CN102354669A - 硅纳米线器件的制作方法 - Google Patents

硅纳米线器件的制作方法 Download PDF

Info

Publication number
CN102354669A
CN102354669A CN2011103281624A CN201110328162A CN102354669A CN 102354669 A CN102354669 A CN 102354669A CN 2011103281624 A CN2011103281624 A CN 2011103281624A CN 201110328162 A CN201110328162 A CN 201110328162A CN 102354669 A CN102354669 A CN 102354669A
Authority
CN
China
Prior art keywords
silicon nanowires
etching
amorphous carbon
silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103281624A
Other languages
English (en)
Other versions
CN102354669B (zh
Inventor
景旭斌
杨斌
郭明升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN2011103281624A priority Critical patent/CN102354669B/zh
Publication of CN102354669A publication Critical patent/CN102354669A/zh
Priority to US13/659,907 priority patent/US8507369B2/en
Application granted granted Critical
Publication of CN102354669B publication Critical patent/CN102354669B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Hall/Mr Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种硅纳米线器件的制作方法,包括以下步骤:在衬底上形成硅纳米线;依次沉积无定形碳层和绝缘抗反射涂层;干法刻蚀去除部分硅纳米线上方的绝缘抗反射涂层和无定形碳层暴露硅纳米线器件区;在上述结构表面沉积氧化膜;在硅纳米线器件区内形成连通至硅纳米线的金属焊垫;在上述结构表面沉积钝化层;采用光刻刻蚀工艺,在金属焊垫上形成接触孔,去除硅纳米线器件区外的硅纳米线上方的钝化层、氧化膜和绝缘抗反射涂层,停留在无定形碳层上;采用灰化工艺,去除硅纳米线器件区外的硅纳米线上方的无定形碳层,暴露出硅纳米线。本发明利用无定形碳层的各向同性刻蚀和各向异性刻蚀的特性,消除了硅纳米线器件中器件区以外的硅纳米线的侧墙。

Description

硅纳米线器件的制作方法
技术领域
本发明涉及一种生物芯片,特别涉及一种硅纳米线器件的制作方法。
背景技术
近年来,伴随着人们对纳米技术领域的不断探索和研究,具有一维纳米结构的材料,如硅纳米线(SiNW,Silicon Nanowire),吸引了越来越多人的眼球。硅纳米线具有显著的量子效应、超大面容比等特性,在MOS器件、传感器等领域有着良好的应用前景。
硅纳米线器件,作为一种生物芯片基本单元,正被越来越广泛地应用于生物探测领域。如图1a、图1b所示,现有技术中的硅纳米线器件,通常是在多晶硅或单晶硅表面2021上覆盖一层氧化层2022而形成硅纳米线202以及两端的器件区B,其主要的工作原理类似于MOSFET,利用多晶硅或者单晶硅上的氧化层作为栅氧,由于吸附其上的生物分子集团通常都带有电荷,该电荷会对硅纳米线进行类似于MOSFET的电势调节,进而影响硅纳米线的导电特性,通过对这种导电特性的监控可识别特定的生物分子集团。
现有技术的硅纳米线器件的结构,如图2所示,极细的多晶硅线外包覆均匀厚度的氧化膜裸露在外界环境下,而其器件区B则必须覆盖绝缘层。目前在常规的半导体工艺中,形成上述结构通常选择光刻、刻蚀工艺,但由于各向异性刻蚀的特点,会在器件区B以外的硅纳米线上形成小侧墙211(mini spacer),同时等离子体刻蚀会造成硅纳米线的损伤。
发明内容
本发明的目的是提供一种硅纳米线器件的制作方法,以消除硅纳米线器件中器件区以外的硅纳米线的侧墙,降低成本。
本发明的技术解决方案是一种硅纳米线器件的制作方法,包括以下步骤:在衬底上形成硅纳米线;
沉积无定形碳层以覆盖所述硅纳米线,在无定形碳层上沉积绝缘抗反射涂层;
干法刻蚀去除部分硅纳米线上方的绝缘抗反射涂层和无定形碳层暴露出硅纳米线器件区;
在上述结构表面沉积氧化膜;
在硅纳米线器件区内形成连通至硅纳米线的金属焊垫;
在上述结构表面沉积钝化层;
采用光刻刻蚀工艺,在金属焊垫上形成接触孔,去除硅纳米线器件区以外的硅纳米线上方的钝化层、氧化膜和绝缘抗反射涂层,停留在无定形碳层上;
采用灰化工艺,去除硅纳米线器件区以外的硅纳米线上方的无定形碳层,暴露出硅纳米线。
作为优选:所述在衬底上形成硅纳米线的步骤具体包括:
采用热氧化方法,在衬底上形成二氧化硅层,在二氧化硅层上沉积多晶硅层,对所述多晶硅层进行轻掺杂;
对所述多晶硅层采用光刻、刻蚀工艺,形成多晶硅线;
采用热氧化方法,在多晶硅线表面上生长氧化层以形成硅纳米线。
作为优选:所述干法刻蚀去除部分硅纳米线上方的绝缘抗反射涂层和无定形碳层暴露硅纳米线器件区的步骤包括在绝缘抗反射涂层上涂敷光刻胶并通过光刻定义出对应于硅纳米线器件区的刻蚀窗口,在所述刻蚀窗口内干法刻蚀去除绝缘抗反射涂层和无定形碳层,暴露出硅纳米线器件区;接着,去除光刻胶。
作为优选:所述在硅纳米线器件区内形成连通至硅纳米线的金属焊垫的步骤包括采用光刻、刻蚀形成贯穿氧化膜并连通多晶硅线顶部的通孔,在通孔内和氧化膜表面上沉积金属形成金属层,对氧化膜表面上的金属层进行光刻、刻蚀形成金属焊垫。
作为优选:所述采用光刻、刻蚀工艺,在金属焊垫上形成接触孔,去除硅纳米线器件区区域外的硅纳米线上方的钝化层、绝缘抗反射涂层和氧化膜,停留在无定形碳层上的步骤包括在钝化层上涂覆光刻胶,并光刻形成第一刻蚀窗口和第二刻蚀窗口;刻蚀第一刻蚀窗口内的钝化层,停留在金属焊垫上,形成接触孔,刻蚀第二刻蚀窗口内的钝化层、氧化膜和绝缘抗反射涂层,停留在无定形碳层上。
作为优选:所述采用灰化工艺,去除硅纳米线器件区区域外的硅纳米线上方的无定形碳层,暴露出硅纳米线步骤中,同时去除硅纳米线器件区的光刻胶。
作为优选:所述绝缘抗反射涂层的厚度为200-600埃。
作为优选:所述金属焊垫为铝焊垫。
作为优选:所述钝化层的材料为氮化硅和二氧化硅。
与现有技术相比,本发明采用无定形碳层来制作硅纳米线器件,由于无定形碳层具有各向同性刻蚀和各向异性刻蚀的特性,先利用无定形碳层各向异性刻蚀的特性做阻挡层,在完成后续低温图形化(如金属连线)工程后,再各向同性刻蚀剥离无定形碳层,来暴露硅纳米线,所述无定形碳层具有高刻蚀比且低等离子体破坏性的优点,使得硅纳米线器件的硅纳米线没有小侧墙,同时制造成本低。
附图说明
图1a是一种硅纳米线器件的俯视示意图。
图1b是图1a的A-A剖视示意图。
图2是现有技术的硅纳米线器件的剖面图。
图3是本发明硅纳米线器件制作工艺的流程图。
图4a-4h是本发明硅纳米线器件制作中各工艺步骤的剖面图。
具体实施方式
本发明下面将结合附图作进一步详述:
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸,本发明中硅纳米线器件剖面图以简化的方式只画出了部分硅纳米线和一个器件区,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。
请参阅图3所示,在本实施例中,本发明硅纳米线器件的制作方法包括以下步骤:
在步骤101中,如图4a所示,在衬底上形成硅纳米线;所述步骤包括以下步骤:采用热氧化方法,在衬底200上形成二氧化硅层201,在二氧化硅层201上沉积多晶硅层2021,对所述多晶硅层2021进行轻掺杂;
对所述多晶硅层采用光刻、刻蚀工艺,形成多晶硅线2021;
采用热氧化方法,在多晶硅线2021表面上生长氧化层2022,形成硅纳米线202。
在步骤102中,如图4b所示,沉积无定形碳层203以覆盖所述硅纳米线202,在无定形碳层203上沉积绝缘抗反射涂层204(DARC,dielectricanti-reflective coating),所述无定形碳层203可采用应用材料公司的APF薄膜(Advanced Pattening Film),所述绝缘抗反射涂层204的厚度为200-600埃;
在步骤103中,如图4c所示,干法刻蚀去除部分硅纳米线上方的绝缘抗反射涂层和无定形碳层暴露硅纳米线器件区,该步骤包括在绝缘抗反射涂层204上涂敷光刻胶205并通过光刻定义出对应于硅纳米线器件区的刻蚀窗口,在所述刻蚀窗口内干法刻蚀去除绝缘抗反射涂层204和无定形碳层203,暴露出硅纳米线器件区B。硅纳米线器件区B以外的硅纳米线202上依旧覆盖着无定形碳层203、绝缘抗反射涂层204和光刻胶205。接着,去除光刻胶205。
在步骤104中,如图4d所示,在上述结构表面沉积氧化膜206;
在步骤105中,如图4e所示,在硅纳米线器件区B形成连通至硅纳米线的金属焊垫207,该步骤包括采用光刻、刻蚀形成贯穿氧化膜206连通多晶硅线2021顶部的通孔,在通孔内和氧化膜206表面上沉积金属形成金属层,对氧化膜206表面上的金属层进行光刻、刻蚀形成金属焊垫207,所述金属焊垫207为铝焊垫;
在步骤106中,如图4f所示,在上述结构表面沉积钝化层208,所述钝化层208为氮化硅和二氧化硅;
在步骤107中,如图4g所示,采用光刻刻蚀工艺,在金属焊垫207上形成接触孔210,去除硅纳米线器件区B区域外的硅纳米线上方的钝化层208、氧化膜206和绝缘抗反射涂层204,停留在无定形碳层203上,该步骤具体包括:在钝化层上涂覆光刻胶209,并光刻形成第一刻蚀窗口(图中未示)和第二刻蚀窗口(图中未示);刻蚀第一刻蚀窗口内的钝化层208,停留在金属焊垫207上,形成接触孔210,刻蚀第二刻蚀窗口内的钝化层208、氧化膜206和绝缘抗反射涂层204,停留在无定形碳层203上;
在步骤108中,如图4h所示,采用灰化工艺,去除硅纳米线器件区B区域外硅纳米线202上方的无定形碳层203,暴露出硅纳米线202,同时除去硅纳米线器件区B上的光刻胶209,由于灰化工艺对于无定形碳层的去除是各项同性的,可避免在硅纳米线202上形成侧墙,所述无定形碳层203相对氧化膜、多晶硅、氮化硅有较高的刻蚀选择比,无定形碳层:氧化膜为10∶1,无定形碳层:多晶硅为6∶1,无定形碳层:氮化硅为4∶1,由于无定形碳层具有各向同性刻蚀和各向异性刻蚀的特性,先利用无定形碳层各向异性刻蚀的特性做阻挡层,在完成后续低温图形化(如金属连线)工艺后,再各向同性刻蚀剥离无定形碳层,来暴露硅纳米线,所述无定形碳层具有高刻蚀比且低等离子体破坏性的优点,使得硅纳米线器件的硅纳米线没有小侧墙,同时制造成本低。
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

Claims (9)

1.一种硅纳米线器件的制作方法,包括以下步骤:
在衬底上形成硅纳米线;
沉积无定形碳层以覆盖所述硅纳米线,在无定形碳层上沉积绝缘抗反射涂层;
干法刻蚀去除部分硅纳米线上方的绝缘抗反射涂层和无定形碳层暴露出硅纳米线器件区;
在上述结构表面沉积氧化膜;
在硅纳米线器件区内形成连通至硅纳米线的金属焊垫;
在上述结构表面沉积钝化层;
采用光刻刻蚀工艺,在金属焊垫上形成接触孔,去除硅纳米线器件区以外的硅纳米线上方的钝化层、氧化膜和绝缘抗反射涂层,停留在无定形碳层上;
采用灰化工艺,去除硅纳米线器件区以外的硅纳米线上方的无定形碳层,暴露出硅纳米线。
2.根据权利要求1所述的硅纳米线器件的制作方法,其特征在于:所述在衬底上形成硅纳米线的步骤具体包括:
采用热氧化方法,在衬底上形成二氧化硅层,在二氧化硅层上沉积多晶硅层,对所述多晶硅层进行轻掺杂;
对所述多晶硅层采用光刻、刻蚀工艺,形成多晶硅线;
采用热氧化方法,在多晶硅线表面上生长氧化层形成以硅纳米线。
3.根据权利要求1所述的硅纳米线器件的制作方法,其特征在于:所述干法刻蚀去除部分硅纳米线上方的绝缘抗反射涂层和无定形碳层暴露出硅纳米线器件区的步骤包括在绝缘抗反射涂层上涂敷光刻胶并通过光刻定义出对应于硅纳米线器件区的刻蚀窗口,在所述刻蚀窗口内干法刻蚀去除绝缘抗反射涂层和无定形碳层,暴露出硅纳米线器件区;接着,去除光刻胶。
4.根据权利要求2所述的硅纳米线器件的制作方法,其特征在于:所述在硅纳米线器件区内形成连通至硅纳米线的金属焊垫的步骤包括采用光刻、刻蚀形成贯穿氧化膜并连通多晶硅线顶部的通孔,在通孔内和氧化膜表面上沉积金属形成金属层,对氧化膜表面上的金属层进行光刻、刻蚀形成金属焊垫。
5.根据权利要求1所述的硅纳米线器件的制作方法,其特征在于:所述采用光刻、刻蚀工艺,在金属焊垫上形成接触孔,去除硅纳米线器件区区域外的硅纳米线上方的钝化层、绝缘抗反射涂层和氧化膜,停留在无定形碳层上的步骤包括在钝化层上涂覆光刻胶,并光刻形成第一刻蚀窗口和第二刻蚀窗口;刻蚀第一刻蚀窗口内的钝化层,停留在金属焊垫上,形成接触孔,刻蚀第二刻蚀窗口内的钝化层、氧化膜和绝缘抗反射涂层,停留在无定形碳层上。
6.根据权利要求5所述的硅纳米线器件的制作方法,其特征在于:所述采用灰化工艺,去除硅纳米线器件区区域外的硅纳米线上方的无定形碳层,暴露出硅纳米线步骤中,同时去除硅纳米线器件区的光刻胶。
7.根据权利要求1所述的硅纳米线器件的制作方法,其特征在于:所述绝缘抗反射涂层的厚度为200-600埃。
8.根据权利要求1所述的硅纳米线器件的制作方法,其特征在于:所述金属焊垫为铝焊垫。
9.根据权利要求1所述的硅纳米线器件的制作方法,其特征在于:所述钝化层的材料为氮化硅和二氧化硅。
CN2011103281624A 2011-10-25 2011-10-25 硅纳米线器件的制作方法 Active CN102354669B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011103281624A CN102354669B (zh) 2011-10-25 2011-10-25 硅纳米线器件的制作方法
US13/659,907 US8507369B2 (en) 2011-10-25 2012-10-24 Method for producing silicon nanowire devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103281624A CN102354669B (zh) 2011-10-25 2011-10-25 硅纳米线器件的制作方法

Publications (2)

Publication Number Publication Date
CN102354669A true CN102354669A (zh) 2012-02-15
CN102354669B CN102354669B (zh) 2013-02-27

Family

ID=45578207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103281624A Active CN102354669B (zh) 2011-10-25 2011-10-25 硅纳米线器件的制作方法

Country Status (2)

Country Link
US (1) US8507369B2 (zh)
CN (1) CN102354669B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683205A (zh) * 2012-05-04 2012-09-19 上海华力微电子有限公司 制作半导体内建应力纳米线以及半导体器件的方法
CN102683204A (zh) * 2012-05-04 2012-09-19 上海华力微电子有限公司 应变硅纳米线nmosfet的制备方法
CN102890150A (zh) * 2012-09-20 2013-01-23 上海集成电路研发中心有限公司 一种生物芯片中硅纳米线阵列的制造方法
CN103626120A (zh) * 2013-12-19 2014-03-12 中国科学院上海微系统与信息技术研究所 一种传感器非敏感区域保护薄膜的制备方法
WO2014075373A1 (zh) * 2012-11-14 2014-05-22 上海集成电路研发中心有限公司 同时检测miRNAs与蛋白标记物的硅纳米线芯片及其检测方法和应用
CN108682622A (zh) * 2018-04-02 2018-10-19 武汉高芯科技有限公司 HgCdTe器件钝化层的电学接触孔刻蚀方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362108B2 (en) * 2012-11-01 2016-06-07 Shanghai Ic R&D Center Co., Ltd Silicon nanowire bio-chip structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930670A (zh) * 2004-03-12 2007-03-14 应用材料公司 沉积用于金属刻蚀硬掩模应用的无定型碳膜的方法
CN1992227A (zh) * 2005-12-28 2007-07-04 海力士半导体有限公司 具有双栅结构的半导体器件的制造方法
CN101192525A (zh) * 2006-11-28 2008-06-04 中芯国际集成电路制造(上海)有限公司 金属氧化物半导体器件栅极的制造方法
CN101271831A (zh) * 2007-03-23 2008-09-24 海力士半导体有限公司 半导体器件的制造方法
CN101320224A (zh) * 2007-03-21 2008-12-10 应用材料公司 对光刻胶具有高选择比的无卤素无定形碳掩膜蚀刻方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262408B2 (en) * 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
FR2910686B1 (fr) * 2006-12-20 2009-04-03 Commissariat Energie Atomique Dispositif de memorisation a structure multi-niveaux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930670A (zh) * 2004-03-12 2007-03-14 应用材料公司 沉积用于金属刻蚀硬掩模应用的无定型碳膜的方法
CN1992227A (zh) * 2005-12-28 2007-07-04 海力士半导体有限公司 具有双栅结构的半导体器件的制造方法
CN101192525A (zh) * 2006-11-28 2008-06-04 中芯国际集成电路制造(上海)有限公司 金属氧化物半导体器件栅极的制造方法
CN101320224A (zh) * 2007-03-21 2008-12-10 应用材料公司 对光刻胶具有高选择比的无卤素无定形碳掩膜蚀刻方法
CN101271831A (zh) * 2007-03-23 2008-09-24 海力士半导体有限公司 半导体器件的制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683205A (zh) * 2012-05-04 2012-09-19 上海华力微电子有限公司 制作半导体内建应力纳米线以及半导体器件的方法
CN102683204A (zh) * 2012-05-04 2012-09-19 上海华力微电子有限公司 应变硅纳米线nmosfet的制备方法
CN102683204B (zh) * 2012-05-04 2016-05-25 上海华力微电子有限公司 应变硅纳米线nmosfet的制备方法
CN102890150A (zh) * 2012-09-20 2013-01-23 上海集成电路研发中心有限公司 一种生物芯片中硅纳米线阵列的制造方法
CN102890150B (zh) * 2012-09-20 2016-08-24 上海集成电路研发中心有限公司 一种生物芯片中硅纳米线阵列的制造方法
WO2014075373A1 (zh) * 2012-11-14 2014-05-22 上海集成电路研发中心有限公司 同时检测miRNAs与蛋白标记物的硅纳米线芯片及其检测方法和应用
CN103626120A (zh) * 2013-12-19 2014-03-12 中国科学院上海微系统与信息技术研究所 一种传感器非敏感区域保护薄膜的制备方法
CN103626120B (zh) * 2013-12-19 2015-10-28 中国科学院上海微系统与信息技术研究所 一种传感器非敏感区域保护薄膜的制备方法
CN108682622A (zh) * 2018-04-02 2018-10-19 武汉高芯科技有限公司 HgCdTe器件钝化层的电学接触孔刻蚀方法

Also Published As

Publication number Publication date
US8507369B2 (en) 2013-08-13
US20130102134A1 (en) 2013-04-25
CN102354669B (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
CN102354669B (zh) 硅纳米线器件的制作方法
CN100580876C (zh) 一种选择性刻蚀硅纳米线的方法
TWI463565B (zh) 使用共形氮化物形成自上而下堅固之矽奈米結構的方法及其結構
KR101651123B1 (ko) 측면 성장 반도체 나노와이어 제조 방법 및 상기 방법에 의해 얻어진 트랜지스터
US20130092902A1 (en) Nanowire tunneling field effect transistor with vertical structure and a manufacturing method thereof
CN104124272A (zh) 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
CN104995741A (zh) 半导体纳米线的凹槽式接触
CN103258741B (zh) 纳米线场效应晶体管及其形成方法
CN107919396B (zh) 基于WO3/Al2O3双层栅介质的零栅源间距金刚石场效应晶体管及制作方法
US10418490B2 (en) Field effect transistor and manufacturing method thereof
CN109690786B (zh) 异质结遂穿场效应晶体管及其制备方法
CN103377927B (zh) 悬浮纳米线场效应晶体管及其形成方法
CN105336687B (zh) 半导体结构及其形成方法
CN103187249B (zh) 一种半导体纳米材料器件的制作方法
CN102969222B (zh) 与cmos工艺兼容的硅纳米线器件的制作方法
CN114620675A (zh) 一种多维度图案化硅基纳米草制备方法及其应用
US20110034008A1 (en) Method for forming a textured surface on a semiconductor substrate using a nanofabric layer
CN102509694B (zh) 保留部分无定形碳层的方法
CN106684137B (zh) 一种三维环栅半导体场效应晶体管的制备方法
CN114068703A (zh) 晶体管及制备方法
Oh et al. Silicon nanowire bridge arrays with dramatically improved yields enabled by gold colloids functionalized with HF acid and poly-L-Lysine
CN102299171B (zh) 与cmos工艺兼容的硅纳米线器件及其制作方法
CN217466777U (zh) 一种硅基横向氧化锌电导型气体传感器
CN102437189A (zh) 硅纳米线器件及其制造方法
TWI442588B (zh) 太陽能電池及其製備方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant