CN106784742A - 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用 - Google Patents

一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN106784742A
CN106784742A CN201710091749.5A CN201710091749A CN106784742A CN 106784742 A CN106784742 A CN 106784742A CN 201710091749 A CN201710091749 A CN 201710091749A CN 106784742 A CN106784742 A CN 106784742A
Authority
CN
China
Prior art keywords
electrode
tio
sodium
doped polypyrrole
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710091749.5A
Other languages
English (en)
Other versions
CN106784742B (zh
Inventor
侯宏英
廖启书
段继祥
刘松
姚远
代志鹏
余成义
李栋栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710091749.5A priority Critical patent/CN106784742B/zh
Publication of CN106784742A publication Critical patent/CN106784742A/zh
Application granted granted Critical
Publication of CN106784742B publication Critical patent/CN106784742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用,以TiO2纳米管为工作电极,铂片为对电极,饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,调节pH值为1~2,通过电聚合反应在TiO2纳米管电极表面沉积一层对甲基苯磺酸钠掺杂的聚吡咯薄膜,并将制备得到的复合材料应用于钠离子电池;所制备的掺杂聚吡咯与TiO2纳米管结合紧密,中空的TiO2纳米管比表面积大,机械强度与结构稳定性好,掺杂聚吡咯柔韧性好,提供了钠离子传输的通道和空间,二者均为电极活性材料,具有储能活性,充分发挥了复合材料中两种组分之间的协同加和效应,复合材料的充/放电比容量及循环稳定性能好;本发明方法简单、环境友好。

Description

一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其 应用
技术领域
本发明涉及一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用,属于新能源材料的研究领域。
背景技术
目前,锂离子电池应用领域和需求量均在不断扩展和增加,然而,地球上锂资源的匮乏及其昂贵的价格成为限制锂离子电池进一步发展的瓶颈因素。因此,开发下一代替代锂离子电池的储能器件迫在眉睫。相对锂资源而言, 钠资源储量丰富,分布广泛、廉价易得、环境友好,因此,钠离子电池被寄予厚望,成为下一代储能电池的优先选择。但不容忽视的是,与锂离子相比,较大的钠离子半径导致相应的扩散动力学过程要慢得多,并对钠离子电池的充/放电性能造成较大的负面影响,对电极材料的要求也更为苛刻,所以,开展与钠离子电池相适应的电极材料及技术的研究具有重要意义。
三维有序TiO2纳米管具有无毒、比表面积大、结构稳定、高度有序性及储钠活性等诸多优点,可以用作钠离子电池的负极材料,但作为半导体的TiO2纳米管的电导率比较低,限制了其优势的充分发挥,且无机材料的刚性晶格会抑制体积较大钠离子的扩散与可逆脱/嵌过程。聚吡咯(PPy) 作为一种导电聚合物,具有毒性低、容易加工设计、来源丰富及环境友好等诸多优点,尤其是聚合物分子长链的柔韧性和可移动性为钠离子在其中的扩散与可逆脱/嵌过程提供了宽松而弹性的空间和路径,有望改善钠离子扩散系数和储钠性能。与纯聚吡咯相比,掺杂后的聚吡咯导电性可以大大提高。同时,有机与无机材料之间的复合可以发挥不同组分之间的协同加和作用,有助于电极材料脱嵌钠离子性能的改善与提高。
目前,关于聚吡咯与TiO2的复合多采用化学合成方法,其形貌为纳米球颗粒,该方法制备工艺复杂繁琐,反应时间长,并伴随着副反应的发生。聚吡咯/二氧化钛纳米管复合材料主要用于光催化等研究领域,基于此,本发明采用电化学方法制备掺杂聚吡咯/TiO2纳米管复合材料,并研究其在钠离子电池中的应用。
发明内容
本发明的目的在于提供一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法,具体步骤如下:
(1)采用阳极氧化法制备三维有序TiO2纳米管阵列;
(2)将步骤(1)制备得到的TiO2纳米管阵列作为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,用稀硫酸调节电解液的pH值为1~2,并通过电聚合反应在TiO2纳米管阵列电极表面生成一层薄膜,即得到对甲基苯磺酸钠掺杂的聚吡咯/TiO2纳米管复合材料。
步骤(2)所述电聚合反应采用循环伏安法,扫描圈数为7~10圈。
步骤(2)所述电解液中对甲基苯磺酸钠浓度为 0.10 mol/L~0.15 mol/L。
步骤(2)所述电解液中吡咯单体的浓度为 0.10 mol/L~0.20 mol/L。
步骤(2)所述稀硫酸为市购产品。
本发明所制备的掺杂聚吡咯/TiO2纳米管复合材料在钠离子电池中的应用,直接以所制备的对甲基苯磺酸钠掺杂的聚吡咯/TiO2纳米管复合材料为工作电极,以钠箔为对电极和参比电极,在充满高纯氩气的手套箱内组装成扣式模拟钠离子电池,并以恒流充/放电法测试其充/放电性能及循环稳定性。
本发明所述铂电极、饱和甘汞电极均为常规电极,为本领域技术人员的常规选择。
本发明借助扫描电子显微镜(SEM)、X射线能量色散光谱仪(EDX)、傅里叶转换红外光谱(FTIR)以及恒流充/放电技术对所制备的掺杂聚吡咯/TiO2纳米管复合电极材料的微观结构、形貌及电化学性能进行表征。由SEM图可知,TiO2纳米管阵列表面确实覆盖了一层掺杂聚吡咯膜;EDX图谱中出现了与C、N、O、S及Ti元素相对应的信号峰;掺杂聚吡咯/TiO2纳米管复合负极具有良好的可逆脱/嵌钠离子性能,可用作钠离子电池的负极材料。
本发明的优点与效果:
(1)本发明所制备的掺杂聚吡咯/TiO2纳米管复合材料中的中空TiO2纳米管排列规整有序、比表面积大、结构稳定,具有良好的储钠活性,二氧化钛与掺杂聚吡咯膜结合牢固,提供了良好的机械强度及结构稳定性。
(2)本发明所制备的掺杂聚吡咯/TiO2纳米管复合材料中的掺杂聚吡咯导电性好,且柔韧灵活,为离子的扩散和脱/嵌提供了宽松而弹性的通道和空间,同时也具有良好的储钠活性。
(3)本发明所制备的掺杂聚吡咯/TiO2纳米管复合材料,融合了无机TiO2纳米管阵列与有机掺杂聚吡咯的多重优点,两种活性组分相辅相成,充分发挥了有机与无机活性材料之间的协同加和效应,制备工艺简单,无需使用粘结剂,可直接用作钠离子电池的负极材料,并具有良好的充放电性能。
附图说明
图1为本发明实施例1制备的掺杂聚吡咯/TiO2纳米管复合材料的SEM图;
图2为本发明实施例1制备的掺杂聚吡咯TiO2纳米管复合材料的EDX图;
图3为本发明实施例3制备的掺杂聚吡咯/TiO2纳米管复合材料的FTIR图;
图4为本发明实施例4制备的掺杂聚吡咯/TiO2纳米管复合材料作为钠离子电池负极材料时的充/放电曲线;
图5为本发明实施例5制备的掺杂聚吡咯/TiO2纳米管复合材料作为钠离子电池负极材料时的循环稳定性。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但是本发明的保护范围并不限于所述内容。
实施例1
本实施例所述掺杂聚吡咯/TiO2纳米管复合材料的制备方法,具体步骤如下:
(1)首先采用阳极氧化法,以钛片作为工作电极,铂电极为对电极,以含有质量百分含量分别为0.5%NaF、19.5% H2O和80%丙三醇的混合液为电解液,恒压(30 V)沉积2 h,制备得到三维有序TiO2纳米管阵列;
(2)然后在三电极体系中,以步骤(1)所制备的三维有序TiO2纳米管阵列为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,电解液中吡咯的浓度为0.10mol/L,对甲基苯磺酸钠的浓度为0.10mol/L,采用稀硫酸调节pH值为2,通过循环伏安法扫描10圈,得到对甲基苯磺酸钠掺杂聚吡咯/TiO2纳米管复合材料。
测试其SEM图与EDX谱图,分别如图1和图2所示,由图可知,三维有序TiO2纳米管表面上确实沉积了一层对甲基苯磺酸钠掺杂的聚吡咯薄膜,且检测到了与C、N、O、S、Ti元素相对应的信号峰,可见生成的薄膜为对甲基苯磺酸钠掺杂的聚吡咯。
无需添加额外的导电剂和粘结剂,直接以本实施例所制备的掺杂聚吡咯/TiO2纳米管复合材料为工作电极,以钠箔为对电极和参比电极,以无纺布为隔膜,以浓度为1mol/L的NaClO4的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶液为电解液,其中EC和DEC的体积比为1:1,在充满高纯氩气的手套箱内与钠箔组装成扣式模拟钠离子电池,并以恒流充/放电法测试其充/放电性能及循环稳定性,结果表明,钠离子电池的充/放电容量高、循环稳定性好。
实施例2
本实施例所述掺杂聚吡咯/TiO2纳米管复合材料的制备方法,具体步骤如下:
(1)首先采用阳极氧化法,以钛片作为工作电极,铂电极为对电极,以含有质量百分含量分别为0.5%NaF、19.5% H2O和80%丙三醇的混合液为电解液,恒压(30 V)沉积2 h,制备得到三维有序TiO2纳米管阵列;
(2)然后在三电极体系中,以步骤(1)所制备的三维有序TiO2纳米管阵列为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,电解液中吡咯的浓度为0.20mol/L,对甲基苯磺酸钠的浓度为0.15mol/L,采用稀硫酸调节pH值为2,通过循环伏安法扫描8圈,得到对甲基苯磺酸钠掺杂聚吡咯/TiO2纳米管复合材料。
无需添加额外的导电剂和粘结剂,直接以本实施例所制备的掺杂聚吡咯/TiO2纳米管复合材料为工作电极,以钠箔为对电极和参比电极,以无纺布为隔膜,以浓度为1mol/L的 NaClO4的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶液为电解液,其中EC和DEC的体积比为1:1,在充满高纯氩气的手套箱内与钠箔组装成扣式模拟钠离子电池,并以恒流充/放电法测试其充/放电性能及循环稳定性,结果表明,钠离子电池的充/放电容量高且循环稳定性好。
实施例3
本实施例所述掺杂聚吡咯/TiO2纳米管复合材料的制备方法,具体步骤如下:
(1)首先采用阳极氧化法,以钛片作为工作电极,铂电极为对电极,以含有质量百分含量分别为0.5%NaF、19.5%H2O和80%丙三醇的混合液为电解液,恒压(30V)沉积2h,制备得到三维有序TiO2纳米管阵列;
(2)然后在三电极体系中,以步骤(1)所制备的三维有序TiO2纳米管阵列为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,电解液中吡咯的浓度为0.15mol/L,对甲基苯磺酸钠的浓度为0.15mol/L,采用稀硫酸调节pH值为1,通过循环伏安法扫描9圈,得到对甲基苯磺酸钠掺杂聚吡咯/TiO2纳米管复合材料。
测试SEM图像,三维有序TiO2纳米管表面上覆盖了一层对甲基苯磺酸钠掺杂聚吡咯薄膜,并测试FTIR谱图,如图3所示,由图3可以看到N-H的伸缩振动吸收峰、C-N的伸缩振动吸收峰、C-H和C-N的面内弯曲振动、C-N+伸缩振动吸收峰,此外,还可以看到分别与SO3 -和TiO2相应的特征峰,可见,确实制备得到了掺杂聚吡咯/TiO2纳米管复合材料。
无需添加额外的导电剂和粘结剂,直接以本实施例所制备的掺杂聚吡咯/TiO2纳米管复合材料为工作电极,以钠箔为对电极和参比电极,以无纺布为隔膜,以浓度为1mol/L的NaClO4的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶液为电解液,其中EC和DEC的体积比为1:1,在充满高纯氩气的手套箱内与钠箔组装成扣式模拟钠离子电池,并以恒流充/放电法测试其充/放电性能及循环稳定性,结果表明,钠离子电池的充/放电容量高、循环稳定性好。试其充/放电性能及循环稳定性,结果表明,钠离子电池的充/放电容量高且循环稳定性好。
实施例4
本实施例所述掺杂聚吡咯/TiO2纳米管复合材料的制备方法,具体步骤如下:
(1)首先采用阳极氧化法,以钛片作为工作电极,铂电极为对电极,以含有质量百分含量分别为0.5% NaF、19.5%H2O和80%丙三醇的混合液为电解液,恒压(30V)沉积2h,制备得到三维有序TiO2纳米管阵列;
(2)然后在三电极体系中,以步骤(1)所制备的三维有序TiO2纳米管阵列为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,电解液中吡咯的浓度为0.15mol/L,对甲基苯磺酸钠的浓度为0.13mol/L,采用稀硫酸调节pH值为2,通过循环伏安法,扫描7圈,得到对甲基苯磺酸钠掺杂聚吡咯/TiO2纳米管复合材料。
测试SEM图像,三维有序TiO2纳米管表面上被覆盖了一层对甲基苯磺酸钠掺杂聚吡咯薄膜。
无需添加额外的导电剂和粘结剂,直接以本实施例所制备的掺杂聚吡咯/TiO2纳米管复合材料为工作电极,以钠箔为对电极和参比电极,以无纺布为隔膜,以浓度为1mol/L的 NaClO4的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶液为电解液,其中EC和DEC的体积比为1:1,在充满高纯氩气的手套箱内与钠箔组装成扣式模拟钠离子电池,并以恒流充/放电法测试其充/放电性能,如图4所示,由图4可知,钠离子电池的放电比容量高达191mAh/g,且循环稳定性好。
实施例5
本实施例所述掺杂聚吡咯/TiO2纳米管复合材料的制备方法,具体步骤如下:
(1)首先采用阳极氧化法,以钛片作为工作电极,铂电极为对电极,以含有质量百分浓度分别为0.5%NaF、19.5%H2O和80%丙三醇的混合液为电解液,恒压(30V)沉积2h,制备得到三维有序TiO2纳米管阵列;
(2)然后在三电极体系中,以步骤(1)所制备的三维有序TiO2纳米管为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,电解液中吡咯的浓度为0.15mol/L,对甲基苯磺酸钠的浓度为0.13mol/L,采用稀硫酸调节pH值为1,通过循环伏安法扫描7圈,得到对甲基苯磺酸钠掺杂聚吡咯/TiO2纳米管复合材料。
测试EDX谱图,可知生成的薄膜为对甲基苯磺酸钠掺杂的聚吡咯膜。
无需添加额外的导电剂和粘结剂,直接以本实施例所制备的掺杂聚吡咯/TiO2纳米管复合材料为工作电极,以钠箔为对电极和参比电极,以无纺布为隔膜,以浓度为1mol/L的 NaClO4的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶液为电解液,其中EC和DEC的体积比为1:1,在充满高纯氩气的手套箱内与钠箔组装成扣式模拟钠离子电池,以恒流充/放电法测试循环稳定性能,如图5所示,结果表明,钠离子电池可循环充/放电至少100次,且没有出现衰减,表现出了良好的充/放电循环稳定性。

Claims (5)

1.一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法,其特征在于,具体步骤如下:
(1)采用阳极氧化法制备TiO2纳米管阵列;
(2)将步骤(1)制备得到的TiO2纳米管阵列作为工作电极,以铂片为对电极,以饱和甘汞电极为参比电极,以含有对甲基苯磺酸钠和吡咯的水溶液为电解液,用稀硫酸调节电解液的pH值为1~2,并通过电聚合反应在TiO2纳米管阵列电极表面生成一层薄膜,即得到对甲基苯磺酸钠掺杂的聚吡咯/TiO2纳米管复合材料。
2.根据权利要求1所述掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法,其特征在于,步骤(2)所述电聚合反应为循环伏安法,扫描圈数为7~10圈。
3.根据权利要求1所述掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法,其特征在于,步骤(2)所述电解液中对甲基苯磺酸钠的浓度为0.10 mol/L~0.15 mol/L。
4.根据权利要求1所述掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法,其特征在于,步骤(2)所述电解液中吡咯的浓度为 0.10 mol/L~0.20 mol/L。
5.权利要求1所述掺杂聚吡咯/二氧化钛纳米管复合材料在钠离子电池中的应用。
CN201710091749.5A 2017-02-21 2017-02-21 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用 Active CN106784742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710091749.5A CN106784742B (zh) 2017-02-21 2017-02-21 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710091749.5A CN106784742B (zh) 2017-02-21 2017-02-21 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106784742A true CN106784742A (zh) 2017-05-31
CN106784742B CN106784742B (zh) 2020-02-07

Family

ID=58958635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710091749.5A Active CN106784742B (zh) 2017-02-21 2017-02-21 一种掺杂聚吡咯/二氧化钛纳米管复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106784742B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787795A (zh) * 2021-08-11 2021-12-14 哈尔滨理工大学 一种三明治结构聚吡咯/聚偏氟乙烯复合薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245482A (zh) * 2008-03-07 2008-08-20 厦门大学 一种金属基底表面包覆具有微触角形貌的聚吡咯的制备方法
CN102418148A (zh) * 2011-11-17 2012-04-18 东南大学 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用
CN106380599A (zh) * 2016-08-31 2017-02-08 昆明理工大学 一种花菜状对甲基苯磺酸钠掺杂聚吡咯的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245482A (zh) * 2008-03-07 2008-08-20 厦门大学 一种金属基底表面包覆具有微触角形貌的聚吡咯的制备方法
CN102418148A (zh) * 2011-11-17 2012-04-18 东南大学 二氧化钛基聚吡咯夹套纳米管阵列及制备方法和储能应用
CN106380599A (zh) * 2016-08-31 2017-02-08 昆明理工大学 一种花菜状对甲基苯磺酸钠掺杂聚吡咯的制备方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787795A (zh) * 2021-08-11 2021-12-14 哈尔滨理工大学 一种三明治结构聚吡咯/聚偏氟乙烯复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN106784742B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
Miao et al. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte
Li et al. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life
Dai et al. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives
Zhang et al. Electrically conductive hydrogels for flexible energy storage systems
CN107591252B (zh) 一种柔性可裁剪固态超级电容器及其制备方法
Li et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte
Ruan et al. Nitrogen and sulfur dual-doped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries
Zheng et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors
Wang et al. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles
Chen et al. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors
Niu et al. Coral-like PEDOT nanotube arrays on carbon fibers as high-rate flexible supercapacitor electrodes
Yuan et al. Nickel foam-supported porous Ni (OH) 2/NiOOH composite film as advanced pseudocapacitor material
Zong et al. Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors
Arcila-Velez et al. Redox solute doped polypyrrole for high-charge capacity polymer electrodes
Soni et al. Realizing high capacitance and rate capability in polyaniline by enhancing the electrochemical surface area through induction of superhydrophilicity
Cevik et al. High performance flexible supercapacitors including redox active molybdate incorporated Poly (vinylphosphonic acid) hydrogels
Tong et al. Poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol)-assisted synthesis of graphene/polyaniline composites as high-performance supercapacitor electrodes
Li et al. Mechanically robust 3D hierarchical electrode via one-step electro-codeposition towards molecular coupling for high-performance flexible supercapacitors
Sheng et al. Boosting PEDOT energy storage with redox dopant and electrolyte additive
CN109244459A (zh) 一种共掺杂柔性钠离子电池正极材料及其制备方法
Peng et al. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors
Chen et al. Polyaniline electropolymerized within template of vertically ordered polyvinyl alcohol as electrodes of flexible supercapacitors with long cycle life
CN108604683A (zh) 电化学设备用正极活性物质、电化学设备用正极和电化学设备、以及电化学设备用正极活性物质的制造方法
Vereshchagin et al. Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices
Chen et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant