CN102460357B - 高速多点触控触摸装置及其控制器 - Google Patents

高速多点触控触摸装置及其控制器 Download PDF

Info

Publication number
CN102460357B
CN102460357B CN201080032490.3A CN201080032490A CN102460357B CN 102460357 B CN102460357 B CN 102460357B CN 201080032490 A CN201080032490 A CN 201080032490A CN 102460357 B CN102460357 B CN 102460357B
Authority
CN
China
Prior art keywords
electrode
touch
drive
response signal
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080032490.3A
Other languages
English (en)
Other versions
CN102460357A (zh
Inventor
克雷格·A·科代罗
托马斯·J·雷贝斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN102460357A publication Critical patent/CN102460357A/zh
Application granted granted Critical
Publication of CN102460357B publication Critical patent/CN102460357B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Abstract

本发明涉及一种触敏装置包括触摸面板、驱动单元、感测单元和测量单元。施加至所述面板的节点处的触摸改变所述触摸面板的两个电极(驱动电极和感测电极)之间的电容耦合。所述驱动单元将可包括一个或多个驱动脉冲的驱动信号传送至所述驱动电极。所述感测单元连接到所述感测电极,并且产生包括所述驱动信号的微分化表示的响应信号。所述响应信号的振幅响应于所述电极之间的所述电容耦合,并且经测量以提供所述节点处的触摸的指示。

Description

高速多点触控触摸装置及其控制器
相关专利申请的交叉引用
本申请要求2009年5月29日提交的美国临时专利申请No.61/182366以及2009年8月5日提交的美国临时专利申请No.61/231471的优先权,这些专利的公开内容全文以引用方式并入本文。
技术领域
本发明总体上涉及触敏装置,尤其涉及依赖于用户的手指或其他触摸工具与触摸工具之间的电容耦合的那些,其尤其应用于能够检测同时施加于触摸装置的不同部分处的多次触摸的此类装置。
背景技术
触敏装置通过减少或消除对机械按钮、小键盘、键盘和指示装置的需求,而允许用户方便地与电子系统和显示器进行交互。例如,用户只需在由图标标识的位置处触摸即显触摸屏,即可执行一系列复杂的指令。
有若干类型的技术用于实现触敏装置,包括(例如)电阻、红外、电容、表面声波、电磁、近场成像等。人们已经发现电容式触敏装置在大量应用中有很好的效果。在许多触敏装置中,当传感器内的导电物体电容耦合至导电性触摸工具(例如用户的手指)时,感测输入。一般来讲,只要两个导电构件彼此靠近但未实际接触,这两者之间便会形成电容。就电容式触敏装置而言,手指之类的物体接近触敏表面时,该物体和靠近该物体的感测点之间会形成微小的电容。通过检测每个感测点处电容的变化并记录感测点的位置,感测电路就能识别多个物体并确定当物体在整个触摸表面上移动时物体的特性。
用于以电容方式测量触摸情况的已知技术有两种。第一种是测量对地电容,借此信号施加至电极上。靠近电极的触摸导致信号电流从电极经过手指之类的物体流到电气接地。
用于以电容方式测量触摸情况的第二种技术是通过互电容。互电容式触摸屏将信号施加至受驱动电极上,该电极通过电场电容耦合至接收电极。靠近的物体会减小两个电极之间的信号耦合,从而减小电容耦合。
在第二种技术的背景下,各个其他技术已用于测量电极之间的互电容。在这样一种技术中,耦合至接收电极的电容器用于积聚与驱动信号的多个脉冲相关的多个电荷。因此,驱动信号的每个脉冲均仅贡献积聚在此“积分电容器”上的总电荷的一小部分。参考美国专利6,452,514(Philipp)。此技术具有良好的抗扰性,但其速度可能因对该积分电容器充电所需的脉冲数量而有限。
发明内容
本申请尤其公开了能够检测同时或以重叠时间施加至触摸装置的不同部分处的多次触摸的触敏装置。此外,触摸装置无需采用积分电容器来测量驱动电极与接收电极之间的电容耦合。相反,在至少一些实施例中,来自驱动信号的单个脉冲可为测量特定驱动电极与特定接收电极之间或甚至特定驱动电极与多个(例如全部)接收电极之间的电容耦合所需的全部。为此,假设合适的脉冲形状用于驱动信号,则微分电路优选地连接到接收电极,以使得为每个接收电极产生驱动信号的微分化表示(称为响应信号)。在一个示例性实施例中,每个微分电路均可包括运算放大器(opamp),其具有连接在该运算放大器的反相输入与该运算放大器的输出之间的反馈电阻器,并且该反相输入也连接至给定接收电极。还可使用其他已知的微分电路设计,前提是电路提供以某种形式包括驱动信号对时间的导数的至少一个近似值的输出。
响应信号的特性振幅(诸如,峰值振幅或平均振幅)表征所采样的驱动电极与接收电极之间的电容耦合。与特定驱动电极和接收电极相对应的节点处的触摸具有减小电容耦合及减小特性振幅的作用。甚至可仅通过驱动信号的单个脉冲来测量这种振幅减小情况。可以此方式来检测触摸装置的不同部分处的同时或在时间上重叠的多次触摸。如果期望降低噪声,可将来自驱动信号的多个选定数量的脉冲用于每个驱动/接收电极对(即,节点),并且振幅测量值经测量或经其它方式处理以提供较低的噪声测量值。
本申请还公开了包括触摸面板、驱动单元、感测单元和测量单元的触敏装置。该面板可包括触摸表面以及界定电极矩阵的多个电极,该多个电极包括多个驱动电极和多个接收电极。每个驱动电极均在矩阵的各个节点处电容耦合至每个接收电极。所述面板被构造为使得靠近这些节点中的一个给定节点的触摸表面上的触摸可改变与给定节点相关的驱动电极与接收电极之间的耦合电容。驱动单元又被构造用于产生驱动信号且(例如)通过多路复用器而将该驱动信号逐一地传送至驱动电极。该驱动信号可为或包括仅一个单独驱动脉冲,或其可包括多个或一系列此类驱动脉冲。感测单元可被构造用于针对传送至每个驱动电极的每个驱动信号为电容耦合至此驱动电极的多个接收电极产生响应信号,每个响应信号均包括驱动信号的微分化表示。这些响应信号中每个的振幅响应于相关节点处的耦合电容。最后,测量单元优选地被构造用于测量每个节点的每个响应信号的振幅,并且如果存在时间上重叠的多次触摸,由此确定触摸表面上的时间上重叠的多次触摸的位置。
可调整或选择用于驱动信号中的(多个)驱动脉冲的形状,以便向响应信号提供所需的波形。例如,如果矩形用于驱动脉冲,则由感测单元产生的响应信号通常包括一对极性相反的冲击脉冲,此对冲击脉冲的峰值振幅可用峰值检测器和任选的采样/保持缓冲器来分离。或者,如果选择斜坡形驱动脉冲,则响应信号通常包括名义上呈矩形的脉冲形状,即其包括位于两个较陡的高至低过渡之间的较恒定振幅平稳段,其实例将在下文描述。此矩形响应信号允许可消除某些电路元件,并且总体简化触摸装置,如以下进一步所述。
本申请还公开了包括触摸面板、驱动单元和感测单元的触敏装置。该面板包括触摸表面以及界定电极矩阵的多个电极,该电极矩阵被构造为使得靠近该矩阵的给定节点的触摸表面上的触摸改变这两个电极之间的耦合电容。该驱动单元连接到电极矩阵且被构造用于产生包括一个或多个斜坡式脉冲的驱动信号。该感测单元也连接到电极矩阵,并且被构造用于响应于驱动信号来产生包括一个或多个矩形脉冲的至少一个响应信号,该至少一个响应信号的振幅响应于触摸表面上的触摸。
本文还讨论了相关方法、系统和制品。
本专利申请的这些方面和其他方面通过下文的详细说明将显而易见。然而,在任何情况下均不应将上述发明内容理解为对受权利要求保护的主题的限制,该主题仅受所附权利要求的限定,并且在审查期间可以进行修改。
附图说明
图1为触摸装置的示意图;
图2为用于触摸装置中的触摸面板的一部分的示意性侧视图;
图3a为触摸装置的示意图,其中相关的驱动电路和检测电路在一个驱动电极以及与其电容耦合的一个接收电极的背景下示出;
图3b为与图3a的触敏装置类似但包括附加电路以说明接收电极上的信号强度差异的触敏装置的示意图;
图3c为与图3a的触敏装置类似但包括附加电路以说明来自(例如)显示器的噪声的触敏装置的示意图;
图4a为用于图3a的触摸装置的驱动信号和相应(模型化)响应信号的坐标图,其中驱动信号包括矩形脉冲且响应信号包括冲击脉冲;
图4b为示出用于三个受驱动电极的模型化波形以及三个接收电极上的相关响应波形的坐标图;
图5a为与图4a的坐标图类似但针对不同驱动信号的坐标图,该驱动信号包括斜坡式脉冲且响应信号包括矩形状脉冲;
图5b为示出用于三个受驱动电极的模型化波形以及三个接收电极上的相关响应波形的坐标图(与图4b类似);
图6a为另一个驱动信号的坐标图以及用于图3a的触摸装置的预期响应信号的示意性描绘,该驱动信号包括斜坡式脉冲且该响应信号包括矩形脉冲;
图6b为示出用于三个受驱动电极的模型化波形以及三个接收电极上的相关响应波形的坐标图(与图4b和图5b类似);
图7为用于图3c的触摸装置的驱动信号和相应(模型化)响应信号的坐标图,其中驱动信号包括矩形脉冲且响应信号包括冲击脉冲;以及
图8为触摸装置的示意图,该触摸装置包括具有电容耦合电极的4×8矩阵的触摸面板,以及可用于检测触摸面板上的多次同时触摸的各种电路元件。
在这些附图中,类似的附图标号指示类似的元件。
具体实施方式
在图1中,示出了一种示例性触摸装置110。该装置110包括连接至电子电路的触摸面板112,为了简便起见,将电子电路一起集合成标记为114且统称为控制器的单个示意框。
所示的触摸面板112具有列电极116a-e和行电极118a-e的5×5矩阵,但还可使用其他数量的电极和其他矩阵尺寸。面板112通常是大致透明的,以使得用户能够透过面板112来观察物体,诸如计算机、手持装置、移动电话或其他外围设备的像素化显示器。边界120表示面板112的观察区域且还优选地表示此显示器(如果使用)的观察区域。从平面图的视角看,电极116a-e、118a-e在观察区域120上为空间分布。为了易于说明,这些电极被示出为较宽且显眼,但实际上电极可较窄且用户不易察觉。此外,这些电极可设计为在矩阵的节点附近处具有可变宽度,如以菱形垫或其他形状的垫形式增加的宽度,以便增大电极间的边缘场,从而增强触摸对于电极间电容耦合的效果。在示例性实施例中,电极可由铟锡氧化物(ITO)或其他合适的导电材料构成。从深度的角度,列电极可位于与行电极不同的平面内(从图1的角度,列电极116a-e位于行电极118a-e的下面),以使得列电极与行电极之间不进行显著的欧姆接触,并且使得给定列电极与给定行电极之间的唯一显著的电耦合为电容耦合。电极矩阵通常位于防护玻璃、塑料薄膜等的下面,使得电极受到保护而不与用户的手指或其他触摸相关工具发生直接物理接触。此类防护玻璃、薄膜等的暴露表面可被称为触摸表面。另外,在显示型应用中,背屏蔽件可设置在显示器与触摸面板112之间。此背屏蔽件通常由玻璃或薄膜上的导电ITO涂层组成,并且可接地或由降低从外部电干扰源到触摸面板112中的信号耦合的波形来驱动。其他背屏蔽方法在本领域中是已知的。通常,背屏蔽件减少由触摸面板112感测的噪声,这在一些实施例中可提供改善的触摸灵敏度(例如,能够感测较轻的触摸)和更快的响应时间。当来自(例如)LCD显示器的噪声强度随距离而快速降低时,有时结合其他噪声降低方法(包括使触摸面板112与显示器隔开)来使用背屏蔽件。除这些技术之外,以下参考各种实施例来讨论处理噪声问题的其他方法。
给定行电极和列电极之间的电容耦合主要取决于电极彼此最靠近的区域中的电极的几何形状。此类区域对应于电极矩阵的“节点”,一些节点在图1中标记。例如,行电极116a与列电极118d之间的电容耦合主要发生在节点122处,并且列电极116b与行电极118e之间的电容耦合主要发生在节点124处。图1的5×5矩阵具有25个此类节点,这些节点中的任一者均可由控制器114经由适当选择将各个列电极116a-e单独地连接到该控制器的控制线126中的一者以及适当选择将各个行电极118a-e单独地连接到该控制器的控制线128中的一者来寻址。
当用户的手指130或其他触摸工具接触或近接触装置110的触摸表面时,如触摸位置131处所示,该手指电容耦合至电极矩阵。该手指从矩阵,尤其从最靠近该触摸位置的这些电极吸引电荷,这样便可改变对应于(多个)最近节点的电极之间的耦合电容。例如,触摸位置131处的触摸最靠近对应于电极116c/118b的节点。如以下进一步所述,耦合电容的这种变化可由控制器114检测且被解释为116a/118b节点处或附近的触摸。优选地,控制器被构造为快速检测矩阵所有节点的电容变化(如果有的话),并且能够分析相邻节点的电容变化大小,从而通过内插法准确确定节点之间的触摸位置。此外,控制器114有利地被设计为检测同时或以重叠时间施加至触摸装置的不同部分处的多次不同触摸。因此,例如,如果在手指130触摸的同时,另一个手指132在触摸位置133处触摸装置110的触摸表面,或者如果各次触摸至少在时间上重叠,则控制器优选地能够检测这两次触摸的位置131、133,并且在触摸输出114a上提供此类位置。控制器114能够检测的同时发生的或时间上重叠的不同触摸的次数优选地不限于2,例如,它可以为3、4或更多,取决于电极矩阵的大小。
如以下进一步所述,控制器114优选地采用使其能够快速确定电极矩阵的某些或所有节点处的耦合电容的各种电路模块和组件。例如,控制器优选包括至少一个信号发生器或驱动单元。驱动单元将驱动信号传输至一组电极,该组电极被称为驱动电极。在图1的实施例中,列电极116a-e可用作驱动电极,或者可如此使用行电极118a-e。驱动信号优选地一次传送至一个驱动电极,如按照从第一个驱动电极到最后一个驱动电极的扫描顺序。当此类电极中的每一个被驱动时,控制器监测被称为接收电极的另一组电极。控制器114可以包括连接到所有接收电极的一个或多个感测单元。对于传送至每个驱动电极的每个驱动信号,(多个)感测单元为多个接收电极产生响应信号。优选地,(多个)感测单元被设计为使得每个响应信号均包括驱动信号的微分化表示。例如,如果驱动信号由可将电压表示为时间函数的函数f(t)来表示,则响应信号可为或包括至少近似的函数g(t),其中g(t)=df(t)/dt。换句话讲,g(t)为驱动信号f(t)对时间的导数。根据用于控制器114中的电路的设计细节,响应信号可包括:(1)单独的g(t);或(2)具有恒定偏移量的g(t)(g(t)+a);或(3)具有乘法比例因数的g(t)(b*g(t)),该比例因数能够为正或负,并且其大小能够大于1或大于0小于1;或(4)(例如)它们的组合。在任何情况下,响应信号的振幅与所驱动的驱动电极与所监测的特定接收电极之间的耦合电容有利地相关。当然,g(t)的振幅也与原函数f(t)的振幅成比例。应注意,如果需要的话,可仅使用驱动信号的单个脉冲来确定给定节点的g(t)的振幅。
控制器还可包括辨识和分离响应信号的振幅的电路。为此,示例性电路装置可包括一个或多个峰值检测器、采样/保持缓冲器和/或低通滤波器,其选择可取决于驱动信号和相应响应信号的性质。控制器还可包括一个或多个模数转换器(ADC),以将模拟振幅转换为数字格式。一个或多个多路复用器还可用于避免电路元件的不必要重复。当然,控制器中还优选地包括储存所测量振幅和相关参数的一个或多个存储设备,以及进行必要的计算和控制功能的微处理器。
通过测量电极矩阵中每个节点的响应信号的振幅,控制器可产生与电极矩阵的每个节点的耦合电容相关的测量值矩阵。这些测量值可与此前获得的参考值的类似矩阵比较,以便确定由于存在触摸而已发生耦合电容变化的节点(如果有的话)。
现转到图2,我们从中可看到用于触摸装置中的触摸面板210的一部分的示意性侧视图。该面板210包括前层212、包括第一组电极的第一电极层214、绝缘层216、包括优选地正交于第一组电极的第二组电极218a-e的第二电极层218以及后层220。层212的暴露表面212a或层220的暴露表面220a可为或包括触摸面板210的触摸表面。
图3a示出触摸装置310,其中相关的控制器电路(诸如,驱动电路和检测电路)在触摸面板312的背景下示出,该触摸面板312具有一个驱动电极314以及一个经由耦合电容Cc与其电容耦合的接收电极316。阅读者应了解这是触摸面板的一般化情况,其中驱动电极314可为多个驱动电极中的一者,并且接收电极316同样地可为多个接收电极中的一者,它们在触摸面板上布置成矩阵形式。
其实,在能够与本文所述的触摸测量技术中的至少某些一起使用的所关注的一个具体实施例中,触摸面板可包括40×64(40行,64列)矩阵装置,其具有纵横比为16:10的19英寸对角矩形观察区域。在这种情况下,电极的均匀间隔可为约0.25英寸。由于该实施例的尺寸,电极可具有与其相关的显著的杂散阻抗,例如行电极的电阻为40KΩ且列电极的电阻为64KΩ。对于良好的人为因素触摸响应而言,如果需要,可使测量矩阵的所有2,560(40*64=2560)个节点处的耦合电容的响应时间较快,例如小于20毫秒或甚至小于10毫秒。如果将行电极用作驱动电极且将列电极用作接收电极,并且如果同时对所有列电极进行采样,则有(例如)20msec(或10msec)以供按顺序扫描40行电极,每个行电极(驱动电极)的时间预算为0.5msec(或0.25msec)。
以其电气特性(呈集总电路元件模型的形式)而非以其物理特性来描述的图3a的驱动电极314和接收电极316表示可存在于具有小于40×64矩阵的触摸装置中的电极,但这不应视为限制性的。在图3a的此代表性实施例中,集总电路模型中所示的串联电阻R均可具有10KΩ的值,并且集总电路模型中所示的杂散电容C均可具有20皮法(pf)的值,但当然这些值无论如何不应视为限制性的。在此代表性实施例中,耦合电容Cc名义上为2pf,并且用户的手指318在电极314、316之间的节点处的触摸的存在导致耦合电容Cc下降约25%至约1.5pf的值。再次地,这些值不应视为限制性的。
根据先前所述的控制器,触摸装置310使用特定的电路来询问面板312,以便确定面板312的每个节点处的耦合电容Cc。就这一点而言,阅读者应了解控制器可通过确定指示或响应于耦合电容的参数值(例如,响应信号的振幅)来确定耦合电容,如上所述且如以下进一步所述。为完成此任务,装置310优选地包括:连接到驱动电极314的低阻抗驱动单元320;连接到接收电极316的感测单元322,该感测单元结合耦合电容对由驱动单元提供的驱动信号进行微分;以及将由感测单元322产生的响应信号的振幅转换成数字格式的模数转换器(ADC)单元324。根据由驱动单元320提供的驱动信号的性质(且因此还根据由感测单元322产生的响应信号的性质),装置310还可包括在该实施例中还用作采样/保持缓冲器的峰值检测电路326a,以及可操作以使峰值检测器复位的相关复位电路326b。在大多数实际应用中,装置310还将包括位于信号发生器320与触摸面板312之间的多路复用器,以便能够在给定时间对多个驱动电极中的任一者进行寻址;以及位于感测单元322(或任选的电路326b)与ADC单元324之间的多路复用器,以使得单个ADC单元快速地对与多个接收电极相关的振幅进行采样,从而避免每个接收电极均需要一个ADC单元的花费。
驱动单元320优选地为或包括具有内阻抗的电压电源,该内阻抗优选地足够低,以维持良好的信号完整性、减少注入式噪声和/或维持快速信号上升和下降时间。驱动单元320在其输出处向驱动电极314提供时变驱动信号。该驱动信号基本上可由单个孤立脉冲组成,或其可包括多个此类脉冲或形成连续的AC波形或波形包(诸如正弦波、方波、三角波等等)的一系列脉冲。就这一点而言,术语“脉冲”广义上用来指不同的信号变化且不限于具有短持续时间和高振幅的矩形。如果希望快速检测触摸面板上的(多次)触摸,则驱动信号优选地仅包括获得给定节点处的耦合电容的可靠测量值所需的最小数量的脉冲。这对具有大电极矩阵(即,大量待感测的节点)的触摸面板而言尤为重要。(多个)驱动脉冲的峰值或最大振幅优选地较高(例如,3至20伏特),以提供良好的信噪比。虽然在图3a中示出了来自仅一端的驱动电极314,但在一些实施例中,驱动单元320可被构造为来自其两端的驱动电极314。例如,这在电极314具有高电阻时(从而增强驱动信号衰减性和对噪声污染的敏感性)可能有用,其可存在于基于ITO的大矩阵型触摸传感器上。
阅读者应记住驱动单元320的输出处提供的驱动信号与传送至特定驱动电极314的驱动信号之间可存在差异。当(例如)多路复用器或其他开关装置设置在驱动单元320和触摸面板312之间以便将驱动单元(例如)逐一地选择性地连接到多个驱动电极时,该差异变得重要。在此情况下,驱动单元320在其输出处可具有连续的AC波形,诸如方波、三角波等,然而凭借多路复用器的开关动作,可将此波形的仅一个脉冲或仅几个脉冲一次传送至任何给定驱动电极。例如,可将连续的AC波形的一个脉冲传送至第一驱动电极,可将该AC波形的下一个脉冲传送至下一个驱动电极,依此类推直至已驱动所有驱动电极,于是将该AC波形的下一个脉冲再次传送至第一驱动电极,依此类推,重复循环。
如下结合图4至图6进一步所述,用于驱动信号中的脉冲形状可影响待用于所述装置中的检测/测量电子器件的选择。可用的脉冲形状的例子包括矩形脉冲、斜坡式脉冲(对称或非对称)以及正弦波(例如钟形)脉冲。
如果需要,驱动单元320可程序化以在不同时间提供不同脉冲。例如,如果该驱动单元通过多路复用器而连接到多个驱动电极,则该驱动单元可经程序化以向不同驱动电极提供不同信号电平,从而补偿线路电阻和杂散电容中的电极间变化。例如,设置在需要穿过(多个)接收电极的长导电长度的位置处的驱动电极用比设置在需要较短导电长度的位置处的驱动电极振幅高的驱动信号有利地驱动,以便补偿与这些接收电极相关的损失。(例如,参见图1的电极矩阵,如果行电极118a-e为驱动电极,则由于控制线126靠近电极118e布置,电极118a上的驱动信号通过长度比电极118e上的驱动信号长的接收电极116a-e来连接。)以这种方式向不同驱动电极提供不同驱动信号电平尤其有利于大电极矩阵,因为未因触摸屏内的损失而程序化大量检测电路(对应于接收电极的数量),而是以选定量来调整仅一个驱动信号,并且以不同量(视情况而定)来调整传送至不同驱动电极的驱动信号。
向驱动电极314提供的驱动信号经由耦合电容Cc而电容耦合至接收电极316,该接收电极又连接至感测单元322。因此,感测单元322在其输入322a处接收驱动信号(如由电极314、316和耦合电容Cc传输的),并由此在输出322b处产生响应信号。优选地,感测单元被设计为使得所述响应信号包括驱动信号的微分化表示,该驱动信号的振幅响应于耦合电容Cc。即:由感测单元产生的响应信号优选地以某种形式包括驱动信号对时间的导数的至少一个近似值。例如,该响应信号可包括驱动信号的时间导数,或者(例如)经反相、放大(包括小于1的放大率)、电压或振幅偏移和/或时间偏移的此信号形式的时间导数。为了重复先前的讨论,如果传送至驱动电极的驱动信号由函数f(t)来表示,则响应信号可为或包括至少近似的函数g(t),其中g(t)=df(t)/dt。
图3a中示出了执行此功能的示例性电路。该电路的输入(显示为322a)为运算放大器322c的反相输入(-)。将该运算放大器的另一个输入(非反相输入(+))设置为可进行优化以得到最大信号范围的共用参考电平。在图3a中,为了简便起见,该参考电平被示为接地电位,但还可使用非零偏移电压。反馈电阻器322d连接在运算放大器的输出322b与反相输入之间。当以这种方式连接时,将运算放大器322c的反相输入(即,输入322a)保持作为虚拟接地相加点,并且在该点处未观察到信号。这还意味着接收电极316维持在大体上等于运算放大器的非反相输入所保持的电压的恒定电压。反馈电阻器322d可经选择以使信号电平最大化同时保持较低的信号失真,并且可以其他方式设定或调整,如本文所述。
以这种方式连接的运算放大器322c结合耦合电容Cc具有产生传送至驱动电极314的驱动信号的微分化表示的效果。具体地讲,在任何给定时间流过反馈电阻器322d的电流I由以下给出:
I≈Cc*dV/dt,
其中Cc为耦合电容,V表示传送至驱动电极的时变驱动信号,并且dV/dt为V对时间的导数。虽然该公式名义上是正确的,但阅读者应了解其未考虑由(例如)所用电极的寄生电阻与电容、运算放大器的特性与限制等(这些可影响电流I的大小和动态响应)导致的各种二阶效应。然而,流过反馈电阻器的电流I在输出322b处产生对应于以上所述的响应信号的电压信号。由于流过反馈电阻器的电流的方向,该响应信号反相,前提是正dV/dt(V随时间而增大)在输出322b处产生负电压,并且负dV/dt(V随时间而减小)在输出322b处产生正电压,以下结合图4至图6给出具体实例。这可表示为:
VRS≈-Rf*Cc*dV/dt,
其中VRS表示在任何给定时间在输出322b处的响应信号电压,并且Rf为反馈电阻器322d的电阻。应注意响应信号的振幅(电压)名义上与耦合电容Cc成比例。因此,因为电极314、318的节点处的触摸减小了耦合电容Cc,所以可分析由感测单元322提供的响应信号的峰值振幅或其他特性振幅的测量值以确定该节点处存在触摸。
在接收电极316为多个接收电极中的一者的实施例中,可能有利的是包括用于每个接收电极的专用感测单元322。此外,可能有利的是向不同感测单元提供不同的放大量(例如,不同运算放大器的反馈电阻器的值不同)以补偿触摸屏内针对不同驱动电极的不同信号损失。例如,设置在需要穿过(多个)驱动电极的长导电长度的位置处的接收电极有利地具有比设置在需要较短导电长度的位置处的接收电极大的放大率,以便补偿与这些驱动电极相关的损失。(例如,参见图1的电极矩阵,如果行电极116a-e为接收电极,则由于控制线128靠近电极116e布置,从电极116a接收的信号通过长度比从电极116e接收的信号长的驱动电极118a-e来连接。)以这种方式向不同接收电极提供不同的放大量尤其有利于大电极矩阵,因为这可减少因触摸屏内的损失而程序化大量检测电路(对应于接收电极的数量)的需要。
如上所述,装置310还可包括在该实施例中还用作采样/保持缓冲器的峰值检测电路326a,以及可操作以使峰值检测器复位的相关复位电路326b。这些电路元件可用于由感测单元322产生的响应信号的峰值振幅被用作耦合电容Cc的测量值的情况中。这些情况可包括由感测单元322提供的响应信号为高瞬态的实施例,例如在一个或多个矩形脉冲用于驱动信号的情况中(参见(例如)以下的图4a)。在这些情况下,峰值检测器326a工作,以使响应信号的峰值振幅维持较长的时间,以允许通过ADC324进行可靠的采样且转换为数值。在具有多个接收电极的实施例中,单个ADC可循环地连接到每个接收电极的检测电路,这需要每个检测电路将测量电压维持较长的时间段。在ADC324进行测量后,可通过操作复位电路326b使峰值检测器复位,以使得可在后续循环中测量新峰值。
针对峰值检测器326a而描述的二极管/电容器组合的基本操作(包括其能够使峰值电压维持较长的时间段而不通过感测单元322使电容器放电)对本领域的普通技术人员而言将显而易见,而无需进一步解释。同样地,复位电路326b响应于触点326c处提供的合适复位控制信号的基本操作对本领域的普通技术人员而言将显而易见。应注意本文中已充分考虑能够执行所述感测单元、峰值检测器、采样/保持缓冲器和/或复位电路(无论在硬件、软件或其组合中)的一个或多个功能的其他已知电子装置。
如前所述,优选地提供ADC324以将与响应信号相关的幅值转换为与数字组件(诸如,用于进一步处理的微处理器)一起使用的数字格式。ADC可具有任何合适的设计,例如其可包括高速逐次逼近寄存器(SAR)和/或Σ-Δ型转换器。
关于给定节点的所测量幅值的进一步处理,该所测量幅值可储存在存储寄存器中。如果需要,(例如)为了降低噪声目的,可储存并平均化与该给定节点相关的多个此类值。此外,优选地将所测量幅值与参考值比较,以便确定耦合电容是否已减小,即所述给定节点处是否存在一定量的触摸。此比较可涉及(例如)从参考值减去测量值。在涉及包括许多节点的大触摸矩阵的实施例中,所有节点的测量值均可储存在存储器中,并且可单独地与各个参考值比较,以便确定每个节点处是否存在一定量的触摸。通过分析比较数据,如果在触摸表面上存在时间上重叠的多次触摸,则可确定时间上重叠的多次触摸的位置。能够检测的时间上重叠的触摸的次数可仅受触摸面板中的电极栅的尺寸以及驱动/检测电路的速率限制。在示例性实施例中,对邻近节点所检测的差异进行内插,以便准确确定位于节点之间的触摸位置。
图3b示出触摸装置348,其与图3a中示出的触摸装置310类似,不同的是其包括作为差动放大器的输入的电压电源349,该差动放大器是感测单元322的一部分。根据需要,该电压输入被构造用于使电路输出在ADC的感测范围内。例如,一些ADC的感测范围为0.5V至+3V。感测单元322输出信号的峰值应在此范围内,以准确地使电压数字化。对于所有接收电极,可将电压电源349(或增益,在感测单元322的背景下)固定为一种电压,或其可针对特定接收电极进行调整。在一些实施例中,使用电阻梯形网络向4至10个接收电极的组中的感测单元提供不同电压。在一些实施例中,设置增益以补偿由受驱动电极上的电阻所导致的信号减弱。
图3c示出触摸装置350,其与图3a中示出的触摸装置310类似,但包括在一些实施例中可更好地容纳来自显示器(诸如LCD显示器)的噪声的附加电路。LCD寻址频率总体上接近或重叠于控制器114用来与触摸面板112进行交互的频率。这导致接收电极上产生可显示为共模信号的噪声。差动放大器可用于消除此共模信号。图3c中示出的电路增加了差动放大器352和附加峰值检测电路351(被构造用于检测负电压的峰值)以及附加复位电路353。
现转到图4a,我们从中可看到特定驱动信号410的电压-时间坐标图以及由图3a中所示类型的感测单元产生的(模型化)响应信号412的相应电压-时间坐标图。为了该模型的目的,假定驱动电极、接收电极以及耦合电容(包括其上的触摸效应,即电容从2.0pf减至1.5pf)的电子特性为如以上结合图3a的代表性实施例所述。此外,假定运算放大器322c的反馈电阻器322d为约2MΩ。
可看到驱动信号410为方波,其包括一系列矩形脉冲411a、411c、411e、…411k。假定将此整个信号传送至特定驱动电极,但在许多实施例中可在给定时间将较小数量(例如,仅一个或两个)的脉冲传送至给定驱动电极,此后可将一个或多个脉冲传送至不同的驱动电极等。可看到由感测单元产生的响应信号412包括多个冲击脉冲413a-l,每个矩形脉冲411a对应两个冲击脉冲,如对于微分化方波所期望的。因此,例如,驱动脉冲411a产生与矩形脉冲的正向变换(左侧)相关的负向冲击脉冲413a以及与矩形脉冲的负向变换(右侧)相关的正向冲击脉冲413b。这些冲击脉冲由于运算放大器的信号带宽以及触摸屏的RC滤波效应而呈圆形。尽管与信号410对时间的理想导数存在这些偏差,但响应信号412可视为包括驱动信号的微分化表示。
如同所示,驱动脉冲411a、411c、411e、…411k均具有相同的振幅,但如上所述还可传送不同振幅的脉冲。然而,尽管这些驱动脉冲具有共同的振幅,但可看到发生在时段412a内的冲击脉冲413a-g具有第一峰值振幅,并且可看到发生在时段412b内的冲击脉冲413h-l具有小于第一峰值振幅的第二峰值振幅。这是因为上述模型在冲击脉冲413g之后和冲击脉冲413h之前的时间点引入耦合电容Cc变化,该变化对应于从非触摸状态(Cc=2pf)到触摸状态(Cc=1.5pf)的转变。冲击脉冲在时段412b期间所减小的峰值振幅可易于测量且与适用节点处的触摸事件相关。
冲击脉冲413a-l的瞬态性使其尤其适于与峰值检测器和采样/保持缓冲器一起使用(如结合图3所述),以使得可由ADC获得峰值振幅的准确测量值且对其进行采样。
图4b示出坐标图,其示出了来自包括顺序驱动的受驱动电极的一个实施例的代表性波形。波形430、431和432表示三个单独的(可彼此相邻)受驱动电极(例如,矩阵型传感器上的第一行、第二行和第三行)上的时段t期间的脉冲信号。波形433、434和435表示由三个单独的接收电极(例如,矩阵型传感器上的列)上的相同时段期间的脉冲信号引起的微分化输出。应注意每个接收电极(列)具有类似的响应曲线。按顺序驱动对应于波形432、431和431的受驱动电极。在驱动各电极(由波形430、431或432中的任何单个波形来表示)之后,将在与各接收电极(列)相关的峰值检测电路中获得表示峰值振幅的电压,如以上结合图3所述。因此,在驱动各受驱动电极(行)之后,对所有接收电极(列)的峰值检测电路上的所得电压进行采样,接着使相关峰值检测电路复位,然后驱动下一个顺序受驱动电极(以此类推)。这样,矩阵型电容式触摸传感器中的每个节点均可单独地寻址和采样。
图5a示出一对坐标图,其与图4a的坐标图类似,并且针对电子构型相同的驱动电极、接收电极、耦合电容和感测单元,但驱动信号形状不同。图5a的驱动信号510包括斜坡式脉冲511a、511c、511e、…511i,以使得所得响应信号512包括矩形脉冲513a-j。由上述模型预测的矩形脉冲呈现出具有稍微圆角的几乎垂直的高/低过渡,为了简便起见,已将这些过渡重绘为垂直线和尖拐角。这些矩形脉冲的上升和下降时间受所用驱动电极和接收电极中的RC传输线限制。驱动脉冲511a等通过对称斜坡形状来表征,其中每个脉冲的前半部分具有正向斜度,并且后半部分具有相同大小的负向斜度。然后,还将此对称性转至响应信号512,其中负向脉冲513a、513c等被正向脉冲513b、513d等大体上相抵。与图4a的说明类似,上述模型在矩形脉冲513e之后和矩形脉冲513f之前的时间点(即,从时段512a到时段512b的过渡)引入耦合电容Cc变化,该变化对应于从非触摸状态(Cc=2pf)到触摸状态(Cc=1.5pf)的转变。时段412b期间发生的响应信号脉冲的减小振幅可易于测量且与适用节点处的触摸事件相关。图5a中值得注意的一个特征为各脉冲513a-j的各平稳段处的响应信号512的较稳态特性(在给定脉冲的时间标度内),其中负向脉冲513a、513c等的“平稳段”应理解为脉冲形状的“底部”,而脉冲513b、513d等的“平稳段”为脉冲形状的“顶部”。此稳态特性是驱动脉冲在其相当大一部分上具有恒定斜度(即,斜坡形状)所致。在一些实施例中,触摸装置设计者可希望利用此稳态特性以便消除不必要的电路零件并减少成本。具体地讲,因为响应信号本身在脉冲的时间标度内维持基本上恒定的振幅(脉冲的平稳段),并且因为此恒定振幅指示或响应于耦合电容Cc,所以可不再需要结合图3a所描述的峰值检测器、采样/保持缓冲器和复位电路且可将其从系统中排除,前提条件是稳态特性的时间标度对ADC而言足够长以对振幅进行采样和测量。如果需要,为了降低噪声,可通过低通滤波器来发送由感测单元在这些情况下产生的响应信号,选择该低通滤波器的截止频率,以大体上维持与未经过滤的脉冲相同的总保真度或形状,同时过滤掉较高频率的噪声。然后可向ADC提供此滤波器的输出(即,经过滤的响应信号)。当然,对于斜坡型驱动脉冲而言,在一些情况下,不论是否利用低通滤波器,可能有利的是保留峰值检测器、采样/保持缓冲器和复位电路。
如果需要,整流电路可用于在响应信号(参见(例如)图4a的信号412和图5a的信号512)中产生正向脉冲和负向脉冲的触摸装置实施例中。这些信号的整流可对其他电路功能(诸如,峰值检测和模数转换)具有相应的有益效果。就图5a的信号512而言,由于各个信号的对称性,所以该信号的经整流形式有利地大体上连续维持稳态电压电平(忽略由运算放大器限制和RC传输线效应引起的瞬态效应)。
图5b示出多对坐标图,其示出了来自包括顺序驱动的受驱动电极的实施例的代表性波形,其与图4b类似,不同的是其使用不同类型的受驱动波形。波形760、761和762为三个单独的(可彼此相邻)受驱动电极(例如,矩阵型传感器上的第一行、第二行和第三行)上的时段t期间的代表性受驱动三角脉冲信号。波形763、764和765为相同时段期间在接收电极(例如列)上可看到的各个所得波形。
现转到图6a,其中的坐标图对与图5a和图4a的坐标图类似,并且假定驱动电极、接收电极、耦合电容和感测单元的电子构型相同,但使用另一种驱动信号形状。图6b的驱动信号610包括斜坡式脉冲611a-e,其产生具有大体上矩形脉冲613a-e的所得响应信号612。与图5a的对称斜坡形状不同,斜坡式脉冲611a-e为非对称,以便使斜坡使用的脉冲时间占比最大化。然而,此斜坡最大化导致每个驱动脉冲的一侧上出现快速低至高过渡,这产生限制响应信号612的各矩形脉冲的负向冲击脉冲。尽管所得结果与完全的矩形性存在偏差,但脉冲613a-e大体上呈矩形,前提是这些脉冲在两个较大幅的高至低过渡之间要维持较恒定的振幅平稳段。就这一点而言,且以类似于图5a的信号512的方式,由于驱动脉冲在其相当大一部分上具有恒定斜度(即,斜坡形状),信号612的脉冲包括稳态特性。因此,触摸装置设计者可再次希望通过排除峰值检测器、采样/保持缓冲器和复位电路来利用此稳态特性,前提条件是稳态特性的时间标度对ADC而言足够长以对振幅进行采样和测量。还可将低通滤波器增加至电路设计中,如上所述。
图6b示出一对坐标图,其示出了来自包括顺序驱动的受驱动电极的实施例的代表性波形,其与图4b和5b类似,不同的是其使用不同类型的受驱动波形。波形750、751和752为三个单独的(可彼此相邻)受驱动电极(例如,矩阵型传感器上的第一行、第二行和第三行)上的时段t期间的代表性受驱动斜坡式脉冲信号。波形753、754和755(图6b)以及763、764和765(图5b)为相同时段期间在接收电极(例如列)上可看到的各个所得波形。
现转到图7,我们从中可看到脉冲驱动信号807的电压-时间坐标图以及(模型化的)第一响应信号801和第二响应信号802的相应电压-时间坐标图,这两个信号可为分别由图3c中所示电路的感测单元322和差动放大器352产生的输出。为了该模型的目的,假定驱动电极、接收电极以及耦合电容(包括其上的触摸效应,即电容从2.0pf减至1.5pf)的电子特性为如以上结合图3a的代表性实施例所述。
第一响应信号801为来自感测单元322的模型化输出。其包括正弦曲线形式,该形式指示与接收作为来自LCD面板的噪声的共模信号类似的共模信号。响应信号802为来自差动放大器352的各个模型化输出(为了说明的目的,其被示为短虚线;实际输出将为实线)。来自差动放大器352的输出实际上为脉冲的总和(为了进行示意性的说明,图中未按比例绘制)。图7上的各个脉冲(803a…d,804e,f,g)具有与图4a中的脉冲413a…k相同的曲线,但在图7中脉冲因缩放比例而看起来不同。第一负脉冲(803a)经峰值检测且汇总在放大器的反相输入上,从而给出响应信号802上的第一台阶(台阶805a)。然后,正脉冲(804e)经峰值检测且汇总在放大器上的非反相输入上,从而在输出处给出正峰值与负峰值的总和(台阶805b)。台阶805b后,随后的脉冲和共模信号实质上均不影响响应信号802的电压电平。可通过测量一系列脉冲后(即,在电压已达到由台阶805b界定的平稳段后)由波形802表示的第一电压采样、用复位电路353和326b(图3c)使峰值检测器复位,然后用相同或类似的方法等测量第二电压采样来感测触摸。在某些实施例中,这些采样电压相对于某个阈值的变化指示触摸。
图8为触摸装置710的示意图,该触摸装置包括具有电容耦合电极的4×8矩阵的触摸面板712,以及可用于检测触摸面板上的多次同时触摸的各种电路元件。该电极矩阵包括由平行驱动电极a、b、c和d组成的上电极阵列。还包括由平行接收电极E1、E2、E3、E4、E5、E6、E7和E8组成的下阵列。上电极阵列和下电极阵列被布置为彼此正交。对于该矩阵的各种节点,将每对正交电极之间的电容耦合(以上称为给定节点的耦合电容Cc)标记为C1a、C2a、C3a、C4a、C1b、C2b和C3b等直至C8d(如所示),在非触摸状态下这些电容耦合的值均可近似相等,但其在施加触摸时减小,如前所述。图中还示出了各种接收电极与接地(C1-C8)之间以及各种驱动电极与接地(a’至d’)之间的电容。
通过如参考图3a所述的下列电路来监测此矩阵的32个节点(即:与其相关的互电容或耦合电容):驱动单元714;多路复用器716;感测单元S1-S8;任选的峰值检测器P1-P8,其还可用作采样/保持缓冲器;多路复用器718;和ADC720;以及控制器722,如同所示这些均用合适的导电迹线或电线来连接(不同的是,为了便于说明,从图中省去了控制器722与各峰值检测器P1-P7之间的连接)。
在操作中,控制器722使驱动单元714产生包括一个或多个驱动脉冲的驱动信号,驱动脉冲通过操作多路复用器716而传送至驱动电极a。驱动信号经由接收电极E1-E8与驱动电极a的各个互电容而耦合至各接收电极E1-E8。耦合信号使感测单元S1-S8同时或大体上同时产生各接收电极的响应信号。因此,在操作装置710的此时间点,传送至驱动电极a的驱动信号(其可包括(例如)最多5个、4个、3个或2个驱动脉冲,或可仅有一个驱动脉冲)同时使感测单元S1产生其振幅指示节点E1/a的耦合电容C1a的响应信号,使感测单元S2产生其振幅指示节点E2/a的耦合电容C2a的响应信号等,以此类推,其他感测单元S3-S8对应于节点E3/a至E8/a。如果响应信号具有高瞬态性,(例如)正如图4a的信号412,则可提供峰值检测器P1-P8来检测由感测单元S1-S8提供的各个响应信号的峰值振幅,并且任选地对其输出处提供给多路复用器718的这些振幅进行采样且保持。或者,如果响应信号具有显著的稳态特性,例如如果其以一个或多个矩形脉冲的形式(正如上述信号512和612),则可用低通滤波器来代替峰值检测器,或可简单地省去峰值检测器,使得感测单元的输出直接馈送至多路复用器718中。在任一种情况下,当将特性振幅信号(例如,响应信号的峰值振幅或平均振幅)传送至多路复用器718时,控制器722快速循环多路复用器718以使得ADC720首先连接到峰值检测器P1(如果存在,(例如)或连接到低通滤波器,或连接到S1)以测量与节点E1/a相关的特性振幅,然后连接到峰值检测器P2以测量与节点E2/a相关的特性振幅,以此类推,最后连接到峰值检测器P8以测量与节点E8/a相关的特性振幅。当测量这些特性振幅时,将这些值储存在控制器722中。如果峰值检测器包括采样/保持缓冲器,则控制器在测量完成后使峰值检测器复位。
在下一个操作阶段中,控制器722循环多路复用器714以将驱动单元714连接到驱动电极b,并且使驱动单元产生还包括一个或多个驱动脉冲的另一个驱动信号(此时传送至电极b)。传送至电极b的驱动信号可与此前传送至电极a的驱动信号相同或不同。例如,鉴于与上述触摸面板损失有关的原因,由于电极b更靠近获得响应信号的感测电极E1-E8的端部(因此损失降低),所以传送至电极b的驱动信号可具有比传送至电极a的驱动信号小的振幅。在任何情况下,传送至电极b的驱动信号同时使感测单元S1产生其振幅指示节点E1/b的耦合电容C1b的响应信号,使感测单元S2产生其振幅指示节点E2/b的耦合电容C2b的响应信号等,以此类推,其他感测单元S3-S8对应于节点E3/b至E8/b。以上结合第一操作阶段所述的峰值检测器P1-P8或采样/保持缓冲器或低通滤波器的存在与否在此同样适用。在任何情况下,当将特性振幅信号(例如,响应信号的峰值振幅或平均振幅)传送至多路复用器718时,控制器722快速循环多路复用器718以使得ADC720首先连接到峰值检测器P1(如果存在,(例如)或连接到低通滤波器,或连接到S1)以测量与节点E1/b相关的特性振幅,然后连接到峰值检测器P2以测量与节点E2/b相关的特性振幅,以此类推,最后连接到峰值检测器P8以测量与节点E8/b相关的特性振幅。当测量这些特性振幅时,将这些值储存在控制器722中。如果峰值检测器包括采样/保持缓冲器,则控制器在测量完成后使峰值检测器复位。
然后两个以上的操作阶段以类似方式进行,其中将驱动信号传送至电极c且测量和储存与节点E1/c至E8/c相关的特性振幅,然后将驱动信号传送至电极d且测量和储存与节点E1/d至E8/d相关的特性振幅。
此时,已在极短的时帧(例如,在一些情况下为(例如)小于20msec或小于10msec)内测量和储存触摸矩阵的所有节点的特性振幅。然后,控制器722可将这些振幅与各节点的参考振幅比较,以获得各节点的比较值(例如差值)。如果参考振幅表示非触摸状态,则给定节点的零差值指示此节点处“无触摸”发生另一方面,显著的差值表示该节点处的触摸(其可包括部分触摸)。如果相邻节点具有显著的差值,则控制器722可采用内插技术,如上所述。
除非另外指明,否则本说明书和权利要求书中用来表示数量、特性量度等的所有数值应当理解为由术语“约”来修饰。因此,除非有相反的指示,否则本说明书和权利要求书中列出的数值参数均为近似值,并且可根据本领域内的技术人员利用本专利申请的教导内容获得的所需特性而改变。每一个数值参数并不旨在限制等同原则在权利要求书保护范围内的应用,至少应该根据所报告数值的有效数位和通过惯常的四舍五入法来解释每一个数值参数。虽然限定本发明大致范围的数值范围和参数是近似值,但就本文所述具体实例中的任何数值而言,都是按尽量合理的精确程度给出。然而,任何数值可以很好地包含与测试或测量限制相关的误差。
在不脱离本发明的精神和范围的前提下,对本发明进行的各种修改和更改对本领域内的技术人员来说将显而易见,并且应当理解,本发明不限于本文示出的示例性实施例。例如,阅读者应假定一个所公开的实施例的特征还可应用于所有其他所公开的实施例(除非另外指明)。还应了解本文中涉及的所有美国专利、专利申请公开和其他专利与非专利文件在不与上述公开内容相矛盾的程度上以引用方式并入。

Claims (18)

1.一种触敏装置,其包括:
面板,其包括触摸表面以及界定电极矩阵的多个电极,所述多个电极包括多个驱动电极和多个接收电极,在所述电极矩阵的各个节点处每个驱动电极电容耦合至每个接收电极,所述面板被构造为使得靠近所述节点中的一个给定节点的所述触摸表面上的触摸可改变与所述给定节点相关的驱动电极与接收电极之间的耦合电容;
驱动单元,其被构造用于产生驱动信号并且将所述驱动信号逐一地传送至所述多个驱动电极;
感测单元,其被构造用于针对传送至每个驱动电极的每个驱动信号产生所述多个接收电极的响应信号,每个响应信号均包括所述驱动信号的微分化表示,每个所述响应信号的振幅响应于相关节点处的所述耦合电容;以及
测量单元,其被构造用于测量每个所述节点的每个响应信号的振幅,并且如果存在时间上重叠的多次触摸,则由此确定所述触摸表面上的时间上重叠的多次触摸的位置,其中所述感测单元包括针对每个所述接收电极的峰值检测器,所述峰值检测器被构造用于提供表示各个响应信号的最大振幅的峰值检测器输出。
2.根据权利要求1所述的装置,还包括多路复用器,其中所述驱动单元能够通过所述多路复用器选择性地连接到所述多个驱动电极中的一个给定的驱动电极。
3.根据权利要求1所述的装置,其中所述感测单元包括针对每个所述接收电极的运算放大器,所述运算放大器具有连接到各个接收电极的反相输入。
4.根据权利要求1所述的装置,其中所述感测单元还被构造用于将所述多个接收电极维持在固定电压。
5.根据权利要求1所述的装置,其中所述驱动信号包括矩形脉冲。
6.根据权利要求1所述的装置,其中每个峰值检测器均包括采样/保持缓冲器。
7.根据权利要求1所述的装置,其中每个峰值检测器均包括连接到电容器的二极管。
8.根据权利要求7所述的装置,其中所述感测单元包括针对每个所述接收电极的复位开关,所述复位开关连接到相应的电容器且被构造用于响应于复位信号而使各个电容器放电。
9.根据权利要求1所述的装置,其中所述测量单元包括模数转换器(ADC)和多路复用器,所述模数转换器通过所述多路复用器连接到所述感测单元。
10.根据权利要求1所述的装置,其中所述驱动信号包括多个顺序脉冲且每个响应信号均包括相应的多个响应脉冲,并且其中所述测量单元被构造用于针对每个响应信号来测量表示所述多个响应脉冲的振幅的振幅。
11.根据权利要求10所述的装置,其中所述测量单元被构造用于针对每个响应信号来测量所述多个响应脉冲的所述振幅中的最大的一个。
12.根据权利要求1所述的装置,其中所述驱动信号包括斜坡式脉冲。
13.根据权利要求12所述的装置,其中每个响应信号均包括矩形脉冲。
14.根据权利要求13所述的装置,其中所述测量单元包括低通滤波器以平滑所述矩形脉冲的平稳段。
15.根据权利要求13所述的装置,其中所述测量单元包括模数转换器(ADC),并且适于将每个响应信号连接到所述模数转换器,而不使所述响应信号通过任何峰值检测器。
16.根据权利要求1所述的装置,其中所述驱动单元被构造用于将第一驱动信号传送至第一驱动电极且将第二驱动信号传送至第二驱动电极,并且其中所述第一驱动信号的信号振幅与所述第二驱动信号的信号振幅不同。
17.根据权利要求1所述的装置,其中所述感测单元包括连接到第一接收电极的第一感测单元和连接到第二接收电极的第二感测单元,并且其中与所述第一感测单元相关的放大率不同于与所述第二感测单元相关的放大率。
18.根据权利要求1所述的装置,其中所述测量单元还包括被构造用于减少或消除共模噪音的差动放大器。
CN201080032490.3A 2009-05-29 2010-05-25 高速多点触控触摸装置及其控制器 Expired - Fee Related CN102460357B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US18236609P 2009-05-29 2009-05-29
US61/182,366 2009-05-29
US23147109P 2009-08-05 2009-08-05
US61/231,471 2009-08-05
PCT/US2010/036030 WO2010138485A1 (en) 2009-05-29 2010-05-25 High speed multi-touch touch device and controller therefor

Publications (2)

Publication Number Publication Date
CN102460357A CN102460357A (zh) 2012-05-16
CN102460357B true CN102460357B (zh) 2016-04-27

Family

ID=42394980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080032490.3A Expired - Fee Related CN102460357B (zh) 2009-05-29 2010-05-25 高速多点触控触摸装置及其控制器

Country Status (7)

Country Link
US (1) US9417739B2 (zh)
EP (1) EP2435895A1 (zh)
JP (1) JP5711223B2 (zh)
KR (1) KR101752015B1 (zh)
CN (1) CN102460357B (zh)
TW (1) TW201108081A (zh)
WO (1) WO2010138485A1 (zh)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169768A1 (en) * 2008-07-08 2011-07-14 Kenichi Matsushima Electrostatic detection device, information apparatus, and electrostatic detection method
CN102187236B (zh) * 2008-09-24 2015-04-22 3M创新有限公司 互电容测量电路和方法
US20110037457A1 (en) * 2009-08-13 2011-02-17 Himax Technologies Limited Readout apparatus for current type touch panel
US9753586B2 (en) * 2009-10-08 2017-09-05 3M Innovative Properties Company Multi-touch touch device with multiple drive frequencies and maximum likelihood estimation
TWI405107B (zh) 2009-10-09 2013-08-11 Egalax Empia Technology Inc 分析位置的方法與裝置
TWI441049B (zh) * 2009-10-09 2014-06-11 Egalax Empia Technology Inc 分辨單觸或雙觸的方法與裝置
US8643613B2 (en) * 2009-10-09 2014-02-04 Egalax—Empia Technology Inc. Method and device for dual-differential sensing
US8773366B2 (en) * 2009-11-16 2014-07-08 3M Innovative Properties Company Touch sensitive device using threshold voltage signal
US8730184B2 (en) 2009-12-16 2014-05-20 3M Innovative Properties Company Touch sensitive device with multilayer electrode having improved optical and electrical performance
US8411066B2 (en) 2010-01-05 2013-04-02 3M Innovative Properties Company High speed noise tolerant multi-touch touch device and controller therefor
WO2011149750A2 (en) 2010-05-25 2011-12-01 3M Innovative Properties Company High speed low power multi-touch touch device and controller therefor
US9389724B2 (en) 2010-09-09 2016-07-12 3M Innovative Properties Company Touch sensitive device with stylus support
US9823785B2 (en) 2010-09-09 2017-11-21 3M Innovative Properties Company Touch sensitive device with stylus support
US10019119B2 (en) 2010-09-09 2018-07-10 3M Innovative Properties Company Touch sensitive device with stylus support
TW201218049A (en) * 2010-10-19 2012-05-01 xiang-yu Li employing measurement of electric field variation to identify touch control input
TWM422119U (en) * 2010-12-30 2012-02-01 Egalax Empia Technology Inc Capacitive touch screen
JP5589859B2 (ja) * 2011-01-14 2014-09-17 ソニー株式会社 位置情報補正装置、タッチセンサ、位置情報補正方法、及びプログラム
KR101771082B1 (ko) * 2011-01-17 2017-09-05 엘지디스플레이 주식회사 터치 감지 회로 및 이를 포함하는 디스플레이 장치
KR101771078B1 (ko) * 2011-01-17 2017-09-05 엘지디스플레이 주식회사 터치 감지 회로 및 이를 포함하는 디스플레이 장치
US8933906B2 (en) 2011-02-02 2015-01-13 3M Innovative Properties Company Patterned substrates with non-linear conductor traces
US9736928B2 (en) 2011-02-02 2017-08-15 3M Innovative Properties Company Patterned substrates with darkened conductor traces
US8619047B2 (en) * 2011-02-04 2013-12-31 Perceptive Pixel Inc. Techniques for disambiguating touch data
US8658917B2 (en) * 2011-02-04 2014-02-25 Perceptive Pixel Inc. Techniques for disambiguating touch data using user devices
US8711113B2 (en) 2011-02-07 2014-04-29 3M Innovative Properties Company Modular connector for touch sensitive device
KR101819678B1 (ko) * 2011-04-07 2018-01-17 엘지디스플레이 주식회사 터치센서를 가지는 표시장치와 그 구동방법
KR101202745B1 (ko) * 2011-04-21 2012-11-19 주식회사 실리콘웍스 터치감지회로
JP5885232B2 (ja) * 2011-05-09 2016-03-15 シナプティクス・ディスプレイ・デバイス合同会社 タッチセンサパネルコントローラ及び半導体装置
US9423906B2 (en) * 2011-05-17 2016-08-23 Ching-Yang Chang Drive system adaptable to a matrix scanning device
WO2013015823A1 (en) 2011-07-27 2013-01-31 Cypress Semiconductor Corporation Method and apparatus for parallel scanning and data processing for touch sense arrays
CN103827791B (zh) 2011-09-30 2017-08-29 3M创新有限公司 具有精细间距互连器的柔性触摸传感器
EP2762954A4 (en) * 2011-09-30 2015-07-22 Hsiung-Kuang Tsai CONTROL METHOD FOR VIDEO INTERFACE SYSTEM
WO2013058446A1 (ko) * 2011-10-21 2013-04-25 포항공과대학교 산학협력단 정전식 터치센서
KR101341924B1 (ko) 2011-10-21 2013-12-19 포항공과대학교 산학협력단 정전식 터치센서
US9081448B2 (en) 2011-11-04 2015-07-14 3M Innovative Properties Company Digitizer using multiple stylus sensing techniques
KR101394159B1 (ko) * 2011-12-28 2014-05-15 주식회사 실리콘웍스 수신 주파수 밴드를 조절할 수 있는 터치감지회로 및 상기 터치감지회로를 구비하는 터치감지시스템
US9958986B2 (en) * 2011-12-28 2018-05-01 Silicon Works Co., Ltd. Touch sensing apparatus
JP5770132B2 (ja) * 2012-03-23 2015-08-26 株式会社ジャパンディスプレイ 検知装置、検知方法、プログラム、及び表示装置
US9024909B2 (en) * 2012-04-02 2015-05-05 Nokia Corporation Sensing
KR101314580B1 (ko) * 2012-05-09 2013-10-07 주식회사 실리콘웍스 터치신호 처리회로, 터치신호 처리시스템 및 터치신호 처리방법
US9952716B2 (en) * 2012-05-18 2018-04-24 Egalax_Empia Technology Inc. Detecting method and device for touch screen
US9665231B2 (en) * 2012-05-18 2017-05-30 Egalax_Empia Technology Inc. Detecting method and device for touch screen
WO2013183917A1 (ko) * 2012-06-04 2013-12-12 크루셜텍 주식회사 터치 검출 방법 및 장치
KR101410414B1 (ko) * 2012-06-04 2014-06-20 크루셜텍 (주) 모션 감지 기능을 가지는 터치 스크린 패널
KR101380817B1 (ko) * 2012-08-01 2014-04-04 이미지랩(주) 자기정전용량 방식의 정전 터치 패널 장치 및 터치 위치 인식 방법
JP5988295B2 (ja) * 2012-08-08 2016-09-07 アルプス電気株式会社 入力装置
US20140043278A1 (en) * 2012-08-09 2014-02-13 3M Innovative Properties Company Electrode configuration for large touch screen
EP2926226B1 (en) * 2012-11-27 2019-02-06 Microsoft Technology Licensing, LLC Detection with a capacitive based digitizer sensor
TW201433948A (zh) * 2013-02-20 2014-09-01 Novatek Microelectronics Corp 觸控感測裝置及觸控感測方法
WO2014134269A1 (en) * 2013-02-27 2014-09-04 Cirque Corporation Enabling high update report rates on a touch screen
US8890841B2 (en) * 2013-03-13 2014-11-18 3M Innovative Properties Company Capacitive-based touch apparatus and method therefor, with reduced interference
KR102061792B1 (ko) 2013-05-06 2020-01-03 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN103324338B (zh) * 2013-05-30 2017-02-22 业成光电(深圳)有限公司 触控装置及其驱动方法
CN103336644B (zh) * 2013-06-19 2016-06-08 业成光电(深圳)有限公司 触控感测装置及其驱动方法
US11221706B2 (en) 2013-09-27 2022-01-11 Sensel, Inc. Tactile touch sensor system and method
US10013092B2 (en) 2013-09-27 2018-07-03 Sensel, Inc. Tactile touch sensor system and method
US9001082B1 (en) 2013-09-27 2015-04-07 Sensel, Inc. Touch sensor detector system and method
CN105900046B (zh) * 2013-09-27 2018-10-16 森赛尔股份有限公司 电容式触摸传感器系统和方法
WO2015048584A1 (en) 2013-09-27 2015-04-02 Sensel , Inc. Capacitive touch sensor system and method
TWI493424B (zh) * 2013-10-04 2015-07-21 Holtek Semiconductor Inc 具有多點觸控功能之觸控裝置、其多點觸控的偵測方法及其座標計算方法
JP6074687B2 (ja) * 2013-10-30 2017-02-08 パナソニックIpマネジメント株式会社 タッチ操作により入力を行う入力装置および表示装置
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
CN116633324A (zh) 2013-11-14 2023-08-22 鹰港科技有限公司 高压纳秒脉冲发生器
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
KR102187827B1 (ko) * 2013-11-15 2020-12-08 주식회사 실리콘웍스 터치 스크린 시스템
US10483089B2 (en) 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
JP6323248B2 (ja) * 2014-08-11 2018-05-16 株式会社デンソー 情報処理システム、端末装置、及びプログラム
KR20170044155A (ko) * 2014-08-25 2017-04-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 간섭이 감소된, 정전용량 기반 터치 장치 및 방법
US9542051B2 (en) * 2014-10-24 2017-01-10 Microchip Technology Incorporated Analog elimination of ungrounded conductive objects in capacitive sensing
CN104461129A (zh) * 2014-11-20 2015-03-25 业成光电(深圳)有限公司 触控面板及触控显示装置
US10310670B2 (en) * 2015-01-16 2019-06-04 Silead Inc. System and method for capacitive sensing
US10108292B2 (en) * 2015-04-22 2018-10-23 Microchip Technology Incorporated Capacitive sensor system with multiple transmit electrodes
CN104765519B (zh) 2015-04-27 2018-09-04 京东方科技集团股份有限公司 触控检测电路及显示装置
CN104932741B (zh) * 2015-06-02 2018-10-26 武汉华星光电技术有限公司 触控信号的扫描方法
CN105760031B (zh) * 2016-01-27 2018-09-04 厦门天马微电子有限公司 一种触控显示面板和一种触控显示设备
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
US20180203540A1 (en) * 2017-01-19 2018-07-19 Sharp Kabushiki Kaisha Discriminative controller and driving method for touch panel with array electrodes
WO2018148182A1 (en) 2017-02-07 2018-08-16 Eagle Harbor Technologies, Inc. Transformer resonant converter
TWI643113B (zh) * 2017-03-03 2018-12-01 日商阿爾普士電氣股份有限公司 Input device and control method thereof
CN107636596B (zh) * 2017-08-01 2020-10-23 深圳市汇顶科技股份有限公司 触控位置的确定方法、电容触控装置以及电容触控终端
JP6902167B2 (ja) 2017-08-25 2021-07-14 イーグル ハーバー テクノロジーズ, インク.Eagle Harbor Technologies, Inc. ナノ秒パルスを使用する任意波形の発生
GB2574589B (en) * 2018-06-06 2020-12-23 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
EP3834285A4 (en) 2018-08-10 2022-07-20 Eagle Harbor Technologies, Inc. PLASMA JACKET CONTROL FOR RF PLASMA REACTORS
TWI783203B (zh) 2019-01-08 2022-11-11 美商鷹港科技股份有限公司 奈秒脈波產生器電路
US10908641B1 (en) * 2019-10-09 2021-02-02 Sigmasense, Llc. Display generated data transmission from user device to touchscreen via user
TWI778449B (zh) 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 高電壓脈衝電路
JP7334606B2 (ja) * 2019-12-13 2023-08-29 Smk株式会社 浮遊容量の変化検出回路と浮遊容量の変化検出回路を用いた静電容量式タッチパネル
EP4082036A4 (en) 2019-12-24 2023-06-07 Eagle Harbor Technologies, Inc. NANOSECOND PULSE RF ISOLATION FOR PLASMA SYSTEMS
KR20210149291A (ko) 2020-06-01 2021-12-09 삼성디스플레이 주식회사 표시 장치
TWI797918B (zh) * 2021-12-28 2023-04-01 新唐科技股份有限公司 偵測方法及控制系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189417A (en) * 1990-10-16 1993-02-23 Donnelly Corporation Detection circuit for matrix touch pad
US5392058A (en) * 1991-05-15 1995-02-21 Sharp Kabushiki Kaisha Display-integrated type tablet device
US6106481A (en) * 1997-10-01 2000-08-22 Boston Medical Technologies, Inc. Method and apparatus for enhancing patient compliance during inspiration measurements
CN1942853A (zh) * 2004-05-06 2007-04-04 苹果电脑有限公司 多点触摸屏
CN1963736A (zh) * 2005-11-12 2007-05-16 深圳市联思精密机器有限公司 数模触控式平板显示器

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732369A (en) 1971-04-05 1973-05-08 Welland Investment Trust Coordinate digitizer system
US4071691A (en) 1976-08-24 1978-01-31 Peptek, Inc. Human-machine interface apparatus
US4175239A (en) 1978-04-12 1979-11-20 P. R. Mallory & Co. Inc. Detection means for touch control switches
US4686332A (en) 1986-06-26 1987-08-11 International Business Machines Corporation Combined finger touch and stylus detection system for use on the viewing surface of a visual display device
JPS56114028A (en) 1980-02-12 1981-09-08 Kureha Chem Ind Co Ltd Capacity-type coordinate input device
US4323829A (en) 1980-07-28 1982-04-06 Barry M. Fish Capacitive sensor control system
US4639720A (en) 1981-01-12 1987-01-27 Harris Corporation Electronic sketch pad
FR2520954B1 (fr) * 1982-01-29 1985-11-29 Commissariat Energie Atomique Structure de clavier capacitif
US4581483A (en) 1984-03-30 1986-04-08 Koala Technologies Corporation Interface circuitry for interconnecting touch tablet with a computer interface
CA1306539C (en) 1984-10-08 1992-08-18 Takahide Ohtani Signal reproduction apparatus including touched state pattern recognitionspeed control
WO1987004851A1 (en) * 1986-01-30 1987-08-13 Intellect Electronics Ltd. Proximity sensing device
GB8808614D0 (en) 1988-04-12 1988-05-11 Renishaw Plc Displacement-responsive devices with capacitive transducers
JP2733300B2 (ja) 1989-04-28 1998-03-30 松下電器産業株式会社 キー入力装置
US5305017A (en) 1989-08-16 1994-04-19 Gerpheide George E Methods and apparatus for data input
US5861583A (en) 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
US5488204A (en) 1992-06-08 1996-01-30 Synaptics, Incorporated Paintbrush stylus for capacitive touch sensor pad
DE69324067T2 (de) 1992-06-08 1999-07-15 Synaptics Inc Objekt-Positionsdetektor
US6239389B1 (en) 1992-06-08 2001-05-29 Synaptics, Inc. Object position detection system and method
US5880411A (en) 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
JP2675952B2 (ja) 1992-11-25 1997-11-12 松下電工株式会社 非接触式スイッチ
US5349353A (en) 1992-12-28 1994-09-20 Zrilic Djuro G Method and apparatus for mixed analog and digital processing of delta modulated pulse streams including digital-to-analog conversion of a digital input signal
US5572205A (en) 1993-03-29 1996-11-05 Donnelly Technology, Inc. Touch control system
GB2286247A (en) 1994-02-03 1995-08-09 Massachusetts Inst Technology Capacitive position detection
JPH0816307A (ja) 1994-06-30 1996-01-19 Pentel Kk 多点同時入力指タッチ座標検出装置
TW274598B (en) 1994-11-15 1996-04-21 Alps Electric Co Ltd Coordinate input device for pen of finger tip
US5790107A (en) 1995-06-07 1998-08-04 Logitech, Inc. Touch sensing method and apparatus
US5730165A (en) 1995-12-26 1998-03-24 Philipp; Harald Time domain capacitive field detector
US5920309A (en) 1996-01-04 1999-07-06 Logitech, Inc. Touch sensing method and apparatus
US5825352A (en) * 1996-01-04 1998-10-20 Logitech, Inc. Multiple fingers contact sensing method for emulating mouse buttons and mouse operations on a touch sensor pad
TW408277B (en) 1996-11-15 2000-10-11 Alps Electric Co Ltd Small current detector circuit and locator device using the same
JP3394187B2 (ja) 1997-08-08 2003-04-07 シャープ株式会社 座標入力装置および表示一体型座標入力装置
US6323846B1 (en) 1998-01-26 2001-11-27 University Of Delaware Method and apparatus for integrating manual input
FR2774497B1 (fr) 1998-02-05 2000-07-21 Daniel Ansel Procede utilisant l'analyse de signal pour la commande d'appareils electriques a distance et dispositifs associes
JP2000076014A (ja) 1998-08-27 2000-03-14 Pentel Kk 静電容量式タッチパネル装置
US6466036B1 (en) 1998-11-25 2002-10-15 Harald Philipp Charge transfer capacitance measurement circuit
US7019672B2 (en) 1998-12-24 2006-03-28 Synaptics (Uk) Limited Position sensor
US7218498B2 (en) 1999-01-19 2007-05-15 Touchsensor Technologies Llc Touch switch with integral control circuit
US6535200B2 (en) 1999-01-25 2003-03-18 Harald Philipp Capacitive position sensor
WO2000044018A1 (en) 1999-01-26 2000-07-27 Harald Philipp Capacitive sensor and array
KR100366503B1 (ko) 2000-06-13 2003-01-09 주식회사 엘지이아이 글래스 터치 감지회로
US6879930B2 (en) 2001-03-30 2005-04-12 Microsoft Corporation Capacitance touch slider
US20030067447A1 (en) 2001-07-09 2003-04-10 Geaghan Bernard O. Touch screen with selective touch sources
US7046230B2 (en) 2001-10-22 2006-05-16 Apple Computer, Inc. Touch pad handheld device
US7476204B2 (en) * 2001-10-24 2009-01-13 Pressure Profile Systems, Inc. Visualization of values of a physical property detected in an organism over time
US7265746B2 (en) 2003-06-04 2007-09-04 Illinois Tool Works Inc. Acoustic wave touch detection circuit and method
KR100453971B1 (ko) 2002-03-25 2004-10-20 전자부품연구원 적분형 용량-전압 변환장치
KR100974022B1 (ko) 2002-04-15 2010-11-15 에포스 디벨롭먼트 리미티드 위치 결정 데이터를 얻기 위한 방법 및 시스템
US7129714B2 (en) 2002-07-02 2006-10-31 Baxter Larry K Capacitive measurement system
US20040004488A1 (en) 2002-07-02 2004-01-08 Baxter Larry K. Capacitive sensor circuit with good noise rejection
US6933931B2 (en) 2002-08-23 2005-08-23 Ceronix, Inc. Method and apparatus of position location
US7292229B2 (en) 2002-08-29 2007-11-06 N-Trig Ltd. Transparent digitiser
US20060012944A1 (en) 2002-10-31 2006-01-19 Mamigonians Hrand M Mechanically operable electrical device
US7148704B2 (en) 2002-10-31 2006-12-12 Harald Philipp Charge transfer capacitive position sensor
US6970160B2 (en) 2002-12-19 2005-11-29 3M Innovative Properties Company Lattice touch-sensing system
TWM240050U (en) 2003-04-02 2004-08-01 Elan Microelectronics Corp Capacitor touch panel with integrated keyboard and handwriting function
WO2006006174A2 (en) 2004-07-15 2006-01-19 N-Trig Ltd. A tracking window for a digitizer system
US20060227114A1 (en) 2005-03-30 2006-10-12 Geaghan Bernard O Touch location determination with error correction for sensor movement
CN100370402C (zh) 2005-08-05 2008-02-20 鸿富锦精密工业(深圳)有限公司 触摸式感应装置
EP1922602A2 (en) 2005-08-11 2008-05-21 N-trig Ltd. Apparatus for object information detection and methods of using same
JP4073449B2 (ja) 2005-08-18 2008-04-09 義隆電子股▲ふん▼有限公司 タッチパネルのハンドジェスチャー検出方法
US20070074913A1 (en) 2005-10-05 2007-04-05 Geaghan Bernard O Capacitive touch sensor with independently adjustable sense channels
TWI304471B (en) 2005-10-14 2008-12-21 Hon Hai Prec Ind Co Ltd The touch sensing apparatus
CN1832349A (zh) 2006-04-19 2006-09-13 北京希格玛晶华微电子有限公司 一种电容测量触摸感应、辨认方法及实现装置
US8279180B2 (en) 2006-05-02 2012-10-02 Apple Inc. Multipoint touch surface controller
US20070268272A1 (en) 2006-05-19 2007-11-22 N-Trig Ltd. Variable capacitor array
KR101251999B1 (ko) 2006-06-13 2013-04-08 삼성디스플레이 주식회사 액정 표시 장치 및 그 구동 방법
JP4602941B2 (ja) 2006-06-15 2010-12-22 株式会社東海理化電機製作所 静電容量センサ回路
US10796390B2 (en) 2006-07-03 2020-10-06 3M Innovative Properties Company System and method for medical coding of vascular interventional radiology procedures
US9360967B2 (en) 2006-07-06 2016-06-07 Apple Inc. Mutual capacitance touch sensing device
US8902173B2 (en) 2006-09-29 2014-12-02 Cypress Semiconductor Corporation Pointing device using capacitance sensor
KR20080032901A (ko) 2006-10-11 2008-04-16 삼성전자주식회사 멀티 터치 판단 장치 및 방법
US9201556B2 (en) 2006-11-08 2015-12-01 3M Innovative Properties Company Touch location sensing system and method employing sensor data fitting to a predefined curve
US8207944B2 (en) 2006-12-19 2012-06-26 3M Innovative Properties Company Capacitance measuring circuit and method
US8125456B2 (en) 2007-01-03 2012-02-28 Apple Inc. Multi-touch auto scanning
US7812827B2 (en) 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement
US8711129B2 (en) 2007-01-03 2014-04-29 Apple Inc. Minimizing mismatch during compensation
US7643011B2 (en) 2007-01-03 2010-01-05 Apple Inc. Noise detection in multi-touch sensors
US8094128B2 (en) * 2007-01-03 2012-01-10 Apple Inc. Channel scan logic
US8054299B2 (en) 2007-01-08 2011-11-08 Apple Inc. Digital controller for a true multi-point touch surface useable in a computer system
TWI340911B (en) * 2007-04-13 2011-04-21 Generalplus Technology Inc Capacitance touch sensor
US20090009483A1 (en) 2007-06-13 2009-01-08 Apple Inc. Single-chip touch controller with integrated drive system
US8493331B2 (en) 2007-06-13 2013-07-23 Apple Inc. Touch detection using multiple simultaneous frequencies
WO2009013746A1 (en) 2007-07-26 2009-01-29 N-Trig Ltd. System and method for diagnostics of a grid based digitizer
JP4957511B2 (ja) 2007-10-31 2012-06-20 ソニー株式会社 表示装置および電子機器
JP2009122969A (ja) 2007-11-15 2009-06-04 Hitachi Displays Ltd 画面入力型画像表示装置
US7830157B2 (en) 2007-12-28 2010-11-09 3M Innovative Properties Company Pulsed capacitance measuring circuits and methods
US20090194344A1 (en) 2008-01-31 2009-08-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Single Layer Mutual Capacitance Sensing Systems, Device, Components and Methods
JP5298325B2 (ja) 2008-02-13 2013-09-25 関西電力株式会社 電解コンデンサの劣化診断装置および劣化診断方法
JP5098042B2 (ja) 2008-02-13 2012-12-12 株式会社ワコム 位置検出装置及び位置検出方法
US8284332B2 (en) 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
WO2009140347A2 (en) 2008-05-14 2009-11-19 3M Innovative Properties Company Systems and methods for assessing locations of multiple touch inputs
CN102187236B (zh) 2008-09-24 2015-04-22 3M创新有限公司 互电容测量电路和方法
TW201017501A (en) * 2008-10-31 2010-05-01 Elan Microelectronics Corp The control circuit, method, and applications of capacitive touch panel
US8711121B2 (en) 2008-12-12 2014-04-29 Wacom Co., Ltd. Architecture and method for multi-aspect touchscreen scanning
US9342202B2 (en) 2009-01-23 2016-05-17 Qualcomm Incorporated Conductive multi-touch touch panel
US9323398B2 (en) 2009-07-10 2016-04-26 Apple Inc. Touch and hover sensing
KR101073309B1 (ko) * 2009-11-24 2011-10-12 삼성모바일디스플레이주식회사 터치 스크린 시스템 및 그 구동방법
WO2011087817A1 (en) 2009-12-21 2011-07-21 Tactus Technology User interface system
US9176630B2 (en) * 2010-08-30 2015-11-03 Perceptive Pixel, Inc. Localizing an electrostatic stylus within a capacitive touch sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189417A (en) * 1990-10-16 1993-02-23 Donnelly Corporation Detection circuit for matrix touch pad
US5392058A (en) * 1991-05-15 1995-02-21 Sharp Kabushiki Kaisha Display-integrated type tablet device
US6106481A (en) * 1997-10-01 2000-08-22 Boston Medical Technologies, Inc. Method and apparatus for enhancing patient compliance during inspiration measurements
CN1942853A (zh) * 2004-05-06 2007-04-04 苹果电脑有限公司 多点触摸屏
CN1963736A (zh) * 2005-11-12 2007-05-16 深圳市联思精密机器有限公司 数模触控式平板显示器

Also Published As

Publication number Publication date
US9417739B2 (en) 2016-08-16
KR20120027412A (ko) 2012-03-21
EP2435895A1 (en) 2012-04-04
JP2012528393A (ja) 2012-11-12
TW201108081A (en) 2011-03-01
KR101752015B1 (ko) 2017-06-28
WO2010138485A1 (en) 2010-12-02
JP5711223B2 (ja) 2015-04-30
US20100300773A1 (en) 2010-12-02
CN102460357A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
CN102460357B (zh) 高速多点触控触摸装置及其控制器
CN102687104B (zh) 高速耐噪声多点触控装置及其控制器
CN103109253B (zh) 具有触笔载体的触敏装置
CN103080877B (zh) 具有触笔载体的触敏装置
CN102906679B (zh) 高速低功率多点触摸装置及其控制器
CN103109254B (zh) 具有触笔载体的触敏装置
CN201218943Y (zh) 一种电容式触摸屏
US8860686B2 (en) Multi-chip touch screens
CN102043553B (zh) 在互电容侦测中分析位置的方法与装置
CN102043512B (zh) 位置侦测的方法与装置
US9041682B2 (en) Driving electrodes with different phase signals
CN102880366B (zh) 一种电容触摸屏温漂特性检测方法及检测系统
CN102662540B (zh) 电容式多点触控系统的驱动频率挑选方法
CN105579940A (zh) 用于宽纵横比应用的触控面板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160427