CN102345096B - 一种铜纳米线/铜膜复合结构及其制备方法 - Google Patents

一种铜纳米线/铜膜复合结构及其制备方法 Download PDF

Info

Publication number
CN102345096B
CN102345096B CN201110179386.3A CN201110179386A CN102345096B CN 102345096 B CN102345096 B CN 102345096B CN 201110179386 A CN201110179386 A CN 201110179386A CN 102345096 B CN102345096 B CN 102345096B
Authority
CN
China
Prior art keywords
copper
nanowire
composite structure
copper film
film composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110179386.3A
Other languages
English (en)
Other versions
CN102345096A (zh
Inventor
苏江滨
蒋美萍
李星星
潘丁娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liyang Chang Technology Transfer Center Co., Ltd.
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201110179386.3A priority Critical patent/CN102345096B/zh
Publication of CN102345096A publication Critical patent/CN102345096A/zh
Application granted granted Critical
Publication of CN102345096B publication Critical patent/CN102345096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种铜纳米线/铜膜复合结构及其制备方法,目的是提供一种铜纳米线/铜膜复合结构及其磁控溅射制备方法。本发明采用小沉积角度的直流磁控溅射掠射沉积技术,通过适当调节薄膜厚度、衬底温度和衬底偏压,在玻璃衬底上制备了一种铜纳米线/铜膜复合结构。本发明所提供的铜纳米线/铜膜复合结构中,铜纳米线表面光滑、径向粗细均匀,长度为0.1~5mm、直径为100~500nm,铜膜的厚度为50~100nm。而且,铜纳米线平行于铜膜表面、镶嵌在厚度比铜纳米线直径还小的铜膜中。本发明在金属铜膜表面镶嵌了亚波长的铜纳米线,这在与表面等离子体相关的领域可能具有潜在应用前景。

Description

一种铜纳米线/铜膜复合结构及其制备方法
技术领域
本发明涉及铜纳米线,目的是提供一种铜纳米线/铜膜复合结构及其磁控溅射掠射沉积制备方法。
背景技术
近年来,磁控溅射、热蒸发、电子束蒸发等气相沉积技术的应用日趋广泛,在工业生产和科学研究领域中发挥着巨大作用;一般地,上述气相沉积法主要用于薄膜沉积和表面覆盖层的制备,但如果把它们和掠射沉积技术(glancing angle deposition, GLAD)结合起来,利用掠射沉积时产生的阴影效应(shadowing effect)就可能制得纳米线;例如,Karabacak T等采用直流磁控溅射掠射沉积法在SiO2/Si(100)衬底上沉积了W纳米棒/柱(参见文献:1. Karabacak T, Mallikarjunan A, Singh J P et al, Appl. Phys. Lett., 2003, 83: 3096;2. Karabacak T, Wang G C, Lu T M, J. Vac. Sci. Technol. A, 2004, 22: 1778),在Si3N4/Si(100)衬底上沉积了Cu纳米线(参见文献:1. Karabacak T, Deluca J S, Wang P I et al, J. Appl. Phys., 2006, 99: 064304),以及采用热蒸发掠射沉积法在SiO2/Si(100)衬底上沉积了Si纳米柱等(参见文献:1. Karabacak T, Wang G C, Lu T M, J. Vac. Sci. Technol. A, 2004, 22: 1778);Alouach H等采用电子束蒸发掠射沉积法先后在SiO2/Si(100)和H-Si(110)衬底上制备了Cu纳米线(参见文献:1. Alouach H, Mankey G J, J. Vac. Sci. Technol. A, 2004, 22: 1379;2. Alouach H, Mankey G J, Appl. Phys. Lett., 2005, 86: 123114)。
在上述文献中,GLAD技术制备纳米线普遍具有以下几个特征:(1)沉积角度较大;(2)衬底要求较高,成本昂贵;(3)非线性的纳米线形貌;(4)纳米线较短,一般仅为几百纳米~几微米;(5)纳米线垂直于衬底或者与衬底成一定角度进行生长。
发明内容
本发明的目的是提供一种铜纳米线/铜膜复合结构及其制备方法。
本发明所提供的铜纳米线/铜膜复合结构中,铜纳米线表面光滑,径向粗细均匀,长度为0.1~5 mm、直径为100~500 nm,铜膜的厚度为50~100 nm,而且,铜纳米线平行于铜膜表面并镶嵌在铜膜中。
本发明的技术方案是采用小沉积角度的直流磁控溅射掠射沉积(dc-MSGLAD)技术,通过适当调节薄膜厚度、衬底温度和衬底偏压,在玻璃衬底上制备了一种铜纳米线/铜膜复合结构。
本发明所述的铜纳米线/铜膜复合结构的制备方法,包括以下步骤:
1)取普通玻璃片置于无水乙醇中超声清洗8min,然后用去离子水反复冲洗3次以上,再将玻璃片置于80℃烘箱中烘干,作为沉积铜纳米线/铜膜复合结构的衬底;
2)将准备好的玻璃衬底固定在样品盘上,装上高纯铜靶,调节沉积角度以及衬底与铜靶的距离;
3)关上腔门抽高真空,然后升衬底温度;
4)通溅射气体并保持腔室气压一定,打开溅射源预溅射5min,除去铜靶表面可能的氧化层;
5)加衬底偏压,调节样品盘转速和溅射功率,移开挡板开始沉积,同时利用石英晶振膜厚仪对薄膜厚度进行监控,沉积铜纳米线/铜膜复合结构。
在步骤1)中,所述去离子水的电阻率为18.2 MΩ·cm;
在步骤2)中,所述高纯铜靶的纯度为99.99%以上;所述沉积角度是指衬底的表面法线相对铜靶的表面法线成20°;所述衬底与铜靶的距离为15cm;
在步骤3)中,所述高真空是指腔室真空度为5×10-4 Pa以上;所述衬底温度为20~300 ℃;
在步骤4)中,所述溅射气体是指流量为20sccm、纯度为99.999%的高纯Ar气;所述腔室气压为0.2Pa;所述预溅射的功率为DC 120W;
在步骤5)中,所述偏压为0~-150 V;所述样品盘转速为2 r/min;所述溅射功率为DC 100W;所述薄膜厚度为50~100 nm,由于沉积速率一定(2 A/s),沉积时间和薄膜厚度其实是同一个参数,沉积时间为250~500 s。
本发明首次利用小沉积角度的dc-MSGLAD技术在普通玻璃衬底上制备了一种铜纳米线/铜膜复合结构,“自下而上”地实现了一维和二维铜纳米结构的合成与自组装,采用小沉积角度进行沉积,一方面可以避免大角度沉积时产生的阴影效应,溅射出来的铜原子能够沉积到衬底正对表面上的每一个位置,在衬底上沉积了铜膜;另一方面铜原子在平行于铜膜表面方向的动量将驱动其在衬底表面上进行定向扩散,不断地产生应力积累并诱导铜纳米线的形成,从而在玻璃衬底上制备了铜纳米线/铜膜复合结构,在制备过程中,要想得到一定数目的铜纳米线,除了选择合适的沉积角度以及衬底外,还必须控制其它的工艺参数,比如薄膜厚度、衬底温度、衬底偏压等。一般地,随着薄膜厚度的增加,铜纳米线数目增多;衬底温度越高,铜纳米线越多;未施加偏压条件下得到的铜纳米线比施加偏压来得稍多;而且衬底温度对铜纳米线数目的影响明显超过薄膜厚度和衬底温度。
本发明的优点和创新性在于:(1)采用小沉积角度的dc-MSGLAD制备方法,溅射速率快,沉积效率高,可实现规模化生产;(2)选用廉价的普通玻璃作为衬底,不仅大大节约了成本,还可以实现大面积化;(3)制备工艺简单,低温下一步就可制得复合结构;(4)无需模板,避免了去除模板时对复合结构造成破坏;(5)无需催化剂,避免了催化剂引入的杂质污染;(6)所制备的铜纳米线超长,而且它们表面光滑、径向粗细均匀,平行于铜膜表面、镶嵌在厚度比铜纳米线直径还小的铜膜中(见图2~图4),本发明在金属铜膜表面镶嵌了亚波长的铜纳米线,这在与表面等离子体相关的领域可能具有潜在应用前景。
附图说明
图1为本发明的实验装置示意图;
图2为实施例2所制备铜纳米线/铜膜复合结构的金相显微照片;
图3为实施例5所制备铜纳米线/铜膜复合结构的金相显微照片;
图4(a)为实施例5所制备铜纳米线/铜膜复合结构的扫描电子显微照片:1为一铜纳米线,2为铜纳米线掉了之后留下一凹槽;(b)为本发明所制备铜纳米线/铜膜复合结构的截面示意图。
具体实施方式
实施例1:
1)取普通玻璃片置于无水乙醇中超声清洗8min,然后用去离子水反复冲洗3次以上,再将玻璃片置于80℃烘箱中烘干;
2)将准备好的玻璃衬底固定在样品盘上,装上纯度为99.99%的铜靶,调节铜靶相对衬底成20°,调节衬底与铜靶的距离为15cm;
3)关上腔门抽腔室真空至5×10-4 Pa,衬底不加热(约20℃);
4)通流量为20sccm、纯度为99.999%的高纯Ar气,保持腔室气压为0.2Pa,打开直流溅射源,调节溅射功率为DC 120W预溅射5min,除去铜靶表面可能的氧化层;
5)衬底不加偏压,调节样品盘转速为2 r/min,调节溅射功率为DC 100W,移开挡板沉积57nm厚的铜膜,制备铜纳米线/铜膜复合结构。
本实施例所制备的铜纳米线/铜膜复合结构中,铜膜的厚度为57nm,铜纳米线的长度为0.1~3 mm、直径为100~300 nm,铜膜上铜纳米线的密度约为2.5×102/mm2
实施例2:
1)同实施例1;
2)同实施例1;
3)升衬底温度至200℃,其余同实施例1;
4)同实施例1;
5)同实施例1。
本实施例所制备的铜纳米线/铜膜复合结构中,铜膜的厚度为57nm,铜纳米线的长度为0.5~4 mm、直径为100~400 nm,铜膜上铜纳米线的密度约为6.7×102/mm2
实施例3:
1)同实施例1;
2)同实施例1;
3)同实施例1;
4)同实施例1;
5)铜膜厚度为81nm,其余同实施例1。
本实施例所制备的铜纳米线/铜膜复合结构中,铜膜的厚度为81nm,铜纳米线的长度为0.1~3 mm、直径为100~450 nm,铜膜上铜纳米线的密度约为3.3×102/mm2
实施例4:
1)同实施例1;
2)同实施例1;
3)同实施例1;
4)同实施例1;
5)加上-80V偏压,铜膜厚度为81nm,其余同实施例1。
本实施例所制备的铜纳米线/铜膜复合结构中,铜膜的厚度为81nm,铜纳米线的长度为0.1~3 mm、直径为100~450 nm,铜膜上铜纳米线的密度约为2.9×102/mm2
实施例5:
1)同实施例1;
2)同实施例1;
3)升衬底温度至200℃,其余同实施例1;
4)同实施例1;
5)铜膜厚度为81nm,其余同实施例1。
本实施例所制备的铜纳米线/铜膜复合结构中,铜膜的厚度为81nm,铜纳米线的长度为0.5~5 mm、直径为100~500 nm,铜膜上铜纳米线的密度约为8.6×102/mm2。 

Claims (5)

1.一种铜纳米线/铜膜复合结构,其特征在于:铜纳米线表面光滑,径向粗细均匀,长度为0.1~5 mm、直径为100~500 nm,铜膜的厚度为50~100 nm,铜纳米线平行于铜膜表面并镶嵌在铜膜中。
2.如权利要求1所述的一种铜纳米线/铜膜复合结构的制备方法,包括以下步骤:
1)取普通玻璃片置于无水乙醇中超声清洗8min,然后用去离子水反复冲洗3次以上,所述去离子水的电阻率为18.2 MΩ·cm,再将玻璃片置于80℃烘箱中烘干,作为沉积铜纳米线/铜膜复合结构的衬底;
2)将准备好的玻璃衬底固定在样品盘上,装上高纯铜靶,调节沉积角度以及衬底与铜靶的距离;所述沉积角度是指衬底的表面法线相对铜靶的表面法线成20°,所述衬底与铜靶的距离为15cm;
3)关上腔门抽高真空,然后升衬底温度;所述高真空是指腔室真空度为5×10-4 Pa以上,所述衬底温度为20~300 ℃;
4)通溅射气体并保持腔室气压,打开溅射源预溅射以除去铜靶表面可能的氧化层;
5)加衬底偏压,所述偏压为0~-150 V,调节样品盘转速和溅射功率,所述样品盘转速为2 r/min;所述溅射功率为DC 100W,移开挡板开始沉积,同时利用石英晶振膜厚仪对薄膜厚度进行监控,铜膜的厚度为50~100 nm,沉积铜纳米线/铜膜复合结构。
3.如权利要求2所述的一种铜纳米线/铜膜复合结构的制备方法,其特征在于:步骤2)中,所述高纯铜靶的纯度为99.99%以上。
4.如权利要求2所述的一种铜纳米线/铜膜复合结构的制备方法,其特征在于:步骤4)中,所述溅射气体是指流量为20sccm、纯度为99.999%的高纯Ar气;所述腔室气压为0.2Pa;所述预溅射的功率为DC 120W,预溅射时间5分钟。
5.如权利要求2所述的一种铜纳米线/铜膜复合结构的制备方法,其特征在于:随着薄膜厚度的增加,铜纳米线数目增多;衬底温度越高,铜纳米线越多。
CN201110179386.3A 2011-06-29 2011-06-29 一种铜纳米线/铜膜复合结构及其制备方法 Active CN102345096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110179386.3A CN102345096B (zh) 2011-06-29 2011-06-29 一种铜纳米线/铜膜复合结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110179386.3A CN102345096B (zh) 2011-06-29 2011-06-29 一种铜纳米线/铜膜复合结构及其制备方法

Publications (2)

Publication Number Publication Date
CN102345096A CN102345096A (zh) 2012-02-08
CN102345096B true CN102345096B (zh) 2014-02-05

Family

ID=45544161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110179386.3A Active CN102345096B (zh) 2011-06-29 2011-06-29 一种铜纳米线/铜膜复合结构及其制备方法

Country Status (1)

Country Link
CN (1) CN102345096B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864414B (zh) * 2012-10-18 2014-04-02 中山大学 一种制备具有金字塔结构的Fe薄膜的方法
CN103014626B (zh) * 2012-12-17 2014-12-03 常州大学 纳米多孔铜薄膜的制备方法
CN103510048B (zh) * 2013-08-19 2017-03-08 南京清航新材料科技有限公司 一种多孔结构铜纳米线阵列的制备方法及其薄膜电导率的测试方法
CN103809242B (zh) * 2014-03-10 2017-08-25 四川飞阳科技有限公司 一种用于平面光波导器件的薄膜制备方法
CN105543792B (zh) * 2015-12-11 2018-03-20 中国电子科技集团公司第四十八研究所 磁控溅射装置及磁控溅射方法
CN111710873B (zh) * 2020-06-23 2021-09-17 深圳市德立新材料科技有限公司 一种光催化沉积制备超薄锂电池铜箔的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949004A (zh) * 2010-09-10 2011-01-19 常州大学 一种纳米铜膜基铜纳米结构的制备方法
CN102181831A (zh) * 2011-04-15 2011-09-14 河南大学 一种氧化铜纳米线阵列薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949004A (zh) * 2010-09-10 2011-01-19 常州大学 一种纳米铜膜基铜纳米结构的制备方法
CN102181831A (zh) * 2011-04-15 2011-09-14 河南大学 一种氧化铜纳米线阵列薄膜的制备方法

Also Published As

Publication number Publication date
CN102345096A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
CN102345096B (zh) 一种铜纳米线/铜膜复合结构及其制备方法
Reddy et al. Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures
Shishkovsky et al. Chemical and physical vapor deposition methods for nanocoatings
CN111020513B (zh) 一种提高纳米金属多层膜韧性的方法
CN105316634A (zh) 一种Cr-B-C-N纳米复合薄膜的制备方法
CN104805409B (zh) 采用磁控溅射‑掩模辅助沉积制备Ag纳米线阵列电极的方法
Vanamoorthy et al. Study on optimizing c-axis oriented AlN thin film for piezoelectric sensing applications controlling the sputtering process parameters
CN106338347A (zh) 一种高温声表面波传感器的叉指电极材料及其制备方法
CN102560384B (zh) 在基底表面上沉积纳米点阵的方法
CN102418078A (zh) 一种超高强度纳米晶金属Ru薄膜的制备方法
Li et al. Influence of substrates on formation of zinc oxide nanostructures by a novel reducing annealing method
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
Patzig et al. Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition
CN108754215A (zh) 一种兼具高硬高韧高导电性的铜硼合金材料及其制备方法
Jiang et al. Microstructure dependence of ZnO: Al films on the deposition conditions and the surface morphology of silicon substrate
CN109023265A (zh) CrN/CrNiN纳米多层涂层及其制备方法、纳米多层涂层及其制备方法与应用
Fukutani et al. Nanowire array fabricated by Al–Ge phase separation
Xian et al. The structure and properties of ZrAl (Y) N coatings deposited at various N2/Ar flow ratios
CN107747130A (zh) 一种在铜膜修饰石墨烯基底上制备酞菁单晶薄膜的方法
Song et al. Understanding of deposition mechanism of vanadium on LiF with large mismatch by facing target sputtering (FTS)
CN108486536A (zh) 一种通过固态去润湿制备金属-陶瓷纳米复合薄膜的方法
Srivastava et al. Facile growth of MoS2 nanopillars using pulsed DC magnetron sputtering technique
KR101637945B1 (ko) 질화 코팅층의 형성방법 및 그 방법에 의하여 형성된 질화코팅층
CN108660427A (zh) 碳纳米线阵列镶嵌在非晶碳薄膜中的碳纳米线/非晶碳复合膜及其制备
Ye et al. Influences of pulse frequency on structure and mechanical properties of DLC films synthesized by pulsed cathodic arc evaporation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151014

Address after: Daitou town of Liyang City Ferry Street 213311 Jiangsu city of Changzhou province 8-2 No. 7

Patentee after: Liyang Chang Technology Transfer Center Co., Ltd.

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: Changzhou University