CN102361715A - 压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法 - Google Patents

压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法 Download PDF

Info

Publication number
CN102361715A
CN102361715A CN2010800129243A CN201080012924A CN102361715A CN 102361715 A CN102361715 A CN 102361715A CN 2010800129243 A CN2010800129243 A CN 2010800129243A CN 201080012924 A CN201080012924 A CN 201080012924A CN 102361715 A CN102361715 A CN 102361715A
Authority
CN
China
Prior art keywords
powder
compressed
core
silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800129243A
Other languages
English (en)
Other versions
CN102361715B (zh
Inventor
杉山昌挥
山口登士也
大平翔太
服部毅
大石雄介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102361715A publication Critical patent/CN102361715A/zh
Application granted granted Critical
Publication of CN102361715B publication Critical patent/CN102361715B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种压粉磁芯用粉末(1),其包括软磁性金属粉末(2)和由在软磁性金属粉末的表面中浓化的硅形成的硅浸透层(3),其中在二氧化硅粉末(8)的一部分浸透并扩散在硅浸透层(3)中并且其他部分从硅浸透层(3)的表面突出的情况下,二氧化硅粉末(8)扩散接合到硅浸透层(3)的表面以形成扩散接合部分(4)。扩散接合部分(4)相对于另一个压粉磁芯用粉末(1)产生间隙(S),从而提供增大的比电阻。

Description

压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法
技术领域
本发明涉及形成有在软磁性金属粉末的表层中硅浓化的硅浸透层的压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法。
背景技术
压粉磁芯是通过压制由软磁性金属粉末构成的压粉磁芯用粉末而制成的。压粉磁芯具有很多优势,即具有以下磁特性,其根据频率发生的高频损耗(下文称为“铁损”)比由层压磁性钢板形成的磁芯部件的高频损耗低;能够根据环境和低成本适用于各种形状;其材料成本较低。这样的压粉磁芯适用于例如车辆驱动电机的定子芯和转子芯,以及构成电力转换电路的电抗器芯等。
例如,在图24所示的第一传统技术中的压粉磁芯用粉末(颗粒)101构造成,使得二氧化硅微细粉末(颗粒)103分散并且接合在铁粉(颗粒)102上,并且形成有机硅树脂层104以覆盖微细粉末103的表面(例如,见专利文献1)。
在这样的压粉磁芯粉末101中,二氧化硅微细粉末103几乎是物理地附着到铁粉102的表面,因此在二氧化硅微细粉末103和铁粉102之间只有较小的接合力。因此,如果压粉磁芯粉末101在粉末压制期间摩擦到其他压粉磁芯粉末101,则二氧化硅微细粉末103有时与有机硅树脂层104一起从铁粉102的表面磨掉。在这种情况下,铁粉颗粒102的表面直接与其他的铁粉颗粒102接触,导致压粉磁芯的体积比电阻值(下文中称为“比电阻”)减小并且因此使铁损(主要是涡流损耗和磁滞)增大。
因此,图25所示的压粉磁芯用粉末(颗粒)201构造成使得,二氧化硅粉末在渗硅(硅浸透)处理中从铁粉(颗粒)202的表面浸透并且扩散,从而形成由硅元素在铁粉202的表面中的浓化而制成的硅浸透层203。在这样的压粉磁芯粉末201中,即使当压粉磁芯粉末201在粉末压制期间与其他压粉磁芯粉末201摩擦,硅浸透层203也不太可能从铁粉202的表面剥落。这种压粉磁芯粉末201能够具有比图24所示的压粉磁芯粉末101大的比电阻,并且因此具有较小的铁损(见专利文献2和3)。
这里,硅浸透层203越厚,压粉磁芯201的硬度越大。这种硬的压粉磁芯粉末201在如图26所示的粉末压制期间不太可能发生变形。因此,在粉末颗粒之间产生较大的间隙S11,导致压粉磁芯的密度减小。因此硅浸透层203被设计为具有的厚度为铁粉202的粒径D的0.15倍或更少(例如,专利文献2)。
当硅浸透层203较薄时,如果压粉磁芯粉末201在粉末压制期间发生变形并且硅浸透层203的厚度变得不均匀,那么相邻的压粉磁芯粉末颗粒201可能在硅浸透层203的各个较薄部分处(如图27中的P11所指)彼此接触,导致压粉磁芯的比电阻更低。
因此,图28所示的粉末(颗粒)301构造成使得,通过在渐进氧化处理中仅使硅浸透层203氧化而不使铁粉202氧化,来在硅浸透层203的表面上形成包含二氧化硅的层302。即使硅浸透层203的厚度在粉末压制期间变得不均匀,包含二氧化硅的层302也存在于粉末颗粒之间。因此,与由图25所示的压粉磁芯粉末201制成的压粉磁芯相比,这样的压粉磁芯粉末301能够进一步减小在压粉磁芯中产生的比电阻(例如,见文献专利3)。
引用列表
专利文献
专利文献1:JP-A-2008-169439
专利文献2:JP-A-2009-256750
专利文献3:JP-A-2009-123774
发明内容
技术问题
然而,如下所述形成图28所示的压粉磁芯粉末301通过使硅浸透层203的表面氧化以围绕硅浸透层203,来形成二氧化硅包含层302。具体而言,压粉磁芯粉末301通过使形成有与铁粉202的粒径D的0.15倍对应的厚度的硅浸透层203的表面氧化,而形成二氧化硅包含层302。二氧化硅包含层302的厚度确定在1nm至100nm的范围内,以在粉末压制期间保持铁粉202的密度并且也确保高绝缘性能。这种包含二氧化硅的薄层302在粉末压制期间所施加的压力下容易被拉长。因此,层302变得更薄并且破损。如图29中的P12所示,如果相邻的压粉磁芯粉末颗粒301的二氧化硅包含层302在具有较薄的二氧化硅浸透层203的部位处很薄或破损,则在相邻的粉末颗粒301的硅浸透层203之间产生的间隙S12很窄,或者硅浸透层203直接相互接触,导致绝缘性降低。在这种情况下,压粉磁芯的比电阻降低并且因此铁损增加。
近年来,在例如车辆逆变器中使用的压粉磁芯在很宽的频率范围中使用以连续地改变速度。根据频率发生铁损。因此,工业用户高度需要在高频下减小铁损,即提高比电阻。本发明是为了解决上述问题而作出的并且其具有以下目的,提供具有高比电阻的压粉磁芯用粉末、由压粉磁芯用粉末通过粉末压制形成的压粉磁芯、以及制造压粉磁芯用粉末的方法。
解决问题的手段
为了实现上述目的,本发明的一个方面提供了压粉磁芯用粉末,该粉末包括软磁性金属粉末以及由在软磁性金属粉末的表层中浓化的硅所形成的硅浸透层,其中硅浸透层包括扩散并且接合到硅浸透层的表面的二氧化硅粉末,使得二氧化硅粉末的一部分浸透并且扩散在硅浸透层中并且二氧化硅粉末的其他部分从硅浸透层的表面突出。
优选地,在上述压粉磁芯用粉末中,二氧化硅粉末在用于形成硅浸透层的渗硅处理期间,扩散并且接合到硅浸透层。
优选地,在上述压粉磁芯用粉末中,压粉磁芯用粉末涂覆有有机硅树脂。
本发明的另一个方面提供了由上述压粉磁芯用粉末中的一者通过粉末压制形成的压粉磁芯。
此外,本发明的另一个方面提供了一种制造压粉磁芯用粉末的方法,方法至少包括进行渗硅处理的步骤,渗硅处理包括:使至少包含硅化合物的渗硅用粉末与软磁性金属粉末的表面接触,加热渗硅用粉末以从硅化合物释放硅元素,以及使被释放的硅元素浸透并且扩散到软磁性金属粉末的表层中,以形成由在软磁性金属粉末的表层中浓化的硅所形成的硅浸透层,其中渗硅处理包括设定用于加热渗硅用粉末的加热时间,使得在所述渗硅用粉末的一部分浸透并且扩散在硅浸透层中并且渗硅用粉末的其他部分从硅浸透层的表面突出的情况下,渗硅用粉末扩散接合到硅浸透层的表面。
优选地,上述方法还包括涂覆处理,该涂覆处理用于在粉末经受了渗硅处理以后利用有机硅树脂覆盖每个粉末的外表面。
优选地,在上述方法中,渗硅用粉末是二氧化硅粉末,并且当二氧化硅粉末具有等于或小于1μm的平均粒径时,加热时间设定为等于或小于45分钟。
本发明的另一个方面提供了由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,该压粉磁芯用粉末通过压粉磁芯用粉末的上述制造方法中的一者制成。
发明的有利效果
根据上述压粉磁芯用粉末、由压粉磁芯用粉末通过粉末压制形成的压粉磁芯、以及压粉磁芯用粉末的制造方法,即使当压粉磁芯用粉末在粉末压制期间发生变形使压粉磁芯的密度增大,扩散接合在硅浸透层中的二氧化硅也牢固地附着在二氧化硅层上。因此,即使硅浸透层的厚度由于发生变形而变得不均匀,具有二氧化硅粉末的从硅浸透层突出的突出部分的压粉磁芯用粉末与另一个压粉磁芯用粉末颗粒之间形成间隙,使得粉末颗粒之间彼此绝缘。因此,根据上述压粉磁芯用粉末、由压粉磁芯用粉末通过粉末压制形成的压粉磁芯、以及压粉磁芯用粉末的制造方法,与其中通过在渐进氧化处理中使硅浸透层的表面氧化来形成二氧化硅包含层以覆盖压粉磁芯用粉末的情况以及其他情况相比,能够进一步提高比电阻。
根据上述压粉磁芯用粉末、由压粉磁芯用粉末通过粉末压制形成的压粉磁芯、以及压粉磁芯用粉末的制造方法,二氧化硅粉末在用于形成硅浸透层的渗硅处理期间扩散接合到硅浸透层。因此,不需要分别进行渐进氧化处理和渗硅处理以通过使硅浸透层氧化来形成二氧化硅包含层。
根据上述压粉磁芯用粉末、由压粉磁芯用粉末通过粉末压制形成的压粉磁芯、以及压粉磁芯用粉末的制造方法,粉末的外表面覆盖有有机硅树脂并且因此可以在压粉磁芯用粉末颗粒之间实现较高的绝缘性能。
附图说明
图1是在本发明的实施例中的压粉磁芯用粉末的截面的概念图;
图2是说明了二氧化硅粉末扩散接合到硅浸透层的状态的概念图;
图3是说明了压粉磁芯粉末的制造方法并且示出了在硅化渗透处理之前的铁碳合金粉末的截面的概念图;
图4是说明了压粉磁芯粉末的制造方法并且示出了铁碳合金粉末和二氧化硅粉末被搅拌了的状态的概念图;
图5是图4中的部分B的放大图;
图6是说明了压粉磁芯粉末的制造方法并且示出了在渗硅处理期间的状态的示图;
图7是示出了由压粉磁芯粉末通过粉末压制形成的压粉磁芯的颗粒构造的概念图;
图8是说明了构成压粉磁芯的压粉磁芯粉末的边界部分的概念图;
图9是经受过渗硅处理的粉末的显微照片;
图10是图示了图9的显微照片的示图;
图11是图9的与图10中的P1对应的部分的放大显微照片;
图12是图示了图11的显微照片的示图;
图13是图11的与图12中的P2对应的部分的放大显微照片;
图14是图示了图13的显微照片的示图;
图15是图13的与图14中的P3对应的部分的放大显微照片;
图16是图示了图15的显微照片的示图;
图17是作为压粉磁芯的示例的环状构件的立体外部视图;
图18是示出了在用于压粉磁芯粉末的渗硅处理中的加热处理时间与比电阻之间的关系的曲线图;
图19是在示例1中使用的压粉磁芯粉末的截面的概念图;
图20是在示例3中使用的压粉磁芯粉末的截面的概念图;
图21是在示例4中使用的压粉磁芯粉末的截面的概念图;
图22是示出了比较示例和示例2以比较各自的构造的表格;
图23是对比比较示例和示例2之间的比电阻的图表;
图24是在第一传统技术中的压粉磁芯粉末的截面图;
图25是在第二传统技术中的压粉磁芯粉末的截面图;
图26是示出了在第二传统技术中的被挤压和形成之后的压粉磁芯粉末的状态的示图;
图27是示出了图26中所示的压粉磁芯粉末的边界部分的放大的概念图;
图28是在第三传统技术中的压粉磁芯用粉末的截面图;以及
图29是示出了图28所示的压粉磁芯粉末的边界部分的放大的概念图。
具体实施方式
现在将参考附图给出实现了本发明的压粉磁芯用粉末、由压粉磁芯用粉末通过粉末压制制成的压粉磁芯、以及压粉磁芯用粉末的制造方法的优选实施例的详细描述。
<压粉磁芯用粉末的构造>
图1是在本实施例中的压粉磁芯用粉末(颗粒)1的截面的概念图。图2是说明了二氧化硅粉末(颗粒)8扩散接合到硅浸透层3的状态的概念图。
如图1所示,压粉磁芯用粉末1(“压粉磁芯粉末”)包括覆盖铁粉2(软磁性金属粉末的一个示例)的二氧化硅扩散接合层5和硅涂层6。二氧化硅扩散接合层5包括由在铁粉2的表层中浓化的硅元素形成的硅浸透层3,以及由扩散接合到硅浸透层3的二氧化硅粉末8形成的扩散接合部分4。如图2所示,扩散接合部分4包括扩散部4a和突出部4b,其中扩散部4a由二氧化硅粉末颗粒8的、浸透并且扩散到硅浸透层3中的一部分形成,突出部4b由二氧化硅粉末颗粒8的、从硅浸透层3的表面突出的其他部分形成。如图1所示,硅涂层6由覆盖二氧化硅扩散接合层5以提高其绝缘性的有机硅树脂形成。
<压粉磁芯用粉末的制造方法>
下面说明压粉磁芯粉末1的制造方法。
首先,通过将二氧化硅粉末8添加并混合到图3所示的铁碳合金粉末7,然后搅拌它们使二氧化硅粉末8附着到每个铁碳合金粉末颗粒7的外表面,来进行搅拌处理。受到搅拌处理的二氧化硅粉末8扩散接合到(即,几乎是物理地附着到)每个铁碳合金粉末颗粒7的表面,如图5所示。因此,二氧化硅粉末8容易由于外部影响而从铁碳合金粉末颗粒7剥落。
对铁碳合金粉末7和二氧化硅粉末8的混合粉末进行渗硅处理。具体地,将混合粉末放在具有可抽成真空的密封腔的炉中。旋转炉子并且同时将其真空化。在预定温度条件下加热铁碳合金粉末7和二氧化硅粉末8的混合粉末。这里,预定温度条件是将硅元素从二氧化硅粉末8中释放并且使硅元素渗透并扩散进入到铁粉颗粒2中所需要的温度。在该实施例中,例如,预定温度条件设定在1180℃或更低。更具体地,当铁碳合金粉末颗粒7中的碳元素的含量调整在从0.1至1.0重量%的范围内并且二氧化硅调整到至少等于或大于碳元素的含量时,预定温度优选地控制在从等于或大于900℃到等于或小于1050℃的范围中。在该加热处理中,在二氧化硅粉末8和铁碳合金粉末7的碳原子之间发生氧化还原反应,从而将硅元素从每个二氧化硅粉末颗粒8释放并且产生一氧化碳气体(CO气体)。被释放的碳元素浸透到铁粉2的表层中并且扩散到铁粉颗粒2中。随着加热时间的推移,硅元素在铁粉2的表层中浓化且形成如图6所示的硅浸透层3。在渗硅处理期间,产生的一氧化碳处理通过抽真空排出到炉子的外部,从而将炉子的内部压力维持在不变的水平。这样的渗硅处理在这样的释放/扩散氛围下进行,其中由释放而产生硅元素的反应的速率高于硅元素浸透/扩散到铁粉2的表层中的速率,以将硅浸透层3的厚度调整到铁粉2的平均粒径D的0.15倍。
确定用于加热铁碳合金粉末7和二氧化硅粉末8的加热时间,以使二氧化硅粉末8扩散并接合到硅浸透层3的表面上。在该实施例中,如果二氧化硅粉末8的平均粒径等于或小于1μm,则加热时间优选地设定为等于或小于45分钟。
在预定加热时间过去以后,进行干燥处理以干燥从炉中取出的粉末。二氧化硅粉末8形成为包括突出部4b和扩散部4a的扩散接合部分4,其中突出部4b没有完全浸透在硅浸透层3中并且保留在硅浸透层3的表面上,并且扩散部4a已完全浸透并且扩散在硅浸透层3中并且与硅浸透层3稳定地化学上接合。因此,产生了经受了渗硅处理的粉末11。
下面参考图9至图16说明经受了渗硅处理的粉末11的颗粒形状。图9、图11、图13和图15是经受了渗硅处理的粉末11的显微照片。图10、图12、图14和图16是图示了与图9、图11、图13和图15的显微照片对应的示图。
如图9和图10所示,显微照片示出了经受过渗硅处理的一些粉末颗粒11。可以看出,每个粉末颗粒11的表面均覆盖有发白层,每个的外部形状是不规则的,并且硅元素扩散在每个铁粉2的表面中。当放大图9的与图10的P1对应的部分时,如图11和图12所示,每个粉末颗粒11的表面形成有包括发黑区K和发白区W。当进一步放大图11的与图12的P2对应的部分时,如图13和14所示,可以看出,发黑区K是硅浸透层3并且发白区W是还没有完全浸透在硅浸透层3中的扩散接合部分4。当进一步扩大图13的与图14的P3对应的部分时,如图15和图16所示,可以看出,扩散接合部分4从硅浸透层3的表面突出,形成不规则突起。
粉末颗粒11在渗硅处理之后经受涂层处理。在涂层处理中,将粉末颗粒11放入其中溶解了有机硅树脂的乙醇溶液中。然后搅拌混合了粉末颗粒11的该溶液。在搅拌了预定时间后,进一步搅拌该溶液以使乙醇蒸发,从而使有机硅树脂附着到每个粉末颗粒11的表面。因此,如图1所示,生成了二氧化硅扩散接合层5覆盖有硅涂层6的压粉磁芯用粉末1。
<压粉磁芯的制造方法>
下面说明通过压紧如上生成的压粉磁芯粉末1来制造压粉磁芯的方法。
将压粉磁芯用粉末1(“压粉磁芯粉末”)填充在设置有空腔的冲模中,其中该空腔具有用于电机铁芯等的预定形状。压粉磁芯粉末1在预定压力下并且在预定温度加热而加压成形。在成形期间的加热使硅涂层6熔化并且形成将压粉磁芯粉末颗粒1相互接合的层或薄膜,如图7所示。这里,在粉末压制期间,粉末颗粒1发生变形并且因此得到的硅浸透层3的厚度变得不均匀。在该状态下,如图8所示,扩散接合部分4的、从压粉磁芯粉末1的硅浸透层3的表面突出的顶部压向相邻的压粉磁芯粉末1的扩散接合部分4或硅浸透层3,从而产生在相邻的压粉磁芯粉末1的硅浸透层3之间的间隙S。压力成形的产品被从腔中取出并且经受高温退火处理以去除内部产生的工艺应变。从而制造了具有预定形状的压粉磁芯。示例
下面说明上述实施例的示例。
在示例1中使用的压粉磁芯用粉末以如下方式制造。将具有平均粒径150μm至210μm和比重7.8的铁粉2以及具有平均粒径50nm和比重2.2的二氧化硅粉末8,以95至97重量%的铁粉2和3至5重量%的二氧化硅粉末8的比例混合。搅拌该混合物然后放在可抽成真空的炉中。将该炉子抽真空到10-3Pa。然后,使炉旋转并且在1100℃下加热混合粉末15分钟。然后从炉中取出粉末并且对每个粉末颗粒的表面涂覆有机硅树脂。压粉磁芯用粉末完成。将因此所生成的压粉磁芯粉末填充在冲模的腔中并且在1600MPa的按压压力下进行粉末压制以生成如图17所示的环状构件20(具有40mm的外径,30mm的内径和5mm的厚度),其是压粉磁芯的示例。将该生成的环状构件在750℃下加热60分钟以去除在工艺形成期间产生的工艺应变。在示例1中,如上所述制造压力成形产品。
在示例2中,除了在制造压粉磁芯粉末中的用于渗硅的加热时间设定在30分钟以外,在相同的条件下制造压力成形产品。
在示例3中,除了在制造压粉磁芯粉末中的用于渗硅的加热时间设定在45分钟以外,在相同的条件下制造压力成形产品。
在示例4中,除了在制造压粉磁芯粉末中的用于渗硅的加热时间设定在60分钟以外,在相同的条件下制造压力成形产品。
测量了在示例1至4中的比电阻(μΩm)。该实验结果在图18中示出,其中竖轴表示比电阻(μΩm)并且横轴表示加热时间(分)。图19至图21在示例1、示例3和示例4中所使用的压粉磁芯的截面的概念图。
如图18中的Q1所示,在示例1中的比电阻是6000μΩm。如图18中的Q2所示,在示例2中的比电阻是12000μΩm。如图18中的Q3所示,在示例3中的比电阻是4000μΩm。如图18中的Q4所示,比电阻是3000μΩm。
从图18中的Q1和Q2可以发现,当在渗硅处理中用于加热混合粉末的加热时间在15分钟到30分钟的范围中时,比电阻随着加热时间的经过而增加。
这是可以理解的,因为在加热处理开始以后,二氧化硅粉末颗粒8的硅元素开始逐渐扩散并且浸透在每个铁粉颗粒2中然后浓化,增强了压粉磁芯用粉末的绝缘性能。具体而言,在加热处理开始之后的炉内存在可附着到铁粉颗粒2的大量的二氧化硅粉末颗粒8。因此,一旦硅元素从二氧化硅粉末颗粒8释放并且扩散并浸透在铁粉颗粒2中,另一个二氧化硅粉末颗粒8就附着到铁粉2的表面并且开始扩散并浸透在其中。当颗粒二氧化硅粉末8如上所述相继地附着到铁粉2并且硅元素扩散并且浸透在每个铁粉颗粒2的表层中时,硅元素进入到每个铁粉颗粒2的表层中的浓度提高,增强了绝缘性能。因此,可以理解比电阻随着加热时间的经过而增大。
在30分钟的加热时间以后,比电阻变得最大。
该结果是由以下原因造成的。在30分钟的加热时间以后,铁粉颗粒2的被放入炉中的二氧化硅粉末8所占据的表面区域最大,如图6所示。在该状态下,当停止加热处理时,每个二氧化硅粉末颗粒8的一部分浸透在硅浸透层3中并且每个二氧化硅粉末颗粒8的其他部分保留在硅浸透层3的表面上。因而,每个二氧化硅粉末颗粒8作为扩散接合部分4保持在硅浸透层3的表面上。此外,在那时,铁粉颗粒2的由二氧化硅粉末颗粒8所占据的表面积最大。硅浸透层3的几乎整个表面被扩散接合部分4覆盖。经受过这样的渗硅处理的压粉磁芯粉末颗粒1在压制成形时容易与相邻的其他压粉磁芯粉末颗粒1形成间隙S(例如,见图8)。因此,在示例2中的压粉磁芯中,压粉磁芯粉末颗粒1具有其中硅浸透层3可能彼此接触的更少部分并且因此降低了绝缘性,并且压粉磁芯能够具有最大的比电阻。
如果加热时间超过30分钟,比电阻随着加热时间的经过而减小。这是由以下原因造成的。随着加热时间的推进,放在炉中的二氧化硅粉末减小。如图20和图21所示,硅元素的浓化推进得比新的二氧化硅粉末颗粒8附着到铁粉颗粒2的表面快。如果加热处理在其中硅元素的浓化已经提前的这样的状态下终止,则二氧化硅粉末颗粒8不太可能在铁粉颗粒2的表面上保持扩散接合的状态。在经受过这样的渗硅处理的压粉磁芯粉末中,二氧化硅粉末颗粒8的扩散接合部分占据铁粉颗粒2的较小的表面积(由扩散接合部分4占据的较小面积)。因此,当压制成形时,硅浸透层3非常容易与另一个压粉磁芯粉末颗粒的硅浸透层3接触。压粉磁芯因此在硅浸透层3的接触部分处具有较低的绝缘性能,并且因此具有较小的比电阻。具体而言,随着加热时间的经过,二氧化硅粉末颗粒8的量减小并且硅元素的浓化推进。比电阻因此根据加热时间减小。
当加热时间超过50分钟时,比电阻变成几乎是3000μΩm的常量。这是可以理解的,因为二氧化硅粉末颗粒8在50分钟的加热时间过去之后在炉内几乎消失,使得硅元素几乎均匀地浸透在整个铁粉颗粒2中。
本发明人通过使用具有不同平均粒径的二氧化硅粉末颗粒8研究了加热时间和比电阻之间的关系。结果证实,具有平均粒径等于或小于1μm的二氧化硅粉末颗粒8能够提供与在上述实验中相同的结果。
因此,从上面的实验结果,在渗硅处理中的加热时间对于具有等于或小于1μm的平均粒径的二氧化硅粉末颗粒8优选地是45分钟。
<二氧化硅粉末的扩散接合的优势>
图22是示出了比较示例和示例2以比较各自的结构的表格。上面描述了示例2的构造并且这里不再重复它的说明。
另一方面,在比较示例中的压粉磁芯用粉末经受了在加热时间设定为60分钟的条件下的渗硅处理、以及然后用于在硅浸透层上形成二氧化硅包含层的渐进氧化处理。除了加热时间以外,在比较示例中的渗硅处理的条件与在示例2中的渗硅处理的那些条件相同。在渐进氧化处理中,将已经经受过60分钟的加热时间的渗硅处理的粉末放在露点控制到0℃的氢气环境中,然后在950℃的处理温度下加热4小时。因此,只有粉末的硅元素被氧化,而铁粉末没有被氧化。在渐进氧化处理以后,粉末以与在示例2中相同的方式涂覆有机硅树脂。将由此所生成的压粉磁芯用粉末与在示例2中一样压制成形。如上所述生成的相同的环状用作比较示例。
本发明人测量了示例2和比较示例的比电阻。该测量结果在图23中示出。
在比较示例中的比电阻是500μΩm并且在示例2中的比电阻是12000μΩm。因此,示例能够达到是比较示例中的比电阻的24倍的较高的比电阻。该测量结果证明,与其中在渐进氧化处理中在硅浸透层上形成二氧化硅包含层的粉末相比,其中二氧化硅粉末8扩散接合到硅浸透层3的表面的粉末能够提供较高的压粉磁芯比电阻,即,能够提供较小的压粉磁芯铁损。
此外,上面的实验结果证明了,在不需要分别进行渐进氧化处理和渗硅处理的情况下仅通过渗硅处理来提高压粉磁芯的比电阻。因此示例2在减少了用于渐进氧化处理的时间和劳动力的方面优于对比示例。
在不脱离本发明的精神或本质特征的条件下,可以用其他的具体形式体现本发明。例如,上述实施例以铁粉2作为软磁性金属粉末的一个示例。软磁性金属粉末的其他示例是Fe-Si合金、Fe-Al合金、Fe-Si-Al合金、钛和铝。
例如,上述实施例以二氧化硅粉末8作为渗硅用粉末的一个示例。可选择的渗硅用粉末可以包括,至少含有二氧化硅的粉末与含有金属碳化物和碳的同素异形体中的一者或两者的粉末的混合粉末,以及含二氧化硅粉末与碳化硅粉末的混合粉末。在另一种选择中,至少含有氧元素的铁粉可以用作软磁性金属粉末并且至少含有碳元素的粉末可以用作渗硅用粉末。
在上述实施例中,例如,渗硅处理是在真空氛围下进行的。或者,渗硅处理可以在减压氛围下,在其中所产生的气体分压较低的环境氛围下,具体而言,在低一氧化碳(CO)氛围下或者在低氮气(N2)氛围下进行。
虽然已经示出并描述了本发明的目前的优选实施例,但应该理解的是,本公开用于说明的目的,并且在不脱离本发明的如所附权利要求中所述的范围的条件下,可以作出各种改变和修改。
附图标记列表
1    压粉磁芯用粉末
2    铁粉
3    硅浸透层
6    硅涂层
8    二氧化硅粉末

Claims (8)

1.一种压粉磁芯用粉末,所述粉末包括软磁性金属粉末以及由在所述软磁性金属粉末的表层中浓化了的硅所形成的硅浸透层,
其中所述硅浸透层包括二氧化硅粉末,所述二氧化硅粉末扩散并接合到所述硅浸透层的表面,使得所述二氧化硅粉末的一部分浸透并扩散在所述硅浸透层中并且所述二氧化硅粉末的其他部分从所述硅浸透层的所述表面突出。
2.根据权利要求1所述的压粉磁芯用粉末,其中
所述二氧化硅粉末在用于形成所述硅浸透层的渗硅处理期间、扩散并接合到所述硅浸透层。
3.根据权利要求1或2所述的压粉磁芯用粉末,其中所述压粉磁芯用粉末涂覆有有机硅树脂。
4.一种压粉磁芯,其由根据权利要求1至3中任一项所述的压粉磁芯用粉末通过粉末压制而形成。
5.一种制造压粉磁芯用粉末的方法,所述方法至少包括进行渗硅处理的步骤,所述渗硅处理包括:
使至少包含硅化合物的渗硅用粉末与软磁性金属粉末的表面接触,
加热所述渗硅用粉末以从所述硅化合物释放硅元素,以及
使被释放的所述硅元素浸透并扩散到所述软磁性金属粉末的表层中,以形成由在所述软磁性金属粉末的所述表层中浓化了的硅所形成的硅浸透层,
其中所述渗硅处理包括:设定用于加热所述渗硅用粉末的加热时间,使得在所述渗硅用粉末的一部分浸透并扩散在所述硅浸透层中并且所述渗硅用粉末的其他部分从所述硅浸透层的表面突出的状态下,所述渗硅用粉末扩散接合到所述硅浸透层的所述表面。
6.根据权利要求5所述的制造压粉磁芯用粉末的方法,所述方法还包括涂覆处理,所述涂覆处理用于在所述渗硅处理之后利用有机硅树脂涂覆经过所述渗硅处理的粉末的外表面。
7.根据权利要求5或6所述的制造压粉磁芯用粉末的方法,其中
所述渗硅用粉末是二氧化硅粉末,并且
当所述二氧化硅粉末具有等于或小于1μm的平均粒径时,所述加热时间被设定为等于或小于45分钟。
8.一种由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,所述压粉磁芯用粉末通过根据权利要求5至7中任一项所述的制造压粉磁芯用粉末的方法制成。
CN201080012924.3A 2010-01-15 2010-09-21 压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法 Expired - Fee Related CN102361715B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-007438 2010-01-15
JP2010007438A JP5261406B2 (ja) 2010-01-15 2010-01-15 圧粉磁心用粉末、圧粉磁心用粉末を圧粉成形した圧粉磁心、及び、圧粉磁心用粉末の製造方法
PCT/JP2010/066752 WO2011086733A1 (en) 2010-01-15 2010-09-21 Powder for dust core, dust core made of the powder for dust core by powder compaction, and method of producing the powder for dust core

Publications (2)

Publication Number Publication Date
CN102361715A true CN102361715A (zh) 2012-02-22
CN102361715B CN102361715B (zh) 2014-02-19

Family

ID=43416447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080012924.3A Expired - Fee Related CN102361715B (zh) 2010-01-15 2010-09-21 压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法

Country Status (6)

Country Link
US (1) US20120012777A1 (zh)
EP (1) EP2523766B1 (zh)
JP (1) JP5261406B2 (zh)
KR (1) KR101291936B1 (zh)
CN (1) CN102361715B (zh)
WO (1) WO2011086733A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825551A (zh) * 2016-12-26 2017-06-13 安徽工业大学 基于激光烧结3d打印的高硅钢软磁铁芯及其制备方法
CN112750588A (zh) * 2019-10-30 2021-05-04 精工爱普生株式会社 绝缘体包覆磁性合金粉末颗粒、压粉磁芯及线圈部件

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187438B2 (ja) * 2010-03-02 2013-04-24 トヨタ自動車株式会社 圧粉磁心用粉末の製造方法、その圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を用いた圧粉磁心、及び、圧粉磁心用粉末製造装置
JP5814169B2 (ja) * 2012-03-29 2015-11-17 トヨタ自動車株式会社 磁心用粉末の製造方法
US20180236537A1 (en) 2015-02-09 2018-08-23 Jfe Steel Corporation Raw material powder for soft magnetic powder, and soft magnetic powder for dust core
US9796019B2 (en) 2015-03-27 2017-10-24 United Technologies Corporation Powder metal with attached ceramic nanoparticles
US10927434B2 (en) * 2016-11-16 2021-02-23 Hrl Laboratories, Llc Master alloy metal matrix nanocomposites, and methods for producing the same
JP7283031B2 (ja) * 2017-03-09 2023-05-30 Tdk株式会社 圧粉磁心
JP7413786B2 (ja) * 2020-01-15 2024-01-16 セイコーエプソン株式会社 圧粉磁心の製造方法および圧粉磁心
JP7459568B2 (ja) * 2020-03-05 2024-04-02 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、圧粉磁心、磁性素子、電子機器、および移動体
JP7413484B1 (ja) 2022-10-31 2024-01-15 太陽誘電株式会社 磁性基体、磁性基体を備えるコイル部品、コイル部品を備える回路基板、及び回路基板を備える電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297624A (ja) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
CN101233586A (zh) * 2005-08-03 2008-07-30 住友电气工业株式会社 软磁性材料、软磁性材料的制造方法、压粉铁心以及压粉铁心的制造方法
WO2009063316A1 (en) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
JP2009256750A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 圧粉磁心用粉末とその製造方法
CN101578150A (zh) * 2007-01-12 2009-11-11 丰田自动车株式会社 磁性粉末、压粉磁芯、电动机以及电抗器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211701A (ja) * 1988-06-29 1990-01-16 Showa Denko Kk Fe−Si合金粉の製造法
EP1734141B1 (en) * 2004-03-29 2012-07-11 Hitachi Powdered Metals Co., Ltd. Production method for soft magnetic sintered member
JP4682584B2 (ja) * 2004-10-29 2011-05-11 Jfeスチール株式会社 圧粉磁心用の軟磁性金属粉末および圧粉磁心

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297624A (ja) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
CN101233586A (zh) * 2005-08-03 2008-07-30 住友电气工业株式会社 软磁性材料、软磁性材料的制造方法、压粉铁心以及压粉铁心的制造方法
CN101578150A (zh) * 2007-01-12 2009-11-11 丰田自动车株式会社 磁性粉末、压粉磁芯、电动机以及电抗器
WO2009063316A1 (en) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
JP2009256750A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 圧粉磁心用粉末とその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825551A (zh) * 2016-12-26 2017-06-13 安徽工业大学 基于激光烧结3d打印的高硅钢软磁铁芯及其制备方法
CN112750588A (zh) * 2019-10-30 2021-05-04 精工爱普生株式会社 绝缘体包覆磁性合金粉末颗粒、压粉磁芯及线圈部件
CN112750588B (zh) * 2019-10-30 2023-12-26 精工爱普生株式会社 绝缘体包覆磁性合金粉末颗粒、压粉磁芯及线圈部件

Also Published As

Publication number Publication date
KR20110122182A (ko) 2011-11-09
EP2523766A1 (en) 2012-11-21
EP2523766B1 (en) 2017-07-19
JP5261406B2 (ja) 2013-08-14
KR101291936B1 (ko) 2013-07-31
WO2011086733A1 (en) 2011-07-21
JP2011146604A (ja) 2011-07-28
CN102361715B (zh) 2014-02-19
US20120012777A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
CN102361715B (zh) 压粉磁芯用粉末,由压粉磁芯用粉末通过粉末压制形成的压粉磁芯,以及制造压粉磁芯用粉末的方法
EP2993672B1 (en) Method of producing powder for magnetic core
JP4422773B2 (ja) 圧粉磁心用粉末とその製造方法
CN101213041B (zh) 制造绝缘软磁性金属粉末成形体的方法
JP5227756B2 (ja) 軟磁性材料の製造方法
JP5187438B2 (ja) 圧粉磁心用粉末の製造方法、その圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を用いた圧粉磁心、及び、圧粉磁心用粉末製造装置
JP6265210B2 (ja) リアクトル用圧粉磁心
EP2227344B1 (en) Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
JP2006225766A (ja) 磁性鉄粉末の熱処理
US6193903B1 (en) Method of forming high-temperature magnetic articles and articles formed thereby
CN101612665A (zh) 压制部件的选择性烧结
JP2009256783A (ja) 金属多孔体の製造方法
JPWO2009011355A1 (ja) 放電表面処理用電極の製造方法、及び放電表面処理用電極
JP2015012188A (ja) 圧粉磁心の製造方法、及び圧粉磁心
JP2007070719A (ja) 堆積酸化膜被覆Fe−Si系鉄基軟磁性粉末およびその製造方法
JP2002064027A (ja) 圧粉磁心の製造方法
JP3259006B2 (ja) 多孔質焼結体及びその製造方法と装置
JP2005079511A (ja) 軟磁性材料およびその製造方法
WO2021141704A1 (en) Apparatus and methods for sintering
WO2007052772A1 (ja) 堆積酸化膜被覆Fe-Si系鉄基軟磁性粉末およびその製造方法
JP3982945B2 (ja) 鉄系焼結合金の焼結方法
TW201007782A (en) Method for improving the magnetic properties of a compacted and heat treated soft magnetic composite component
CN1706012A (zh) 软磁元件的热处理
JP2013172113A (ja) Fe基圧粉磁心及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140219