CN102459518A - 用于产生高品质液体燃料的生物质加氢热解 - Google Patents

用于产生高品质液体燃料的生物质加氢热解 Download PDF

Info

Publication number
CN102459518A
CN102459518A CN201080025189XA CN201080025189A CN102459518A CN 102459518 A CN102459518 A CN 102459518A CN 201080025189X A CN201080025189X A CN 201080025189XA CN 201080025189 A CN201080025189 A CN 201080025189A CN 102459518 A CN102459518 A CN 102459518A
Authority
CN
China
Prior art keywords
hydropyrolysis
biomass
liquid
hydrocracking
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080025189XA
Other languages
English (en)
Other versions
CN102459518B (zh
Inventor
T.L.马克
L.G.菲利克斯
M.B.林克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTI Energy
Original Assignee
Institute of Gas Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/419,535 external-priority patent/US20100251600A1/en
Application filed by Institute of Gas Technology filed Critical Institute of Gas Technology
Publication of CN102459518A publication Critical patent/CN102459518A/zh
Application granted granted Critical
Publication of CN102459518B publication Critical patent/CN102459518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/60Controlling or regulating the processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • C10G2300/807Steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种用于由生物质产生高品质液体燃料的自维持方法,其中生物质在装有分子氢和脱氧催化剂的反应容器中加氢热解,产生部分脱氧的加氢热解液体,该液体使用加氢转化催化剂氢化,产生基本完全脱氧的烃液体和包含CO和轻质烃气体(C1-C3)的气体混合物。该气体混合物在蒸汽重整器中被重整,产生重整的分子氢,随后将其引入到用于加氢热解该生物质的反应容器中。脱氧的烃液体产物被进一步被分离以产生柴油燃料、汽油,或用于汽油和柴油燃料的混合组分。

Description

用于产生高品质液体燃料的生物质加氢热解
相关申请的交叉引用
本申请是2009年4月7日提交的我们的共同待决美国专利申请系列号12/419,535的部分继续申请。
发明领域
本发明涉及将生物质热化学转化为高品质液体燃料的集成方法。本文中所用的术语“生物质”是指来源于活着或已死的生物体的生物材料并包括木质纤维材料,如木材,水生材料,如藻类、水生植物、海草,以及动物副产品和废物,如残料、脂肪和下水道污泥。在一方面,本发明涉及用于由生物质生成高品质液体燃料的基本自维持方法。在另一方面,本发明涉及用于由生物质生成高品质液体燃料的多阶段加氢热解方法。在另一方面,本发明涉及用于将生物质转化为高品质液体燃料的加氢热解方法,其中所有过程流体由生物质提供。在另一方面,本发明涉及用于将生物质转化为高品质液体燃料的加氢热解方法,其中过程输出物基本上仅为液体产物和CO2。在另一方面,本发明涉及使用加氢裂化催化剂用于由生物质产生汽油和柴油燃料的集成方法。
相关领域描述
常规的生物质热解,通常为快速热解,不采用或需要H2或催化剂,并产生含有水、油与该工艺过程中生成的炭的稠密的、酸性的、反应性液体产物。因为快速热解更通常在惰性气氛中进行,生物质中存在的大量氧被转移到热解中产生的油中,这提高了它们的化学反应性。通过常规热解法产生的不稳定的液体会随时间推移变稠,并还可反应至生成亲水相与疏水相的程度(point)。已经表明用甲醇或其它醇类稀释热解液体降低了油的活性与粘度,但是并不认为这种方法是现实或经济可行的,因为需要大量不可回收的醇以产生和运输大量的热解液体。
在惰性气氛下进行的常规热解法中,可与水混溶的液体产物是高度氧化的和反应性的,总酸值(TAN)为100-200,具有对聚合反应的低化学稳定性,因水混溶性和极高的氧含量(约40重量%)而无法与石油烃类相容,并具有低热值。结果,该产品的运输和使用是成问题的,并且由于通常在常规热解和在常规快速热解中发生的退化反应,难以将该产品升级为液体燃料。此外,由于在热解蒸气中的大量氧和自由基保持高度活性并在其与炭颗粒在过滤器表面上密切接触时生成沥青状材料,从液体热解产品中除去常规热解所生成的炭提出了技术上的挑战。因此,由于在过滤器表面上在炭层上和炭层中发生的炭与油的反应,用于将炭与热的热解蒸气分离的过滤器很快会堵死。
通过加氢转化将传统快速热解法所产生的热解油升级会消耗大量的H2,并且极端的工艺条件使其不经济。该反应固有地脱离其中的平衡,由于所需的高压,生成了过多的水并同时消耗了过多的H2。此外,由于热解油中存在的焦炭前体或来自作为催化产物所产生的焦炭,加氢转化反应器常常会堵塞。
通常,加氢热解是在分子氢存在下进行的催化热解过程。通常,常规加氢热解法的目的是在单一步骤中使液体产率最大化。但是,在一种已知的情况下,增加第二阶段反应,其目的在于使产率最大化,并同时保持高除氧。但是,即使这种方法也有损于经济,其设立了需要H2的外部源的系统,并且必须在过高的内部压力下进行。除了需要连续输入氢之外,此类常规加氢热解过程产生过量的H2O,随后必须将其除去。
发明概述
因此,本发明的一个目的在于提供用于通过加氢热解将生物质转化为液体的自维持的、平衡的方法。自维持是指一旦开始,该方法不需要从外部来源输入另外的反应物、热或能量。
本发明的另一目的在于提供采用加氢热解用于将生物质转化为液体产物的方法,其中整个过程的总输出物基本上仅为液体产物和CO2。本文中所用的术语“液体产物”是指通过本发明的方法产生的烃产物,通常为-C4+液体。
本发明的这些和其它目的通过由生物质产生液体产物的多阶段自维持方法来解决,其中生物质在装有分子氢和脱氧催化剂的反应容器中加氢热解,产生部分脱氧的加氢热解液体、炭和第一阶段过程热。使用加氢转化催化剂将部分脱氧的加氢热解液体氢化,产生基本完全脱氧的烃液体、包含CO和轻质烃气体(C1-C3)的气体混合物,以及第二阶段过程热。该气体混合物随后在蒸汽重整器中被重整,产生重整的分子氢。重整的分子氢随后被引入到用于加氢热解另外的生物质的反应容器中。
为了提供自维持方法,该加氢热解和加氢转化步骤在使得生物质中氧的约30-70%被转化为H2O和该氧的约30-70%被转化为CO和CO2的条件下运行。也就是说,其中产生H2O中的氧对其中产生CO和CO2中的氧的比为约0.43至约2.2。优选地,加氢热解与加氢转化步骤的过程压力为约100psig至约800psig,并且各步骤大致相同。高于约800psig的压力导致更高的液体产物产率,这是常规方法用于使液体产物产率最大化的运行参数背后的驱动力;但是,这种更高的压力也产生更大量的水,其结果是驱使整个过程失去平衡,需要例如从外部源向加氢热解反应容器中引入额外的氢以完成该过程。此外,随后必须提纯和除去在更高的压力下产生的过量的水。加氢热解和加氢转化步骤的温度优选为大约650℉至约1000℉。
附图概述
从结合附图的下面详述将更好地理解本发明的这些和其它目的与特征,其中:
图1是按照本发明一种实施方案的由生物质产生液体燃料的自维持方法的示意流程图;
图2是按照本发明一种实施方案的采用加氢裂化催化剂用于由生物质产生液体燃料的自维持方法的示意流程图,其中加氢裂化在加氢转化步骤的下游发生;
图3是按照本发明一种实施方案的采用加氢裂化催化剂用于由生物质产生液体燃料的自维持方法的示意流程图,其中加氢裂化在加氢转化步骤的上游发生;
图4是按照本发明另一种实施方案的采用加氢裂化催化剂用于由生物质产生液体燃料的自维持方法的示意流程图,其中加氢裂化在加氢转化步骤的上游发生;
图5是按照本发明一种实施方案的采用加氢裂化催化剂用于由生物质产生液体燃料的自维持方法的示意流程图,其中加氢裂化在加氢转化步骤的下游发生;
图6是按照本发明一种实施方案的采用加氢裂化催化剂用于由生物质产生液体燃料的自维持方法的示意流程图,其中加氢裂化与加氢转化步骤平行发生;
图7是按照本发明一种实施方案的采用加氢裂化催化剂代替加氢热解催化剂的用于由生物质产生液体燃料的自维持方法的示意流程图;和
图8是照本发明一种实施方案的采用加氢裂化催化剂代替加氢转化催化剂的用于由生物质产生液体燃料的自维持方法的示意流程图。
目前优选的实施方案的详细描述
图1中显示的本发明的方法是用于将生物质热化学转化为适于用作运输燃料的汽油加柴油液体产物而无需外部提供的H2、CH4或水的紧凑的、平衡的、集成的多阶段方法。该方法的第一反应阶段或步骤使用加压的、催化增强的(catalytically-enhanced)加氢热解反应容器10以生成低炭、部分脱氧的加氢热解液体产物,从中除去该炭。第二反应阶段(在除去炭之后)使用加氢转化反应容器11,其中在与第一反应阶段基本相同的压力下进行加氢转化步骤。来自第二反应阶段的产品随后被冷却并被高压分离器12、13和低压分离器14分离为液体和气体部分。在两个阶段中产生的CO加C1-C3轻质气体随后使用同样在该过程中产生的水在蒸汽重整器15中被蒸汽重整以产生H2。本发明的一个关键方面在于,在该过程中所需的热能由脱氧反应的反应热供给,所述脱氧反应是放热的,在第一和第二阶段中发生。本发明的另一关键方面在于该生物质供料不需要被严格干燥,并且事实上,在供料中或以单独供料形式加入水对该过程是有利的,这是因为通过水气变换反应增加了其原位H2的生成。
在平衡脱羧、脱羰和加氢脱氧的水平以使得存在于生物质中的30-70%的氧以CO和CO2的形式被排出,并且生物质中残存的30-70%的氧以H2O形式在过程结束时(在那里其容易与该过程用于重整过程的亲水性液体产物分离)被排出的条件下进行本发明的集成的、平衡的方法。总体上看,在用该过程产生的水重整由该过程头两个阶段产生的轻质气体后,该过程中超过95%的氧以CO2形式被排出。
独特的反应平衡对本发明的方法是至关重要的,并通过选择每一步骤中的适当催化剂和工艺条件来实现。尽管取决于使用的催化剂、压力、温度和生产时间,本发明的方法的每一步骤可以产生多种产物,仅仅当这些过程以具体的系列步骤及本发明的工艺条件集成时,才可能提供其中整个过程的所有H2、CH4和水需求可以由该生物质供给的平衡过程,这对制造可以以合理成本销售的替代燃料而言是至关重要的。
在图1中所示的本发明方法的第一步骤中,将生物质和分子氢引入到装有脱氧催化剂的反应容器10中,在该容器中生物质发生加氢热解,产生包含低炭、部分脱氧的加氢热解液体产物、热解蒸气(C1-C3气体)、H2O、CO、CO2和H2的输出物。尽管可以使用适于加氢热解的任何反应容器,优选的反应容器使用流化床反应器。该加氢热解步骤采用生物质供料的快速升温(超过大约100W/m2),使得热解蒸气在反应容器中的停留时间小于约5分钟。与之相比,炭的停留时间相对长,因为其没有经反应容器底部被取出,因此,必须降低粒度,直到该颗粒足够小以确保它们能够被在反应容器顶部附近离开的气体携带离开。
本发明的方法中使用的生物质供料可以为大部分颗粒优选具有小于约3毫米的尺寸的松散生物质颗粒形式,或为生物质/液体浆料形式。但是,本领域技术人员将认识到,可以预处理生物质供料或以使得适合更大粒度的方式另行处理该生物质供料。适于将生物质供料引入该加氢热解反应容器中的装置包括但不限于螺旋式推运器、快速移动(大于约5米/秒)的载气流,如惰性气体和H2,以及恒定排量泵、叶轮或涡轮泵。
在约800℉至约1000℉的温度和约100psig至约800psig的压力下在反应容器中进行加氢热解。生物质的加热速率优选高于约100W/m2。用于该步骤的以克生物质/克催化剂/小时为单位的重时空速(WHSV)为大约0.2至约10。在常规加氢热解方法中,如前所述,目的在于使液体产物产率最大化,这要求在明显更高的压力(例如2000psig)下运行。这是因为在较低压力下有利于脱羧,而在较高运行压力下有利于加氢脱氧。通过将本发明的方法中的压力保持在100至800psig的范围内,最优选在大约500psig下,脱羧和脱氢脱氧平衡,但是液体产物产率被降低。在更高的压力下,有利于加氢脱氧,但反应变得不平衡。
如前所示,在本发明的加氢热解步骤中,优选在热的流化床中快速加热固体生物质供料,得到可以与采用常规快速热解法获得的产率相比并可能更好的液体产物产率。但是,该加氢热解蒸气现在在流化床中处于存在催化剂和高分压H2的状态下,这提供了氢化活性以及一定的脱氧活性。氢化活性对防止反应性烯烃聚合来说是非常合意的,由此减少形成不稳定的自由基。类似地,脱氧活性是重要的,使得由放热的脱氧反应供给加氢热解的反应热,由此消除了对外部加热的需要。加氢热解优于现有热解法的优点在于,加氢热解避免了热解的退化反应,其通常在惰性气氛中,最特定在不存在H2的情况下并通常在不存在催化剂的情况下进行,由此促进了不存在于原始生物质中的多核芳香烃、自由基和烯属化合物的不合意的形成。
本发明的第一阶段加氢热解步骤在比常规加氢转化过程的通常温度更热的温度下运行,其结果是生物质快速脱挥发分。由此,该步骤要求活性催化剂以稳定该加氢热解蒸气,但活性不足以使其快速结焦。催化剂粒度优选大于大约100微米。尽管在该加氢热解步骤中可以使用适用于该过程温度范围中的任何脱氧催化剂,本发明优选实施方案的催化剂为下列物质:
玻璃陶瓷催化剂——玻璃陶瓷催化剂是极坚硬和耐磨的,并可以热浸渍(即负载的)或以本体催化剂形式制备。当以硫化的NiMo、Ni/NiO或Co-基玻璃陶瓷催化剂使用时,所得催化剂是容易获得的耐磨性催化剂,而非柔软的、常规的NiMo、Ni/NiO或Co-基催化剂。玻璃陶瓷的硫化NiMo、Ni/NiO或Co-基催化剂特别适用于热的流化床,因为这些材料可以提供常规负载型催化剂的催化效果,但是具有更加结实、耐磨的形式。此外,由于该催化剂的耐磨性,当加氢热解反应在反应容器中进行时,生物质和炭同时被研磨为更小的颗粒。由此,由于该催化剂极高的强度和耐磨性,最终回收的炭基本不含来自该催化剂的催化剂污染。该催化剂的磨耗率通常低于如在标准高速喷杯式磨耗试验指数试验中测得的每小时约2重量%,优选低于每小时1重量%。
磷化镍催化剂——磷化Ni催化剂不需要硫来起作用,因此在无硫环境中的活性与在含有H2S、COS和其它含硫化合物的环境中一样。因此,该催化剂对于具有极少或不存在硫的生物质的活性与采用含硫生物质(例如玉米秸)时的活性一样。该催化剂可以以单独催化剂的形式浸渍在碳上,或直接浸渍到生物质原料本身中。
铝土矿——铝土矿是极廉价的材料,由此可用作一次性催化剂。铝土矿还可以用其它材料浸渍,如Ni、Mo,或也可以被硫化。
用NiMo或CoMo浸渍并硫化以形成加氢转化催化剂的小尺寸喷雾干燥的氧化硅氧化铝催化剂——市售NiMo或CoMo催化剂通常以用于固定床或沸腾床的大尺寸1/8-1/16英寸片剂形式提供。在本情况下,NiMo浸渍在喷雾干燥的氧化硅氧化铝催化剂上并用在流化床中。该催化剂表现出比常规NiMo或CoMo催化剂更高的强度,并具有用于流化床的适当尺寸。
在加氢热解与加氢转化步骤之间,从烃液体产物中除去炭。去除炭已经成为常规快速热解法中的主要障碍,因为炭倾向于涂布过滤器并与氧化的热解蒸气反应以形成粘性涂层,该粘性涂层可以堵死热处理过滤器。可以按照本发明的方法通过从蒸气流中过滤的方法,或经过从洗涤步骤——沸腾床中过滤以除去炭。脉冲反洗可用于从过滤器中除去炭,只要本发明的方法中使用的氢充分降低了热解蒸气的反应性。静电沉降、惯性分离、磁力分离或这些技术的组合也可用于在液体产物的冷却与冷凝之前从热蒸气流中除去炭和灰分颗粒。
由于它们的耐磨性,通过通常使用能量碰撞、截取和/或扩散法(有时与静电沉降结合以分离、浓缩和收集炭到用于回收的第二物流中)的能量惯性分离技术,玻璃陶瓷催化剂更容易与炭分离。这些材料额外的优点在于,因为它们受磁性分离(在还原状态下,被永久磁场或电生磁场吸引)的作用,磁技术以及磁、惯性和静电手段的组合可用于分离炭与这些不可能含有更软材料的催化剂。
按照本发明一种实施方案,热气过滤可用于除去炭。在这种情况下,因为氢已经稳定该自由基并饱和该烯烃,被捕获在过滤器上的尘饼应当比常规快速热解中产生的气溶胶的热过滤中除去的炭更容易被清除。按照本发明另一种实施方案,通过使第一阶段产物气体鼓泡通过再循环液体来除去炭。所用的再循环液体是来自该过程的成品油的高沸点馏分,并因此是完全饱和的(氢化的),稳定的油具有通常高于650℉的沸点。来自第一反应阶段的炭或催化剂粉末被捕集在该液体中。一部分该液体可以被过滤以除去该粉末,一部分可以被再循环返回到第一阶段加氢热解反应器中。使用再循环液体的一个优点在于,其提供了将来自第一反应阶段负载炭的过程蒸气(process vapors)的温度降低至第二反应阶段加氢转化步骤所需的温度并同时除去炭与催化剂的微细颗粒的途径。采用液体过滤的另一优点在于可以完全避免采用具有与之相伴的被充分证实的过滤器清洁问题的热气过滤。
按照本发明一种实施方案,配置在沸腾床中的大尺寸NiMo或CoMo催化剂用于除去炭以提供进一步的脱氧,同时除去微细颗粒。该催化剂的颗粒应当大,优选尺寸为大约1/8-1/16英寸,由此令它们能够容易地与来自第一反应阶段的负载的微细炭分离,该微细炭通常小于200目(~70微米)。
在除去炭后,将C4+液体蒸气与来自第一反应阶段加氢热解步骤的H2、CO、CO2、H2O和C1-C3气体一起引入到第二阶段反应容器11中,在其中对气体施以第二反应阶段加氢转化步骤,该步骤优选在比第一反应阶段加氢热解步骤更低的温度(500-850℉)下进行以提高催化剂寿命,而压力与第一反应阶段加氢热解步骤基本相同(100-800psig)。用于该步骤的重时空速(WHSV)为约0.2至约3。应保护该步骤中所用催化剂以免受可以毒害该催化剂的Na、K、Ca、P和存在于生物质中的其它金属的影响,这会提高催化剂寿命。还应通过在第一反应阶段步骤中进行的催化升级来保护该催化剂免受烯烃和自由基的影响。通常为此步骤选择的催化剂是高活性加氢转化催化剂,例如硫化NiMo和硫化CoMo催化剂。在该反应阶段,催化剂用于催化CO+H2O的水气变换反应以产生CO2+H2,由此能够在第二阶段反应容器11中原位产生氢,这反过来减少了加氢转化所需的氢。NiMo和CoMo催化剂均催化该水气变换反应。第二反应阶段中的目标是再次平衡该脱氧反应。通过使用相对低的压力(100-800psig)并正确选择催化剂来实现该平衡。在常规的加氢脱氧过程中,通常使用约2000psig至约3000psig的压力。这是由于该过程意欲转化热解油,其是极端不稳定的,并难以在更低的H2压力下处理。
在加氢转化步骤后,油产物将基本完全脱氧,使得在通过高压分离器12、13和低压分离器14将其分离后,其可以通过蒸馏至汽油和柴油馏分来直接用作运输燃料。在其中产生大量C4、C5和C6烃的情况下,可以在分离器之后放置冷冻吸附剂以便从气流中回收C4和C5烃类。将该液体的重质馏分(如在分离器12中冷凝的)冷却并用于吸附来自该气流的C4和C5烃类。该过程的关键方面是调节温度和压力和空速以平衡脱羰、脱羧和加氢脱氧的水平,使得该过程所需的所有H2可以通过重整在该过程中产生的轻质气体来制备。如果发生过度的加氢脱氧,该过程将需要过多的H2,将驱动该体系离开平衡。同样,如果发生过度脱羧或脱羰,过多的碳将被损耗而形成CO2和CO,而不是被转化为液体产物,其结果是降低了液体产率。
在加氢转化步骤后,将来自该步骤的流出物充分冷却,使得汽油和柴油沸腾材料冷凝,并仅有轻质气体留在蒸气相中。将这些气体(含有CO、CO2、CH4、乙烷和丙烷)与来自该过程的水一起送至蒸汽重整器15以便转化为H2和CO2。这些气体的一部分在炉中或其它燃烧器中燃烧,以便将该气体的剩余部分加热至蒸汽重整器的运行温度,约1700℉。蒸汽重整器要求其供料中蒸汽对烃的比例为3/1以推动反应平衡,但是这远远超过反应所需的量。将蒸汽回收并在蒸汽重整器内部周围循环。通过变压吸附(PSA)从该过程中除去CO2,将H2再循环返回到该过程的第一反应阶段(加氢热解)中。产物液体可以被分离为柴油和汽油馏分,其适于用作运输燃料。
此外,还可以相对于水平衡该过程,使得在该过程中产生足够的水以便提供蒸汽重整步骤中所需的全部水。按照本发明一种实施方案,所用的水量使得整个过程输出物基本仅含有CO2和液体产物,由此避免了用于清除过量水的附加工艺步骤。本领域技术人员将认识到,如本文中所述的与加氢热解和加氢转化步骤结合使用蒸汽重整仅仅在当该目的在于提供自维持方法(其中H2O中O2对由该方法产生的CO和CO2中O2的比为大约1.0)时才有意义。在此目的不存在时,蒸汽重整并无必要,因为加氢热解步骤所需的H2仍可由外部源提供。如果在不存在本文所述目的的情况下采用蒸汽重整的话,其不会以其中过程输出物基本由液体产物和CO2组成的本发明的自维持方法告终。
按照本发明一种实施方案,在第二反应阶段中生成的热可用于提供驱动第一反应阶段中加氢热解步骤所需的全部或部分热。按照本发明一种实施方案,该方法还采用再循环重质成品作为在如上所述的第二步骤中的洗涤液体,以捕获离开第一阶段热解反应器的过程粉末和控制反应热。按照本发明一种实施方案,还将该液体再循环到加氢转化步骤,或可能再循环到第一阶段加氢热解步骤以调整每个步骤中的热的产生。再循环速率优选为生物质供料速率的大约3-5倍。这是必需的,因为加氢脱氧是强放热反应。
按照本发明一种实施方案,该生物质供料是含有高脂质的水生生物质,如藻类,或如浮萍的水生植物,能够制造与由藻类或浮萍提取的脂质产生的相同的脱氧柴油加可以由水生生物质残余物产生的附加的汽油与柴油。这尤其有吸引力,因为脂质提取是昂贵的。相反,藻类与其它水生生物质的常规快速热解将非常缺乏吸引力,因为快速热解的不受控制的热反应特性会降解这些脂质。因此,本发明的集成方法对水生生物质转化来说是理想的,因为它可能对通常仅部分脱水的水生生物质进行,并仍产生高品质的柴油和汽油产物。
本发明的方法提供了优于基于常规快速热解方法的几个明显优势,在于其产生了可忽略的低炭和部分脱氧的、稳定的产物,残余炭可以通过热气过滤或与再循环液体接触容易地从该产物中分离;清洁的、热的加氢热解油蒸气可以在紧密联合的第二催化增强的过程单元中直接升级为最终产物,所述第二催化增强的过程单元在与上游所用几乎相同的压力下运行;并且可以在由加氢热解步骤产生的蒸气中发生降解之前快速进行升级。
通过该方法产生的液体产物应含有低于5%的氧,优选低于2%的氧,以及低的总酸值(TAN),并应表现出对聚合反应的良好化学稳定性,或降低的反应性趋势。在其中产物的总氧含量降低至低于2%的本发明优选实施方案中,水和烃相将容易地在任何普通分离容器中分离,因为烃相变为疏水性的。当与其中水与高度氧化热解油混溶并与其混合的常规热解法相比时,这是显著的优点。表1显示了对于使用混合硬木供料的本发明的平衡的加氢热解+加氢转化过程的预计材料平衡。因为在该公开的方法中产生的替代燃料具有低氧含量,由该过程产生的任何过量的水相对地不含溶解的烃,并将很有可能含有小于2000ppm的溶解的总有机碳量(TOC),使其适于在干旱地区的灌溉。此外,烃成品现在可以容易地运输,具有低的总酸值(TAN)以及优异的化学稳定性。在常规快速热解法中,热解油通常含有50-60%的氧化烃形式的氧和25%的溶解水。因此,本发明的集成加氢热解+加氢转化方法的最终产物运输成本低于常规快速热解法成本的一半。此外,在建议的过程中产生的水成为有价值的副产物,尤其是对干旱的地区而言。
表1. 对于使用混合硬木供料的平衡的加氢热解+加氢转化过程的预计材料平衡*
  加氢热解+加氢转化平衡,wt% 整个系统过程平衡,wt%
生物质供料 100 100
H2供料 3.7 -
汽油+柴油产物 29 29
炭产物 8 8
22.5 0.7
CO2 27.5 59.4
烃气体 16.7 2.9
*通过重整轻质气体制造所有H2,不需要外部天然气。
本文中所述的本发明的方法的缺点之一在于其产生大量正己烷(NC6)和正戊烷(NC5),其是汽油沸程材料,而辛烷含量低。此外,使用纤维素原料,该方法主要产生非常轻质的汽油沸程材料和不是非常多的柴油燃料。一种处理该方法产生的燃料组的方法是可以在石油精炼异构化单元中异构化该NC5和NC6产品。但是,NC5和NC6是非常稳定的分子,其通常需要非常困难的多步骤工艺以便将它们转化为更高沸点的成分。所需步骤将包括脱氢以制造烯烃并随后聚合。
按照本发明一种实施方案,在加氢转化步骤的上游或下游提供加氢裂化催化剂,由此将来自加氢热解步骤的液体产物中的正戊烷和正己烷分别异构化为异戊烷和异己烷,以便提高该方法的液体产物的辛烷值。按照图3和4中所示的特别优选的实施方案,在该方法的加氢热解步骤和加氢转化步骤之间提供加氢裂化催化剂并接收加氢热解步骤的产品输出物。按照如图4中所示的一种实施方案,将该加氢裂化催化剂布置在加氢转化步骤反应容器11上游的单独的反应容器24中。按照如图3中所示的另一实施方案,该加氢转化反应容器包含彼此流体连通的两个隔室,上游隔室22和下游隔室23,将该加氢裂化催化剂布置在上游隔室中,在其中来自加氢热解步骤的正戊烷和正己烷分别被转化为异戊烷和异己烷,而将加氢转化催化剂布置在下游隔室中。按照如图2和5中所示的本发明另一种实施方案,在加氢转化步骤的下游提供加氢裂化催化剂。按照如图2中所示的一种实施方案,在双隔室加氢转化反应容器的上游隔室20中提供加氢转化催化剂,在其中来自集成方法的加氢热解步骤的部分脱氧的加氢热解液体被转化为基本完全脱氧的烃液体,包含CO、CO2和轻质烃气体(C1-C3)的气体混合物,并在下游隔室21中提供加氢裂化催化剂。按照一种实施方案,将该加氢裂化催化剂布置在如图5中所示的单独的加氢裂化反应容器24中。
按照如图8中所示的一种实施方案,将加氢裂化催化剂布置在加氢裂化反应容器27中,取代加氢转化反应容器并完全取消加氢转化催化剂,以便使来自加氢热解步骤的液体产物的含氧分子聚合,并同时从该结构中除去氧。结果,产物可向C12和C18产物转变并远非轻质汽油沸程分子,由此制造柴油沸程材料,该柴油沸程材料特别适于用在卡车和喷气发动机中。
按照如图6中所示的本发明另一种实施方案,可以将加氢裂化催化剂布置在与加氢转化反应容器11平行运行的单独的加氢裂化反应容器24中,由此实现受控的同时聚合和异构化,这将使得一种过程配置能够按需生产汽油或柴油燃料。
按照如图7中所示的本发明的再一种实施方案,在加氢裂化反应容器26中提供加氢裂化催化剂,取代加氢热解反应容器。
适用于本发明的方法的加氢裂化催化剂是酸性含金属催化剂,其提供氢化功能(由金属)和酸性功能。此类催化剂的实例是分布在无定形二氧化硅-氧化铝(例如75%SiO2和25%Al2O3)上的CoMo、NiMo或NiW催化剂。可以使用任何能够经受本发明的方法的运行条件的双官能酸性含金属催化剂。
虽然已在前述说明书中对于本发明的某些优选实施方案描述了本发明,并且为了举例说明已经列举了许多细节,但对本领域技术人员来说显而易见的是,本发明容许附加的实施方案,本文中描述的某些细节可以进行相当大的改变而不偏离本发明的基本概念。

Claims (33)

1.用于由生物质产生液体产物的方法,包括以下步骤:
a)在装有分子氢和脱氧催化剂的加氢热解反应容器中加氢热解生物质,产生CO2、CO和C1-C3气体、部分脱氧的加氢热解液体和炭;
b)从所述部分脱氧的加氢热解液体中除去所述炭;
c)在步骤a)中生成的CO2、CO和C1-C3气体的存在下在加氢转化反应容器中使用加氢转化催化剂加氢转化所述部分脱氧的加氢热解液体,产生基本完全脱氧的烃液体和包含CO、CO2和轻质烃气体(C1-C3)的气体混合物;
d)使用在步骤a)和步骤c)中产生的水来蒸汽重整一部分所述气体混合物,产生重整的分子氢;和
e)将所述重整的分子氢引入到所述反应容器中用于加氢热解所述生物质,其中步骤a)和c)在所述生物质中氧的约30-70%被转化为H2O和所述氧的约30-70%被转化为CO和CO2的条件下运行。
2.权利要求1的方法,其中一部分步骤c)中生成的所述基本完全脱氧的烃液体被循环到所述加氢热解反应容器或所述加氢转化反应容器中以控制其中的温度。
3.权利要求1的方法,其中所述脱氧催化剂和所述加氢转化催化剂的至少一种是玻璃-陶瓷材料。
4.权利要求1的方法,其中在所述加氢转化反应容器的上游、下游、之中和与之平行的位置的至少一处布置加氢裂化催化剂。
5.权利要求4的方法,其中所述加氢裂化催化剂是提供氢化功能和酸性功能的酸性含金属催化剂。
6.权利要求1的方法,其中用加氢裂化催化剂替代所述加氢转化催化剂。
7.权利要求1的方法,其中所述加氢转化催化剂催化水气变换反应和加氢转化。
8.权利要求1的方法,其中所述步骤a)、c)和d)均在基本相同的压力下进行。
9.权利要求4的方法,其中所述步骤a)、c)和d)均在基本相同的压力下进行。
10.权利要求8的方法,其中所述压力为约100至约800psig。
11.权利要求9的方法,其中所述压力为约100至约800psig。
12.权利要求1的方法,其中所述加氢热解在约500℉至约1000℉的温度下进行,并且所述加氢转化在约500℉至约850℉的温度下进行。
13.权利要求1的方法,其中所述加氢热解在约0.2至约10克生物质/克催化剂/小时的重时空速下进行。
14.权利要求1的方法,其中采用约0.2至约3克生物质/克催化剂/小时的重时空速进行所述加氢转化。
15.权利要求2的方法,其中所述基本完全脱氧的烃液体被分离为适于用作运输燃料的柴油和汽油馏分。
16.权利要求1的方法,其中所述加氢热解反应容器是包含流化床的流化床反应器,在所述加氢热解反应容器中的气体停留时间小于约1分钟。
17.权利要求16的方法,其中从所述流化床反应器中,并基本仅从上述流化床中除去所述炭。
18.权利要求1的方法,其中通过使所述加氢热解产生的气体输出物鼓泡通过采用所述基本完全脱氧的烃液体的高沸点馏分的再循环液体,由此从所述部分脱氧的加氢热解液体中除去炭。
19.权利要求1的方法,其中来自所述过程的输出物基本上由液体产物和CO2组成。
20.权利要求17的方法,其中所述脱氧催化剂是颗粒状的,并充分耐磨,使得其消耗所述炭,尤其能够从所述流化床反应器中且基本仅由上述流化床中除去所述炭。
21.权利要求1的方法,其中所述加氢热解反应容器是包含流化床的流化床反应器,并通过使用惯性、静电和磁力方法中的至少一种以能量炭分离方式从所述流化床反应器中除去所述炭。
22.权利要求21的方法,其中所述脱氧催化剂是玻璃-陶瓷材料。
23.用于由生物质产生液体产物的方法,包括以下步骤:
在加氢热解反应容器中在H2和脱氧催化剂的存在下在约100psig至约800psig的加氢热解压力下热解所述生物质,产生包含部分脱氧的加氢热解液体和炭的加氢热解过程输出物;
从所述加氢热解过程输出物中分离所述炭;
在加氢转化反应容器中在加氢转化催化剂的存在下在约100psig至约800psig的加氢转化压力下加氢转化所述部分脱氧的加氢热解液体,产生基本完全脱氧的烃液体和包含CO和C1-C3轻质烃气体的气体混合物;
蒸汽重整一部分所述气体混合物,产生重整的H2;和
将所述重整的H2再循环到所述反应容器中用于加氢热解额外的生物质。
24.权利要求23的方法,其中所述生物质中氧的约30-70%被转化为H2O,并且所述氧的约30-70%被转化为CO和CO2
25.权利要求23的方法,其中在所述加氢转化反应容器的上游、下游、之中和与之平行的位置的至少一处布置加氢裂化催化剂。
26.权利要求25的方法,其中所述加氢裂化催化剂是提供氢化功能和酸性功能的酸性含金属催化剂。
27.权利要求23的方法,其中所述加氢转化催化剂催化水气变换反应和加氢转化。
28.权利要求23的方法,其中所述加氢热解在约500℉至约1000℉的加氢热解温度下进行,并且所述加氢转化在约500℉至约850℉的加氢转化温度下进行。
29.权利要求23的方法,其中所述基本完全脱氧的烃液体被分离为适于用作运输燃料的柴油和汽油馏分。
30.权利要求23的方法,其中所述反应容器是包含流化床的流化床反应器。
31.权利要求23的方法,其中来自所述过程的输出物基本上由液体产物和CO2组成。
32.权利要求23的方法,其中所述加氢转化催化剂完全被加氢裂化催化剂替代。
33.权利要求23的方法,其中所述加氢热解催化剂完全被加氢裂化催化剂替代。
CN201080025189.XA 2009-04-07 2010-04-05 用于产生高品质液体燃料的生物质加氢热解 Active CN102459518B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/419,535 US20100251600A1 (en) 2009-04-07 2009-04-07 Hydropyrolysis of biomass for producing high quality liquid fuels
US12/419535 2009-04-07
US12/685352 2010-01-11
US12/685,352 US8492600B2 (en) 2009-04-07 2010-01-11 Hydropyrolysis of biomass for producing high quality fuels
PCT/US2010/001020 WO2010117437A1 (en) 2009-04-07 2010-04-05 Hydropyrolysis of biomass for producing high quality liquid fuels

Publications (2)

Publication Number Publication Date
CN102459518A true CN102459518A (zh) 2012-05-16
CN102459518B CN102459518B (zh) 2015-07-15

Family

ID=42826752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080025189.XA Active CN102459518B (zh) 2009-04-07 2010-04-05 用于产生高品质液体燃料的生物质加氢热解

Country Status (19)

Country Link
US (1) US8492600B2 (zh)
EP (1) EP2417222B1 (zh)
JP (2) JP5521031B2 (zh)
CN (1) CN102459518B (zh)
AU (1) AU2010235215B2 (zh)
BR (1) BRPI1011219B1 (zh)
CA (2) CA2912814C (zh)
CL (2) CL2011002488A1 (zh)
DK (1) DK2417222T3 (zh)
EC (1) ECSP11011431A (zh)
ES (1) ES2862929T3 (zh)
MX (2) MX2011010471A (zh)
MY (1) MY158044A (zh)
NZ (2) NZ596155A (zh)
PE (1) PE20120999A1 (zh)
PL (1) PL2417222T3 (zh)
RU (1) RU2539598C2 (zh)
UA (1) UA116115C2 (zh)
WO (1) WO2010117437A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822806A (zh) * 2012-10-04 2015-08-05 瓦斯技术研究所 由生物质生产分馏和改质的烃燃料
CN105745311A (zh) * 2013-09-11 2016-07-06 研究三角协会 催化快速热解反应的方法及系统
CN105940087A (zh) * 2014-01-28 2016-09-14 国际壳牌研究有限公司 生物质或剩余废料向生物燃料的转化
CN106459791A (zh) * 2014-07-01 2017-02-22 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN106471099A (zh) * 2014-07-01 2017-03-01 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN106574196A (zh) * 2014-07-01 2017-04-19 瓦斯技术研究所 含生物质进料的加氢热解
CN106661468A (zh) * 2014-07-01 2017-05-10 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN107532087A (zh) * 2015-04-27 2018-01-02 瓦斯技术研究所 用于控制加氢热解过程和其产物的共处理
CN110102279A (zh) * 2019-06-03 2019-08-09 南京农业大学 一种无金属负载型生物炭脱氧催化剂及其催化油脂类化合物制备液体燃料的方法
CN116286067B (zh) * 2023-02-01 2024-03-15 四川大学 生物质生产汽柴油的长周期稳定运行方法与装置

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100251600A1 (en) * 2009-04-07 2010-10-07 Gas Technology Institute Hydropyrolysis of biomass for producing high quality liquid fuels
US9447328B2 (en) 2009-04-07 2016-09-20 Gas Technology Institute Hydropyrolysis of biomass for producing high quality liquid fuels
US8063258B2 (en) * 2009-05-22 2011-11-22 Kior Inc. Catalytic hydropyrolysis of organophillic biomass
EP2501788A4 (en) 2009-11-18 2013-12-04 G4 Insights Inc BY SORPTION REINFORCED METHANIZATION OF BIOMASS
EP2536677A4 (en) 2010-02-16 2016-04-27 Kior Inc SIMULTANEOUS PROCESSING OF BIOMASS AND SYNTHETIC POLYMER BASED MATERIALS IN A PYROLYSIS REVERSE PROCESS
WO2011138356A1 (de) * 2010-05-07 2011-11-10 Basf Se Verfahren zur herstellung von synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren wertstoffs
US20110287503A1 (en) * 2010-05-20 2011-11-24 Uop Llc Methods for producing hydrocarbon products from algal biomass
US8383871B1 (en) * 2010-09-03 2013-02-26 Brian G. Sellars Method of hydrogasification of biomass to methane with low depositable tars
US9382489B2 (en) 2010-10-29 2016-07-05 Inaeris Technologies, Llc Renewable heating fuel oil
US9447350B2 (en) 2010-10-29 2016-09-20 Inaeris Technologies, Llc Production of renewable bio-distillate
US9062264B2 (en) * 2010-10-29 2015-06-23 Kior, Inc. Production of renewable bio-gasoline
US8487148B2 (en) * 2010-12-13 2013-07-16 Exxonmobil Research And Engineering Company Hydrothermal treatment of biomass with heterogeneous catalyst
US8704019B2 (en) * 2010-12-13 2014-04-22 Exxonmobil Research And Engineering Company Catalyst recovery in hydrothermal treatment of biomass
US8853475B2 (en) * 2010-12-15 2014-10-07 Uop Llc Process for producing a renewable hydrocarbon fuel
US20120172588A1 (en) * 2010-12-30 2012-07-05 Ming Qiao Catalytic biomass deconstruction
US9157030B2 (en) 2010-12-30 2015-10-13 Virent, Inc. Solvolysis of biomass and stabilization of biomass hydrolysate
US8642813B2 (en) 2010-12-30 2014-02-04 Virent, Inc. Reductive biomass liquefaction
US9212315B2 (en) 2010-12-30 2015-12-15 Virent, Inc. Methods for biomass deconstruction and purification
US9212316B2 (en) 2010-12-30 2015-12-15 Virent, Inc. Serial deconstruction of biomass
US9157031B2 (en) 2010-12-30 2015-10-13 Virent, Inc. Solvolysis of biomass to produce aqueous and organic products
WO2012092440A1 (en) 2010-12-30 2012-07-05 Virent, Inc. Solvolysis of biomass using solvent from a bioreforming process
US9315739B2 (en) 2011-08-18 2016-04-19 Kior, Llc Process for upgrading biomass derived products
US8841495B2 (en) * 2011-04-18 2014-09-23 Gas Technology Institute Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor
WO2012151275A1 (en) * 2011-05-02 2012-11-08 Virent, Inc. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes
US9862893B2 (en) 2011-05-12 2018-01-09 Virent, Inc. Process for purifying lignocellulosic feedstocks
EP2714625B1 (en) * 2011-05-23 2021-01-13 Virent, Inc. Production of chemicals and fuels from biomass
CN103890145A (zh) * 2011-06-23 2014-06-25 福斯特惠勒(美国)公司 生物燃料制备中的生物质热解
US8772558B2 (en) * 2011-07-26 2014-07-08 Uop Llc Methods and apparatuses for producing aromatic hydrocarbon-containing effluent
US8859831B2 (en) * 2011-08-02 2014-10-14 Gas Technology Institute Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors
US10427069B2 (en) 2011-08-18 2019-10-01 Inaeris Technologies, Llc Process for upgrading biomass derived products using liquid-liquid extraction
FI20116284A (fi) * 2011-09-16 2013-03-17 Upm Kymmene Corp Menetelmä ja laitteisto raaka-aineen valmistamiseksi biopolttoainetuotantoa varten
CN102433153A (zh) * 2011-10-21 2012-05-02 华东理工大学 一种生物油的精制方法
CA2855810C (en) * 2011-11-14 2020-03-10 Shell Internationale Research Maatschappij B.V. A catalyst for producing hydrocarbons
CN103930524B (zh) * 2011-11-14 2016-12-07 国际壳牌研究有限公司 制备烃的方法
US8962902B2 (en) 2011-11-23 2015-02-24 Virent, Inc. Dehydrogenation of alkanols to increase yield of aromatics
US8969640B2 (en) 2011-11-23 2015-03-03 Virent, Inc. Dehydrogenation of alkanols to increase yield of aromatics
US8822745B2 (en) * 2011-12-06 2014-09-02 Phillips 66 Company Pyrolysis oil upgrading to gasoline range liquids
US9068126B2 (en) * 2011-12-14 2015-06-30 Uop Llc Methods for deoxygenating biomass-derived pyrolysis oil
US9080109B2 (en) * 2011-12-14 2015-07-14 Uop Llc Methods for deoxygenating biomass-derived pyrolysis oil
US9206365B2 (en) * 2012-01-10 2015-12-08 Kior, Llc Fungible bio-oil
US9163181B2 (en) 2012-06-20 2015-10-20 Uop Llc Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil
US9162938B2 (en) 2012-12-11 2015-10-20 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons
US9024096B2 (en) * 2012-12-11 2015-05-05 Lummus Technology Inc. Conversion of triacylglycerides-containing oils
EP2792729A1 (en) 2013-04-17 2014-10-22 XTLgroup bv Process for hydroprocessing a liquid feed comprising hydrocarbons into fuel components
EP3010993A1 (en) 2013-06-18 2016-04-27 Technische Universiteit Twente Process for converting a biomass feedstock into at least a liquid hydrocarbon product
US20150152336A1 (en) * 2013-12-04 2015-06-04 Lummus Technology Inc. Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks
RU2556860C1 (ru) * 2014-01-31 2015-07-20 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения жидких углеводородных смесей путем гидроконверсии лигноцеллюлозной биомассы
US10563130B2 (en) * 2014-07-17 2020-02-18 Sabic Global Technologies B.V. Upgrading hydrogen deficient streams using hydrogen donor streams in a hydropyrolysis process
DE102014215807B3 (de) * 2014-08-08 2015-12-24 Suncoal Industries Gmbh Verfahren zur Gewinnung eines stabilisierten Lignins mit definierter Korngrößenverteilung aus einer Lignin beinhaltenden Flüssigkeit
US9938466B2 (en) * 2014-09-05 2018-04-10 Gas Technology Institute Use of carbon dioxide generated by hydropyrolysis for process inertization
US10266774B2 (en) 2014-10-03 2019-04-23 Southwest Research Institute Feedstock conversion to fuel on high pressure circulating fluidized bed
US10202557B2 (en) 2014-12-19 2019-02-12 The United States Of America, As Represented By The Secretary Of Agriculture Methods of producing calcined coke from bio-oil and calcined coke produced thereby
BR112017023252B1 (pt) 2015-04-27 2020-12-15 Shell Internationale Research Maatschappij B.V. Processo para produzir produtos de hidrocarboneto líquido a partir de uma matériaprima sólida
US20170022425A1 (en) * 2015-07-24 2017-01-26 Uop Llc Staged catalyst loading for pyrolysis oil hydrodeoxygenation
DK3347438T5 (da) 2015-09-07 2020-06-02 Shell Int Research Konvertering af biomasse til et flydende carbonhydridmateriale
EP3353263A1 (en) 2015-09-25 2018-08-01 Shell International Research Maatschappij B.V. Conversion of biomass into methane
US10647933B2 (en) * 2015-11-12 2020-05-12 Gas Technology Institute Activated carbon as a high value product of hydropyrolysis
MY196728A (en) 2015-11-23 2023-05-03 Shell Int Research Conversion of biomass into a liquid hydrocarbon material
CN108350365B (zh) * 2015-11-23 2021-01-08 国际壳牌研究有限公司 生物质向液态烃材料的转化
KR101721923B1 (ko) 2016-05-24 2017-05-18 주식회사 대경에스코 수분량과 산도가 감소된 바이오오일 제조방법
MY189099A (en) 2016-05-25 2022-01-25 Shell Int Research Conversion of biomass into a liquid hydrocarbon material
CA3027480A1 (en) 2016-06-14 2017-12-21 Fluor Technologies Corporation Processing of gasification tars to high yields of btx
EP3494194B1 (en) 2016-08-04 2021-05-12 Shell Internationale Research Maatschappij B.V. Improved biomass conversion process
US10787610B2 (en) * 2017-04-11 2020-09-29 Terrapower, Llc Flexible pyrolysis system and method
FR3066491B1 (fr) * 2017-05-18 2019-07-12 Technip France Procede de recuperation d'un courant d'hydrocarbures en c2+ dans un gaz residuel de raffinerie et installation associee
US11060033B2 (en) 2017-06-23 2021-07-13 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and methods for producing calcined coke from biorenewable sources
US11286434B2 (en) * 2018-02-26 2022-03-29 Saudi Arabian Oil Company Conversion process using supercritical water
US11021659B2 (en) * 2018-02-26 2021-06-01 Saudi Arabia Oil Company Additives for supercritical water process to upgrade heavy oil
US10927313B2 (en) * 2018-04-11 2021-02-23 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
BR112021001960A2 (pt) * 2018-08-03 2021-04-27 EnerSysNet U.S. Holdings, Inc. dispositivos, sistemas e métodos de processamento de biomassa
US11718799B2 (en) 2019-02-08 2023-08-08 Steeper Energy Aps Process for upgrading renewable liquid hydrocarbons
KR102478550B1 (ko) * 2020-11-19 2022-12-19 한화토탈에너지스 주식회사 바이오매스로부터 고순도 노말파라핀의 제조방법
US20240018419A1 (en) 2020-12-18 2024-01-18 Shell Oil Company Fluidized bed reactor and associated hydropyrolysis processes
WO2022152896A1 (en) 2021-01-18 2022-07-21 Topsoe A/S Process and plant for producing hydrocarbons from a solid renewable feedstock with reduced co2-footprint
US20230017405A1 (en) 2021-07-15 2023-01-19 Shell Usa, Inc. Method of subjecting a biomass feedstock to hydropyrolysis
WO2023107834A1 (en) * 2021-12-07 2023-06-15 Shell Usa, Inc. Process for producing a liquid hydrocarbon from renewable sources
US11976244B2 (en) 2021-12-13 2024-05-07 ExxonMobil Technology and Engineering Company System and methods for renewable fuels
WO2023235743A1 (en) * 2022-06-01 2023-12-07 Shell Usa, Inc. System for hydroprocessing a solid feedstock with piston feedstock feeder system having a t-shape annular piston sealing ring
US20240010922A1 (en) 2022-07-05 2024-01-11 Gti Energy Catalysts and processes for the conversion of synthesis gas to liquefied petroleum gas (lpg) hydrocarbons

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808289A (en) * 1987-07-09 1989-02-28 Amoco Corporation Resid hydrotreating with high temperature flash drum recycle oil
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20080006519A1 (en) * 2006-07-06 2008-01-10 Badger Phillip C Method and system for accomplishing flash or fast pyrolysis with carbonaceous materials
WO2009029660A2 (en) * 2007-08-27 2009-03-05 Purdue Research Foundation Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source
US20090084666A1 (en) * 2007-08-27 2009-04-02 Purdue Research Foundation Novel integrated gasification - pyrolysis process

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013543A (en) 1975-10-20 1977-03-22 Cities Service Company Upgrading solid fuel-derived tars produced by low pressure hydropyrolysis
US3997423A (en) 1975-10-20 1976-12-14 Cities Service Company Short residence time low pressure hydropyrolysis of carbonaceous materials
US4166786A (en) 1976-06-25 1979-09-04 Occidental Petroleum Corporation Pyrolysis and hydrogenation process
US4260473A (en) 1979-05-03 1981-04-07 Occidental Research Corporation Removal of particulates from pyrolytic oil
US4252736A (en) * 1979-06-01 1981-02-24 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
GB2071132A (en) 1979-10-19 1981-09-16 Coal Industry Patents Ltd Fuel oils from coal
US4326944A (en) 1980-04-14 1982-04-27 Standard Oil Company (Indiana) Rapid hydropyrolysis of carbonaceous solids
NZ208911A (en) * 1983-07-15 1988-04-29 Broken Hill Pty Co Ltd Liquid fuels containing cycloalkanes
CA1300885C (en) * 1986-08-26 1992-05-19 Donald S. Scott Hydrogasification of biomass to produce high yields of methane
US5055181A (en) 1987-09-30 1991-10-08 Exxon Research And Engineering Company Hydropyrolysis-gasification of carbonaceous material
US5096569A (en) 1990-02-27 1992-03-17 Exxon Research And Engineering Company Catalytic hydropyrolysis of carbonaceous material with char recycle
GB9224783D0 (en) 1992-11-26 1993-01-13 Univ Waterloo An improved process for the thermal conversion of biomass to liquids
RU2124547C1 (ru) * 1997-10-24 1999-01-10 Антоненко Владимир Федорович Способ термической переработки биомассы
US6596780B2 (en) * 2001-10-23 2003-07-22 Texaco Inc. Making fischer-tropsch liquids and power
TW200519073A (en) * 2003-08-21 2005-06-16 Pearson Technologies Inc Process and apparatus for the production of useful products from carbonaceous feedstock
US20070225382A1 (en) * 2005-10-14 2007-09-27 Van Den Berg Robert E Method for producing synthesis gas or a hydrocarbon product
US7511181B2 (en) 2006-05-02 2009-03-31 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7578927B2 (en) 2006-08-31 2009-08-25 Uop Llc Gasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
WO2008033812A2 (en) * 2006-09-11 2008-03-20 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
US7994375B2 (en) 2006-09-26 2011-08-09 Uop Llc Production of gasoline, diesel, naphthenes and aromatics from lignin and cellulosic waste by one step hydrocracking
US20080312480A1 (en) 2007-06-15 2008-12-18 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US8198492B2 (en) * 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
PL2141217T3 (pl) * 2008-07-01 2015-08-31 Neste Oil Oyj Sposób wytwarzania paliwa lotniczego lub mieszanek surowcowych do paliwa lotniczego pochodzenia organicznego
JP5317644B2 (ja) * 2008-11-20 2013-10-16 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法
US8063258B2 (en) * 2009-05-22 2011-11-22 Kior Inc. Catalytic hydropyrolysis of organophillic biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808289A (en) * 1987-07-09 1989-02-28 Amoco Corporation Resid hydrotreating with high temperature flash drum recycle oil
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20080006519A1 (en) * 2006-07-06 2008-01-10 Badger Phillip C Method and system for accomplishing flash or fast pyrolysis with carbonaceous materials
WO2009029660A2 (en) * 2007-08-27 2009-03-05 Purdue Research Foundation Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source
US20090084666A1 (en) * 2007-08-27 2009-04-02 Purdue Research Foundation Novel integrated gasification - pyrolysis process

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
. DILCIO ROCHA, CARLOS A. LUENGO, COLIN E. SNAPE: "The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis", 《ORGANIC GEOCHEMISTRY》 *
AYSE E. PUTUN: "Oil production from an arid-land plant: fixed-bed pyrolysis and hydropyrolysis of Euphorbia rigida", 《FUEL》 *
DONALD L. KLASS: "《Biomass for Renewable Energy, Fuels, and Chemicals》", 31 December 1998 *
J.D. ROCHA, C.A. LUENGO, C.E. SNAPE: "Hydrodeoxygenation of oils from cellulose in single and two-stage hydropyrolysis", 《RENEWABLE ENERGY》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822806A (zh) * 2012-10-04 2015-08-05 瓦斯技术研究所 由生物质生产分馏和改质的烃燃料
CN105745311A (zh) * 2013-09-11 2016-07-06 研究三角协会 催化快速热解反应的方法及系统
US10294427B2 (en) 2013-09-11 2019-05-21 Research Triangle Institute Reactive catalytic fast pyrolysis process and system
CN105940087B (zh) * 2014-01-28 2018-11-23 国际壳牌研究有限公司 生物质或剩余废料向生物燃料的转化
CN105940087A (zh) * 2014-01-28 2016-09-14 国际壳牌研究有限公司 生物质或剩余废料向生物燃料的转化
CN106471099A (zh) * 2014-07-01 2017-03-01 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN106661468A (zh) * 2014-07-01 2017-05-10 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN106574196A (zh) * 2014-07-01 2017-04-19 瓦斯技术研究所 含生物质进料的加氢热解
CN106471099B (zh) * 2014-07-01 2019-04-05 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN106459791A (zh) * 2014-07-01 2017-02-22 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN106661468B (zh) * 2014-07-01 2019-11-05 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN113150842A (zh) * 2014-07-01 2021-07-23 瓦斯技术研究所 含生物质进料的加氢热解
CN115418253A (zh) * 2014-07-01 2022-12-02 国际壳牌研究有限公司 固体生物质到液体烃材料的转化
CN113150842B (zh) * 2014-07-01 2023-08-08 Gti能源公司 含生物质进料的加氢热解
CN107532087A (zh) * 2015-04-27 2018-01-02 瓦斯技术研究所 用于控制加氢热解过程和其产物的共处理
CN107532087B (zh) * 2015-04-27 2021-01-29 瓦斯技术研究所 用于控制加氢热解过程和其产物的共处理
CN110102279A (zh) * 2019-06-03 2019-08-09 南京农业大学 一种无金属负载型生物炭脱氧催化剂及其催化油脂类化合物制备液体燃料的方法
CN116286067B (zh) * 2023-02-01 2024-03-15 四川大学 生物质生产汽柴油的长周期稳定运行方法与装置

Also Published As

Publication number Publication date
ES2862929T3 (es) 2021-10-08
CN102459518B (zh) 2015-07-15
ECSP11011431A (es) 2012-06-29
CL2011003096A1 (es) 2012-07-20
EP2417222A4 (en) 2014-02-12
AU2010235215B2 (en) 2012-11-29
CA2757651C (en) 2016-02-02
PE20120999A1 (es) 2012-08-01
DK2417222T3 (da) 2021-03-22
NZ621616A (en) 2015-09-25
AU2010235215A1 (en) 2011-11-03
JP5521031B2 (ja) 2014-06-11
JP2014177631A (ja) 2014-09-25
RU2011144864A (ru) 2013-05-20
MY158044A (en) 2016-08-30
EP2417222A1 (en) 2012-02-15
UA116115C2 (uk) 2018-02-12
BRPI1011219B1 (pt) 2019-06-25
JP5898253B2 (ja) 2016-04-06
MX351040B (es) 2017-09-29
NZ596155A (en) 2014-03-28
US8492600B2 (en) 2013-07-23
BRPI1011219A2 (zh) 2017-07-11
EP2417222B1 (en) 2020-12-23
RU2539598C2 (ru) 2015-01-20
CL2011002488A1 (es) 2012-06-22
CA2912814A1 (en) 2010-10-14
CA2912814C (en) 2018-10-02
PL2417222T3 (pl) 2021-08-02
US20100256428A1 (en) 2010-10-07
WO2010117437A1 (en) 2010-10-14
JP2012523474A (ja) 2012-10-04
MX2011010471A (es) 2011-12-16
CA2757651A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
CN102459518B (zh) 用于产生高品质液体燃料的生物质加氢热解
CN102378748B (zh) 用于生产高质量液体燃料的生物质的加氢热解
US9447328B2 (en) Hydropyrolysis of biomass for producing high quality liquid fuels
Kaufmann et al. Catalysis science and technology for cleaner transportation fuels
JP6228609B2 (ja) バイオマスからの分留高品位化燃料の製造
KR20170034791A (ko) 수소열분해 공정에서 수소 도너 스트림을 사용한 수소 결핍 스트림의 업그레이드
CN102712850A (zh) 从生物油和/或煤油制备烃产物的方法
RU2425859C2 (ru) Нефтяное масло и способ получения нефтяного масла
US9644154B2 (en) Optimized method for recycling bio-oils into hydrocarbon fuels
AU2015249079B2 (en) Hydropyrolysis of biomass for producing high quality liquid fuels
AU2013201165B2 (en) Hydropyrolysis of biomass for producing high quality liquid fuels
IL307818A (en) A process for the simultaneous processing of plastic pyrolysis oils and feedstock derived from renewable resources

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant