CN102449814A - 正极及其制备方法 - Google Patents

正极及其制备方法 Download PDF

Info

Publication number
CN102449814A
CN102449814A CN2010800229504A CN201080022950A CN102449814A CN 102449814 A CN102449814 A CN 102449814A CN 2010800229504 A CN2010800229504 A CN 2010800229504A CN 201080022950 A CN201080022950 A CN 201080022950A CN 102449814 A CN102449814 A CN 102449814A
Authority
CN
China
Prior art keywords
positive electrode
active materials
electrode active
particle
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800229504A
Other languages
English (en)
Inventor
太田进启
上村卓
小川光靖
神田良子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN102449814A publication Critical patent/CN102449814A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明提供一种用于制备放电容量高且循环特性优异的非水电解质电池的正极部件、以及所述正极部件的制备方法。所述正极部件包括由金属构成的正极集电体;以及允许在所述正极集电体与正极活性材料层10B之间进行电子转移的正极活性材料层(正极活性材料部分)10B。正极活性材料层10B包括正极活性材料粒子1和固定所述粒子1的固体电解质2。彼此相邻的粒子1的轮廓的一部分彼此相一致。为制备这种正极部件,将原料溶胶施加至正极集电体,加热所得部件并且随后进行压制,其中所述原料溶胶是通过将正极活性材料粒子与通过加热进行缩聚能够转变成固体电解质的物质相混合而获得的。

Description

正极及其制备方法
技术领域
本发明涉及用作非水电解质电池的正极层的正极部件以及用于制备该正极部件的方法。
背景技术
诸如便携设备之类的相对较小的电气设备采用非水电解质电池作为电源,其中所述的非水电解质电池包括具有正极集电体和正极活性材料层的正极层、具有负极集电体和负极活性材料层的负极层、以及置于这些电极层之间的电解质层。在非水电解质电池中,特别是,借助于锂离子在正极与负极之间的移动来充电和放电的锂离子电池具有优异的充电-放电特性。例如,专利文献1公开了采用氧化锂烧结体作为正极活性材料层的锂离子电池。
引用列表
专利文献
PTL 1:日本未审查的专利申请公开No.8-180904
发明内容
技术问题
然而,存在这样的情况:其中,采用烧结体作为正极活性材料层的这种锂离子电池不具有足够高的放电容量。这是因为在正极活性材料层中,正极活性材料的颗粒边界处电子传导性和锂离子传导性低。
在采用烧结体的锂离子电池中,由该烧结体构成的正极活性材料层因充电和放电而反复地膨胀和收缩,该正极活性材料层可能因开裂等而破损,或者接合在一起的正极活性材料层和正极集电体可能彼此分离。因此,随着电池的充电放电重复进行,电池的放电容量趋向于下降,即电池的循环特性变差。特别是,当电池以高电流密度使用时,这种问题趋于变得严重。
在这种情况下进行了本发明的研究,本发明的目的是提供一种用于制备放电容量高且循环特性优异的非水电解质电池的正极部件、以及用于制备这种正极部件的方法。
解决问题的方案
(1)本发明的正极部件是用作非水电解质电池的正极层的正极部件,该正极部件包括由金属构成的正极集电体以及允许在正极活性材料部分与正极集电体之间进行电子转移的正极活性材料部分。所述正极部件中的正极活性材料部分包括正极活性材料粒子组和固定该组粒子的固体电解质。在正极活性材料部分中彼此相邻的正极活性材料粒子的轮廓的一部分彼此相一致。
在本发明的构造中,在正极活性材料部分中,布置在已经塑性变形的正极活性材料粒子之间的空隙内的固体电解质允许锂离子在彼此靠近的活性材料粒子之间传导。与粒子内部的锂离子传导性相比,在彼此接触的正极活性材料粒子之间的界面处锂离子传导性固有地极低。因此,其中粒子彼此只是简单地接触的构造导致形成锂离子传导性低的正极部件。相反,如在其中固体电解质被布置在粒子之间的空隙内的本发明正极部件中,锂离子能够顺利地在彼此靠近的粒子之间传导,因而可以提高电池的放电容量。应当指出,当活性材料粒子被烧结时,与其中粒子彼此只是简单接触的构造相比,在颗粒边界处的锂离子传导性高;然而,与其中固体电解质被布置在粒子之间的本发明构造相比,锂离子传导性是低的。
在本发明的构造中,因正极活性材料膨胀和收缩而产生的应力可以被布置在正极活性材料粒子之间的空隙内的固体电解质所吸收。因此,当本发明的正极部件用于非水电解质电池时,可以增强电池的循环特性。
此外,在本发明的构造中,在本发明正极部件的正极活性材料部分中,活性材料粒子已经发生塑性变形,从而使所述粒子的轮廓的一部分彼此相一致。因而,提高了粒子之间的锂离子传导性。因此,当本发明的正极部件用于非水电解质电池时,可以抑制该电池中内阻的增加,并且可以提高该电池的放电容量。此外,塑性变形造成在正极活性材料粒子中出现开裂,并且所述开裂可以吸收因电池充电和放电所致的粒子膨胀和收缩。
就所用集电体的形式而言,本发明的正极部件可以大体上划分成两种构造。在下文(2)至(7)中描述第一形式和与之相关的制备方法。在下文(8)至(13)中描述第二形式和与之相关的制备方法。
(2)在本发明正极部件的第一构造中,正极集电体是实心板,并且正极活性材料部分为布置在正极集电体表面上的层。
当正极活性材料部分形成为层时,通过简单地改变该层的厚度,可以容易地调节在正极活性材料部分中所含有的正极活性材料的量。
(3)在包括板状正极集电体的本发明正极部件中,该正极集电体的表面的算术平均粗糙度Ra(日本工业标准(JIS)B0601 2001)优选为100nm或更大。
在这种构造中,由于其上形成有层状正极活性材料部分的正极集电体的表面具有复杂的不规则形状结构,故该表面的表面积(即集电面积)变大,因而电池的电流密度可以提高。此外,电极活性材料部分与正极集电体之间的密着性因锚固效应而增强,因而电池的循环特性可以增强。
(4)在包括板状正极集电体的本发明正极部件中,在正极活性材料层的任意截面中,固体电解质所占的面积百分数是20%或更小。
当固体电解质相对于正极活性材料部分的百分数处于该范围内时,在正极活性材料部分中可以确保足够大量的活性材料粒子。活性材料粒子的百分数越高,所得电池的容量越高。然而,介导锂离子在粒子之间传导的固体电解质也是必需的,因而固体电解质的面积百分数优选设为2%或更大。
(5)用于制备本发明正极部件的方法是一种用于制备用作非水电解质电池的正极层的正极部件的方法,该方法包括以下步骤:
提供醇盐溶液的步骤,其中所述醇盐溶液是通过将缩聚后能够转变成锂离子传导性固体电解质的金属醇盐溶解在溶剂中而得到的,或者所述醇盐溶液是通过将所述金属醇盐的水解产物溶解在溶剂中而得到的;
通过将所述醇盐溶液与活性材料粒子混合以制备原料溶胶的步骤;
提供作为金属板的正极集电体并且将所述原料溶胶施加至所述正极集电体表面的步骤;
通过加热进行缩聚而使所述原料溶胶中的金属醇盐或者金属醇盐的水解产物转变成固体电解质以形成正极活性材料部分的步骤,其中所述正极活性材料部分是这样的层(正极活性材料层):其中正极活性材料粒子组通过所述固体电解质而被固定在正极集电体上;以及
对所述正极活性材料部分进行压制以使该正极活性材料部分中的所述粒子塑性变形,从而使得彼此相邻的所述粒子的轮廓的一部分彼此相一致的步骤。
根据包括这些步骤的制备方法,可以制备本发明的正极部件,在该正极部件中,正极活性材料层形成在板状正极集电体上,并且正极活性材料层中的正极活性材料粒子已经塑性变形。
在用于制备本发明正极部件的方法中,由于正极活性材料层由原料溶胶形成,故在使原料溶胶中的金属醇盐或金属醇盐的水解产物转变成固体电解质的过程中,原料溶胶中所含的溶剂被蒸发并且在正极活性材料层中形成空腔。然而,在用于制备本发明正极部件的方法中,由于空腔在对正极活性材料层进行压制的过程中被压碎,因此(例如)因空腔所致的正极部件的锂离子传导性降低几乎不会出现。
(6)在用于制备本发明正极部件的方法中,所提供的正极集电体的表面的算术平均粗糙度Ra(JIS B0601 2001)优选为100nm或更大。
当以这种构造使用这种具有粗糙表面的正极集电体时,正极活性材料粒子嵌入该表面的凹部中并且活性材料粒子的移动受到约束。因而,当压制该正极活性材料层时,压制的应力可以充分地施加至活性材料粒子。
虽然一直以来正极集电体的表面都被粗糙化,但是在这种情况下,都使该表面的算术平均粗糙度Ra小于100nm。这是因为,当正极集电体的表面被过度粗糙化时,表面粗糙化会引起不利的方面而不会提供有利的方面。例如,当通过气相法形成正极活性材料层时,形成正极活性材料层使得其与正极集电体的表面轮廓相一致。当正极集电体的表面轮廓太粗糙时,可能存在这样的情况:其中在某些部分中没有形成正极活性材料层。相反,在用于制备本发明正极部件的方法中,通过将原料溶胶施加至正极集电体的表面从而形成正极活性材料层。因此,即使当该表面的Ra为100nm或更大时,也几乎不存在其中没有形成正极活性材料层的部分。
(7)在用于制备本发明正极部件的方法中,在压制时,优选施加100MPa至1000MPa的压力。
当以该压力范围进行压制时,活性材料粒子可以确实地发生塑性变形。此外,通过以该压力范围进行压制,可以将在正极活性材料层中所形成的几乎全部的空腔压碎。因此,可以形成致密的正极活性材料层,即,每体积放电容量高的正极活性材料层。
(8)在本发明正极部件的第二构造中,正极集电体为包括多个孔的多孔部件,并且正极活性材料部分设置在正极集电体的孔内。
在这种构造中,由于正极活性材料部分形成在多孔集电体的孔内,故可以使该集电体与正极活性材料部分立体地接触。因此,与使用非多孔的板状集电体相比,可以使集电面积变大,因而可以提高电池的电流密度。此外,多孔集电体起到框架的作用从而抑制因正极活性材料部分的膨胀和收缩所致的正极部件开裂。因此,可以增强电池的循环特性。
(9)在包括本发明多孔集电体的正极部件中,在正极活性材料部分的任意截面中,固体电解质所占的面积百分数是20%或更小。
在这种构造中,可以使布置在孔内的正极活性材料部分中确保充分大量的活性材料粒子。活性材料粒子的百分数越高,所得电池的容量越高。然而,介导锂离子在粒子之间传导的固体电解质也是必需的,因而固体电解质的面积百分数优选设为5%或更大。
(10)在包括本发明多孔集电体的正极部件中,相对于所述多孔集电体,所述孔的孔隙率为90体积%至98体积%。
在考虑一般电池中板状正极集电体与正极活性材料层的体积比的情况下来确定孔隙率。例如,在用于高功率用途的电池中,板状正极集电体的体积与正极活性材料层的体积的比是1∶7至1∶12。当参考该体积比来制备多孔集电体时,此多孔集电体的孔隙率为90体积%至98体积%。当孔隙率处于该范围内时,正极部件在活性材料成分与集电成分之间达到充分平衡;并且使用这种正极部件可以制备高功率电池。孔隙率更优选是95体积%至98体积%。
(11)用于制备本发明正极部件的方法是一种用于制备用作非水电解质电池的正极层的正极部件的方法,该方法包括以下步骤:
提供醇盐溶液的步骤,其中所述醇盐溶液是通过将缩聚后能够转变成锂离子传导性固体电解质的金属醇盐溶解在溶剂中而得到的,或者所述醇盐溶液是通过将所述金属醇盐的水解产物溶解在溶剂中而得到的;
通过将所述醇盐溶液与活性材料粒子混合以制备原料溶胶的步骤;
提供作为多孔金属部件的正极集电体(多孔集电体)并且用原料溶胶填充该正极集电体的孔的步骤;
通过加热进行缩聚而使原料溶胶中的金属醇盐或者金属醇盐的水解产物转变成固体电解质,以在所述孔中形成正极活性材料部分的步骤,其中在所述正极活性材料部分中,所述活性材料粒子被所述固体电解质固定;以及
对正极活性材料相进行压制以使正极活性材料部分中的粒子发生塑性变形,从而使得彼此相邻的粒子的轮廓的一部分彼此相一致的步骤。
根据包括这些步骤的制备方法,在多孔集电体的孔(该孔是狭窄空间)内,正极活性材料粒子的移动受到约束。因此,当对正极部件进行压制时,压制的应力趋向于施加至活性材料粒子。因而,通过用于制备本发明正极部件的方法,可以制备本发明的正极部件,在该正极部件中,在多孔集电体的孔中形成正极活性材料相并且正极活性材料相中的正极活性材料粒子已经发生塑性变形。
在这种用于制备本发明正极部件的方法中,由于正极活性材料相由原料溶胶形成,因此在使原料溶胶中的金属醇盐或金属醇盐的水解产物转变成固体电解质的过程中,原料溶胶中所含的溶剂被蒸发并且在正极活性材料相中形成空腔。然而,在用于制备本发明正极部件的方法中,由于空腔在正极部件的压制过程中被压碎,因而(例如)因空腔所致的正极部件的锂离子传导性降低几乎不会出现。由金属构成的多孔集电体具有维持已被压制的正极部件的形状的功能,因而已被压碎的空腔几乎不会在正极活性材料相中再形成。
(12)在用于制备本发明正极部件的方法中,相对于所提供的多孔集电体,所述孔的孔隙率优选为90体积%至98体积%。
在孔隙率处于该范围内的多孔集电体中,集电体的孔可以容易地填充有原料溶胶。此外,当孔隙率处于该范围内时,正极部件在活性材料成分与集电成分之间达到充分平衡。
(13)在用于制备本发明正极部件的方法中,在压制时,优选施加100MPa至1000MPa的压力。
当以该压力范围进行压制时,活性材料粒子可以确实地发生塑性变形。此外,通过以该压力范围进行压制,可以将在正极活性材料相中形成的几乎全部的空腔压碎。因此,可以形成致密的正极活性材料相,即,每体积放电容量高的正极活性材料相。
发明的有益效果
使用本发明正极部件可以制备放电容量高且循环特性优异的电池。
附图简要说明
[图1]图1是根据第一实施方案的锂离子电池(非水电解质电池)的示意性纵截面视图。
[图2]图2是根据第二实施方案的锂离子电池的示意性纵截面视图。
[图3]图3是示意性示出在实施例1的正极部件中包含的正极活性材料层的扫描电子显微镜(SEM)照片的示意图。
[图4]图4是示意性示出在对比例2的正极部件中包含的正极活性材料层的SEM照片的示意图。
具体实施方式
下面将参考附图对本发明的实施方案进行说明。
(第一实施方案)
<非水电解质电池的总体构造>
图1是示出普通锂离子电池(非水电解质电池)的示意性纵截面视图。该锂离子电池100包括正极层10、负极层20、以及置于这些电极层10和20之间的电解质层30。正极层10包括正极集电体10A和正极活性材料层10B。负极层20包括负极集电体20A和负极活性材料层20B。电池100的最有区别性的特征在于使用本发明正极部件作为正极层10。因此,在以下描述中将主要描述正极层(正极部件)10。
<用于制备正极部件的方法>
正极部件10由包括以下步骤1至5的制备方法所制得。
[步骤1]提供醇盐溶液,其中所述醇盐溶液是通过将缩聚后能够转变成锂离子传导性固体电解质的金属醇盐溶解在溶剂中而得到的,或者所述醇盐溶液是通过将金属醇盐的水解产物溶解在溶剂中而得到的。
[步骤2]通过将步骤1中的醇盐溶液与活性材料粒子混合以制备原料溶胶。
[步骤3]提供作为金属板的正极集电体10A并且将步骤2中的原料溶胶施加至正极集电体10A的表面。
[步骤4]通过加热进行缩聚而使原料溶胶中的金属醇盐或者金属醇盐的水解产物转变成固体电解质,以形成正极活性材料层10B,在该正极活性材料层10B中,正极活性材料粒子组通过固体电解质而固定在正极集电体10A的表面上。
[步骤5]对正极活性材料层10B进行压制以使正极活性材料层10B中的正极活性材料粒子塑性变形,从而使得彼此相邻的活性材料粒子的轮廓的一部分彼此相一致。
《步骤1》
锂离子传导性固体电解质的例子包括LiNbO3、Li4Ti5O12和LiTaO3。关于通过缩聚作用最终产生这种固体电解质的金属醇盐,例如,优选乙醇锂(LiOC2H5)和五乙醇铌(Nb(OC2H5)5)的组合,并且乙醇锂和五乙醇铌通过水解和缩聚作用而制得LiNbO3。或者,为了制备Li4Ti5O12,可以使用金属醇盐如LiOC2H5和Ti(OC4H9)4;为了制备LiTaO3,可以使用金属醇盐如LiOC2H5和Ta(OC2H5)5。作为金属醇盐的水解产物,可以使用上述金属醇盐的水解产物。
作为醇盐溶液的溶剂,当溶质是金属醇盐时,(例如)可以使用诸如乙醇或甲醇之类的醇溶剂。当溶质是金属醇盐的水解产物时,可以使用水性溶剂或可以使用醇溶剂和水性溶剂的溶剂混合物。
虽然对醇盐溶液中溶质的浓度没有特别限定,但优选为5mol/ml至30mol/ml。在下面对步骤2的描述中将说明通过实现该范围内的浓度所提供的优点。
《步骤2》
作为在制备原料溶胶时与醇盐溶液混合的正极活性材料粒子,可以使用含锂氧化物。该含锂氧化物优选是由化学式LiαO2或Liβ2O4(注意α和β包括Co、Mn和Ni中的至少一种)所表示的物质。具体实例包括LiCoO2、LiNiO2、LiMnO2和LiMn2O4。此外,可以使用含有除Co、Mn和Ni之外的元素的物质,例如LiCo0.5Fe0.5O2。该原料溶胶可以含有导电助剂,如乙炔黑。
虽然正极活性材料粒子在通过将正极活性材料粒子与醇盐溶液混合所获得的原料溶胶中的浓度应当根据在待制备的正极部件10中正极活性材料的量以及醇盐溶液中溶质(金属醇盐或其水解产物)的浓度来适当地选择,但是该浓度优选在约5g/ml至50g/ml的范围内。当使步骤1中溶质在醇盐溶液中的浓度为5mol/ml至30mol/ml时,醇盐溶液的粘度变成约200mPa·s至500mPa·s。在这种情况下,在活性材料粒子与醇盐溶液的混合过程中,活性材料粒子可以容易地均匀分散于原料溶胶中。
《步骤3》
所提供的正极集电体10A优选是由金属构成的板状物。该金属可以是元素金属(如Al、Cu或Ni)或合金(如不锈钢)。
在所提供的正极集电体10A中,对其施加原料溶胶的表面的算术平均粗糙度Ra优选为100nm或更大、更优选400nm或更大。当正极集电体10A拥有具备这种粗糙度的表面并且原料溶胶被施加至该表面时,原料溶胶中所含的正极活性材料粒子进入该表面的凹部中并且所述粒子的移动受到约束。因此,在下面所述的步骤5中,正极活性材料粒子可以有效地塑性变形。为了获得Ra为100nm或更大的正极集电体,例如,对正极集电体的表面进行磨光或蚀刻。
可以通过公知的施加方法(如刮板法)将步骤2中制备的原料溶胶在步骤3中施加至正极集电体的表面。自然地施加原料溶胶,使得充当基底的正极集电体不会从所施加的层中暴露出来。
《步骤4》
为了将金属醇盐经水解和缩聚作用而转变成固体电解质或为了将金属醇盐的水解产物经缩聚而转变成固体电解质,应当进行热处理。热处理优选在200℃至300℃下进行0.5h至6h。当在此温度下生成固体电解质时,不会出现因正极集电体10A受热软化所致的正极集电体10A强度下降以及原料溶胶中所含的正极活性材料分解。
作为步骤4的结果,形成了正极部件,在该正极部件中,在正极集电体的表面上形成有正极活性材料层。当步骤4完成时,正极活性材料层中的活性材料粒子的一部分彼此点接触,并且粒子之间的锂离子传导性低。此外,在这种状态下,粒子之间空隙的平均距离长。锂离子传导性固体电解质布置在粒子间的空隙中因而可以传导锂离子。然而,当平均距离长时,整个正极活性材料层中的锂离子传导性变低。此外,正极活性材料层具有因原料溶胶的溶剂蒸发所形成的空腔。
《步骤5》
当对其中在正极集电体表面上形成有正极活性材料层的正极部件进行压制时,应当从正极部件的两个表面进行压缩。具体而言,施加压力,使得正极部件中正极集电体的表面和正极活性材料层的表面彼此靠近。作为该压制过程的结果,正极活性材料层中的正极活性材料粒子塑性变形,使得彼此相邻的粒子的一部分彼此相一致。同时,步骤4中在正极活性材料层中所形成的空腔被压碎从而被除去。
压制过程中施加的压力优选在100MPa至1000MPa范围内。当施加该范围内的压力时,活性材料粒子可以塑性变形,而不管粒子的种类是什么,并且空腔可以基本上被消除。
<正极部件>
通过上述步骤1至5所获得的正极部件10包括作为金属板的正极集电体10A和布置在正极集电体10A表面上的正极活性材料层10B。正极活性材料层10B包括正极活性材料粒子组和固定该粒子组的固体电解质。正极活性材料层中的粒子组已经通过步骤5中的压制过程而塑性变形。
图3是示意性示出在下文所述实施例1的正极部件中所包括的正极活性材料层10B剖面的SEM照片的示意图。如图3所示,在通过本发明步骤1至5获得的正极部件的正极活性材料层10B中,在相邻的正极活性材料粒子1和1的组合当中,其中轮廓的一部分彼此相一致的组合占全部组合的30%或更多。“其中轮廓的一部分彼此相一致的组合”是指这样的成对相邻活性材料粒子1和1,其中每对粒子1和1彼此相一致的长度占该对粒子1和1中至少一个粒子1的总轮廓长度的30%或更大。相邻活性材料粒子1和1的轮廓的一部分彼此相一致,原因在于正极部件被压缩以使得从其两侧挤压该正极部件,因此,每个粒子1已经塑性变形(参考以上制备方法中的步骤5)。通常,所提供粒子的外部形状彼此不同。因此,当粒子只是简单地被固体电解质固定而没有被压制或者粒子以不使粒子发生塑性变形的压力被压制时,即使极小部分的粒子轮廓也几乎不会彼此相一致。即使当一部分轮廓碰巧彼此相一致时,该部分对应于5%或更少的轮廓。例如,图4是示意性示出在下文所述对比例2的正极部件(在不会使正极活性材料粒子塑性变形的压制下所制备的正极部件)中所包括的正极活性材料层10A剖面的SEM照片的示意图。如在图4中清晰地观察到,在对比例2的正极部件中,基本上不存在粒子1和1的轮廓彼此相一致的部分。
除了上述的目视检查之外,也可以通过测量特定物理量来证实活性材料粒子的塑性变形。例如,当通过X射线衍射测量发现经压制的正极部件中活性材料粒子的峰偏离作为原料的活性材料粒子的峰时,根据该结果,可以证实应变已经被引入到该活性材料粒子中,即,活性材料粒子已经塑性变形。
<除正极层之外的电池构造>
《负极层》
如上述所述,负极层20包括负极集电体20A和负极活性材料层20B。负极集电体20A是由诸如Al、Ni或Fe等金属或者前述金属的合金构成的层。负极活性材料层20B是由诸如Li、Si、In或它们的合金等负极活性材料构成的层。
《电解质层》
电解质层30可以是由硫化物(如Li2S-P2S5)或氧化物(如Li-P-O-N)构成的固体或者通过将锂离子传导性材料(如LiPF6)溶解在有机溶剂中所获得的非水性有机电解液。当采用有机电解液时,将使正极层10和负极层20彼此绝缘的隔板(例如由聚丙烯或聚乙烯构成)布置在这些层之间。
《其它部件》
当电解质层30由硫化物类固体电解质构成时,可能存在如下情况:电解质层30与正极层10之间界面处的电阻增加并且电池的容量下降。因而,优选将抑制界面处电阻增加的中间层布置在固体电解质层30和正极层10之间。所述中间层可以由含锂氧化物(如LiNbO3)构成。
(第二实施方案)
<非水电解质电池的总体构造>
图2是示出根据第二实施方案的锂离子电池(非水电解质电池)的示意性纵截面视图。该锂离子电池200具有与第一实施方案的电池相同的构造,不同之处在于其包含这样的正极层(正极部件)11:该正极层11包括具有孔的多孔正极集电体(多孔集电体)11A和在所述孔中形成的正极活性材料相11B。因此,下面将只描述与第一实施方案不同的正极部件11。
根据第二实施方案的正极部件11由包括以下步骤1至5的制备方法来制备。
[步骤1]提供醇盐溶液,其中所述醇盐溶液是通过将缩聚后能够转变成锂离子传导性固体电解质的金属醇盐溶解在溶剂中而得到的,或者所述醇盐溶液是通过将金属醇盐的水解产物溶解在溶剂中而得到的。
[步骤2]通过将步骤1中的醇盐溶液与活性材料粒子混合以制备原料溶胶。
[步骤3]提供作为金属部件的多孔正极集电体(多孔集电体)11A并且将步骤2中的原料溶胶施加至多孔集电体11A的表面。
[步骤4]通过加热进行缩聚而使原料溶胶中的金属醇盐或金属醇盐的水解产物转变成固体电解质,以在多孔集电体11A的孔中形成正极活性材料相11B,其中在正极活性材料相11B中,正极活性材料粒子组被固体电解质固定。
[步骤5]对正极活性材料相11B进行压制以使正极活性材料相11B中的正极活性材料粒子塑性变形,从而使得彼此相邻的所述粒子的轮廓的一部分彼此相一致。
注意的是,第二实施方案中的步骤1和2与第一实施方案中的步骤1和2相同,因而不作描述。
《步骤3》
多孔集电体11A可以由(例如)通过使熔融金属发泡而形成的金属泡沫形成。可供选择的是,多孔集电体11A可以是通过用金属覆盖由树脂如(聚氨酯)形成的非织造织物或织造织物并利用热处理消除所述树脂而获得的部件。
多孔集电体11A的孔隙率(相对于该集电体,全部孔的总百分数)优选是90体积%至98体积%,更优选是95体积%至98体积%。当集电体具有这种孔隙率时,可以确保足够大的集电面积,并且集电体可以填充有高功率电池所要求的量的原料溶胶。
在步骤3中,例如,通过在真空容器中将多孔集电体11A浸没在原料溶胶内并将该真空容器抽真空,从而多孔集电体11A的孔填充有步骤2中制备的原料溶胶。以这种方式,多孔集电体11A的孔可以被原料溶胶完全浸透。
《步骤4》
为了将金属醇盐通过水解和缩聚作用而转变成固体电解质或者为了将金属醇盐的水解产物通过缩聚作用而转变成固体电解质,应当进行热处理。热处理优选在200℃至300℃下进行0.5h至6h。当在此温度下生成固体电解质时,不会出现因多孔集电体11A受热软化所致的多孔集电体11A强度下降以及原料溶胶中所含的正极活性材料分解。
作为步骤4的结果,制得正极部件11,在该正极部件11中,形成正极活性材料相11B以填充多孔集电体11A的孔。在步骤4完成时,正极活性材料相11B中的活性材料粒子的一部分彼此点接触,并且粒子之间的锂离子传导性低。此外,在这种状态下,粒子之间的空隙的平均距离长。锂离子传导性固体电解质布置在粒子之间的空隙中,因而可以传导锂离子。然而,当平均距离长时,正极活性材料相11B整体的锂离子传导性变低。此外,正极活性材料相11B中具有因原料溶胶的溶剂蒸发所形成的空腔。
《步骤5》
当对其中在多孔集电体11A的孔中形成有正极活性材料相11B的正极部件11进行压制时,施加压力,使得正极部件11的正面和背面彼此靠近。作为该压制过程的结果,正极活性材料相11B中的正极活性材料粒子发生塑性变形,使得彼此相邻的粒子的一部分彼此相一致。同时,步骤4中在正极活性材料相11B中所形成的空腔被压碎从而被除去。压制后,由金属构成的多孔集电体11A充当框架以维持已经因压制而变形的正极部件11的形状。
通过上述步骤1至5所获得的正极部件11包括由金属构成的多孔集电体11A和在多孔集电体11A的孔内形成的正极活性材料相11B。正极活性材料相11B包括正极活性材料粒子组和固定该粒子组的固体电解质。该粒子组在正极活性材料相11B中的状态与图3所述的粒子组在正极活性材料层10B中的状态基本上相同,并且彼此相邻的正极活性材料粒子的轮廓的一部分彼此相一致。
实施例
实际地制备参照图1所描述的第一实施方案的锂离子电池100(实施例1和2)和参照图2所描述的第二实施方案的锂离子电池200(实施例3),并评价这些电池的特性(放电容量、内阻和循环特性)。此外,制备与本发明电池相比较的锂离子电池(对比例1至3)并且也评价所述电池的特性。
<实施例1>
《正极部件的制备》
将等摩尔量的碳酸钴(CoCO3)粉末和碳酸锂(Li2CO3)粉末混合并在900℃下焙烘6小时以提供LiCoO2粉末。该LiCoO2粉末的平均粒径(50%粒径)为10μm。
提供醇盐溶液,该醇盐溶液是通过将乙醇锂(LiOC2H5)和五乙醇铌(Nb(OC2H5)5)的等摩尔混合物溶解在乙醇溶剂中而获得的。醇盐溶液中该等摩尔混合物的含量是15mol/ml。该醇盐溶液的粘度为200mPa·s。
将制备好的醇盐溶液(6ml)与100g的LiCoO2粉末混合以制备原料溶胶。因而,LiCoO3的含量是16.7g/ml。
随后提供厚度为10μm的不锈钢(SUS)316L部件作为正极集电体。将原料溶胶施加至正极集电体的表面,使得平均厚度为100μm。正极集电体的表面的算术平均粗糙度Ra(JIS B0601 2001)为44nm。将原料溶胶在约75℃下热处理一小时,从而除去原料溶胶中含有的乙醇溶剂,并使乙醇钠和五乙醇铌进行水解和缩聚以转变成LiNbO3。因而,形成了在正极集电体上具有正极活性材料层的正极部件,其中在所述正极活性材料层中,正极活性材料粒子组基本上均匀地分散并固定于固体电解质中。
最后,在500MPa下对正极部件进行压制,以从其两侧挤压。因而,完成了本发明的正极部件。
图3示意性示出在上述条件下制备的正极部件中正极活性材料层剖面的SEM照片。详细观察图3中正极活性材料层10B内正极活性材料粒子1的状态,发现活性材料粒子1发生了塑性变形,从而使得彼此相邻的粒子1和1的轮廓的一部分彼此相一致,并且固定活性材料粒子1的固体电解质2为基本上无颗粒边界的均匀相。此外,在所观察到的视野中,在正极活性材料层10B中没有观察到空腔。固体电解质2在正极活性材料层10B的剖面中的面积百分数约为3%。彼此相邻的粒子1之间的距离大多是500nm或更小。
《锂离子电池的制备》
随后用制得的正极部件实际制备锂离子电池(非水电解质电池)。
将所制得的正极部件10用作基底部件。通过准分子激光烧蚀法在基底部件的表面(正极活性材料层10B的表面)上形成平均厚度为10nm并且由LiNbO3构成的中间层(未示出)。该中间层抑制了正极活性材料层10B与固体电解质层30之间的界面处的电阻增加。
通过准分子激光烧蚀法在中间层上形成平均厚度为10μm并且由Li2S和P2S5构成的固体电解质层30。
通过电阻加热法在电解质层30上形成平均厚度为4μm并且由Li构成的负极活性材料层20B。
通过电阻加热法在负极活性材料层20B上形成由Cu构成的负极集电体20A。随后将其中已经形成有负极集电体20A的多层部件密封于铝复合包装中,并且从正极集电体10A和负极集电体20A引出导线。因而,完成了电池100。
<实施例2>
使用表面的Ra为100nm或更大(测量值是431nm)的正极集电体制备实施例2的电池。实施例2的电池采用与实施例1的电池相同的材料和条件制备,不同之处在于正极集电体表面的Ra与实施例1中的不同。
<实施例3>
使用多孔正极集电体制备实施例3的电池。实施例3的电池具有与参照图2所描述的第二实施方案中的电池相同的构造,并且除了以下方面之外,采用与实施例1中的电池相同的材料和条件来制备。
所用的多孔集电体11A由作为Ni金属泡沫的镍Celmet(住友电气工业株式会社的注册商标)形成。多孔集电体11A的平均厚度为100μm并且孔隙率为95体积%。
为了在多孔集电体11A的孔内形成正极活性材料相11B,将多孔集电体11A浸没在按照与实施例1相同的方式制备的原料溶胶中,并置于真空容器中,将整个真空容器抽真空至50kPa。通过浸没和抽真空使得多孔集电体11A的孔被原料溶胶浸透。
在真空浸透后,将多孔集电体11A从原料溶胶中取出并在空气中于75℃下加热1小时,因此除去原料溶胶中含有的乙醇溶剂,并将乙醇钠和五乙醇铌进行水解和缩聚使其转变成LiNbO3。因而,形成了在多孔集电体11A的孔中包括正极活性材料相11B的正极部件11,其中在电极活性材料相11B中,正极活性材料粒子组基本上均匀地分散并固定于固体电解质中。
用扫描电子显微镜观察所制备的正极部件11的剖面,发现形成了正极活性材料相11B从而填充多孔集电体11A的孔。在正极活性材料相11B中正极活性材料粒子和固体电解质的状态与参照图3所述的实施例1中的正极活性材料层的状态相同。
<对比例1>
使用在正极集电体的表面上形成正极活性材料层之后不进行压制的情况下所完成的正极部件来制备对比例1的电池。对比例1的电池采用与实施例1中的电池相同的材料和条件来制备,不同之处在于不对正极部件进行压制。
观察正极活性材料粒子在对比例1的正极部件中所包括的正极活性材料层中的状态,发现活性材料粒子未塑性变形并且相邻粒子彼此处于点接触。此外,在正极活性材料层中形成了可能因醇盐溶液的溶剂蒸发所形成的空腔。固体电解质在正极活性材料层的剖面中的面积百分数约为3%。因为未进行压制,故彼此相邻的粒子1之间的距离大多是1000nm或更大。
<对比例2>
使用在正极集电体的表面上形成正极活性材料层后施加57MPa压力的情况下所完成的正极部件来制备对比例2的电池。对比例2的电池采用与实施例1的电池相同的材料和条件来制备,不同之处在于所施加的压力。
如图4中的SEM照片所示,观察正极活性材料粒子在对比例2的正极部件的正极活性材料层中的状态,发现活性材料粒子1未塑性变形并且相邻的粒子1和1彼此处于点接触。在粒子1和1之间的空隙中形成了均匀并且基本上没有颗粒边界的固体电解质2。在固体电解质2中基本上没有观察到空腔。固体电解质2在正极活性材料相11B的剖面中的面积百分数约为3%。因为施加的压力低,故彼此相邻的粒子1之间的距离大多是1000nm或更大。
<对比例3>
使用包括由烧结体形成的正极活性材料层的正极部件来制备对比例3的电池。通过提供由烧结体形成的正极活性材料层并且随后借助气相法将正极集电体沉积到活性材料层的表面上,从而获得对比例3的正极部件。活性材料层和集电体在正极部件中的尺寸、以及除正极部件之外的电池构造与各实施例中的电池相同。
<电池特性的评价>
将实施例1至3和对比例1至3中制备的电池以0.05mA的恒定电流充电直至达到4.2V,并且在以3V进行放电时测定其放电容量(mAh/cm2)。从放电开始时的电压降求出电池的内阻。此外,测量电池的容量保持率(%)。用第100个循环时的放电容量除以100次循环中的最大放电容量,获得容量保持率。测量结果在下表中描述。
[表]
Figure BDA0000112395040000191
如表中所述,与对比例1至3中的电池相比,实施例1至3中的电池具有低内阻、高放电容量和优异的循环特性。尤其是,实施例1中的电池与对比例1和2中的电池之间的比较显示出电池之间的唯一差别是正极活性材料层中的活性材料粒子是否塑性变形。因而,已经发现压缩正极部件直至使活性材料粒子塑性变形是重要的。实施例1至3中的电池之间的比较已经揭示,与实施例1中通过简单地压缩所形成的正极活性材料层从而使其具有层状而制备的电池相比,如实施例2中的电池那样将正极集电体的表面粗糙化,或如实施例3中的电池那样使用多孔正极集电体,可以增强电池特性。
应当指出本发明不限于上述实施方案,并且可以在不脱离本发明的精神和范围的情况下对所述实施方案进行适当地修改。
工业应用性
由用于制备本发明正极部件的方法所制备的本发明正极部件可以适当地用作非水电解质电池的正极层,所述非水电解质电池用作便携设备等的电源。
参考符号列表
100,200锂离子电池(非水电解质电池)
10,11正极层
10A正极集电体
10B正极活性材料层
11A正极集电体
11B正极活性材料相
20负极层
20A负极集电体
20B负极活性材料层
30电解质层
1正极活性材料粒子
2固体电解质

Claims (13)

1.一种用作非水电解质电池的正极层的正极部件,该正极部件包括:
由金属构成的正极集电体;以及允许在正极活性材料部分与所述正极集电体之间进行电子转移的正极活性材料部分,
其中所述正极活性材料部分包括正极活性材料粒子组以及固定该组粒子的固体电解质,并且
彼此相邻的所述粒子的轮廓的一部分彼此相一致。
2.根据权利要求1所述的正极部件,
其中所述正极集电体是实心板,并且
所述正极活性材料部分为布置在所述正极集电体表面上的层。
3.根据权利要求2所述的正极部件,其中所述正极集电体的表面的算术平均粗糙度Ra(日本工业标准(JIS)B0601 2001)为100nm或更大。
4.根据权利要求2或3所述的正极部件,其中在所述正极活性材料部分的任意截面中,所述固体电解质所占的面积百分数是20%或更小。
5.一种制备用作非水电解质电池的正极层的正极部件的方法,该方法包括下列步骤:
提供醇盐溶液的步骤,其中所述醇盐溶液是通过将缩聚后能够转变成锂离子传导性固体电解质的金属醇盐溶解在溶剂中而得到的,或者所述醇盐溶液是通过将所述金属醇盐的水解产物溶解在溶剂中而得到的;
通过将所述醇盐溶液与活性材料粒子混合以制备原料溶胶的步骤;
提供作为金属板的正极集电体并且将所述原料溶胶施加至所述正极集电体表面的步骤;
通过加热进行缩聚而使所述原料溶胶中的所述金属醇盐或者所述金属醇盐的水解产物转变成所述固体电解质以形成正极活性材料部分的步骤,其中所述正极活性材料部分为这样的层,该层中,一组所述正极活性材料粒子被所述固体电解质固定在所述正极集电体的表面上;以及
对所述正极活性材料部分进行压制以使所述正极活性材料部分中的所述粒子塑性变形,从而使得彼此相邻的所述粒子的轮廓的一部分彼此相一致的步骤。
6.根据权利要求5所述的制备正极部件的方法,其中所述正极集电体的表面的算术平均粗糙度Ra(JIS B0601 2001)为100nm或更大。
7.根据权利要求5或6所述的制备正极部件的方法,其中,在压制时,施加100MPa至1000MPa的压力。
8.根据权利要求1所述的正极部件,
其中所述正极集电体为包括多个孔的多孔部件,并且
所述正极活性材料部分设置在所述正极集电体的所述孔内。
9.根据权利要求8所述的正极部件,其中在所述正极活性材料部分的任意截面中,所述固体电解质所占的面积百分数是20%或更小。
10.根据权利要求8或9所述的正极部件,其中所述孔相对于所述多孔部件的孔隙率为90体积%至98体积%。
11.一种制备用作非水电解质电池的正极层的正极部件的方法,该方法包括下列步骤:
提供醇盐溶液的步骤,其中所述醇盐溶液是通过将缩聚后能够转变成锂离子传导性固体电解质的金属醇盐溶解在溶剂中而得到的,或者所述醇盐溶液是通过将所述金属醇盐的水解产物溶解在溶剂中而得到的;
通过将所述醇盐溶液与活性材料粒子混合以制备原料溶胶的步骤;
提供作为多孔金属部件的正极集电体并且用所述原料溶胶填充所述正极集电体的孔的步骤;
通过加热进行缩聚而使所述原料溶胶中的所述金属醇盐或者所述金属醇盐的水解产物转变成所述固体电解质,以在所述孔中形成正极活性材料部分的步骤,其中在所述正极活性材料部分中,所述活性材料粒子被所述固体电解质固定;以及
对正极活性材料相进行压制以使所述正极活性材料部分中的所述粒子塑性变形,从而使得彼此相邻的所述粒子的轮廓的一部分彼此相一致的步骤。
12.根据权利要求11所述的正极部件,其中所述孔相对于所述正极集电体的孔隙率为90体积%至98体积%。
13.根据权利要求11或12所述的制备正极部件的方法,其中,在压制时,施加100MPa至1000MPa的压力。
CN2010800229504A 2009-05-27 2010-03-12 正极及其制备方法 Pending CN102449814A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2009-128221 2009-05-27
JP2009128221 2009-05-27
JP2009-128222 2009-05-27
JP2009128222 2009-05-27
JP2009128223 2009-05-27
JP2009-128223 2009-05-27
PCT/JP2010/054212 WO2010137381A1 (ja) 2009-05-27 2010-03-12 正極体およびその製造方法

Publications (1)

Publication Number Publication Date
CN102449814A true CN102449814A (zh) 2012-05-09

Family

ID=43222507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800229504A Pending CN102449814A (zh) 2009-05-27 2010-03-12 正极及其制备方法

Country Status (6)

Country Link
US (1) US20120052383A1 (zh)
EP (1) EP2437332A4 (zh)
JP (1) JPWO2010137381A1 (zh)
KR (1) KR20140014361A (zh)
CN (1) CN102449814A (zh)
WO (1) WO2010137381A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122504A (zh) * 2012-12-12 2015-12-02 瓦尔达微电池有限责任公司 复合材料、用于制造复合材料的方法、由复合材料制成的系统及其应用
CN106299268A (zh) * 2015-06-29 2017-01-04 丰田自动车株式会社 正极活性物质层、全固体锂电池和正极活性物质层的制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339701A (zh) * 2011-02-18 2013-10-02 住友电气工业株式会社 集电体用三维网状铝多孔体、使用该铝多孔体的集电体、使用该集电体的电极、以及均使用该电极的非水电解质电池、电容器和锂离子电容器
US9461303B2 (en) * 2011-05-13 2016-10-04 Toyota Jidosha Kabushiki Kaisha Electrode body, all solid state battery, and method for producing coated active material
JP2013073707A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp 電極合材の製造方法及び電極体の製造方法
US20140272558A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Electrode for a lithium-based secondary electrochemical device and method of forming same
JP2014212029A (ja) * 2013-04-18 2014-11-13 Jsr株式会社 蓄電デバイス用電極および蓄電デバイス
JP2014212028A (ja) * 2013-04-18 2014-11-13 Jsr株式会社 蓄電デバイス用電極および蓄電デバイス
KR101701785B1 (ko) * 2013-07-10 2017-02-02 히타치 긴조쿠 가부시키가이샤 리튬 이온 이차전지용 집전체 및 리튬 이온 이차전지용 양극
JP2015097150A (ja) * 2013-11-15 2015-05-21 セイコーエプソン株式会社 電池用電極体、電極複合体およびリチウム電池
JP6494194B2 (ja) * 2014-07-04 2019-04-03 マクセルホールディングス株式会社 リチウム二次電池用被覆正極活物質、その製造方法及びそれを用いたリチウム二次電池
JP6958462B2 (ja) * 2018-04-09 2021-11-02 トヨタ自動車株式会社 硫化物全固体電池
WO2021181529A1 (ja) * 2020-03-10 2021-09-16 本田技研工業株式会社 リチウムイオン二次電池用電極、およびリチウムイオン二次電池
KR20240054575A (ko) * 2022-10-19 2024-04-26 주식회사 엘지에너지솔루션 양극 입자, 이를 포함하는 양극 및 전고체 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076914A (zh) * 2004-12-13 2007-11-21 松下电器产业株式会社 包含活性材料层和固体电解质层的叠层体及使用这种叠层体的全固态锂二次电池
US20080124628A1 (en) * 2006-11-28 2008-05-29 Toshihiro Inoue Method for producing negative electrode for non-aqueous electrolyte secondary battery, and negative electrode for non-aqueous electrolyte secondary battery
CN101379652A (zh) * 2006-01-31 2009-03-04 丰田自动车株式会社 电极叠层体和双极性二次电池
WO2009057271A1 (ja) * 2007-10-30 2009-05-07 Panasonic Corporation 電池用集電体、その製造方法、並びに非水系二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162117A (ja) * 1994-12-07 1996-06-21 Sumitomo Electric Ind Ltd 非水電解液二次電池及びその製造方法
JP4280339B2 (ja) * 1998-10-16 2009-06-17 パナソニック株式会社 固体電解質成型体、電極成型体および電気化学素子
JP4210556B2 (ja) * 2003-06-09 2009-01-21 東洋アルミニウム株式会社 アルミニウム箔の製造方法
JP5176262B2 (ja) * 2005-03-18 2013-04-03 日産自動車株式会社 非水電解質電池用電極の製造方法
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP2008103280A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 正極合材及びそれを用いた全固体二次電池
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076914A (zh) * 2004-12-13 2007-11-21 松下电器产业株式会社 包含活性材料层和固体电解质层的叠层体及使用这种叠层体的全固态锂二次电池
CN101379652A (zh) * 2006-01-31 2009-03-04 丰田自动车株式会社 电极叠层体和双极性二次电池
US20080124628A1 (en) * 2006-11-28 2008-05-29 Toshihiro Inoue Method for producing negative electrode for non-aqueous electrolyte secondary battery, and negative electrode for non-aqueous electrolyte secondary battery
WO2009057271A1 (ja) * 2007-10-30 2009-05-07 Panasonic Corporation 電池用集電体、その製造方法、並びに非水系二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122504A (zh) * 2012-12-12 2015-12-02 瓦尔达微电池有限责任公司 复合材料、用于制造复合材料的方法、由复合材料制成的系统及其应用
CN106299268A (zh) * 2015-06-29 2017-01-04 丰田自动车株式会社 正极活性物质层、全固体锂电池和正极活性物质层的制造方法
CN106299268B (zh) * 2015-06-29 2018-10-09 丰田自动车株式会社 正极活性物质层、全固体锂电池和正极活性物质层的制造方法

Also Published As

Publication number Publication date
JPWO2010137381A1 (ja) 2012-11-12
EP2437332A1 (en) 2012-04-04
EP2437332A4 (en) 2014-01-22
WO2010137381A1 (ja) 2010-12-02
KR20140014361A (ko) 2014-02-06
US20120052383A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN102449814A (zh) 正极及其制备方法
CN100470896C (zh) 负极及电池
EP2611733B1 (en) Electroactive material
KR101417268B1 (ko) 리튬금속배터리용 리튬전극 및 그 제조방법
KR101622355B1 (ko) 고체전해질 복합체, 이의 제조방법, 및 이를 포함하는 전고체전지
EP3104435B1 (en) Electrode composite body, method of manufacturing electrode composite body, and lithium battery
CN102931376B (zh) 负极和电池
US20160028089A1 (en) Monolithic porous open-cell structures
JPH08170126A (ja) 金属多孔体、その製造方法及びそれを用いた電池用極板
CN105322226A (zh) 锂固体二次电池及其制造方法
CN103534853A (zh) 可再充电的镁离子电池部件及组件
CN101821893A (zh) 电池及其所用的电极
JP5974424B2 (ja) 電気二重層キャパシタ用電極およびこれを用いた電気二重層キャパシタ
CN103098288A (zh) 非水电解质电池及其制造方法
KR101747938B1 (ko) 고체전해질 복합체, 및 이를 포함하는 전고체전지
CN111316489A (zh) 二次电池
CN112868113A (zh) 具有金属泡沫阳极和阴极的可再充电锂离子电池组
JP2011249254A (ja) 非水電解質電池用正極体及びその製造方法
KR100938138B1 (ko) 도전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
AU2014212256B2 (en) Coated iron electrode and method of making same
KR20230004825A (ko) 분리기와 다공성 전극으로 구성된 조립체를 제조하기 위한 방법, 분리기와 다공성 전극으로 구성된 조립체, 이러한 조립체를 포함하는 전기화학 장치
CN113036084A (zh) 全固体电池和全固体电池的制造方法
CN111162282A (zh) 固体电池用电极、固体电池、固体电池用电极的制造方法
CN110854358A (zh) 硫化物全固体电池用负极和硫化物全固体电池
EP3866221B1 (en) Lithium-ion secondary battery electrode and lithium-ion secondary battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120509