CN102446807B - 相变存储器沟槽隔离结构的制作方法 - Google Patents

相变存储器沟槽隔离结构的制作方法 Download PDF

Info

Publication number
CN102446807B
CN102446807B CN201010508960.0A CN201010508960A CN102446807B CN 102446807 B CN102446807 B CN 102446807B CN 201010508960 A CN201010508960 A CN 201010508960A CN 102446807 B CN102446807 B CN 102446807B
Authority
CN
China
Prior art keywords
trench opening
layer
etching
semiconductor substrate
deep trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010508960.0A
Other languages
English (en)
Other versions
CN102446807A (zh
Inventor
李凡
洪中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201010508960.0A priority Critical patent/CN102446807B/zh
Publication of CN102446807A publication Critical patent/CN102446807A/zh
Application granted granted Critical
Publication of CN102446807B publication Critical patent/CN102446807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种相变存储器沟槽隔离结构的制作方法,包括:提供半导体衬底,所述半导体衬底包含有衬底区、阱区、外延层与硬掩模层;图形化所述硬掩模层,以所述硬掩模层为掩模,刻蚀所述半导体衬底以形成深沟槽开口,所述深沟槽开口的深度至少超过阱区底部;在所述半导体衬底上形成牺牲层,所述牺牲层填满深沟槽开口并覆盖硬掩模层;刻蚀所述硬掩模层、牺牲层及外延层以形成浅沟槽开口,牺牲层的刻蚀深度与外延层刻蚀深度差值小于外延层刻蚀深度的30%,且所述浅沟槽开口与深沟槽开口的延展方向相垂直;完全移除所述半导体衬底上的牺牲层;在所述浅沟槽开口与深沟槽开口中填充介电材料以分别形成浅沟槽隔离区与深沟槽隔离区。

Description

相变存储器沟槽隔离结构的制作方法
技术领域
本发明涉及半导体技术领域,更具体地,本发明涉及一种相变存储器沟槽隔离结构的制作方法。
背景技术
相变存储器(Phase Change Random Access Memory,PCRAM)技术是基于S.R.Ovshinsky在20世纪60年代末提出相变薄膜可以应用于相变存储介质的构想建立起来的。作为一种新兴的非易失性存储技术,相变存储器在读写速度、读写次数、数据保持时间、单元面积、多值实现等诸多方面对快闪存储器都具有较大的优越性,已成为目前不挥发存储技术研究的焦点。
在相变存储器中,可以通过对记录了数据的相变层进行热处理,来改变存储器的值。构成相变层的相变材料会由于所施加电流的加热效果而进入结晶状态或非晶状态。当相变层处于结晶状态时,PCRAM的电阻较低,此时存储器赋值为“0”。当相变层处于非晶状态时,PCRAM的电阻较高,此时存储器赋值为“1”。因此,PCRAM是利用当相变层处于结晶状态或非晶状态时的电阻差异来写入/读取数据的非易失性存储器。
为了选择相变存储器存储阵列中的不同存储单元,相变存储器的存储单元中还包含有选通器件,所述选通器件可以为二极管或晶体管。通过在相变存储器的字线及位线上加载特定的信号,不同存储单元的选通器件会相应开启或关闭,而开启的选通器件即可使得该存储单元的相变层上可以加载驱动电压,以完成对应的写入/读取操作。
美国专利US6531373即公开了一种相变存储器结构,如图1所示,所述相变存储器的每一存储单元101中均包含有串联连接的相变电阻102与选通二极管103。在对所述相变存储器进行写入操作时,对应于某一待选存储单元101的位线104与字线105上形成了较大的电势差,所述电势差使得选通二极管103正向导通,进而在相变电阻102上形成较大的写入电流,所述写入电流使得相变电阻102状态发生变化,数据也得以记录。
在实际应用中,为了减小相变存储器单个存储单元的面积,提高相变存储器存储密度,所述相变存储器中的选通二极管通常采用垂直结构。所述垂直结构的选通二极管位于每一字线与位线投影相交位置,其与相变电阻垂直相连。其中,所述相变电阻的另一端与位线相连,所述选通二极管的另一端与字线相连。
通常的,所述相变存储器阵列中不同存储单元通过深沟槽隔离区(deeptrench isolation)与浅沟槽隔离区(shallow trench isolation)进行隔离。图2至图3示出了相变存储器中深沟槽隔离区与浅沟槽隔离区的结构,其中,图2是相变存储器的俯视示意图,图3是所述相变存储器沿图2中XX’方向的截面示意图。参考图2与图3,所述相变存储器包含有多个嵌入衬底内的深沟槽隔离区201,且所述多个深沟槽隔离区201相互平行;而所述浅沟槽隔离区203的延展方向与深沟槽隔离区201相垂直。所述相互垂直的深沟槽隔离区201与浅沟槽隔离区203将衬底划分为相互绝缘的网格状区域,而每一网格即对应了一个存储单元。
为形成所述相变存储器的深沟槽隔离区与浅沟槽隔离区结构,在现有技术的相变存储器制作过程中,通常先采用高刻蚀选择比(high aspect ratio process,HARP)刻蚀工艺在衬底中形成深沟槽开口,再在所述深沟槽开口中填充介电材料以形成深沟槽隔离区;之后,再对衬底进行各向异性的干法刻蚀,形成浅沟槽开口,所述浅沟槽开口的截面呈梯形;最后,在所述浅沟槽开口中填充介电材料以形成浅沟槽隔离区。
然而,采用上述方法形成的相变存储器的良率较低,器件容易发生漏电。
发明内容
本发明解决的问题是提供一种相变存储器隔离结构的制作方法,提高了相变存储器沟槽隔离结构的绝缘性能,提高了器件良率。
为解决上述问题,本发明提供了一种相变存储器沟槽隔离结构的制作方法,包括:
提供半导体衬底,所述半导体衬底包含有衬底区、阱区、外延层与硬掩模层;
图形化所述硬掩模层,以所述硬掩模层为掩模,刻蚀所述半导体衬底以形成深沟槽开口,所述深沟槽开口的深度至少超过阱区底部;
在所述半导体衬底上形成牺牲层,所述牺牲层填满深沟槽开口并覆盖硬掩模层;
刻蚀所述硬掩模层、牺牲层及外延层以形成浅沟槽开口,牺牲层的刻蚀深度与外延层刻蚀深度差值小于外延层刻蚀深度的30%,且所述浅沟槽开口与深沟槽开口的延展方向相垂直;
完全移除所述半导体衬底上的牺牲层;
在所述浅沟槽开口与深沟槽开口中填充介电材料以分别形成浅沟槽隔离区与深沟槽隔离区。
与现有技术相比,本发明具有以下优点:采用与衬底材料具有较低刻蚀选择比的牺牲材料填充沟槽隔离结构的深沟槽开口,之后再刻蚀衬底以形成浅沟槽开口;由于所述牺牲材料与衬底的刻蚀选择比较低,深沟槽开口中的牺牲材料与衬底同时刻蚀,不会在深沟槽隔离结构两侧残留导电材料而影响沟槽隔离结构的绝缘性能。
附图说明
图1是现有技术相变存储器结构的示意图。
图2至图3是现有技术相变存储器深沟槽隔离结构与浅沟槽隔离结构的示意图。
图4是本发明相变存储器沟槽隔离结构制作方法的流程示意图。
图5至图15c示出了本发明相变存储器隔离结构的制作方法一个实施例的流程。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
正如背景技术部分所述,采用现有技术制作的相变存储器的良率较低,器件容易发生漏电。发明人研究发现,现有技术相变存储器制作方法通常采用先制作深沟槽隔离区,再制作浅沟槽隔离区的工艺流程制作相变存储器的隔离结构存在问题。在所述工艺流程形成浅沟槽开口的过程中,深沟槽隔离区两侧的衬底材料无法完全移除,从而在深沟槽隔离区两侧形成贴附于其侧面的楔形残留物,这使得最终形成的浅沟槽开口截面呈梯形(如图2与图3中的标记205位置)。所述残留于深沟槽隔离区两侧的楔形残留物容易在不同的存储单元间形成导电通路,从而使得器件漏电,良率也相应降低。之所以所述深沟槽隔离区两侧与浅沟槽隔离区深度相同的衬底不能完全移除,是因为所述深沟槽隔离区中填充的介电材料与衬底之间的刻蚀选择比较大,即临近深沟槽隔离区的衬底的刻蚀速率小于远离深沟槽隔离区的衬底的刻蚀速率,这种刻蚀选择比的差异影响了衬底刻蚀的均匀性。若要有效清除所述深沟槽隔离区两侧的残留物,需要降低深沟槽隔离区中填充的介电材料与衬底之间的刻蚀选择比。
针对上述问题,发明人提供了一种相变存储器沟槽隔离结构的制作方法,在形成深沟槽开口后,采用与衬底具有较低刻蚀选择比的牺牲材料填充所述深沟槽开口,之后再刻蚀衬底以形成浅沟槽开口。由于所述牺牲材料与衬底的刻蚀选择比较低,深沟槽开口中的牺牲材料与衬底同时刻蚀,不会在深沟槽隔离结构两侧残留导电材料而影响沟槽隔离结构的绝缘性能。
参考图4,示出了本发明相变存储器沟槽隔离结构制作方法的流程,包括:
执行步骤S402,提供半导体衬底,所述半导体衬底包含有衬底区、阱区、外延层与硬掩模层;
执行步骤S404,图形化所述硬掩模层,以所述硬掩模层为掩模,刻蚀所述半导体衬底以形成深沟槽开口,所述深沟槽开口的深度至少超过阱区底部;
执行步骤S406,在所述半导体衬底上形成牺牲层,所述牺牲层填满深沟槽开口并覆盖硬掩模层;
执行步骤S408,刻蚀所述硬掩模层、牺牲层及外延层以形成浅沟槽开口,牺牲层的刻蚀深度与外延层刻蚀深度差值小于外延层刻蚀深度的30%,且所述浅沟槽开口与深沟槽开口的延展方向相垂直;
执行步骤S410,完全移除所述半导体衬底上的牺牲层;
执行步骤S412,在所述浅沟槽开口与深沟槽开口中填充介电材料以分别形成浅沟槽隔离区与深沟槽隔离区。
接下来,结合具体的实施例,对本发明相变存储器隔离结构的制作方法做进一步的说明。
图5至图15c示出了本发明相变存储器隔离结构的制作方法一个实施例的流程。
参考图5,提供半导体衬底501,所述半导体衬底501包含有衬底区502、阱区503、外延层505与硬掩模层507。在具体实施例中,所述外延层505是通过对阱区503进行离子掺杂所形成的;所述硬掩模层507采用氮化硅,所述硬掩模层507上还形成有氧化硅层509。
参考图6a与图6b,在所述氧化硅层509上形成第一光刻胶层511,其中,图6b是沿图6a中XX’方向的剖面示意图。所述第一光刻胶层511包含有多个相互平行的条状图形,所述第一光刻胶层511将氧化硅层509部分露出,所述露出区域会在后续处理中被部分刻蚀。
参考图7,以所述图形化的第一光刻胶层511为掩模,刻蚀所述氧化硅层509与硬掩模层507。之后,继续刻蚀所述外延层505、阱区503及衬底区502并形成深沟槽开口513,所述深沟槽开口513的深度至少超过阱区503底部。在具体实施例中,采用各向异性干法刻蚀工艺对半导体衬底进行刻蚀以形成所述深沟槽开口513。
参考图8,在形成深沟槽开口之后,移除所述半导体衬底上的第一光刻胶层与氧化硅。接着,在所述半导体衬底上形成牺牲层515,所述牺牲层515填满深沟槽开口并覆盖硬掩模层507。接着,可以采用化学机械抛光工艺对所述半导体衬底进行平坦化处理,使得所述牺牲层515具有平整的表面。
在具体实施例中,所述牺牲层515采用有机聚合物,例如光刻工艺中使用的抗反射材料(ARC)。通过调整干法刻蚀工艺,所述牺牲层515可以具有与外延层505相近的刻蚀速率,即这两种材料的刻蚀选择比较低。
参考图9a至图9d,在所述半导体衬底上继续形成第二光刻胶层517。图9a是第二光刻胶层形成后半导体衬底的俯视示意图,图9b是图9a中XX’方向的剖面示意图,图9c是图9a中YY’方向的剖面示意图,图9d是图9a中ZZ’方向的剖面示意图。
如图9a至图9d所示,所述第二光刻胶层517包含有多个条状图形,且所述条状图形与深沟槽开口的延展方向相垂直。所述延展方向是指条状图形(包括深沟槽开口与浅沟槽开口的条状图形)在半导体衬底平面上的长边方向。所述第二光刻胶层517将半导体衬底露出的区域用于形成浅沟槽隔离区。
参考10a至图10c,以所述图形化的第二光刻胶层517为掩模,部分刻蚀所述牺牲层515与硬掩模层507,使得外延层505部分露出。其中,图10a至图10c分别对应于图9b至图9d的剖面位置。
参考图11a至11c,在所述外延层505部分露出后,继续采用各向异性干法刻蚀工艺刻蚀所述外延层505与深沟槽开口513中的牺牲层515,使得所述外延层505与牺牲层515被刻蚀的深度基本相同。具体而言,相对于外延层505的刻蚀深度,牺牲层515刻蚀深度与其差值不超过外延层刻蚀深度的30%。之后,移除剩余的第二光刻胶层。其中,图11a至图11c分别对应于图10a至图10c的剖面位置。
在具体实施例中,所述牺牲层为有机聚合物,相应的,将所述牺牲层与外延层以相同的深度刻蚀可以采用下述步骤:
对所述牺牲层515进行氧化处理以部分移除所述牺牲层515;所述氧化处理是指利用氧气或包含氧离子的等离子体将所述有机聚合物氧化为二氧化碳、水蒸气等气体而从半导体衬底上脱离;其中,由于所述半导体衬底采用硅等半导体材料,且所述氧化处理的温度较低,因此所述氧化处理并不会对半导体衬底造成影响。
这样,待形成浅沟槽开口位置的牺牲层515被减薄,而外延层505的厚度未变化。接着,采用外延层505与牺牲层515的刻蚀选择比小于5∶1的干法刻蚀工艺对半导体衬底进行刻蚀以形成所述浅沟槽开口,以较快的刻蚀速率对外延层505进行刻蚀,使得牺牲层515与外延层505的刻蚀深度相同。
在另一实施例中,将所述牺牲层515与外延层505以相同的深度刻蚀还可以采用下述方法:
采用外延层505与牺牲层515的刻蚀选择比为1∶1的干法刻蚀工艺对半导体衬底进行刻蚀以形成所述浅沟槽开口。
在具体实施例中,所述浅沟槽开口的深度超过外延层505底部,相应的,在刻蚀所述牺牲层515及外延层505之后,还包括:继续刻蚀所述外延层505下方的阱区503。
如图11a所示,由于外延层505与牺牲层515被同等刻蚀,这样,深沟槽开口513外侧就不会残留有衬底材料(外延层505),也就避免了残留的衬底材料影响沟槽隔离结构的绝缘效果。
如图11c所示,所述外延层505与牺牲层被刻蚀,使得半导体衬底中形成了浅沟槽开口519,所述浅沟槽开口519的延展方向与深沟槽开口相垂直。在具体实施例中,所述浅沟槽开口519的底部至少低于阱区503的顶部。
参考图12a至12c,在形成浅沟槽开口519之后,完全移除所述半导体衬底上的牺牲层,使得浅沟槽开口519与深沟槽开口513露出。其中,图12a至图12c分别对应于图11a至图11c的剖面位置。
通常的,若所述深沟槽开口513的深宽比较小,则利用化学气相淀积等薄膜制作工艺在所述露出的浅沟槽开口519与深沟槽开口513中继续填充介电材料即可形成相变存储器的隔离结构。但在实际应用中,由于所述深沟槽开口513的深宽比较大,难以在深沟槽开口513中形成均匀的介电材料,因此,所述填充介电材料的工艺需要采用先沉积多晶硅薄膜垫高深沟槽开口513,再填充介电材料的方法。
参考图13a至图13c,在所述半导体衬底上形成衬垫介电层521,所述衬垫介电层521保形覆盖浅沟槽开口519与深沟槽开口513。其中,图13a至图13c分别对应于图12a至图12c的剖面位置。所述保形覆盖是指相对于沟槽开口的深度与宽度而言,衬垫介电层521的厚度较小,不会填充满所述沟槽开口,使得所述沟槽开口仍保持与未形成薄膜前类似的形状。在具体实施例中,所述衬垫介电层521采用氧化硅。
接着,在所述半导体衬底上继续形成多晶硅层523,所述多晶硅层523填满浅沟槽开口519与深沟槽开口513。之后,对所述半导体衬底进行平坦化处理,使得所述多晶硅层523具有相对平整的表面。
参考图14a至图14c,回刻所述多晶硅层523,将浅沟槽开口519中的多晶硅层523完全移除,深沟槽开口513中的多晶硅层523同时部分移除。其中,图14a至图14c分别对应于图13a至图13c的剖面位置。在实际应用中,为了避免所述多晶硅层523残留于浅沟槽开口519中影响沟槽隔离结构的绝缘效果,可以对所述多晶硅层523进行一定时间的过刻。
参考图15a至图15c,在所述半导体衬底上形成沟槽介电层525,所述沟槽介电层525填满深沟槽开口513与浅沟槽开口519。其中,图15a至图15c分别对应于图14a至图14c的剖面位置。
在具体实施例中,所述沟槽介电层525包括氧化硅、氮氧化硅、氮化硅或其他介电材料,采用高密度等离子体(high density plasma,HDP)化学气相沉积工艺形成。
在形成所述沟槽介电层525之后,对所半导体衬底进行平坦化处理直至露出衬垫介电层521表面。
上述步骤执行完成后,采用本发明制作的相变存储器沟槽隔离结构制作形成。在所述沟槽隔离结构中,浅沟槽隔离区与深沟槽隔离区交界位置由同一层沟槽介电层形成,所述深沟槽隔离区两侧也不会残留有衬底材料,从而避免了残留的衬底材料影响沟槽隔离结构的绝缘效果。
应该理解,上述的具体实施例仅是示例性的,本领域技术人员可以在不背离本申请和所附权利要求所限定的本发明的精神和范围的情况下,做出各种修改和更正。

Claims (10)

1.一种相变存储器沟槽隔离结构的制作方法,其特征在于,包括:
提供半导体衬底,所述半导体衬底包含有衬底区、阱区、外延层与硬掩模层;
图形化所述硬掩模层,以所述硬掩模层为掩模,刻蚀所述半导体衬底以形成深沟槽开口,所述深沟槽开口的深度至少超过阱区底部;
在所述半导体衬底上形成牺牲层,所述牺牲层填满深沟槽开口并覆盖硬掩模层;
刻蚀所述硬掩模层、牺牲层及外延层以形成浅沟槽开口,牺牲层的刻蚀深度与外延层刻蚀深度差值小于外延层刻蚀深度的30%,且所述浅沟槽开口与深沟槽开口的延展方向相垂直;
完全移除所述半导体衬底上的牺牲层;
在所述浅沟槽开口与深沟槽开口中填充介电材料以分别形成浅沟槽隔离区与深沟槽隔离区;
所述牺牲层与外延层具有较低的刻蚀选择比,外延层与牺牲层的刻蚀选择比小于5:1。
2.如权利要求1所述的制作方法,其特征在于,所述刻蚀所述半导体衬底以形成深沟槽开口包括:采用各向异性干法刻蚀工艺对所述半导体衬底进行刻蚀。
3.如权利要求1所述的制作方法,其特征在于,所述牺牲层采用有机聚合物。
4.如权利要求3所述的制作方法,其特征在于,所述牺牲层采用抗反射材料。
5.如权利要求3所述的制作方法,其特征在于,所述刻蚀所述硬掩模层、牺牲层及外延层以形成浅沟槽开口,所述牺牲层与外延层被刻蚀的深度相同包括:
对所述牺牲层进行氧化处理以部分移除所述牺牲层;
采用干法刻蚀工艺对半导体衬底进行刻蚀以形成所述浅沟槽开口。
6.如权利要求3所述的制作方法,其特征在于,所述刻蚀所述硬掩模层、牺牲层及外延层以形成浅沟槽开口,牺牲层的刻蚀深度与外延层刻蚀深度差值小于外延层刻蚀深度的30%包括:
采用外延层与牺牲层的刻蚀选择比为1:1的干法刻蚀工艺对半导体衬底进行刻蚀以形成所述浅沟槽开口。
7.如权利要求1所述的制作方法,其特征在于,所述浅沟槽开口的深度超过外延层底部;在刻蚀所述硬掩模层、牺牲层及外延层之后,还包括:继续刻蚀所述外延层下方的阱区。
8.如权利要求1所述的制作方法,其特征在于,所述在所述浅沟槽开口与深沟槽开口中填充介电材料以分别形成浅沟槽隔离区与深沟槽隔离区包括:
在所述半导体衬底上形成衬垫介电层,所述衬垫介电层保形覆盖浅沟槽开口与深沟槽开口;
在所述半导体衬底上继续形成多晶硅层,所述多晶硅层填满浅沟槽开口与深沟槽开口;
回刻所述多晶硅层,将浅沟槽开口中的多晶硅层完全移除,深沟槽开口中的多晶硅层同时部分移除;
在所述半导体衬底上形成沟槽介电层,所述沟槽介电层填满深沟槽开口与浅沟槽开口;
对所半导体衬底进行平坦化处理直至露出衬垫介电层表面。
9.如权利要求8所述的制作方法,其特征在于,所述在所述半导体衬底上形成沟槽介电层包括:采用高密度等离子体化学气相沉积工艺形成所述沟槽介电层。
10.如权利要求8所述的制作方法,其特征在于,所述沟槽介电层包括氧化硅、氮氧化硅或氮化硅。
CN201010508960.0A 2010-10-13 2010-10-13 相变存储器沟槽隔离结构的制作方法 Active CN102446807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010508960.0A CN102446807B (zh) 2010-10-13 2010-10-13 相变存储器沟槽隔离结构的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010508960.0A CN102446807B (zh) 2010-10-13 2010-10-13 相变存储器沟槽隔离结构的制作方法

Publications (2)

Publication Number Publication Date
CN102446807A CN102446807A (zh) 2012-05-09
CN102446807B true CN102446807B (zh) 2014-09-24

Family

ID=46009190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010508960.0A Active CN102446807B (zh) 2010-10-13 2010-10-13 相变存储器沟槽隔离结构的制作方法

Country Status (1)

Country Link
CN (1) CN102446807B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840079B (zh) * 2012-11-27 2016-06-29 中芯国际集成电路制造(上海)有限公司 相变存储器、其底部接触结构及其各自制作方法
US9306165B2 (en) * 2014-03-27 2016-04-05 Micron Technology, Inc. Replacement materials processes for forming cross point memory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1533606A (zh) * 2002-02-22 2004-09-29 ض� 相变存储器单元的双沟槽隔离结构及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849518B2 (en) * 2002-05-07 2005-02-01 Intel Corporation Dual trench isolation using single critical lithographic patterning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1533606A (zh) * 2002-02-22 2004-09-29 ض� 相变存储器单元的双沟槽隔离结构及其制造方法

Also Published As

Publication number Publication date
CN102446807A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
KR100639206B1 (ko) 상변환 기억 소자 및 그 제조방법
JP4651075B2 (ja) デュアルトレンチで隔離されたクロスポイントメモリアレイとその製造方法
US8330138B2 (en) Electronic device comprising a convertible structure, and a method of manufacturing an electronic device
CN104425511A (zh) 具有垂直沟道结构的半导体器件
KR100668823B1 (ko) 상변환 기억 소자 및 그 제조방법
CN109390348A (zh) 3d存储器件及其制造方法
CN109712980A (zh) 3d存储器件的制造方法及3d存储器件
CN102446806B (zh) 相变存储器沟槽隔离结构的制作方法
CN110429084A (zh) 存储器的结构及其形成方法
CN102446807B (zh) 相变存储器沟槽隔离结构的制作方法
CN102810631B (zh) 相变存储器的制造方法
KR101298189B1 (ko) 상변화 메모리 소자 및 그 제조 방법
KR20130097997A (ko) 콘택 형성 방법 및 이를 이용한 상변화 메모리 장치의 제조 방법
CN104078563A (zh) 相变存储器及其形成方法、相变存储器阵列
KR101052860B1 (ko) 상변환 기억 소자 및 그 제조방법
CN102956817B (zh) 相变存储器的制造方法
CN106298481A (zh) 相变存储器及其形成方法
CN102956818B (zh) 相变存储器的制造方法
JP4339112B2 (ja) 選択トランジスタとメモリトランジスタを含む複数のメモリセルを有する不揮発性メモリを備えた半導体装置の製造方法
CN103151458B (zh) 一种嵌入式相变化存储器阵列及制造方法
KR20110035783A (ko) 상변화 메모리 소자 제조 방법
CN102479740B (zh) 相变存储器深沟槽隔离结构及制作方法
KR100650718B1 (ko) 상변환 기억 소자 및 그 제조방법
KR101052861B1 (ko) 상변환 기억 소자 및 그 제조방법
KR101052862B1 (ko) 상변환 기억 소자 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SEMICONDUCTOR MANUFACTURING (BEIJING) INTERNATIONA

Effective date: 20121030

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20121030

Address after: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18

Applicant after: Semiconductor Manufacturing International (Shanghai) Corporation

Applicant after: Semiconductor Manufacturing International (Beijing) Corporation

Address before: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18

Applicant before: Semiconductor Manufacturing International (Shanghai) Corporation

C14 Grant of patent or utility model
GR01 Patent grant