CN102418148A - 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用 - Google Patents

二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用 Download PDF

Info

Publication number
CN102418148A
CN102418148A CN2011103641530A CN201110364153A CN102418148A CN 102418148 A CN102418148 A CN 102418148A CN 2011103641530 A CN2011103641530 A CN 2011103641530A CN 201110364153 A CN201110364153 A CN 201110364153A CN 102418148 A CN102418148 A CN 102418148A
Authority
CN
China
Prior art keywords
nano
titania
polypyrrole
chuck
tube array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103641530A
Other languages
English (en)
Inventor
谢一兵
杜洪秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2011103641530A priority Critical patent/CN102418148A/zh
Publication of CN102418148A publication Critical patent/CN102418148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种二氧化钛基聚吡咯夹套纳米管阵列,包括管墙独立结构的二氧化钛纳米管阵列和在二氧化钛纳米管内壁面、外壁面上均匀沉积的聚吡咯导电膜。一种二氧化钛基聚吡咯夹套纳米管阵列的制备方法,以管墙独立结构的二氧化钛纳米管阵列作为电极基体,以吡咯单体和高氯酸锂的乙氰溶液为工作电解质,采用脉冲伏安法进行电聚合反应,在二氧化钛纳米管的外壁面和内壁面上分别形成均匀完整的聚吡咯导电膜,得到由沉积在二氧化钛纳米管内壁面上的聚吡咯导电膜、二氧化钛纳米管及沉积在二氧化钛纳米管外壁面上的聚吡咯导电膜构成的同心轴中空结构的夹套纳米管阵列。一种二氧化钛基聚吡咯夹套纳米管阵列作为超级电容器电极材料进行电化学储能的应用。

Description

二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用
技术领域
本发明涉及一种同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列及其制备方法和超级电容器电化学储能应用,属于复合材料领域。
背景技术
导电聚合物应用于超级电容器电极材料是近年来发展起来的一个新的研究领域,其储能原理是在电极表面或体相中的二维或准二维空间上,导电聚合物发生快速可逆的n型或p型离子掺杂和去掺杂的氧化还原反应,使导电聚合物达到很高的储存电荷密度。由于氧化还原反应可以在整个体相中进行,其电化学储电过程不仅包括双电层存储电荷,而且还包括电解质离子在电极活性物质中进行可逆氧化还原反应导致的法拉第存储电荷。与传统双电层电容器的静电容量相比,相同表面积下的比电容量大10-100倍,而且与贵金属氧化物相比较,导电聚合物具有价格低廉、电导率高以及易于制备等优点,在超级电容器电极材料方面有很好的实际应用优势。
聚吡咯是一类用途很广的导电聚合物材料,具有电导率高、稳定性好、掺杂性能独特、电荷密度高、易于制备的特点,成为优良的超级电容器电极材料。二氧化钛有序纳米管阵列具有较高的化学稳定性和热稳定性,与其它微结构的二氧化钛相比,它具有更高的比表面积和界面吸附性。因此,聚吡咯调控修饰二氧化钛有序纳米管可以构建一种二氧化钛基聚吡咯夹套纳米管阵列,应用于超级电容器电极材料,实现较高比电容量的电化学储电性能。
发明内容
本发明提供一种二氧化钛基聚吡咯夹套纳米管阵列,具有同心轴中空结构。本发明提供一种阳极氧化反应和电聚合反应的电化学合成方法制备二氧化钛基聚吡咯夹套纳米管阵列,该制备方法简单可行。本发明所述的二氧化钛基聚吡咯夹套纳米管阵列应用于超级电容器电极材料,实现高比电容量的电化学储电性能。
本发明采用如下技术方案来实现上述目的:
本发明所述的二氧化钛基聚吡咯夹套纳米管阵列,包括管墙独立结构的二氧化钛纳米管阵列和在二氧化钛纳米管内壁面、外壁面上均匀沉积的聚吡咯导电膜,由沉积在二氧化钛纳米管内壁面上的聚吡咯导电膜、二氧化钛纳米管及沉积在二氧化钛纳米管外壁面上的聚吡咯导电膜形成同心轴中空结构的夹套纳米管阵列,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,管高度范围为900-1100nm。
本发明所述的二氧化钛基聚吡咯夹套纳米管阵列的制备方法,以吡咯单体和高氯酸锂的乙氰有机溶液为反应电解质溶液,以管墙独立结构的二氧化钛纳米管阵列作为电极基体材料并作为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,在三电极反应体系中采用电聚合反应合成方法制备二氧化钛基聚吡咯夹套纳米管阵列。
本发明所述的二氧化钛基聚吡咯夹套纳米管阵列作为超级电容器电极材料进行电化学储能的应用。
与现有技术相比,本发明具有如下优点:
(1)二氧化钛基聚吡咯夹套纳米管阵列的制备方法,电聚合反应合成方法采用脉冲伏安法,以管墙独立结构的二氧化钛有序纳米管为电极基体,可以调控吡咯单体在二氧化钛纳米管的内壁面、外壁面上形成完整均匀的聚吡咯导电膜,由沉积在二氧化钛纳米管内壁面上的聚吡咯导电膜、二氧化钛纳米管及沉积在二氧化钛纳米管外壁面上的聚吡咯导电膜形成同心轴中空结构的夹套纳米管阵列。相比较而言,电聚合反应合成方法采用循环伏安法、恒电流法或者恒电位法,通常合成的聚吡咯在二氧化钛纳米管的管口积聚,不能进入到二氧化钛纳米管的管腔内部。
(2)二氧化钛基聚吡咯夹套纳米管阵列的制备方法,电聚合反应合成方法采用吡咯单体和高氯酸锂为反应电解质,低表面张力的乙氰有机溶剂为反应介质,可以在二氧化钛纳米管基体上调控形成完整均匀的聚吡咯导电膜。相比较而言,电聚合反应合成方法采用吡咯单体和磺酸基表面活性剂为反应电解质,水溶剂为反应介质,通常形成聚吡咯颗粒。
(3)二氧化钛基聚吡咯夹套纳米管阵列具有规整有序排列的纳米通道,聚吡咯夹套纳米管导电膜一方面增加了有效比表面积,另一方面优化了反应离子定向迁移路径,实现反应离子短程扩散,应用于超级电容器电极材料可以提高电化学储电性能。相比较而言,聚吡咯颗粒和二氧化钛纳米管列阵的复合材料,聚吡咯颗粒易于纳米管口优先聚集而堵塞反应离子扩散通道,降低了电化学反应效率,由此在循环充放电过程中降低了电化学储电性能。
(4)二氧化钛基聚吡咯夹套纳米管阵列具有同心轴中空结构的聚吡咯导电膜,聚吡咯夹套纳米管可以诱导电化学反应产生电子在电场作用下沿着聚吡咯导电膜进行轴向定向有序传输,提高了电子传导效率,应用于超级电容器电极材料可以提高电化学储电性能。相比较而言,聚吡咯颗粒和二氧化钛纳米管列阵的复合材料,电化学反应产生电子只能在聚吡咯颗粒之间进行无序传输,降低了电子传导效率,由此在循环充放电过程中降低了电化学储电性能。
(5)二氧化钛纳米管基体通过电聚合反应沉积完整均匀的聚合物导电膜,可以同时增加复合电极材料的电导性和微结构柔性。
(6)电化学合成反应可以在常温常压的温和条件下进行,操作简单,而且前躯体材料易得,原料成本相对低廉。
附图说明
图1是二氧化钛基聚吡咯夹套纳米管阵列的微结构示意图。
图2是二氧化钛纳米管阵列的扫描电镜正面俯视图。
图3是二氧化钛纳米管阵列的扫描电镜侧面剖视图。
图4是实施例1二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图5是实施例2二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图6是实施例3二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图7是实施例4二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图8是实施例5二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图9是实施例6二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图10是实施例7二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图。
图11是二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜侧面剖视图。
图12是二氧化钛纳米管阵列的傅里叶变换红外光谱图。
图13是二氧化钛基聚吡咯夹套纳米管阵列的傅里叶变换红外光谱图。
图14是二氧化钛纳米管阵列的恒电流循环充放电曲线图。
图15是二氧化钛基聚吡咯夹套纳米管阵列的恒电流循环充放电曲线图。
具体实施方式
下面通过具体实施例,进一步说明同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列制备方法及其超级电容器电化学储能应用。
实施例1
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇、丙酮、去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理8-15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度为20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列
首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.05mol/L高氯酸锂和0.15mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.001V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为6s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分冲洗,真空干燥。
(3)扫描电镜微结构分析
二氧化钛纳米管阵列的扫描电镜正面俯视图显示:二氧化钛纳米管的相邻管壁之间互相间隔分离,形成独立管墙结构,管壁间距范围为35-60nm,管壁厚度范围为10-20nm,管内直径范围为120-150nm,详见说明书附图2。二氧化钛纳米管阵列的扫描电镜侧面剖视图显示:独立管墙结构的二氧化钛纳米管的管长度范围为900-1050nm,详见说明书附图3。
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:管墙独立结构的二氧化钛纳米管内壁面和外壁面上都沉积上均匀完整的聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图4。
实施例2
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇、丙酮、去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理8-15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度为20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列
首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.15mol/L高氯酸锂和0.15mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.001V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为4s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分清洗,真空干燥。
(3)二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜微结构分析
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:管墙独立结构的二氧化钛纳米管内壁面和外壁面上都沉积上均匀完整的聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图5。
实施例3
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇、丙酮、去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理8-15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度为20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列
首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.10mol/L高氯酸锂和0.10mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.001V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为4s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分冲洗,真空干燥。
(3)二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜微结构分析
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:独立管墙结构的二氧化钛纳米管内壁面和外壁面上都均匀沉积了聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图6。
实施例4
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇、丙酮、去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列
首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.10mol/L高氯酸锂和0.15mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.001V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为4s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分冲洗,真空干燥。
(3)二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜微结构分析
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:独立管墙结构的二氧化钛纳米管内壁面和外壁面上都均匀沉积了聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图7。
实施例5
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇、丙酮、去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理8-15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度为20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.10mol/L高氯酸锂和0.15mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.002V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为10s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分冲洗,真空干燥。
(3)二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜微结构分析
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:独立管墙结构的二氧化钛纳米管内壁面和外壁面上都均匀沉积了聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图8。
实施例6
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇、丙酮、去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理8-15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度为20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列
首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.10mol/L高氯酸锂和0.15mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.003V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为15s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分冲洗,真空干燥。
(3)二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜微结构分析
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:独立管墙结构的二氧化钛纳米管内壁面和外壁面上都均匀沉积了聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图9。
实施例7
(1)合成管墙独立结构的二氧化钛纳米管阵列
首先将金属纯钛片依次在乙醇,丙酮,去离子水中超声清洗30min,接着在3.3mol/L氢氟酸和5.6mol/L硝酸水溶液中进行化学抛光预处理8-15s。然后以0.2mol/L氟化铵、0.5mol/L磷酸、体积比为1∶1的乙二醇和去离子水混合溶液为反应电解质,以预处理好的钛片为阳极工作电极,铂片为阴极辅助电极,在二电极反应体系中采用阳极氧化合成方法制备二氧化钛纳米管阵列。设定恒定电压为30V,反应时间为2h,反应温度为20-25℃。合成反应完成后,二氧化钛纳米管用去离子水充分冲洗,自然晾干,最后在450℃下焙烧2h。
(2)合成同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列
首先将上述制备的二氧化钛纳米管浸入吡咯单体介质中超声振荡处理40min。然后采用脉冲伏安法进行电聚合反应,以二氧化钛纳米管为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以0.10mol/L高氯酸锂和0.15mol/L吡咯的乙氰溶液为反应电解质,设定脉冲伏安法的起始电位为0.7V,终止电位为1.1V,电位增量为0.004V/s,采样时间宽度为0.02s,脉冲宽度为0.06s,脉冲周期为20s,电聚合沉积反应完成后得到同心轴中空结构的二氧化钛基聚吡咯夹套纳米管阵列。最后,合成样品用去离子水充分冲洗,真空干燥。
(3)扫描电镜微结构分析
二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜正面俯视图显示:独立管墙结构的二氧化钛纳米管内壁面和外壁面上都均匀沉积了聚吡咯导电膜,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,详见说明书附图10。说明书附图11是二氧化钛基聚吡咯夹套纳米管阵列的扫描电镜侧面剖视图,夹套纳米管高度范围为900-1100nm;图中IV是夹套纳米管的侧面局部剖开区域,纳米管中间区域完全导通。由此可见,二氧化钛基聚吡咯夹套纳米管具有纳米通道特征,形成同心轴中空结构。
(4)二氧化钛纳米管阵列的红外光谱分析
二氧化钛纳米管阵列的傅里叶变换红外光谱图显示:波数681和798cm-1处的波峰是二氧化钛的Ti-O-Ti的伸缩振动吸收峰,详见说明书附图12。
(5)二氧化钛基聚吡咯夹套纳米管阵列的傅里叶变换红外光谱分析
二氧化钛基聚吡咯夹套纳米管阵列的傅里叶变换红外光谱图显示:波数675和768cm-1处的波峰是二氧化钛的Ti-O-Ti的伸缩振动吸收峰,此外,波数1540cm-1处的波峰为C=C双键的伸缩振动吸收峰,波数1480cm-1处的波峰为C-C单键的伸缩振动吸收峰,波数1190cm-1处的波峰为N-H键的伸缩振动吸收峰,波数1040、912和742cm-1处的波峰为C-H键的伸缩振动吸收峰。由此可见,聚吡咯已经沉积到二氧化钛纳米管中,形成了二氧化钛基聚吡咯的复合物,详见说明书附图13。
实施例8
一种二氧化钛基聚吡咯夹套纳米管阵列作为超级电容器电极材料进行电化学储能的应用,超级电容器电化学储电性能测试如下:
在三电极充放电测试体系中,分别以二氧化钛纳米阵列或者二氧化钛基聚吡咯夹套纳米管阵列为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,以1.0mol/L硫酸水溶液为测试电解质溶液,采用电化学工作站(IM6e,ZAHNERElektrik,Germany)进行恒电流循环充放电测试。说明书附图14是二氧化钛纳米管阵列的恒电流循环充放电曲线图,设定循环充放电测试的恒电流密度为30μA/cm2,根据恒电流循环充放电实验测试数据计算电化学电容,二氧化钛纳米管阵列材料的面积比电容量为0.45mF/cm2。说明书附图15是二氧化钛基聚吡咯夹套纳米管阵列的恒电流循环充放电曲线图,设定循环充放电测试的恒电流密度为1.85mA/cm2,根据恒电流循环充放电实验测试数据计算电化学电容,二氧化钛基聚吡咯夹套纳米管阵列材料的面积比电容量为33.1mF/cm2
实施例9
一种二氧化钛基聚吡咯夹套纳米管阵列,微结构示意图参照说明书附图1,图中I表示二氧化钛纳米管,图中II表示沉积在二氧化钛纳米管内壁面上的聚吡咯导电膜,图中III表示沉积在二氧化钛纳米管外壁面上的聚吡咯导电膜,所述的二氧化钛基聚吡咯夹套纳米管阵列包括管墙独立结构的二氧化钛纳米管阵列和在二氧化钛纳米管I内壁面、外壁面上均匀沉积的聚吡咯导电膜,由沉积在二氧化钛纳米管内壁面上的聚吡咯导电膜II、二氧化钛纳米管I及沉积在二氧化钛纳米管外壁面上的聚吡咯导电膜III形成同心轴中空结构的夹套纳米管阵列,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,管高度范围为900-1100nm,本实施例中的管墙独立结构的二氧化钛纳米管阵列是由相邻管壁之间互相间隔分离的纳米管构成,管壁间距范围为35-60nm,管壁厚度范围为10-20nm,管内直径范围为120-150nm,更具体的说,夹套纳米管的管壁厚度为50、70或80nm,管内直径为30、55或90nm,管高度为900、980或1100nm;二氧化钛纳米管阵列中的二氧化钛纳米管之间管壁间距为35、50或60nm,管壁厚度为10、18或20nm,管内直径为120、140或150nm。
实施例10
一种二氧化钛基聚吡咯夹套纳米管阵列的制备方法,以吡咯单体和高氯酸锂的乙氰有机溶液为反应电解质溶液,以管墙独立结构的二氧化钛纳米管阵列作为电极基体材料并作为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,在三电极反应体系中采用电聚合反应合成方法制备二氧化钛基聚吡咯夹套纳米管阵列。在本实施例中,电聚合反应合成方法为脉冲伏安法,所述的脉冲伏安法设定在工作电极上的起始电位为0.7V,终止电位为1.1V,电位增量范围为0.001-0.004V/s,采样时间宽度为0.02s,脉冲宽度为0.006s,脉冲周期范围为3-20s,更具体的说,电位增量可以具体选择为0.001、0.003或0.004V/s,脉冲周期可以具体选择为3、12或20s;电聚合反应的电解质溶液中的吡咯单体摩尔浓度范围为0.10-0.15mol/L,高氯酸锂摩尔浓度范围为0.03-0.18mol/L,反应介质为乙氰有机溶剂,更具体的说,吡咯单体摩尔浓度可以具体选择为0.10、0.12或0.15mol/L,高氯酸锂摩尔浓度可以具体选择为0.03、0.05、0.15或0.18mol/L。

Claims (6)

1.一种二氧化钛基聚吡咯夹套纳米管阵列,其特征在于:包括管墙独立结构的二氧化钛纳米管阵列和在二氧化钛纳米管(I)内壁面、外壁面上均匀沉积的聚吡咯导电膜,由沉积在二氧化钛纳米管内壁面上的聚吡咯导电膜(II)、二氧化钛纳米管(I)及沉积在二氧化钛纳米管外壁面上的聚吡咯导电膜(III)形成同心轴中空结构的夹套纳米管阵列,夹套纳米管的管壁厚度范围为50-80nm,管内直径范围为30-90nm,管高度范围为900-1100nm。
2.根据权利要求1所述的二氧化钛基聚吡咯夹套纳米管阵列,其特征在于:管墙独立结构的二氧化钛纳米管阵列是由相邻管壁之间互相间隔分离的纳米管构成,管壁间距范围为35-60nm,管壁厚度范围为10-20nm,管内直径范围为120-150nm,管高度范围为900-1050nm。
3.一种二氧化钛基聚吡咯夹套纳米管阵列的制备方法,其特征在于:在三电极电化学反应体系中,以吡咯单体和高氯酸锂的乙氰有机溶液为反应电解质溶液,以管墙独立结构的二氧化钛纳米管阵列作为电极基体材料并作为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极,采用电聚合反应合成方法制备二氧化钛基聚吡咯夹套纳米管阵列。
4.根据权利要求3所述的二氧化钛基聚吡咯夹套纳米管阵列的制备方法,其特征在于:电聚合反应合成方法为脉冲伏安法,所述的脉冲伏安法设定在工作电极上的起始电位为0.7V,终止电位为1.1V,电位增量范围为0.001-0.004V/s,采样时间宽度为0.02s,脉冲宽度为0.006s,脉冲周期范围为3-20s。
5.根据权利要求3所述的二氧化钛基聚吡咯夹套纳米管阵列的制备方法,其特征在于:电聚合反应的电解质溶液中的吡咯单体摩尔浓度范围为0.10-0.15mol/L,高氯酸锂摩尔浓度范围为0.03-0.18mol/L,反应介质为乙氰有机溶剂。
6.一种权利要求1所述的二氧化钛基聚吡咯夹套纳米管阵列作为超级电容器电极材料进行电化学储能的应用。
CN2011103641530A 2011-11-17 2011-11-17 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用 Pending CN102418148A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103641530A CN102418148A (zh) 2011-11-17 2011-11-17 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103641530A CN102418148A (zh) 2011-11-17 2011-11-17 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用

Publications (1)

Publication Number Publication Date
CN102418148A true CN102418148A (zh) 2012-04-18

Family

ID=45942786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103641530A Pending CN102418148A (zh) 2011-11-17 2011-11-17 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用

Country Status (1)

Country Link
CN (1) CN102418148A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346016A (zh) * 2013-07-10 2013-10-09 四川农业大学 TiO2纳米管阵列管内外空间填充聚乙撑二氧噻吩的复合材料及其制备方法和应用
CN103840145A (zh) * 2014-03-05 2014-06-04 华中科技大学 一种锂硫电池纳米管阵列正极材料的制备方法
CN104934232A (zh) * 2015-05-13 2015-09-23 东南大学 二氧化钛或氮化钛支撑的碳量子点修饰聚吡咯纳米阵列材料及其制备方法和应用
CN106784742A (zh) * 2017-02-21 2017-05-31 昆明理工大学 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用
CN108461301A (zh) * 2018-05-16 2018-08-28 合肥工业大学 一种MnO2-PPy/H-TiO2三元核壳杂化阵列电极材料及其制备方法
CN108538628A (zh) * 2018-06-01 2018-09-14 徐州医科大学 一种柔性氮化钛-聚吡咯纳米柱阵列材料及其制备方法和应用
CN108766777A (zh) * 2018-06-01 2018-11-06 徐州医科大学 一种氮化钛-聚吡咯纳米柱阵列材料及其制备方法和应用
CN109192552A (zh) * 2018-09-26 2019-01-11 河北工业大学 一步制备聚苯胺-二氧化钛纳米管阵列复合电极的方法
CN109559901A (zh) * 2017-09-25 2019-04-02 银隆新能源股份有限公司 聚吡咯/钼/二氧化钛纳米管三元复合电极的制备方法
CN114220664A (zh) * 2021-12-21 2022-03-22 东莞理工学院 一种复合电极、制备方法以及超级电容

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522210A (zh) * 2011-11-16 2012-06-27 东南大学 聚吡咯纳米管嵌纳米孔阵列材料及其制备方法和储能应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522210A (zh) * 2011-11-16 2012-06-27 东南大学 聚吡咯纳米管嵌纳米孔阵列材料及其制备方法和储能应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KH.GHANBARI等: "Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor", 《BIOSENSORS AND BIOELECTRONICS》, vol. 23, 18 March 2008 (2008-03-18) *
杜洪秀等: "聚吡咯-二氧化钛纳米复合材料的制备及其电化学性能", 《中国科技论文在线》, 8 August 2011 (2011-08-08) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346016B (zh) * 2013-07-10 2016-01-20 四川农业大学 TiO2纳米管阵列管内外空间填充聚乙撑二氧噻吩的复合材料及其制备方法和应用
CN103346016A (zh) * 2013-07-10 2013-10-09 四川农业大学 TiO2纳米管阵列管内外空间填充聚乙撑二氧噻吩的复合材料及其制备方法和应用
CN103840145A (zh) * 2014-03-05 2014-06-04 华中科技大学 一种锂硫电池纳米管阵列正极材料的制备方法
CN103840145B (zh) * 2014-03-05 2015-12-30 华中科技大学 一种锂硫电池纳米管阵列正极材料的制备方法
CN104934232B (zh) * 2015-05-13 2018-02-02 东南大学 二氧化钛或氮化钛支撑的碳量子点修饰聚吡咯纳米阵列材料及其制备方法和应用
CN104934232A (zh) * 2015-05-13 2015-09-23 东南大学 二氧化钛或氮化钛支撑的碳量子点修饰聚吡咯纳米阵列材料及其制备方法和应用
CN106784742B (zh) * 2017-02-21 2020-02-07 昆明理工大学 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用
CN106784742A (zh) * 2017-02-21 2017-05-31 昆明理工大学 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用
CN109559901A (zh) * 2017-09-25 2019-04-02 银隆新能源股份有限公司 聚吡咯/钼/二氧化钛纳米管三元复合电极的制备方法
CN108461301A (zh) * 2018-05-16 2018-08-28 合肥工业大学 一种MnO2-PPy/H-TiO2三元核壳杂化阵列电极材料及其制备方法
CN108538628A (zh) * 2018-06-01 2018-09-14 徐州医科大学 一种柔性氮化钛-聚吡咯纳米柱阵列材料及其制备方法和应用
CN108766777A (zh) * 2018-06-01 2018-11-06 徐州医科大学 一种氮化钛-聚吡咯纳米柱阵列材料及其制备方法和应用
CN109192552A (zh) * 2018-09-26 2019-01-11 河北工业大学 一步制备聚苯胺-二氧化钛纳米管阵列复合电极的方法
CN109192552B (zh) * 2018-09-26 2020-05-12 河北工业大学 一步制备聚苯胺-二氧化钛纳米管阵列复合电极的方法
CN114220664A (zh) * 2021-12-21 2022-03-22 东莞理工学院 一种复合电极、制备方法以及超级电容
CN114220664B (zh) * 2021-12-21 2023-08-04 东莞理工学院 一种复合电极、制备方法以及超级电容

Similar Documents

Publication Publication Date Title
CN102418148A (zh) 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用
CN104240967B (zh) 一种聚苯胺‑二氧化锰‑氮化钛纳米线阵列复合材料及其制备方法和应用
CN104616905B (zh) 聚苯胺‑碳层‑氮化钛纳米线阵列复合材料及其制备方法和应用
CN104616910B (zh) 碳包覆钛基纳米阵列材料及其制备方法和应用
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
CN104112603B (zh) 一种聚吡咯‑二氧化钛或氮化钛‑聚苯胺同轴三层纳米管阵列复合材料及其制备方法与应用
CN101694814B (zh) 染料敏化太阳能电池纳米导电聚合物对电极的电化学制法
CN104485234A (zh) 基于纺织纤维和电沉积聚吡咯制备柔性超级电容器
CN107316752A (zh) 一种二氧化锰/碳纳米管修饰石墨烯纸电容器电极的制备方法
CN105655139B (zh) 一种氧化钼/碳包覆氮化钛纳米管阵列复合材料及其制备方法和应用
CN103839683A (zh) 石墨烯电极片及其制备方法
Xue et al. High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors
CN103337381A (zh) 一种制造柔性电极的方法
CN106898492A (zh) 一种共轭微孔聚合物薄膜的制备方法及其应用
Wang et al. Flexible self-powered fiber-shaped photocapacitors with ultralong cyclelife and total energy efficiency of 5.1%
CN103714978A (zh) 电极片及其制备方法、超级电容器
CN104576080A (zh) 一种石墨烯/聚苯胺柔性电极的一步电化学制备方法
CN109786135A (zh) 一种氧化铜@钼酸镍/泡沫铜复合电极材料及其制备方法
CN105448536B (zh) 氧化镍/氧化钛纳米复合材料及其制备方法和储能应用
CN104465121A (zh) 具有三维结构的氧化石墨烯—聚苯胺复合电极材料及其制备方法
CN103985563A (zh) 一种锂插层二氧化锰-氮化钛纳米管复合材料及其制备方法与应用
Li et al. All-Ti3C2T x MXene Based Flexible On-chip Microsupercapacitor Array
CN109411244A (zh) 一种二氧化钛/双金属氢氧化物复合电极的制备方法
CN105719843B (zh) 一种氮化钼/氮化钛纳米管阵列复合材料及其制备方法和应用
CN103198934A (zh) 一种制造复合薄膜电极材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120418