CN102414756A - 具有辅助层的磁性叠层 - Google Patents
具有辅助层的磁性叠层 Download PDFInfo
- Publication number
- CN102414756A CN102414756A CN2010800192891A CN201080019289A CN102414756A CN 102414756 A CN102414756 A CN 102414756A CN 2010800192891 A CN2010800192891 A CN 2010800192891A CN 201080019289 A CN201080019289 A CN 201080019289A CN 102414756 A CN102414756 A CN 102414756A
- Authority
- CN
- China
- Prior art keywords
- layer
- plane
- dom
- auxiliary
- magnet unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 82
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 35
- 238000003475 lamination Methods 0.000 claims description 26
- 238000009987 spinning Methods 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims 1
- 230000005415 magnetization Effects 0.000 abstract description 8
- 230000000452 restraining effect Effects 0.000 description 14
- 239000003302 ferromagnetic material Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 9
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 229910005335 FePt Inorganic materials 0.000 description 3
- 230000005290 antiferromagnetic effect Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910019236 CoFeB Inorganic materials 0.000 description 1
- 229910018979 CoPt Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3286—Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/329—Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3295—Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3263—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Computer Hardware Design (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
- Semiconductor Memories (AREA)
Abstract
一种磁性存储器单元,它具有铁磁自由层和铁磁被钉扎参考层,每个层具有平面外的磁各向异性和平面外的磁化方向并可经由自旋力矩切换。该单元包括接近自由层的铁磁辅助层,该辅助层具有小于约500Oe的低磁各向异性。该辅助层可具有平面内或平面外各向异性。
Description
背景
普及性计算和手持/通信产业的快速发展引起对大容量非易失性固态数据存储设备和旋转磁性数据存储设备的爆炸式需求。类似闪存的当前技术具有若干缺点,例如低存取速度、有限的寿命、和集成难度。闪存(NAND或NOR)还面对缩放问题。同时,传统旋转存储面对面密度以及使类似读取/记录头的组件更小和更可靠的挑战。
电阻感测存储器(RSM)通过将数据位存储为高电阻状态或低电阻状态,是未来非易失性和通用存储器的有前途候选。一种这样的存储器是磁性随机存取存储器(MRAM),它的特征在于非易失性、快速写入/读取速度、几乎无限制的编程寿命和零待机功率。MRAM的基本组件是磁性隧穿结(MTJ)。MRAM通过使用电流感生磁场来切换MTJ的磁化,从而切换MTJ电阻。随着MTJ尺寸缩小,切换磁场振幅增大且切换变化变得更剧烈。
然而,在这样的磁性存储器叠层能够可靠地用作存储器器件或场传感器之前,必须克服许多产量限制因素。因此,具有减小的切换电流和增加的热稳定性的磁性存储器叠层是所期望的。
发明内容
本公开涉及磁性单元,例如自旋力矩存储器单元或磁性隧道结单元,这些单元具有与晶片平面垂直对准的或“平面外的”关联铁磁层的磁各向异性和磁化方向。这些单元包括辅助层。
本公开的一个特定实施例是具有铁磁自由层和铁磁被钉扎参考层的磁性单元,每个层具有平面外磁各向异性和平面外磁化方向并可经由自旋力矩切换。该单元包括铁磁辅助层,其具有不大于约500Oe的低磁各向异性。该辅助层可具有平面内或平面外各向异性。
本公开的另一特定实施例是衬底上的磁性存储器单元。存储器单元具有铁磁自由层,该铁磁自由层具有垂直于衬底的平面外磁各向异性和平面外磁化方向,并可经由自旋力矩切换。该单元还具有第一铁磁被钉扎参考层,该第一铁磁被钉扎参考层具有垂直于衬底的平面外磁各向异性和平面外磁化方向,以及自由层和第一参考层之间的氧化物阻挡层。还包括具有低磁各向异性的接近自由层的铁磁辅助叠层,该辅助叠层包括辅助层,该辅助层具有小于约1000emu/cc的磁矩和在来自电流的电子流方向上旋转的磁化方向。
本公开的另一特定实施例是一种写入磁性单元的方法。该方法包括使电流通过磁性单元,该磁性单元包括自由层和参考层,每个层具有平面外各向异性和磁化方向,并且电流具有电子流方向。该方法包括在电子流方向上旋转接近自由层的辅助层的磁化方向,该辅助层具有不大于约500Oe的磁各向异性。这导致自由层的磁化方向在电子流方向上取向。
通过阅读下面的详细描述,这些以及各种其它的特征和优点将会显而易见。
附图简述
考虑以下联系附图对本公开的各种实施例的详细描述,能更完整地理解本公开,在附图中:
图1A是具有平面外磁化方向和辅助层的磁性单元的示意侧视图;图1B是磁性单元的替换实施例的示意侧视图;图1C是磁性单元的另一替换实施例的示意侧视图;
图2是包括存储器单元和半导体晶体管的示例性存储器组件的示意图;
图3是具有平面外磁化方向和辅助层的磁性单元的另一实施例的示意侧视图;以及
图4A是具有辅助层的磁性单元的示意侧视图,该叠层处于高电阻状态;以及图4B是处于低电阻状态的磁性单元的示意侧视图。
这些附图不一定按比例示出。附图中使用的相同数字表示相同部件。然而,将理解在给定附图中使用数字来指代部件不旨在限制另一附图中用同一数字标记的部件。
详细描述
本公开针对具有垂直各向异性的磁性叠层或单元(如自旋力矩存储器(STRAM)单元),它们包括多层辅助叠层,其中包括自旋电流驱动的辅助层。在一些实施例中,自旋电流驱动的辅助层一般是“平面内”的,并且易于经由自旋电流切换到“平面外”。在其它实施例中,自旋电流驱动的辅助层一般是“平面外”的,因为它易于经由自旋电流切换到相反方向。
本公开针对具有磁各向异性的磁性存储器单元的各种设计,这些设计导致关联铁磁层的磁化方向垂直于晶片平面地对准,或处于“平面外”。这些存储器单元具有结构性要素,这些结构性要素减小了切换单元的数据位状态所需的切换电流,同时维持充足的热稳定性。该存储其单元可以高的面密度图案化在晶片上。
在以下描述中,参照形成本说明书一部分的一组附图,其中通过图示示出了若干特定实施例。应当理解的是,可构想并可作出其他实施例,而不背离本公开的范围或精神。因此,以下详细描述不应按照限定的意义来理解。本文中所提供的任何定义用于便于对本文中频繁使用的某些术语的理解,而不是为了限制本公开的范围。
除非另外指明,否则在说明书和权利要求书中使用的表示特征大小、量、以及物理性质的所有数字应被理解为在任何情况下均由术语“约”修饰。因此,除非相反地指明,否则在上述说明书和所附权利要求中陈述的数值参数是近似值,这些近似值可利用本文中公开的教导根据本领域技术人员所寻求获得的期望性质而变化。
如本说明书以及所附权利要求书中所使用的,单数形式“一”、“一个”以及“该”涵盖具有复数引用物的实施例,除非该内容明确地指示并非如此。如本说明书以及所附权利要求书中所使用的,术语“或”一般以包括“和/或”的意义来使用,除非该内容明确地指出并非如此。”
要注意,诸如“顶”、“底”、“上方”、“下方”等的术语可在本公开中使用。这些术语不应当解释为限制结构的位置或方向,而是应当用于提供结构之间的空间关系。
虽然本发明不仅限于此,但通过对下文提供的示例的讨论将获得对本公开的各个方面的理解。
图1A、1B和1C示出具有垂直或平面外磁性方向的磁性叠层。在一些实施例中,磁性叠层是磁性存储器单元,并可称为磁性隧道结单元(MTJ)、可变电阻性存储器单元、可变电阻存储器单元、或电阻感测存储器(RSM)单元等等。图1A示出存储器单元10A,图1B示出存储器单元10B,以及图1C示出存储器单元10C。
磁性存储器单元10A、10B和10C具有相对较软的铁磁自由层12、铁磁参考(例如被固定或被钉扎)层14,每个层具有平面外各向异性和磁化方向。铁磁自由层12和铁磁参考层14由氧化物阻挡层13分离,在一些实施例中氧化物阻挡层称为隧道阻挡层等等。
图1A和1B示出诸如硅晶片的衬底11上的磁性单元10A、10B。在图1A的存储器单元10A中,参考层14比自由层12更接近衬底11。在图1B的存储器单元10B中,自由层12比参考层14更接近衬底11。
返回所有图1A、1B和1C,自由层12和参考层14各自具有磁各向异性和相关联的磁化方向。层12、14的各向异性和磁化方向垂直于层延伸地取向并垂直于在其上形成有存储器单元10A、10B、10C的晶片衬底11的平面,这通常称为“平面外”或“垂直”。自由层12的磁化方向比参考层14的磁化方向更易切换,参考层14的磁化方向是固定的并且一般非常低且不会切换。在一些实施例中,接近铁磁参考层14的是反铁磁(AFM)钉扎层,它通过与钉扎层的反铁磁次序材料交换偏磁来钉扎参考层14的磁化方向。合适的钉扎材料的示例包括PtMn、IrMn等等。在替换实施例中,其它机制或要素可用于钉扎参考层14的磁化方向。
铁磁层12、14可由具有垂直或平面外各向异性的任何有用的铁磁(FM)材料制成。为了提供垂直磁各向异性,存在这些铁磁材料和其它材料的许多配置,包括:(1)单层铁磁材料(FM);(2)铁磁/非金属(FM/NM)多层;(3)FM/FM多层、(4)具有特殊晶相和纹理的铁磁合金;以及(5)重稀土过渡性金属合金。FM/NM多层的一个特例是Co/Pt多层。FM/FM多层的一个示例是Co/Ni多层。具有特定晶相和纹理的铁磁合金的一个示例是具有六方紧密堆积(hcp)晶体结构和垂直于膜平面的c轴(易磁化轴)的CoPtx合金。另一示例是具有L10结构和垂直于膜平面的c轴的FePt。相同L10FePt可以FePt多层形式制成,例如Cr/Pt/FePt。重稀土过渡性金属合金的示例包括TbCoFe和GdCoFe。其它可用材料的示例包括DyFeCo和SmFeCo。在一些实施例中,层12、14具有约1-10nm的厚度。
阻挡层13可由例如氧化物材料(例如,Al2O3、TiOx或MgOx)的电绝缘材料来制成。可取决于工艺可行性与设备可靠性用自由层12或用参考层14可任选地图案化阻挡层13。在一些实施例中,阻挡层13具有约0.5-1.5nm的厚度。
在图1C的实施例中,存储器单元10C包括存在于阻挡层13的至少一侧上的增强层15,在该实施例中增强层15存在于阻挡层的每一侧上,位于阻挡层13和自由层12之间以及位于阻挡层13和参考层14之间。增强层15与自由层12和/或参考层14牢固地耦合,由此增加单元10C的磁阻(TMR)并增加通过单元10C的自旋极化。对于诸如图1A的存储器单元10A和图1B的存储器单元10B的实施例,其中参考层14具有充足的自旋极化和磁阻特性,增强层不存在。
如果存在,增强层15可以是具有可接受的自旋极化范围(如大于约0.5)的任何铁磁材料。合适材料的示例包括Fe、Co和/或Ni的合金,如NiFe、CoFe和CoFeB。在一些实施例中,增强层15具有约(即0.5-3nm)的厚度。
对于具有平面内各向异性的铁磁材料(如Fe、Co和/或Ni的合金)用于增强层15的实施例,增强层15的磁化方向从“平面外”或“垂直”倾斜通常不大于约25°,例如约5-20°。增强层15的磁化方向大体上位于与自由层12或参考层14的磁化方向相同的方向,虽然由于平面内各向异性而稍微倾斜。
对于根据本公开的包括磁性存储器单元的磁性叠层,包括具有低各向异性(如约500Oe)的自旋电流驱动的或自旋极化的辅助层。各向异性可为平面内或平面外。辅助层便于自由层的磁化方向的切换。在图1A、1B和1C的每一个中,接近自由层12(在某些实施例中没有中间层地邻接于自由层12)的辅助层17便于自由层12的磁化方向的切换。具体而言,来自辅助层17的磁化方向的磁场便于自由层12的磁化方向的切换。
与自由层12、参考层14和可任选的增强层15不同,辅助层17具有非常弱的各向异性(例如不大于约700Oe,在一些实施例中,不大于约500Oe,或者甚至于不大于约400Oe),这导致易于切换的磁化方向。辅助层17耦合至或较弱地耦合至自由层12。图1A、1B和1C各自示出具有中性的、平面内磁化方向的辅助层17。通过磁性单元10A、10B、10C施加电流创建自旋力矩,并影响辅助层17的磁化方向,这转而影响自由层12的磁化方向。
辅助磁性层17可以是具有可接受的各向异性(如不大于约700Oe或500Oe或400Oe)的任何铁磁材料,包括但不限于Co、Ni、Fe等的合金。优选的是,辅助层17包括具有低磁矩(Ms)的材料,例如Ms≤1100emu/cc,在一些实施例中,Ms≤1000emu/cc,或者甚至于Ms≤950emu/cc。在一些实施例中,辅助层17具有约(即0.5-3nm)的厚度。
第一电极16和第二电极与自由层12和参考层14电接触。对于图1A的存储器单元10A和图1C的存储器单元10C,电极16接近(且在一些实施例中邻接)参考层14,而对于图1B的存储器单元10B,电极16接近(且在一些实施例中邻接)辅助层17。对于图1A的存储器单元10A和图1C的存储器单元10C,电极18接近(且在一些实施例中邻接)辅助层17,而对于图1B的存储器单元10B,电极18接近(且在一些实施例中邻接)参考层14。电极16、18将单元10A、10B、10C电连接至提供通过层12、14的读写电流的控制电路。磁性存储器单元10A、10B、10C两端的电阻根据铁磁层12、14的磁化向量或磁化方向的相对方向来确定。
所有存储器单元10A、10B、10C显示为自由层12具有未定义的磁化方向。自由层12的磁化方向具有两个稳定的相反状态,两者均垂直于其上形成有存储器单元10A、10B、10C的衬底。当自由层12的磁化方向与参考层14的磁化方向处于同一方向时,磁性存储器单元处于低电阻状态。相反,当自由层12的磁化方向与参考层14的磁化方向处于相反方向时,磁性存储器单元处于高电阻状态。在一些实施例中,低电阻状态是“0”数据状态,高电阻状态是“1”数据状态,而在其它实施例中,低电阻状态是“1”,高电阻状态是“0”。
当通过诸如辅助层17的磁性层的电流变得自旋极化并对自由层12施加自旋力矩时,进行经由自旋转移的磁性存储器单元10A、10B、10C的电阻状态的切换,并由此进行数据状态的切换。当足够的自旋力矩被施加于自由层12时,自由层12的磁化方向可在两个相反方向之间切换,并因此,磁性存储器单元10A、10B、10C可在低电阻状态和高电阻状态之间切换。
图2是示例性存储器组件20的示意图,它包括经由导电元件电耦合到半导体晶体管22的存储器元件21。存储器元件21可以是本文中描述的任何存储器单元,或者可以是配置成经由通过存储器元件21的电流切换数据状态的任何其它存储器单元。晶体管22包括具有掺杂区域(例如,示为n掺杂区域)和在掺杂区域之间的沟道区域(例如,示为p掺杂沟道区域)的半导体衬底25。晶体管22包括电耦合至字线WL的栅极26,以允许选择并且允许电流从位线BL流向存储器元件21。可编程金属化存储器组件20的阵列可利用半导体制造技术用字线和位线在半导体衬底上形成。
对于具有垂直磁各向异性的磁性叠层(例如存储器单元),如存储器单元10A、10B、10C,在被钉扎的参考层和自由层之间进行比具有平面内磁各向异性的磁性叠层中更牢固的耦合。可任选地包括增强层15进一步增强耦合。较高程度的耦合导致较低的所需切换电流(Ic)。
具有平面内各向异性和磁化的磁性叠层要求形状各向异性以维持其热稳定性。然而,形状各向异性依赖于形状和大小并提出对高容量和高密度存储器的挑战。此外,对于切换电流,平面内磁性叠层具有热稳定性但效率低。用于平面内磁性叠层的切换电流密度为:
其中α是阻尼常数,Ms是饱和磁化,η是自旋电流效率,Hk是平面内各向异性,H是外磁场。
虽然第一项(Hk)对叠层的热稳定性做贡献,而第二项(2πMs)对热能没有贡献,但是第二项对所需切换电流具有较大影响。
具有垂直各向异性的平面外磁性叠层(例如存储器单元10A、10B)的切换电流密度为:
其中Hk是平面外各向异性磁场。
对于平面外各向异性,第一项(Hk)和第二项(-4πMs)两者都对叠层的热稳定性作贡献。去磁化场可进一步减小热能阻挡层,并可减小所需的切换电流。至少基于这些原因,对于自旋电流,具有平面外各向异性的磁性叠层具有热稳定性且效率较高。
图3示出具有平面外各向异性的磁性叠层的实施例,该磁性叠层包括具有弱各向异性的辅助层,该辅助层是辅助叠层的一部分。在一些实施例中,辅助层可以是辅助叠层的唯一层。该磁性叠层的各种要素的特征与图1A、1B和1C的磁性存储器单元10A、10B、10C的要素类似或相同,除非另外指明。
图3的磁性单元300的取向类似于图1B的存储器单元10B,其中自由层比参考层更接近其上形成存储器单元的衬底。然而,不同于磁性单元10B,磁性单元300具有由多层构成的辅助叠层,其中的一层是辅助层。
磁性单元300包括相对较软的铁磁自由层302,第一铁磁参考(如被固定或被钉扎)层304,以及这两者之间的阻挡层303。自由层302和参考层304各自具有平面外磁化方向。阻挡层303的任一侧是增强层305、307,其中第一增强层305接近自由层302,而第二增强层307接近参考层304。磁性单元300包括自旋电流驱动的或自旋极化的辅助叠层311,辅助叠层311通过可任选的间隔层310与自由层302分离。在该实施例中,辅助叠层311由第二铁磁参考(如被固定或被钉扎)层314和第三增强层315构成,第三增强层315通过第二阻挡层313与辅助层317分隔开。在其它实施例中,辅助叠层311可具有不同的层(更多的层或更少的层),但是包括辅助层317。第一电极306经由辅助叠层311与自由层302电接触,而第二电极308与参考层304电接触。
在一些实施例中,磁性单元300可称为双重单元,具有两个参考层(即参考层304、314)和一个自由层(即自由层302)。双重单元结构具有铁磁自由层,该铁磁自由层具有通过被钉扎的基准层约束在其顶部和底部的可切换垂直磁化方向。对于具有双重单元结构的磁性叠层,由于具有两个被钉扎的参考层,因此切换电流(Ic)低于单个单元结构。由于每个被钉扎的基准层影响到自由层的磁化方向的切换,因此来自第一被钉扎的参考层和第二被钉扎的参考层的自旋力矩是累积的,由此需要较小的总切换电流来切换自由层的磁化方向。
自由层302、阻挡层303、参考层304和增强层305、307的各个特征与图1A、1B、1C的自由层12、阻挡层13、参考层14和增强层15、17的特征相同或类似。类似于图1A、1B和1C的存储器单元10A、10B、10C,自由层302和参考层304具有平面外或垂直各向异性和磁化方向,而增强层305、307具有占主导的平面外或垂直磁化方向。自由层302的磁化方向具有两个稳定的相反状态,两者均垂直于其上形成有磁性单元300的衬底。增强层305、307的磁化方向也具有两个稳定的相反状态,两者均相对于衬底稍微倾斜。接近参考层304的增强层307具有相对于参考层304的磁化方向大体上平行(但稍微倾斜)的磁化方向。比第二增强层307更接近自由层302的增强层305具有基于自由层302的磁化方向切换的磁化方向;该磁化方向可平行于或反平行于增强层307的磁化方向。
辅助叠层311具有参考层314和增强层315,参考层314具有平面外或垂直各向异性和磁化方向,增强层315具有占主导的平面外或垂直磁化方向。作为双重单元结构,参考层314的磁化方向与第一参考层304的磁化方向相反或反平行。增强层315的磁化方向具有两个稳定的相反状态,两者均相对于其上形成有磁性单元300的衬底稍微倾斜。接近参考层314的增强层317具有相对于参考层314的磁化方向大体上平行(但稍微倾斜)的磁化方向。辅助叠层317具有较弱的各向异性,它易于在平面内或平面外切换。
在磁性单元300的特定实施例中,从自由层302分离辅助叠层311的是间隔层310,间隔层310是导电的非铁磁材料(如Ru、Pd或Cr)或者是厚度小于1.5nm的电绝缘体。在一些实施例中,例如,辅助层307和自由层302之间的直接耦合是期望的,间隔层不存在。
包括自旋电流极化辅助层317的辅助叠层311便于自由层302的磁化方向的切换。具体地,来自辅助层317的磁化方向的磁场便于自由层302的磁化方向的切换。
与自由层302,参考层304、314和增强层305、307、315不同,辅助层317具有易于切换的较弱或非常弱的各向异性。各向异性可为平面内或平面外。辅助层317耦合或较弱地耦合至自由层302。图3示出具有中性的平面内磁化方向的辅助层317。通过磁性单元300施加电流可创建自旋力矩,该自旋力矩影响辅助层317的磁化方向,这转而影响自由层302的磁化方向。
参考图4A和4B,示出类似于图3的磁性单元300的磁性叠层。磁性单元400包括相对较软的铁磁自由层402和第一铁磁参考(例如被固定或被钉扎)层404,每个层具有平面外的磁化方向。在自由层402和第一参考层404之间是第一阻挡层403、第一增强层405和第二增强层407。辅助叠层411在与参考层404相反的一侧上接近自由层402,并通过可任选的间隔层410与自由层402分离。辅助叠层411具有第二参考层414、第三增强层415和辅助层417,其中第二阻挡层413位于增强层415和辅助层417之间。在叠层411的各个层中,辅助层417最接近自由层402。第一电极406经由辅助叠层411与自由层402电接触,而第二电极408与第一参考层404电接触。
通过磁性单元400的自旋力矩可取决于电子流方向,容易地将辅助层417的磁化方向改变成向上(即与第二参考层414的磁化方向相同的方向)或向下(即与第一参考层404的磁化方向相同的方向)。在施加任何电流或电子流之前,辅助层417的磁化方向可为平面内或平面外。如果是平面内,则在大部分实施例中,辅助层417的磁化方向将随电子流从平面内向平面外旋转,通常为从平面内旋转至少10°,在一些实施例中,从平面内旋转至少25°。
图4A示出从第二参考层414向上流向第一参考层404的电子,而图4B示出从第一参考层404向下流向第二参考层414的电子。由于辅助层417的低各向异性,当图4A中自旋极化电子从底部流向顶部时,辅助层417的磁化方向随电子旋转。向上取向的辅助层417发射辅助磁场(即静态场、层间耦合场、或两者)。辅助磁场影响自由层的磁化的切换。所得到的结构处于高电阻状态,其中自由层402的磁化方向与第一参考层404的磁化方向为相反方向(即反平行)。当图4B中自旋极化电子从顶部流向底部时,辅助层417的磁化方向随电子旋转。向下取向的辅助层417发射辅助磁场(即静态场、层间耦合场、或两者),该磁场影响自由层402的磁化的切换。所得到的结构处于低电阻状态,其中自由层402的磁化方向与参考层404的磁化方向为相同方向(即平行)。
因此,为了将低电阻状态写入存储器单元400(图4B),将从电极406向电极408跨存储器单元400施加电流,使得电子向下流动。相反,为了将高电阻状态写入存储器单元400(图4A),将从电极408向电极406跨存储器单元400施加电流,使得电子向上流动。
本公开的各种结构可通过薄膜技术制成,例如化学汽相沉积(CVD)、物理汽相沉积(PVD)、溅射沉积以及原子层沉积(ALD)。
由此,揭示了“具有辅助层的磁性叠层”的实施例。上述实现以及其它实现在所附权利要求的范围内。本领域技术人员将理解本公开可用除所公开的实施例之外的实施例来实施。出于说明而非限制目的给出了所公开的实施例,且本发明仅受限于所附权利要求。
在下面权利要求书中使用数字表示,例如“第一”、“第二”等是为了辨认和提供在前基础。除非内容明确表示相反情形,否则不应当认为数字表示意指这一数目的这类要素必需在设备、系统或装置中出现。例如,如果设备包括第一层,这并不意味着该设备中一定就要有第二层。
Claims (20)
1.一种磁性单元,包括:
铁磁自由层和第一铁磁被钉扎参考层,每个层具有平面外的磁各向异性和平面外的磁化方向并可经由自旋力矩切换;
位于所述自由层和所述参考层之间的第一氧化物阻挡层;以及
接近所述自由层的铁磁辅助层,具有小于约500Oe的低磁各向异性。
2.如权利要求1所述的磁性单元,其特征在于,所述辅助层具有平面内的磁各向异性。
3.如权利要求1所述的磁性单元,其特征在于,所述辅助层具有平面外的磁各向异性。
4.如权利要求1所述的磁性单元,其特征在于,所述辅助层包括Co、Ni、Fe或它们的合金中的至少一个。
5.如权利要求1所述的磁性单元,其特征在于,所述辅助层具有小于约1000emu/cc的磁矩。
6.如权利要求1所述的磁性单元,其特征在于,还包括第二被钉扎参考层,具有平面外的磁各向异性和平面外的磁化方向,所述辅助层位于所述自由层和所述第二参考层之间。
7.如权利要求1所述的磁性单元,其特征在于,还包括第一增强层和第二增强层,所述第一增强层位于所述氧化物阻挡层和所述自由层之间,所述第二增强层位于所述氧化物阻挡层和所述第一参考层之间。
8.如权利要求7所述的磁性单元,其特征在于,还包括接近所述第二参考层的第三增强层。
9.如权利要求8所述的磁性单元,其特征在于,还包括位于所述辅助层和所述第三增强层之间的第二氧化物阻挡层。
10.如权利要求6所述的磁性单元,其特征在于,包括位于所述辅助层和所述自由层之间的导电非铁磁间隔层。
11.如权利要求6所述的磁性单元,其特征在于,包括位于所述辅助层和所述自由层之间的电绝缘间隔层。
12.如权利要求6所述的磁性单元,其特征在于,一旦电流通过所述磁性单元,所述辅助层的磁化方向就从平面内旋转至少10°。
13.如权利要求6所述的磁性单元,其特征在于,所述磁性单元是磁性隧道结存储器单元。
14.一种衬底上的磁性存储器单元,所述存储器单元包括:
铁磁自由层,具有垂直于所述衬底的平面外磁各向异性和平面外磁化方向,并可经由自旋力矩切换;
第一铁磁被钉扎参考层,具有垂直于所述衬底的平面外磁各向异性和平面外磁化方向;
位于所述自由层和所述第一参考层之间的氧化物阻挡层;以及
接近所述自由层的具有低磁各向异性的铁磁辅助叠层,所述辅助叠层包括辅助层,所述辅助层具有小于约1000emu/cc的磁矩和在来自电流的电子流方向上旋转的磁化方向。
15.如权利要求14所述的存储器单元,其特征在于,所述辅助层具有平面内的磁各向异性。
16.如权利要求15所述的存储器单元,其特征在于,所述辅助层的磁化方向为从平面内旋转至少10°。
17.如权利要求14所述的存储器单元,其特征在于,所述辅助层具有小于约500Oe的低磁各向异性。
18.一种写入磁性单元的方法,包括:
使电流通过磁性单元,所述磁性单元包括自由层和参考层,每个层具有平面外各向异性和磁化方向,并且电流具有电子流方向;
在电子流方向上旋转接近所述自由层的辅助层的磁化方向,所述辅助层具有小于约500Oe的磁各向异性;以及
使所述自由层的磁化方向在所述电子流方向上取向。
19.如权利要求18所述的方法,其特征在于,还包括:
使所述电流通过第二参考层,所述第二参考层具有平面外各向异性和磁化方向。
20.如权利要求18所述的方法,其特征在于,旋转辅助层的磁化方向包括从平面内旋转所述磁化方向至少10°。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/431,162 US7936598B2 (en) | 2009-04-28 | 2009-04-28 | Magnetic stack having assist layer |
US12/431,162 | 2009-04-28 | ||
PCT/US2010/032483 WO2010126854A1 (en) | 2009-04-28 | 2010-04-27 | Magnetic stack with spin torque switching having a layer assisting said switching |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102414756A true CN102414756A (zh) | 2012-04-11 |
CN102414756B CN102414756B (zh) | 2015-07-22 |
Family
ID=42246351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080019289.1A Expired - Fee Related CN102414756B (zh) | 2009-04-28 | 2010-04-27 | 具有辅助层的磁性叠层 |
Country Status (5)
Country | Link |
---|---|
US (3) | US7936598B2 (zh) |
JP (1) | JP5623507B2 (zh) |
KR (1) | KR101405854B1 (zh) |
CN (1) | CN102414756B (zh) |
WO (1) | WO2010126854A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681598A (zh) * | 2012-08-29 | 2014-03-26 | 国际商业机器公司 | 集成层积磁性器件及其制造方法 |
CN108267698A (zh) * | 2018-01-08 | 2018-07-10 | 上海交通大学 | 一种提高层叠复合磁传感器灵敏度的方法 |
CN111542490A (zh) * | 2018-12-06 | 2020-08-14 | 桑迪士克科技有限责任公司 | 用于低温操作的金属磁性存储器装置及其操作方法 |
CN112186099A (zh) * | 2019-07-02 | 2021-01-05 | 中电海康集团有限公司 | 磁性隧道结 |
WO2021056483A1 (zh) * | 2019-09-27 | 2021-04-01 | 华为技术有限公司 | 一种mtj单元、vcma驱动方法及mram |
CN112993147A (zh) * | 2019-12-13 | 2021-06-18 | 爱思开海力士有限公司 | 电子设备 |
Families Citing this family (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8755222B2 (en) | 2003-08-19 | 2014-06-17 | New York University | Bipolar spin-transfer switching |
US7911832B2 (en) * | 2003-08-19 | 2011-03-22 | New York University | High speed low power magnetic devices based on current induced spin-momentum transfer |
FR2924261A1 (fr) * | 2007-11-26 | 2009-05-29 | Commissariat Energie Atomique | Support d'enregistrement magnetique |
JP5062538B2 (ja) * | 2007-12-19 | 2012-10-31 | 富士電機株式会社 | 磁気メモリー素子、その駆動方法及び不揮発性記憶装置 |
US7940600B2 (en) | 2008-12-02 | 2011-05-10 | Seagate Technology Llc | Non-volatile memory with stray magnetic field compensation |
US7936598B2 (en) | 2009-04-28 | 2011-05-03 | Seagate Technology | Magnetic stack having assist layer |
JP5479487B2 (ja) * | 2010-03-31 | 2014-04-23 | 株式会社東芝 | 磁気抵抗素子及び磁気メモリ |
US8604572B2 (en) * | 2010-06-14 | 2013-12-10 | Regents Of The University Of Minnesota | Magnetic tunnel junction device |
US8772886B2 (en) | 2010-07-26 | 2014-07-08 | Avalanche Technology, Inc. | Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer |
JP5786341B2 (ja) | 2010-09-06 | 2015-09-30 | ソニー株式会社 | 記憶素子、メモリ装置 |
US8565010B2 (en) * | 2011-02-16 | 2013-10-22 | Avalanche Technology, Inc. | Magnetic random access memory with field compensating layer and multi-level cell |
FR2966636B1 (fr) * | 2010-10-26 | 2012-12-14 | Centre Nat Rech Scient | Element magnetique inscriptible |
US20120104522A1 (en) * | 2010-11-01 | 2012-05-03 | Seagate Technology Llc | Magnetic tunnel junction cells having perpendicular anisotropy and enhancement layer |
US8399941B2 (en) * | 2010-11-05 | 2013-03-19 | Grandis, Inc. | Magnetic junction elements having an easy cone anisotropy and a magnetic memory using such magnetic junction elements |
KR101463948B1 (ko) * | 2010-11-08 | 2014-11-27 | 삼성전자주식회사 | 자기 기억 소자 |
US8508973B2 (en) | 2010-11-16 | 2013-08-13 | Seagate Technology Llc | Method of switching out-of-plane magnetic tunnel junction cells |
US8274811B2 (en) * | 2010-11-22 | 2012-09-25 | Headway Technologies, Inc. | Assisting FGL oscillations with perpendicular anisotropy for MAMR |
US8406045B1 (en) * | 2011-01-19 | 2013-03-26 | Grandis Inc. | Three terminal magnetic element |
US9196332B2 (en) * | 2011-02-16 | 2015-11-24 | Avalanche Technology, Inc. | Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer |
US8456895B2 (en) * | 2011-05-03 | 2013-06-04 | International Business Machines Corporation | Magnonic magnetic random access memory device |
US8456894B2 (en) | 2011-05-03 | 2013-06-04 | International Business Machines Corporation | Noncontact writing of nanometer scale magnetic bits using heat flow induced spin torque effect |
US8754491B2 (en) | 2011-05-03 | 2014-06-17 | International Business Machines Corporation | Spin torque MRAM using bidirectional magnonic writing |
JP2012238631A (ja) * | 2011-05-10 | 2012-12-06 | Sony Corp | 記憶素子、記憶装置 |
WO2012159078A2 (en) * | 2011-05-19 | 2012-11-22 | The Regents Of The University Of California | Voltage-controlled magnetic anisotropy (vcma) switch and magneto-electric memory (meram) |
US9007818B2 (en) | 2012-03-22 | 2015-04-14 | Micron Technology, Inc. | Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication |
US20130307097A1 (en) * | 2012-05-15 | 2013-11-21 | Ge Yi | Magnetoresistive random access memory cell design |
US9054030B2 (en) | 2012-06-19 | 2015-06-09 | Micron Technology, Inc. | Memory cells, semiconductor device structures, memory systems, and methods of fabrication |
US8923038B2 (en) | 2012-06-19 | 2014-12-30 | Micron Technology, Inc. | Memory cells, semiconductor device structures, memory systems, and methods of fabrication |
WO2014022304A1 (en) * | 2012-07-30 | 2014-02-06 | The Regents Of The University Of California | Multiple-bits-per-cell voltage-controlled magnetic memory |
US9231191B2 (en) * | 2012-08-20 | 2016-01-05 | Industrial Technology Research Institute | Magnetic tunnel junction device and method of making same |
KR101266792B1 (ko) | 2012-09-21 | 2013-05-27 | 고려대학교 산학협력단 | 면내 전류와 전기장을 이용한 수평형 자기메모리 소자 |
KR101266791B1 (ko) * | 2012-09-21 | 2013-05-27 | 고려대학교 산학협력단 | 면내 전류와 전기장을 이용한 자기메모리 소자 |
US8773821B2 (en) * | 2012-10-05 | 2014-07-08 | Nve Corporation | Magnetoresistive-based mixed anisotropy high field sensor |
US9082888B2 (en) | 2012-10-17 | 2015-07-14 | New York University | Inverted orthogonal spin transfer layer stack |
US9082950B2 (en) | 2012-10-17 | 2015-07-14 | New York University | Increased magnetoresistance in an inverted orthogonal spin transfer layer stack |
US9379315B2 (en) | 2013-03-12 | 2016-06-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, semiconductor device structures, and memory systems |
US8982613B2 (en) | 2013-06-17 | 2015-03-17 | New York University | Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates |
US9368714B2 (en) | 2013-07-01 | 2016-06-14 | Micron Technology, Inc. | Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems |
US9466787B2 (en) | 2013-07-23 | 2016-10-11 | Micron Technology, Inc. | Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems |
ES2658984T3 (es) * | 2013-09-05 | 2018-03-13 | Deutsches Elektronen-Synchrotron Desy | Método de producción de un dispositivo magneto-electrónico multicapa y dispositivo magneto-electrónico |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
US9608197B2 (en) | 2013-09-18 | 2017-03-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9306155B2 (en) | 2013-11-11 | 2016-04-05 | Samsung Electronics Co., Ltd. | Method and system for providing a bulk perpendicular magnetic anisotropy free layer in a perpendicular magnetic junction usable in spin transfer torque magnetic random access memory applications |
US10454024B2 (en) | 2014-02-28 | 2019-10-22 | Micron Technology, Inc. | Memory cells, methods of fabrication, and memory devices |
US9344345B2 (en) * | 2014-03-19 | 2016-05-17 | Micron Technology, Inc. | Memory cells having a self-aligning polarizer |
US9281466B2 (en) | 2014-04-09 | 2016-03-08 | Micron Technology, Inc. | Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication |
US9269888B2 (en) | 2014-04-18 | 2016-02-23 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9336797B2 (en) * | 2014-05-29 | 2016-05-10 | HGST Netherlands B.V. | Extended spin torque oscillator |
US9792971B2 (en) | 2014-07-02 | 2017-10-17 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions with rare earth-transition metal layers |
US9263667B1 (en) | 2014-07-25 | 2016-02-16 | Spin Transfer Technologies, Inc. | Method for manufacturing MTJ memory device |
US9941468B2 (en) * | 2014-08-08 | 2018-04-10 | Tohoku University | Magnetoresistance effect element and magnetic memory device |
US9337412B2 (en) * | 2014-09-22 | 2016-05-10 | Spin Transfer Technologies, Inc. | Magnetic tunnel junction structure for MRAM device |
US9349945B2 (en) | 2014-10-16 | 2016-05-24 | Micron Technology, Inc. | Memory cells, semiconductor devices, and methods of fabrication |
US9768377B2 (en) | 2014-12-02 | 2017-09-19 | Micron Technology, Inc. | Magnetic cell structures, and methods of fabrication |
US10439131B2 (en) | 2015-01-15 | 2019-10-08 | Micron Technology, Inc. | Methods of forming semiconductor devices including tunnel barrier materials |
US9728712B2 (en) | 2015-04-21 | 2017-08-08 | Spin Transfer Technologies, Inc. | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
US10468590B2 (en) | 2015-04-21 | 2019-11-05 | Spin Memory, Inc. | High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory |
US9853206B2 (en) | 2015-06-16 | 2017-12-26 | Spin Transfer Technologies, Inc. | Precessional spin current structure for MRAM |
US9773974B2 (en) | 2015-07-30 | 2017-09-26 | Spin Transfer Technologies, Inc. | Polishing stop layer(s) for processing arrays of semiconductor elements |
US10163479B2 (en) | 2015-08-14 | 2018-12-25 | Spin Transfer Technologies, Inc. | Method and apparatus for bipolar memory write-verify |
US20170077387A1 (en) * | 2015-09-16 | 2017-03-16 | Qualcomm Incorporated | Magnetic tunnel junction (mtj) devices particularly suited for efficient spin-torque-transfer (stt) magnetic random access memory (mram) (stt mram) |
US10134808B2 (en) * | 2015-11-02 | 2018-11-20 | Qualcomm Incorporated | Magnetic tunnel junction (MTJ) devices with heterogeneous free layer structure, particularly suited for spin-torque-transfer (STT) magnetic random access memory (MRAM) (STT MRAM) |
US11563169B2 (en) | 2015-11-18 | 2023-01-24 | Tohoku University | Magnetic tunnel junction element and magnetic memory |
KR102482373B1 (ko) | 2015-11-24 | 2022-12-29 | 삼성전자주식회사 | 자기 저항 메모리 장치 및 그 제조 방법 |
US9741926B1 (en) | 2016-01-28 | 2017-08-22 | Spin Transfer Technologies, Inc. | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
US10418545B2 (en) | 2016-07-29 | 2019-09-17 | Tdk Corporation | Spin current magnetization reversal element, element assembly, and method for producing spin current magnetization reversal element |
US20220158082A1 (en) * | 2016-07-29 | 2022-05-19 | Tdk Corporation | Spin current magnetization reversal element, element assembly, and method for producing spin current magnetization reversal element |
US10628316B2 (en) | 2016-09-27 | 2020-04-21 | Spin Memory, Inc. | Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register |
US10446210B2 (en) | 2016-09-27 | 2019-10-15 | Spin Memory, Inc. | Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers |
US10546625B2 (en) | 2016-09-27 | 2020-01-28 | Spin Memory, Inc. | Method of optimizing write voltage based on error buffer occupancy |
US10460781B2 (en) | 2016-09-27 | 2019-10-29 | Spin Memory, Inc. | Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank |
US11151042B2 (en) | 2016-09-27 | 2021-10-19 | Integrated Silicon Solution, (Cayman) Inc. | Error cache segmentation for power reduction |
US10360964B2 (en) | 2016-09-27 | 2019-07-23 | Spin Memory, Inc. | Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device |
US11119936B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Error cache system with coarse and fine segments for power optimization |
US10437723B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device |
US10437491B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register |
US10991410B2 (en) | 2016-09-27 | 2021-04-27 | Spin Memory, Inc. | Bi-polar write scheme |
US11119910B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments |
US10366774B2 (en) | 2016-09-27 | 2019-07-30 | Spin Memory, Inc. | Device with dynamic redundancy registers |
US10818331B2 (en) | 2016-09-27 | 2020-10-27 | Spin Memory, Inc. | Multi-chip module for MRAM devices with levels of dynamic redundancy registers |
KR101998268B1 (ko) | 2016-10-21 | 2019-07-11 | 한국과학기술원 | 반도체 소자 |
WO2018074724A1 (ko) * | 2016-10-21 | 2018-04-26 | 한국과학기술원 | 반도체 소자 및 반도체 로직 소자 |
US10319901B2 (en) | 2016-10-27 | 2019-06-11 | Tdk Corporation | Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device |
US10439130B2 (en) | 2016-10-27 | 2019-10-08 | Tdk Corporation | Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element |
US11276815B2 (en) | 2016-10-27 | 2022-03-15 | Tdk Corporation | Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device |
US10079337B2 (en) * | 2017-01-11 | 2018-09-18 | International Business Machines Corporation | Double magnetic tunnel junction with dynamic reference layer |
US10672976B2 (en) | 2017-02-28 | 2020-06-02 | Spin Memory, Inc. | Precessional spin current structure with high in-plane magnetization for MRAM |
US10665777B2 (en) * | 2017-02-28 | 2020-05-26 | Spin Memory, Inc. | Precessional spin current structure with non-magnetic insertion layer for MRAM |
US10032978B1 (en) | 2017-06-27 | 2018-07-24 | Spin Transfer Technologies, Inc. | MRAM with reduced stray magnetic fields |
US10489245B2 (en) | 2017-10-24 | 2019-11-26 | Spin Memory, Inc. | Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them |
US10481976B2 (en) | 2017-10-24 | 2019-11-19 | Spin Memory, Inc. | Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers |
US10656994B2 (en) | 2017-10-24 | 2020-05-19 | Spin Memory, Inc. | Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques |
US10529439B2 (en) | 2017-10-24 | 2020-01-07 | Spin Memory, Inc. | On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects |
US10679685B2 (en) | 2017-12-27 | 2020-06-09 | Spin Memory, Inc. | Shared bit line array architecture for magnetoresistive memory |
US10424726B2 (en) | 2017-12-28 | 2019-09-24 | Spin Memory, Inc. | Process for improving photoresist pillar adhesion during MRAM fabrication |
US10971293B2 (en) * | 2017-12-28 | 2021-04-06 | Tdk Corporation | Spin-orbit-torque magnetization rotational element, spin-orbit-torque magnetoresistance effect element, and spin-orbit-torque magnetization rotational element manufacturing method |
US10811594B2 (en) | 2017-12-28 | 2020-10-20 | Spin Memory, Inc. | Process for hard mask development for MRAM pillar formation using photolithography |
US10891997B2 (en) | 2017-12-28 | 2021-01-12 | Spin Memory, Inc. | Memory array with horizontal source line and a virtual source line |
US10516094B2 (en) | 2017-12-28 | 2019-12-24 | Spin Memory, Inc. | Process for creating dense pillars using multiple exposures for MRAM fabrication |
US10360962B1 (en) | 2017-12-28 | 2019-07-23 | Spin Memory, Inc. | Memory array with individually trimmable sense amplifiers |
US10395712B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Memory array with horizontal source line and sacrificial bitline per virtual source |
US10395711B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Perpendicular source and bit lines for an MRAM array |
US10199083B1 (en) | 2017-12-29 | 2019-02-05 | Spin Transfer Technologies, Inc. | Three-terminal MRAM with ac write-assist for low read disturb |
US10840439B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Magnetic tunnel junction (MTJ) fabrication methods and systems |
US10360961B1 (en) | 2017-12-29 | 2019-07-23 | Spin Memory, Inc. | AC current pre-charge write-assist in orthogonal STT-MRAM |
US10784439B2 (en) | 2017-12-29 | 2020-09-22 | Spin Memory, Inc. | Precessional spin current magnetic tunnel junction devices and methods of manufacture |
US10236048B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | AC current write-assist in orthogonal STT-MRAM |
US10886330B2 (en) | 2017-12-29 | 2021-01-05 | Spin Memory, Inc. | Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch |
US10367139B2 (en) | 2017-12-29 | 2019-07-30 | Spin Memory, Inc. | Methods of manufacturing magnetic tunnel junction devices |
US10424723B2 (en) | 2017-12-29 | 2019-09-24 | Spin Memory, Inc. | Magnetic tunnel junction devices including an optimization layer |
US10236047B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM |
US10546624B2 (en) | 2017-12-29 | 2020-01-28 | Spin Memory, Inc. | Multi-port random access memory |
US10840436B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture |
US10270027B1 (en) | 2017-12-29 | 2019-04-23 | Spin Memory, Inc. | Self-generating AC current assist in orthogonal STT-MRAM |
US10319900B1 (en) | 2017-12-30 | 2019-06-11 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density |
US10236439B1 (en) | 2017-12-30 | 2019-03-19 | Spin Memory, Inc. | Switching and stability control for perpendicular magnetic tunnel junction device |
US10339993B1 (en) | 2017-12-30 | 2019-07-02 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching |
US10255962B1 (en) | 2017-12-30 | 2019-04-09 | Spin Memory, Inc. | Microwave write-assist in orthogonal STT-MRAM |
US10229724B1 (en) | 2017-12-30 | 2019-03-12 | Spin Memory, Inc. | Microwave write-assist in series-interconnected orthogonal STT-MRAM devices |
US10141499B1 (en) | 2017-12-30 | 2018-11-27 | Spin Transfer Technologies, Inc. | Perpendicular magnetic tunnel junction device with offset precessional spin current layer |
US10468588B2 (en) | 2018-01-05 | 2019-11-05 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer |
US10438995B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Devices including magnetic tunnel junctions integrated with selectors |
US10438996B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Methods of fabricating magnetic tunnel junctions integrated with selectors |
US10388861B1 (en) | 2018-03-08 | 2019-08-20 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US10446744B2 (en) | 2018-03-08 | 2019-10-15 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US10784437B2 (en) | 2018-03-23 | 2020-09-22 | Spin Memory, Inc. | Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US11107978B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US11107974B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer |
US20190296228A1 (en) | 2018-03-23 | 2019-09-26 | Spin Transfer Technologies, Inc. | Three-Dimensional Arrays with Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer |
US10411185B1 (en) | 2018-05-30 | 2019-09-10 | Spin Memory, Inc. | Process for creating a high density magnetic tunnel junction array test platform |
US10559338B2 (en) | 2018-07-06 | 2020-02-11 | Spin Memory, Inc. | Multi-bit cell read-out techniques |
US10600478B2 (en) | 2018-07-06 | 2020-03-24 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10593396B2 (en) | 2018-07-06 | 2020-03-17 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10692569B2 (en) | 2018-07-06 | 2020-06-23 | Spin Memory, Inc. | Read-out techniques for multi-bit cells |
US10650875B2 (en) | 2018-08-21 | 2020-05-12 | Spin Memory, Inc. | System for a wide temperature range nonvolatile memory |
US10699761B2 (en) | 2018-09-18 | 2020-06-30 | Spin Memory, Inc. | Word line decoder memory architecture |
US11621293B2 (en) | 2018-10-01 | 2023-04-04 | Integrated Silicon Solution, (Cayman) Inc. | Multi terminal device stack systems and methods |
US10971680B2 (en) | 2018-10-01 | 2021-04-06 | Spin Memory, Inc. | Multi terminal device stack formation methods |
US10580827B1 (en) | 2018-11-16 | 2020-03-03 | Spin Memory, Inc. | Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching |
KR102698784B1 (ko) * | 2018-11-19 | 2024-08-27 | 삼성전자주식회사 | 자기 기억 소자 |
US11107979B2 (en) | 2018-12-28 | 2021-08-31 | Spin Memory, Inc. | Patterned silicide structures and methods of manufacture |
US10852369B2 (en) | 2019-01-09 | 2020-12-01 | Infineon Technologies Ag | Stray field robust xMR sensor using perpendicular anisotropy |
KR102632986B1 (ko) | 2019-10-01 | 2024-02-05 | 에스케이하이닉스 주식회사 | 전자 장치 |
KR102710350B1 (ko) * | 2019-10-02 | 2024-09-27 | 삼성전자주식회사 | 자기 기억 소자 |
US11276446B1 (en) | 2020-08-27 | 2022-03-15 | Western Digital Technologies, Inc. | Multiferroic-assisted voltage controlled magnetic anisotropy memory device and methods of manufacturing the same |
US11264562B1 (en) * | 2020-08-27 | 2022-03-01 | Western Digital Technologies, Inc. | Multiferroic-assisted voltage controlled magnetic anisotropy memory device and methods of manufacturing the same |
US11610731B2 (en) | 2021-03-09 | 2023-03-21 | Hirofusa Otsubo | Apparatus for assembling a non-directional free electron generating repelling magnet combination |
EP4362626A1 (en) * | 2022-10-31 | 2024-05-01 | Commissariat à l'énergie atomique et aux énergies alternatives | Magnetic device and corresponding method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070096229A1 (en) * | 2005-10-28 | 2007-05-03 | Masatoshi Yoshikawa | Magnetoresistive element and magnetic memory device |
CN101093721A (zh) * | 2006-06-22 | 2007-12-26 | 株式会社东芝 | 磁阻元件和磁性存储器 |
US20080088980A1 (en) * | 2006-10-13 | 2008-04-17 | Eiji Kitagawa | Magnetoresistive element and magnetic memory |
Family Cites Families (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US708869A (en) * | 1901-10-09 | 1902-09-09 | Joseph Davidoff | Folding cot. |
US6462919B1 (en) * | 1999-04-28 | 2002-10-08 | Seagate Technology Llc | Spin valve sensor with exchange tabs |
US6650513B2 (en) * | 2001-01-29 | 2003-11-18 | International Business Machines Corporation | Magnetic devices with a ferromagnetic layer having perpendicular magnetic anisotropy and an antiferromagnetic layer for perpendicularly exchange biasing the ferromagnetic layer |
JP4944315B2 (ja) * | 2001-08-13 | 2012-05-30 | キヤノン株式会社 | 磁気抵抗効果膜、それを備えたメモリ素子及びそれを用いたメモリ |
TWI222630B (en) * | 2001-04-24 | 2004-10-21 | Matsushita Electric Ind Co Ltd | Magnetoresistive element and magnetoresistive memory device using the same |
JP2003124541A (ja) * | 2001-10-12 | 2003-04-25 | Nec Corp | 交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリ |
US6714444B2 (en) * | 2002-08-06 | 2004-03-30 | Grandis, Inc. | Magnetic element utilizing spin transfer and an MRAM device using the magnetic element |
US6888742B1 (en) * | 2002-08-28 | 2005-05-03 | Grandis, Inc. | Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element |
US6838740B2 (en) * | 2002-09-27 | 2005-01-04 | Grandis, Inc. | Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element |
US6958927B1 (en) * | 2002-10-09 | 2005-10-25 | Grandis Inc. | Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element |
CN101114694A (zh) * | 2002-11-26 | 2008-01-30 | 株式会社东芝 | 磁单元和磁存储器 |
US7190611B2 (en) * | 2003-01-07 | 2007-03-13 | Grandis, Inc. | Spin-transfer multilayer stack containing magnetic layers with resettable magnetization |
US6829161B2 (en) * | 2003-01-10 | 2004-12-07 | Grandis, Inc. | Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element |
US6847547B2 (en) * | 2003-02-28 | 2005-01-25 | Grandis, Inc. | Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element |
US6933155B2 (en) * | 2003-05-21 | 2005-08-23 | Grandis, Inc. | Methods for providing a sub .15 micron magnetic memory structure |
US6980469B2 (en) * | 2003-08-19 | 2005-12-27 | New York University | High speed low power magnetic devices based on current induced spin-momentum transfer |
US7245462B2 (en) * | 2003-08-21 | 2007-07-17 | Grandis, Inc. | Magnetoresistive element having reduced spin transfer induced noise |
US6985385B2 (en) * | 2003-08-26 | 2006-01-10 | Grandis, Inc. | Magnetic memory element utilizing spin transfer switching and storing multiple bits |
US7161829B2 (en) * | 2003-09-19 | 2007-01-09 | Grandis, Inc. | Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements |
US20050136600A1 (en) * | 2003-12-22 | 2005-06-23 | Yiming Huai | Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements |
US7105372B2 (en) * | 2004-01-20 | 2006-09-12 | Headway Technologies, Inc. | Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy |
US7110287B2 (en) * | 2004-02-13 | 2006-09-19 | Grandis, Inc. | Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer |
US7242045B2 (en) * | 2004-02-19 | 2007-07-10 | Grandis, Inc. | Spin transfer magnetic element having low saturation magnetization free layers |
US6967863B2 (en) * | 2004-02-25 | 2005-11-22 | Grandis, Inc. | Perpendicular magnetization magnetic element utilizing spin transfer |
US6992359B2 (en) * | 2004-02-26 | 2006-01-31 | Grandis, Inc. | Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization |
US7201977B2 (en) * | 2004-03-23 | 2007-04-10 | Seagate Technology Llc | Anti-ferromagnetically coupled granular-continuous magnetic recording media |
US7233039B2 (en) * | 2004-04-21 | 2007-06-19 | Grandis, Inc. | Spin transfer magnetic elements with spin depolarization layers |
US7057921B2 (en) * | 2004-05-11 | 2006-06-06 | Grandis, Inc. | Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same |
US7088609B2 (en) | 2004-05-11 | 2006-08-08 | Grandis, Inc. | Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same |
US7576956B2 (en) * | 2004-07-26 | 2009-08-18 | Grandis Inc. | Magnetic tunnel junction having diffusion stop layer |
US7369427B2 (en) * | 2004-09-09 | 2008-05-06 | Grandis, Inc. | Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements |
US7126202B2 (en) * | 2004-11-16 | 2006-10-24 | Grandis, Inc. | Spin scattering and heat assisted switching of a magnetic element |
US7313013B2 (en) * | 2004-11-18 | 2007-12-25 | International Business Machines Corporation | Spin-current switchable magnetic memory element and method of fabricating the memory element |
JP4575136B2 (ja) * | 2004-12-20 | 2010-11-04 | 株式会社東芝 | 磁気記録素子、磁気記録装置、および情報の記録方法 |
US7241631B2 (en) * | 2004-12-29 | 2007-07-10 | Grandis, Inc. | MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements |
FR2883066B1 (fr) * | 2005-03-08 | 2007-05-11 | Valeo Vision Sa | Projecteur lumineux a plusieurs fonctions pour vehicule automobile |
US7241632B2 (en) * | 2005-04-14 | 2007-07-10 | Headway Technologies, Inc. | MTJ read head with sidewall spacers |
US7230265B2 (en) * | 2005-05-16 | 2007-06-12 | International Business Machines Corporation | Spin-polarization devices using rare earth-transition metal alloys |
US7518835B2 (en) * | 2005-07-01 | 2009-04-14 | Grandis, Inc. | Magnetic elements having a bias field and magnetic memory devices using the magnetic elements |
US7230845B1 (en) * | 2005-07-29 | 2007-06-12 | Grandis, Inc. | Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices |
US7489541B2 (en) * | 2005-08-23 | 2009-02-10 | Grandis, Inc. | Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements |
JP2007088415A (ja) * | 2005-08-25 | 2007-04-05 | Fujitsu Ltd | 磁気抵抗効果素子、磁気ヘッド、磁気記憶装置、および磁気メモリ装置 |
US20070054450A1 (en) * | 2005-09-07 | 2007-03-08 | Magic Technologies, Inc. | Structure and fabrication of an MRAM cell |
JP2007080952A (ja) * | 2005-09-12 | 2007-03-29 | Fuji Electric Holdings Co Ltd | 多値記録スピン注入磁化反転素子およびこれを用いた装置 |
US7973349B2 (en) * | 2005-09-20 | 2011-07-05 | Grandis Inc. | Magnetic device having multilayered free ferromagnetic layer |
JP4444241B2 (ja) * | 2005-10-19 | 2010-03-31 | 株式会社東芝 | 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置 |
US7486545B2 (en) * | 2005-11-01 | 2009-02-03 | Magic Technologies, Inc. | Thermally assisted integrated MRAM design and process for its manufacture |
US7880249B2 (en) * | 2005-11-30 | 2011-02-01 | Magic Technologies, Inc. | Spacer structure in MRAM cell and method of its fabrication |
US7430135B2 (en) * | 2005-12-23 | 2008-09-30 | Grandis Inc. | Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density |
KR100706806B1 (ko) * | 2006-01-27 | 2007-04-12 | 삼성전자주식회사 | 자기 메모리 소자 및 그 제조 방법 |
US7630177B2 (en) * | 2006-02-14 | 2009-12-08 | Hitachi Global Storage Technologies Netherlands B.V. | Tunnel MR head with closed-edge laminated free layer |
JP2007266498A (ja) * | 2006-03-29 | 2007-10-11 | Toshiba Corp | 磁気記録素子及び磁気メモリ |
JP2008028362A (ja) * | 2006-06-22 | 2008-02-07 | Toshiba Corp | 磁気抵抗素子及び磁気メモリ |
US7738287B2 (en) * | 2007-03-27 | 2010-06-15 | Grandis, Inc. | Method and system for providing field biased magnetic memory devices |
JP2008252037A (ja) * | 2007-03-30 | 2008-10-16 | Toshiba Corp | 磁気抵抗素子及び磁気メモリ |
JP2008252018A (ja) * | 2007-03-30 | 2008-10-16 | Toshiba Corp | 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ |
US7486551B1 (en) * | 2007-04-03 | 2009-02-03 | Grandis, Inc. | Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements |
US7486552B2 (en) * | 2007-05-21 | 2009-02-03 | Grandis, Inc. | Method and system for providing a spin transfer device with improved switching characteristics |
WO2008154519A1 (en) * | 2007-06-12 | 2008-12-18 | Grandis, Inc. | Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled |
US7742328B2 (en) * | 2007-06-15 | 2010-06-22 | Grandis, Inc. | Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors |
US7394248B1 (en) * | 2007-08-02 | 2008-07-01 | Magic Technologies, Inc. | Method and structure to reset multi-element MTJ |
US7982275B2 (en) * | 2007-08-22 | 2011-07-19 | Grandis Inc. | Magnetic element having low saturation magnetization |
JP4738395B2 (ja) * | 2007-09-25 | 2011-08-03 | 株式会社東芝 | 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ |
JP4649457B2 (ja) * | 2007-09-26 | 2011-03-09 | 株式会社東芝 | 磁気抵抗素子及び磁気メモリ |
US7826258B2 (en) * | 2008-03-24 | 2010-11-02 | Carnegie Mellon University | Crossbar diode-switched magnetoresistive random access memory system |
US20090302403A1 (en) * | 2008-06-05 | 2009-12-10 | Nguyen Paul P | Spin torque transfer magnetic memory cell |
US8054677B2 (en) * | 2008-08-07 | 2011-11-08 | Seagate Technology Llc | Magnetic memory with strain-assisted exchange coupling switch |
US8134864B2 (en) * | 2008-08-14 | 2012-03-13 | Regents Of The University Of Minnesota | Exchange-assisted spin transfer torque switching |
WO2010080542A1 (en) | 2008-12-17 | 2010-07-15 | Yadav Technology, Inc. | Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy |
US7936598B2 (en) | 2009-04-28 | 2011-05-03 | Seagate Technology | Magnetic stack having assist layer |
US8374048B2 (en) | 2010-08-11 | 2013-02-12 | Grandis, Inc. | Method and system for providing magnetic tunneling junction elements having a biaxial anisotropy |
-
2009
- 2009-04-28 US US12/431,162 patent/US7936598B2/en active Active
-
2010
- 2010-04-27 CN CN201080019289.1A patent/CN102414756B/zh not_active Expired - Fee Related
- 2010-04-27 WO PCT/US2010/032483 patent/WO2010126854A1/en active Application Filing
- 2010-04-27 KR KR1020117028451A patent/KR101405854B1/ko active IP Right Grant
- 2010-04-27 JP JP2012508575A patent/JP5623507B2/ja active Active
- 2010-11-11 US US12/943,976 patent/US8416620B2/en active Active
-
2013
- 2013-04-05 US US13/857,410 patent/US8670271B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070096229A1 (en) * | 2005-10-28 | 2007-05-03 | Masatoshi Yoshikawa | Magnetoresistive element and magnetic memory device |
CN101093721A (zh) * | 2006-06-22 | 2007-12-26 | 株式会社东芝 | 磁阻元件和磁性存储器 |
US20080088980A1 (en) * | 2006-10-13 | 2008-04-17 | Eiji Kitagawa | Magnetoresistive element and magnetic memory |
Non-Patent Citations (1)
Title |
---|
RACHID SBIAA ET AL: "Spin transfer switching enhancement in perpendicular anisotropy magnetic tunnel junctions with a canted in-plane spin polarizer", 《JOURNAL OF APPLIED PHYSICS》, vol. 105, no. 1, 6 January 2009 (2009-01-06), XP012119458, DOI: doi:10.1063/1.3055373 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681598A (zh) * | 2012-08-29 | 2014-03-26 | 国际商业机器公司 | 集成层积磁性器件及其制造方法 |
CN103681598B (zh) * | 2012-08-29 | 2016-10-12 | 国际商业机器公司 | 集成层积磁性器件及其制造方法 |
CN108267698A (zh) * | 2018-01-08 | 2018-07-10 | 上海交通大学 | 一种提高层叠复合磁传感器灵敏度的方法 |
CN108267698B (zh) * | 2018-01-08 | 2020-07-14 | 上海交通大学 | 一种提高层叠复合磁传感器灵敏度的方法 |
CN111542490A (zh) * | 2018-12-06 | 2020-08-14 | 桑迪士克科技有限责任公司 | 用于低温操作的金属磁性存储器装置及其操作方法 |
CN111542490B (zh) * | 2018-12-06 | 2023-09-26 | 桑迪士克科技有限责任公司 | 用于低温操作的金属磁性存储器装置及其操作方法 |
CN112186099A (zh) * | 2019-07-02 | 2021-01-05 | 中电海康集团有限公司 | 磁性隧道结 |
WO2021000748A1 (zh) * | 2019-07-02 | 2021-01-07 | 浙江驰拓科技有限公司 | 磁性隧道结 |
CN112186099B (zh) * | 2019-07-02 | 2022-09-20 | 中电海康集团有限公司 | 磁性隧道结 |
WO2021056483A1 (zh) * | 2019-09-27 | 2021-04-01 | 华为技术有限公司 | 一种mtj单元、vcma驱动方法及mram |
CN112993147A (zh) * | 2019-12-13 | 2021-06-18 | 爱思开海力士有限公司 | 电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JP5623507B2 (ja) | 2014-11-12 |
US7936598B2 (en) | 2011-05-03 |
JP2012525710A (ja) | 2012-10-22 |
US8670271B2 (en) | 2014-03-11 |
KR101405854B1 (ko) | 2014-06-12 |
US20130228884A1 (en) | 2013-09-05 |
KR20120025489A (ko) | 2012-03-15 |
US8416620B2 (en) | 2013-04-09 |
WO2010126854A1 (en) | 2010-11-04 |
US20100271870A1 (en) | 2010-10-28 |
US20110058412A1 (en) | 2011-03-10 |
CN102414756B (zh) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102414756B (zh) | 具有辅助层的磁性叠层 | |
US20210135096A1 (en) | Magnetoresistive stacks with an unpinned, fixed synthetic anti-ferromagnetic structure and methods of manufacturing thereof | |
KR102353406B1 (ko) | 스핀 궤도 토크를 이용하여 강화된 감쇠 프로그램 및 경사진 자화 용이축을 갖는 자기 접합부를 포함하는 자기 소자 | |
US9666793B2 (en) | Method of manufacturing magnetoresistive element(s) | |
US9165625B2 (en) | ST-RAM cells with perpendicular anisotropy | |
US7999338B2 (en) | Magnetic stack having reference layers with orthogonal magnetization orientation directions | |
US8378438B2 (en) | Method and system for providing magnetic elements having enhanced magnetic anisotropy and memories using such magnetic elements | |
US8039913B2 (en) | Magnetic stack with laminated layer | |
CN111834521A (zh) | 磁性隧道结器件 | |
US20120104522A1 (en) | Magnetic tunnel junction cells having perpendicular anisotropy and enhancement layer | |
KR20130006375A (ko) | 반-금속성 강자성체들을 이용한 자기 접합을 제공하는 방법 및 시스템 | |
US9741929B2 (en) | Method of making a spin-transfer-torque magnetoresistive random access memory (STT-MRAM) | |
WO2005048262A2 (en) | Mram architecture with a flux closed data storage layer | |
WO2004084224A2 (en) | Magnetic tunneling junction cell array with shared reference layer for mram applications. | |
JP2012109554A (ja) | 面外磁気トンネル接合セルの強磁性自由層の磁化方向を切換える方法、磁気メモリシステムおよびデータを電子的に記憶する方法 | |
US20100321986A1 (en) | Multi-bit stram memory cells | |
US20120087185A1 (en) | Magnetic latch magnetic random access memory (mram) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150722 |