如权利要求163或164所述的方法,其特征在于,所述遗传改变破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。
166.如权利要求163或164所述的方法,其特征在于,所述遗传改变破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子。
167.如权利要求148-166中任一项所述的方法,其特征在于,所述原料包含六-碳糖。
168.如权利要求148-166中任一项所述的方法,其特征在于,所述原料包含五-碳糖。
169.如权利要求148-168中任一项所述的方法,其特征在于,所述己二酸的产生水平是理论产量的约80%或更高。
170.如权利要求148-169中任一项所述的方法,其特征在于,包括检测己二酸的产量。
171.如权利要求148-170中任一项所述的方法,其特征在于,包括分离产生的己二酸。
172.如权利要求148-171中任一项所述的方法,其特征在于,所述培养条件包括发酵工程改造的微生物。
173.一种方法,包括:
使得工程改造微生物接触包含一种或多种石蜡的原料,其中,所述工程改造微生物包含部分阻断β氧化活性的遗传改变,和
在产生己二酸的条件下培养所述工程改造微生物。
174.如权利要求173所述的方法,其特征在于,所述微生物包含增加单加氧酶活性的遗传改变。
175.如权利要求173或174所述的方法,其特征在于,所述微生物是念珠菌酵母。
176.如权利要求175所述的方法,其特征在于,所述微生物是热带念珠菌菌株。
177.如权利要求173-176中任一项所述的方法,其特征在于,增强单加氧酶活性的遗传改变包括增强细胞色素P450还原酶活性的遗传改变。
178.如权利要求174所述的方法,其特征在于,所述遗传改变增加编码具有细胞色素P450还原酶活性的多肽的多核苷酸拷贝数。
179.如权利要求174所述的方法,其特征在于,所述遗传改变将启动子置于与编码具有细胞色素P450还原酶活性的多肽的多核苷酸功能性相连。
180.如权利要求173-179中任一项所述的方法,其特征在于,所述单加氧酶活性是CYP5215活性,CYP5216活性,或CYP5215活性和CYP5216活性。
181.如权利要求173-180中任一项所述的方法,其特征在于,所述遗传改变增加编码具有单加氧酶活性的多肽的多核苷酸拷贝数。
182.如权利要求173-180中任一项所述的方法,其特征在于,所述遗传改变将启动子置于与编码具有单加氧酶活性的多肽的多核苷酸功能性相连。
183.如权利要求173-180中任一项所述的方法,其特征在于,阻断β氧化活性的遗传改变破坏酰基-CoA氧化酶活性。
184.如权利要求183所述的方法,其特征在于,所述遗传改变破坏POX4或POX5活性。
185.如权利要求183或184所述的方法,其特征在于,所述遗传改变破坏编码具有酰基-CoA氧化酶活性的多肽的多核苷酸。
186.如权利要求183或184所述的方法,其特征在于,所述遗传改变破坏与编码具有酰基-CoA氧化酶活性的多肽的多核苷酸功能性相连的启动子。
187.如权利要求173-186中任一项所述的方法,其特征在于,所述己二酸的产生水平是理论产量的约80%或更高。
188.如权利要求173-187中任一项所述的方法,包括检测己二酸的产量。
189.如权利要求173-188中任一项所述的方法,包括分离产生的己二酸。
190.如权利要求173-189中任一项所述的方法,其特征在于,所述培养条件包括发酵工程改造的微生物。
191.如权利要求173-190中任一项所述的方法,其特征在于,所述石蜡是饱和石蜡、不饱和石蜡、取代的石蜡、支链石蜡、线形石蜡或它们的组合。
192.如权利要求173-191中任一项所述的方法,其特征在于,所述石蜡包含约1到约60个碳原子。
193.如权利要求173-192中任一项所述的方法,其特征在于,所述石蜡是石蜡的混合物。
194.如权利要求193所述的方法,其特征在于,所述石蜡混合物中石蜡的平均碳原子数是约8个碳原子到约18个碳原子。
195.如权利要求194所述的工程改造微生物,其特征在于,所述平均碳原子数是约10到约16个碳原子。
196.如权利要求195所述的方法,其特征在于,所述平均碳原子数是约12个原子。
197.如权利要求173-196中任一项所述的方法,其特征在于,所述石蜡在蜡中。
198.如权利要求173-196中任一项所述的方法,其特征在于,所述石蜡在油中。
199.如权利要求173-198中任一项所述的方法,其特征在于,所述石蜡来自石油产品。
200.如权利要求199所述的方法,其特征在于,所述石油产品是石油馏出物。
201.如权利要求173-200中任一项所述的方法,其特征在于,所述石蜡来自植物或植物产品。
202.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:1所示核苷酸序列96%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:8所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:1所示核苷酸序列96%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
203.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:2所示核苷酸序列98%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:10所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:2所示核苷酸序列98%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
204.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:3所示核苷酸序列95%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:9所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:3所示核苷酸序列95%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
205.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:4所示核苷酸序列83%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:11所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:4所示核苷酸序列83%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
206.一种选自下组的分离多核苷酸:
具有与SEQ ID NO:5所示核苷酸序列82%或更高相同性的核苷酸序列的多核苷酸;
具有编码SEQ ID NO:12所示多肽的核苷酸序列的多核苷酸;和
具有与SEQ ID NO:5所示核苷酸序列82%或更高相同性的核苷酸序列的一部分的多核苷酸,其编码具有脂肪醇氧化酶活性的多肽。
207.一种表达载体,其包含权利要求202-206中任一项所述的多核苷酸。
208.一种整合载体,其包含权利要求202-206中任一项所述的多核苷酸。
209.一种微生物,其包含权利要求207所述表达载体或权利要求208所述整合载体。
210.一种培养物,其包含权利要求209所述的微生物。
211.一种发酵装置,其包含权利要求中210所述微生物。
212.一种多肽,其由权利要求中202-206中任一项所述的多核苷酸编码或由权利要求J4中所述的表达载体或权利要求209所述微生物产生。
213.一种抗体,其特异性结合权利要求212所示多肽。
CN2010800394770A 2009-07-02 2010-07-01 制备己二酸的生物学方法 Pending CN102482638A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22290209P 2009-07-02 2009-07-02
US61/222,902 2009-07-02
PCT/US2010/040837 WO2011003034A2 (en) 2009-07-02 2010-07-01 Biological methods for preparing adipic acid

Publications (1)

Publication Number Publication Date
CN102482638A true CN102482638A (zh) 2012-05-30

Family

ID=43411767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800394770A Pending CN102482638A (zh) 2009-07-02 2010-07-01 制备己二酸的生物学方法

Country Status (13)

Country Link
US (3) US20120156761A1 (zh)
EP (1) EP2449091A4 (zh)
JP (1) JP2012531903A (zh)
CN (1) CN102482638A (zh)
AP (1) AP2012006100A0 (zh)
BR (1) BRPI1011936A2 (zh)
CA (1) CA2765849A1 (zh)
EA (1) EA201270115A1 (zh)
IN (1) IN2012DN00462A (zh)
MX (1) MX2012000150A (zh)
SG (1) SG176970A1 (zh)
WO (1) WO2011003034A2 (zh)
ZA (1) ZA201200640B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571915A (zh) * 2012-07-19 2014-02-12 天津工业生物技术研究所 一种基于双酶偶联高通量检测微生物生产二元酸的新方法
CN105073997A (zh) * 2012-12-14 2015-11-18 英威达技术有限责任公司 经由与碳储存有关的CoA依赖性碳链延长生成6碳化学品的方法
CN105121624A (zh) * 2012-12-19 2015-12-02 沃德金有限公司 制备脂肪二羧酸的生物学方法
CN107208103A (zh) * 2014-09-18 2017-09-26 泰拉瑞亚控股公司 酰基‑acp硫酯酶及其突变体
CN110982797A (zh) * 2019-12-25 2020-04-10 湖南农业大学 一种检测油菜脂肪酸脱氢酶的多克隆抗体的制备方法及其产品与应用

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2765849A1 (en) 2009-07-02 2011-01-06 Verdezyne, Inc. Biological methods for preparing adipic acid
BR112013003003A2 (pt) 2010-08-06 2016-06-14 Mascoma Corp produção de produtos malonil-coa derivados através de rotas anaeróbicas
US20140004598A1 (en) * 2011-01-05 2014-01-02 Verdezyne, Inc. Biological methods for preparing adipic acid
JPWO2012137771A1 (ja) * 2011-04-08 2014-07-28 昭和電工株式会社 アジピン酸の製造方法
US8343752B2 (en) 2011-05-03 2013-01-01 Verdezyne, Inc. Biological methods for preparing adipic acid
US8728798B2 (en) 2011-05-03 2014-05-20 Verdezyne, Inc. Biological methods for preparing adipic acid
CN103732569B (zh) 2011-06-17 2016-06-29 英威达技术有限责任公司 使用水解酶来增加废物流中的单体含量
MY161761A (en) * 2011-06-17 2017-05-15 Invista Tech Sarl Methods of making nylon intermediates from glycerol
WO2013003744A2 (en) 2011-06-30 2013-01-03 Invista Techonologies S.A R.L Bioconversion process for producing nylon-7, nylon-7,7 and polyesters
WO2013006733A2 (en) * 2011-07-06 2013-01-10 Verdezyne, Inc. Biological methods for preparing a fatty dicarboxylic acid
DE102011110945A1 (de) 2011-08-15 2013-02-21 Evonik Degussa Gmbh Biotechnologisches Syntheseverfahren von organischen Verbindungen mit alkIL-Genprodukt
DE102011110946A1 (de) * 2011-08-15 2016-01-21 Evonik Degussa Gmbh Biotechnologisches Syntheseverfahren von omegafunktionalisierten Carbonsäuren und Carbonsäure-Estern aus einfachen Kohlenstoffquellen
CA2850095A1 (en) * 2011-09-26 2013-04-04 Verdezyne, Inc. Engineered yeast for producing adipic acid
US9102960B2 (en) 2011-12-16 2015-08-11 Invista North America S.á.r.l. Methods of producing 6-carbon chemicals via CoA-dependent carbon chain elongation associated with carbon storage
CN104220601A (zh) * 2011-12-16 2014-12-17 英威达技术有限责任公司 经与碳储存相关的CoA 依赖性碳链延长制备6 碳化学品的方法
US9181568B2 (en) * 2012-04-23 2015-11-10 Exxonmobil Research And Engineering Company Cell systems and methods for improving fatty acid synthesis by expression of dehydrogenases
DE102012219477A1 (de) 2012-10-24 2014-04-24 Hilti Aktiengesellschaft Verfahren zur Herstellung von Vinylesterurethanharzen auf Basis von Dianhydrohexitol-Verbindungen und ihre Verwendung
DE102012219476A1 (de) 2012-10-24 2014-04-24 Hilti Aktiengesellschaft Harzmischung auf Vinylesterurethanharz-Basis und deren Verwendung
WO2014093847A2 (en) 2012-12-14 2014-06-19 Invista North America S.A.R.L. METHODS OF PRODUCING 7-CARBON CHEMICALS VIA CoA-DEPENDENT CARBON CHAIN ELONGATION ASSOCIATED WITH CARBON STORAGE
SG11201504837WA (en) 2012-12-19 2015-07-30 Verdezyne Inc Biological methods for preparing a fatty dicarboxylic acid
EP2746397A1 (de) * 2012-12-21 2014-06-25 Evonik Industries AG Herstellung von Omega-Aminofettsäuren
EP2938734A2 (en) 2012-12-31 2015-11-04 Invista Technologies S.A R.L. Methods of producing 7-carbon chemicals via aromatic compounds
EP2938735A2 (en) 2012-12-31 2015-11-04 Invista Technologies S.A R.L. Methods of producing 7-carbon chemicals via pyruvate and succinate semialdehyde aldol condensation
EP2938733A2 (en) 2012-12-31 2015-11-04 Invista North America S.a.r.l. Methods of producing 7-carbon chemicals via methyl-ester shielded carbon chain elongation
EP2938731A2 (en) 2012-12-31 2015-11-04 Invista Technologies S.A R.L. Methods of producing 7-carbon chemicals via carbon chain elongation associated with cyclohexane carboxylate synthesis
US9580731B2 (en) 2012-12-31 2017-02-28 Invista North America S.A.R.L. Methods of producing 7-carbon chemicals via c1 carbon chain elongation associated with coenzyme B synthesis
CN105073214A (zh) 2012-12-31 2015-11-18 英威达技术有限责任公司 通过甲酯保护的碳链延伸生产6碳化学物的方法
US9920336B2 (en) 2012-12-31 2018-03-20 Invista North America S.A.R.L. Methods of producing 7-carbon chemicals from long chain fatty acids via oxidative cleavage
US9567615B2 (en) 2013-01-29 2017-02-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
CN106574283A (zh) 2014-05-15 2017-04-19 英威达技术有限责任公司 使用2,6‑二氨基庚二酸作为2‑氨基庚二酸的前体生产6‑碳化学品的方法
WO2015195611A2 (en) 2014-06-16 2015-12-23 Invista Technologies S.À.R.L. Methods, reagents and cells for biosynthesizing compound
CN106795519A (zh) 2014-06-16 2017-05-31 英威达技术有限责任公司 用于生成戊二酸和戊二酸甲酯的方法
US9816117B2 (en) 2014-06-16 2017-11-14 Invista North America S.A.R.L. Methods, reagents and cells for biosynthesizing compounds
EP3155107A1 (en) 2014-06-16 2017-04-19 Invista Technologies S.à.r.l. Methods, reagents and cells for biosynthesizing compounds
WO2016014968A1 (en) 2014-07-24 2016-01-28 Solazyme, Inc. Variant thioesterases and methods of use
BR112017010973A2 (pt) * 2014-11-26 2018-02-14 Invista Tech Sarl métodos para fabricação de 7-hidroxioctanoato e para biossintetização de 6-hidroxi-hexanoato, hospedeiro recombinante, produto bioderivado, produto de base biológica ou produto derivado de fermentação, organismo, rede bioquímica, construto de ácido nucleico ou vetor de expressão, e, composição.
KR101713710B1 (ko) 2014-12-10 2017-03-08 현대자동차주식회사 아디픽산의 신규 제조법
US9452968B1 (en) 2015-04-22 2016-09-27 Orochem Technologies, Inc. Separation of adipic acid and dodecanedioic acid from corresponding monoacid and hydroxy acid
MX2017014469A (es) 2015-05-11 2018-04-10 Impossible Foods Inc Constructos de expresion y metodos para diseñar geneticamente levadura metilotrofica.
CN105112436B (zh) * 2015-06-29 2018-08-28 江南大学 一种己二酸的全生物合成方法
WO2017139496A1 (en) * 2016-02-09 2017-08-17 Cevolva Biotech, Inc. Microbial engineering for the production of cannabinoids and cannabinoid precursors
US20230139445A1 (en) 2016-11-15 2023-05-04 Danmarks Tekniske Universitet Bacterial cells with improved tolerance to diacids
KR101947243B1 (ko) 2016-11-30 2019-05-10 현대자동차주식회사 사용된 촉매의 회수 및 재사용 공정을 포함하는 뮤코네이트 제조 방법
KR101916540B1 (ko) 2016-11-30 2018-11-07 현대자동차주식회사 이온성액체를 이용한 뮤식산으로부터 뮤코네이트의 제조 방법
WO2018105572A1 (ja) 2016-12-06 2018-06-14 東レ株式会社 ε-カプロラクタムの製造方法
TWI677739B (zh) * 2017-11-02 2019-11-21 友達光電股份有限公司 具相變化材料之擋塊及使用其之背光模組及顯示裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400468A (en) * 1981-10-05 1983-08-23 Hydrocarbon Research Inc. Process for producing adipic acid from biomass
WO1997004083A1 (fr) * 1995-07-18 1997-02-06 Rhone Poulenc Fibres Et Polymeres S.A. Enzymes et micro-organismes a activite amidase hydrolysant les polyamides
US20030087403A1 (en) * 1999-02-19 2003-05-08 Qiong Cheng Biological method for the production of adipic acid and intermediates
US20030113886A1 (en) * 1999-02-19 2003-06-19 Brzostowicz Patricia C. Oxidation of a cyclohexanone derivative using a brevibacterium cyclohexanone monooxygenase

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843466A (en) 1969-11-10 1974-10-22 Ajinomoto Kk Method of producing dicarboxylic acids by fermentation
JPS5543759B2 (zh) 1972-06-28 1980-11-07
US4725542A (en) 1983-01-13 1988-02-16 Celgene Corporation Production of nylon 6,6 salt
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US5656493A (en) 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5576195A (en) 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
ES2061937T3 (es) 1988-05-11 1994-12-16 Unilever Nv Preparacion de acido dicarboxilico.
US5204252A (en) 1989-02-08 1993-04-20 Henkel Research Corporation Candida tropicalis transformation system
US5254466A (en) 1989-11-06 1993-10-19 Henkel Research Corporation Site-specific modification of the candida tropicals genome
WO1991014781A1 (en) 1990-03-19 1991-10-03 Henkel Research Corporation METHOD FOR INCREASING THE OMEGA-HYDROXYLASE ACTIVITY IN $i(CANDIDA TROPICALIS)
JPH04126084A (ja) 1990-05-11 1992-04-27 Hoechst Japan Ltd 蛋白質の製造法
US5104492A (en) 1990-07-11 1992-04-14 The Regents Of The University Of California Recovery of carboxylic acids from water by precipitation from organic solutions
NZ239893A (en) 1990-09-25 1993-11-25 Hoechst Japan A method for introducing a foreign dna into a cell
US5349084A (en) 1990-09-28 1994-09-20 Idemitsu Petrochemical Co., Ltd. Process for recovering high-purity organic acid
US5268273A (en) 1990-12-14 1993-12-07 Phillips Petroleum Company Pichia pastoris acid phosphatase gene, gene regions, signal sequence and expression vectors comprising same
US5412126A (en) 1991-04-17 1995-05-02 The Regents Of The University Of California Carboxylic acid sorption regeneration process
US5389529A (en) 1991-06-12 1995-02-14 Regeneron Pharmaceuticals, Inc. Modified lamβ signal sequence and processes for producing recombinant neurotrophins
FR2679249B1 (fr) 1991-07-15 1993-11-26 Centre Nal Recherc Scientifique Souches de levure avec integration stable de genes heterologues.
US6288302B1 (en) 1992-11-04 2001-09-11 National Science Council Of R.O.C. Application of α-amylase gene promoter and signal sequence in the production of recombinant proteins in transgenic plants and transgenic plant seeds
US5296639A (en) 1992-12-18 1994-03-22 E. I. Du Pont De Nemours And Company Adipic acid purification
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
US5470719A (en) 1994-03-18 1995-11-28 Meng; Shi-Yuan Modified OmpA signal sequence for enhanced secretion of polypeptides
US5766891A (en) 1994-12-19 1998-06-16 Sloan-Kettering Institute For Cancer Research Method for molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase
US5712114A (en) 1995-06-06 1998-01-27 Basf Aktiengesellschaft Compositions for expression of proteins in host cells using a preprocollagen signal sequence
US7670823B1 (en) 1999-03-02 2010-03-02 Life Technologies Corp. Compositions for use in recombinational cloning of nucleic acids
US6143557A (en) 1995-06-07 2000-11-07 Life Technologies, Inc. Recombination cloning using engineered recombination sites
EP1227147A3 (en) 1995-06-07 2002-08-14 Invitrogen Corporation Recombinational cloning using engineered recombination sites
US6720140B1 (en) 1995-06-07 2004-04-13 Invitrogen Corporation Recombinational cloning using engineered recombination sites
US5962285A (en) * 1995-09-08 1999-10-05 Henkel Corporation Process for making polycarboxylic acids
US6087527A (en) 1996-07-18 2000-07-11 Toray Industries, Inc. Method for producing alkyl carboxylates by multi-stage esteridication interrupted with a dehydration step
US6143532A (en) 1996-08-28 2000-11-07 Henkel Corporation Process for recovering carboxylic acids from a fermentation broth
US6245538B1 (en) 1996-08-28 2001-06-12 Henkel Corporation Process for recovering carboxylic acids from a fermentation broth
GB9622516D0 (en) 1996-10-29 1997-01-08 Univ Cambridge Tech Enzymic cofactor cycling
US20040146999A1 (en) 1997-07-21 2004-07-29 E.I. Du Pont De Nemours And Company Transformed yeast strains and their use for the production of monoterminal and diterminal aliphatic carboxylates
EP1273663A3 (en) 1997-07-21 2004-02-04 E.I. Dupont De Nemours And Company Transformed yeast strains and their use fore the production of monoterminal and diterminal aliphatic carboxylates
US5932474A (en) 1997-10-21 1999-08-03 The Regents Of The University Of California Target sequences for synthetic molecules
US6054271A (en) 1997-10-21 2000-04-25 The Regents Of The University Of California Methods of using synthetic molecules and target sequences
US6008378A (en) 1997-10-21 1999-12-28 The Regents Of The University Of California Synthetic molecules that specifically react with target sequences
JP4303418B2 (ja) 1997-10-24 2009-07-29 ライフ テクノロジーズ コーポレーション 組換え部位を有する核酸を使用する組換えクローニング
FR2775685B1 (fr) 1998-03-05 2000-12-29 Rhone Poulenc Fibres Procede de separation et de purification de l'acide adipique
US20030077795A1 (en) 1999-03-10 2003-04-24 Wilson C. Ron Cytochrome P450 monooxygenase and NADPH Cytochrome P450 oxidoreductase genes and proteins related to the omega hydroxylase complex of candida tropicals and methods relating thereto
US6331420B1 (en) 1998-05-01 2001-12-18 C. Ron Wilson Cytochrome P450 monooxygenase and NADPH cytochrome P450 oxidoreductase genes and proteins related to the omega hydroxylase complex of Candida tropicalis and methods relating thereto
AU773874B2 (en) 1998-07-10 2004-06-10 Fluxome Sciences A/S Metabolically engineered microbial cell with an altered metabolite production
US6066480A (en) 1998-09-21 2000-05-23 General Electric Company Method for high specific bioproductivity of α,ω-alkanedicarboxylic acids
JP2002537800A (ja) 1999-03-02 2002-11-12 インビトロゲン・コーポレーション 毒性遺伝子に対して耐性のある細胞およびその使用
US6288275B1 (en) 1999-07-09 2001-09-11 Henkel Corporation Separation and purification of carboxylic acids from fermentation broths
US6376223B1 (en) 1999-08-04 2002-04-23 Cognis Corporation Process for purifying polycarboxylic acids
US20050287592A1 (en) 2000-08-29 2005-12-29 Yeda Research And Development Co. Ltd. Template-dependent nucleic acid polymerization using oligonucleotide triphosphates building blocks
US6569670B2 (en) 1999-09-30 2003-05-27 Cognis Corporation Fermentation process
ATE332389T1 (de) 1999-09-30 2006-07-15 Cognis Ip Man Gmbh Verbessertes fermentationsverfahren
US6632650B1 (en) 1999-12-10 2003-10-14 E. I. Du Pont De Nemours And Company Genes involved in cyclododecanone degradation pathway
EP1978098A3 (en) 1999-12-10 2009-02-18 Invitrogen Corporation Use of multiple recombination sites with unique specificity in recombinational cloning
US20020061566A1 (en) 2000-03-20 2002-05-23 Eirich L. Dudley Biooxidation capabilities of candida sp
US6660505B2 (en) 2000-06-22 2003-12-09 Cognis Corporation Isolation of carboxylic acids from fermentation broth
US6673613B2 (en) 2000-07-26 2004-01-06 Cognis Corporation Use of CYP52A2A promoter to increase gene expression in yeast
US6503734B1 (en) 2000-07-26 2003-01-07 Cognis Corporation Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto
US20030215930A1 (en) 2000-12-08 2003-11-20 Chen Mario W. Genes involved in cyclododecanone degradation pathway
EP1220435A3 (en) 2000-12-21 2003-07-09 Alcatel Switched power converter
WO2003008563A2 (en) 2001-07-20 2003-01-30 California Institute Of Technology Improved cytochrome p450 oxygenases
WO2003031596A2 (en) 2001-10-12 2003-04-17 Cognis Corporation Production of a highly active, soluble form of the cytochrome p450 reductase (cpr a) from candida tropicalis
WO2003089611A2 (en) 2002-04-19 2003-10-30 Cognis Corporation ANTIBODIES FOR ENZYMES OF THE ω-OXIDATION PATHWAY AND METHODS RELATING THERETO
ATE538197T1 (de) 2002-04-19 2012-01-15 Cognis Ip Man Gmbh Fettalkoholoxidase-gene und -proteine aus candida tropicalis und damit verbundene verfahren
US7043681B2 (en) 2002-05-03 2006-05-09 Ibiquity Digital Corporation Digital audio broadcasting method and apparatus using complementary pattern-mapped convolutional codes
US20040014198A1 (en) 2002-05-23 2004-01-22 Craft David L. Non-revertible beta-oxidation blocked candida tropicalis
AU2003243366B2 (en) 2002-05-30 2008-01-24 Natureworks Llc Methods and materials for the production of lactic acid in yeast
US20040265980A1 (en) 2002-08-05 2004-12-30 Yeyan Zhang Use of POX4 promoter to increase gene expression in Candida tropicalis
US7388084B2 (en) 2002-08-16 2008-06-17 Cognis Corporation Promoter motifs in Candida tropicalis
US6777213B2 (en) 2002-10-29 2004-08-17 Cognis Corporation Isolation of carboxylic acids from fermentation broth
FR2846651B1 (fr) 2002-10-30 2006-06-16 Rhodia Polyamide Intermediates Procede de fabrication d'acides carboxyliques
US7820378B2 (en) 2002-11-27 2010-10-26 Sequenom, Inc. Fragmentation-based methods and systems for sequence variation detection and discovery
US7270947B2 (en) 2003-01-14 2007-09-18 Cognis Corporation Method for controlling biooxidation reactions
WO2007044688A1 (en) 2005-10-07 2007-04-19 The Regents Of The University Of California Nucleic acids encoding modified cytochrome p450 enzymes and methods of use thereof
US7326829B1 (en) 2006-12-15 2008-02-05 Shamrock Seed Company, Inc. Lettuce cultivar 50-0401021-B
WO2009151728A2 (en) 2008-03-27 2009-12-17 Genomatica, Inc. Microorganisms for the production of adipic acid and other compounds
US9012187B2 (en) 2008-07-08 2015-04-21 Dsm Ip Assets B.V. Dicarboxylic acid production by fermentation at low pH
WO2010068944A2 (en) 2008-12-12 2010-06-17 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
US8158391B2 (en) 2009-05-06 2012-04-17 Dna Twopointo, Inc. Production of an α-carboxyl-ω-hydroxy fatty acid using a genetically modified Candida strain
US8597923B2 (en) 2009-05-06 2013-12-03 SyntheZyme, LLC Oxidation of compounds using genetically modified Candida
CA2765849A1 (en) 2009-07-02 2011-01-06 Verdezyne, Inc. Biological methods for preparing adipic acid
US8343752B2 (en) 2011-05-03 2013-01-01 Verdezyne, Inc. Biological methods for preparing adipic acid
US8728798B2 (en) 2011-05-03 2014-05-20 Verdezyne, Inc. Biological methods for preparing adipic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400468A (en) * 1981-10-05 1983-08-23 Hydrocarbon Research Inc. Process for producing adipic acid from biomass
WO1997004083A1 (fr) * 1995-07-18 1997-02-06 Rhone Poulenc Fibres Et Polymeres S.A. Enzymes et micro-organismes a activite amidase hydrolysant les polyamides
US20030087403A1 (en) * 1999-02-19 2003-05-08 Qiong Cheng Biological method for the production of adipic acid and intermediates
US20030113886A1 (en) * 1999-02-19 2003-06-19 Brzostowicz Patricia C. Oxidation of a cyclohexanone derivative using a brevibacterium cyclohexanone monooxygenase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571915A (zh) * 2012-07-19 2014-02-12 天津工业生物技术研究所 一种基于双酶偶联高通量检测微生物生产二元酸的新方法
CN105073997A (zh) * 2012-12-14 2015-11-18 英威达技术有限责任公司 经由与碳储存有关的CoA依赖性碳链延长生成6碳化学品的方法
CN105121624A (zh) * 2012-12-19 2015-12-02 沃德金有限公司 制备脂肪二羧酸的生物学方法
CN107208103A (zh) * 2014-09-18 2017-09-26 泰拉瑞亚控股公司 酰基‑acp硫酯酶及其突变体
CN110982797A (zh) * 2019-12-25 2020-04-10 湖南农业大学 一种检测油菜脂肪酸脱氢酶的多克隆抗体的制备方法及其产品与应用

Also Published As

Publication number Publication date
US20120156761A1 (en) 2012-06-21
IN2012DN00462A (zh) 2015-06-05
JP2012531903A (ja) 2012-12-13
US8241879B2 (en) 2012-08-14
US20130157343A1 (en) 2013-06-20
SG176970A1 (en) 2012-02-28
ZA201200640B (en) 2012-09-26
EP2449091A2 (en) 2012-05-09
US8778658B2 (en) 2014-07-15
WO2011003034A2 (en) 2011-01-06
AP2012006100A0 (en) 2012-02-29
WO2011003034A3 (en) 2011-07-21
BRPI1011936A2 (pt) 2016-05-03
CA2765849A1 (en) 2011-01-06
EA201270115A1 (ru) 2013-01-30
US20120021474A1 (en) 2012-01-26
EP2449091A4 (en) 2012-12-05
MX2012000150A (es) 2012-04-11

Similar Documents

Publication Publication Date Title
CN102482638A (zh) 制备己二酸的生物学方法
US11884948B2 (en) Genetically modified organisms for production of polyketides
US9765346B2 (en) Biological methods for preparing a fatty dicarboxylic acid
CA2895124C (en) Biological methods for preparing a fatty dicarboxylic acid
US9850493B2 (en) Biological methods for preparing a fatty dicarboxylic acid
US20150087035A1 (en) Biological methods for preparing adipic acid
EP2661487A2 (en) Biological methods for preparing adipic acid
US20180148744A1 (en) Biological methods for preparing 3-hydroxypropionic acid
EP2761004A2 (en) Biological methods for preparing adipic acid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120530