CN102341057A - 多关节机械手装置以及具有该装置的内窥镜系统 - Google Patents
多关节机械手装置以及具有该装置的内窥镜系统 Download PDFInfo
- Publication number
- CN102341057A CN102341057A CN2010800100993A CN201080010099A CN102341057A CN 102341057 A CN102341057 A CN 102341057A CN 2010800100993 A CN2010800100993 A CN 2010800100993A CN 201080010099 A CN201080010099 A CN 201080010099A CN 102341057 A CN102341057 A CN 102341057A
- Authority
- CN
- China
- Prior art keywords
- power transmission
- joint
- transmission member
- wire power
- joint manipulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
- A61B1/0052—Constructional details of control elements, e.g. handles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
- A61B1/0055—Constructional details of insertion parts, e.g. vertebral elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/065—Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
- A61B2034/306—Wrists with multiple vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Robotics (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manipulator (AREA)
- Endoscopes (AREA)
- Surgical Instruments (AREA)
Abstract
多关节机械手装置具备具有多个关节部(18)的管状部件(2)。在管状部件中贯穿插入有多个线状动力传递部件(19),该多个线状动力传递部件的一端固定在关节部附近,另一端固定在驱动部(25)上。驱动部(25)使线状动力传递部件(19)移动并使管状部件(2)屈曲。位置检测器(26)检测线状动力传递部件(19)的位置,张力检测器(27)检测其张力。操作部(6)输入管状部件(2)和安装在该管状部件上的部件(16)的关注部位的目标位置和姿势。移动量计算部(11)根据检测到的线状动力传递部件(19)的位置,计算关注部位的当前位置和姿势,根据张力检测器(27)检测到的线状动力传递部件(19)的张力,计算使关注部位从当前位置和姿势移动到目标位置和姿势所需要的线状动力传递部件(19)的移动量。
Description
技术领域
本发明涉及通过多个线的牵引而使关节屈曲的多关节机械手装置以及具有该装置的内窥镜系统。
背景技术
一般地,作为臂型机器人之一,公知有利用屈曲自如的关节部连接多个棒的机械手。根据用途在末端部安装各种功能部位来使用这种机械手。作为功能部位,例如考虑夹持物品的夹持部等。在机械手的内部配设有用于使其进行屈曲动作的一端与各关节部连接的线。一个关节部至少需要2根线,所以至少需要关节数的2倍数量的线。
作为实现机械手的轻量化的手法,公知有如下结构:在对皮带轮的卷绕上下工夫,使线彼此干涉来减少线的数量。使用这种线的机械手的控制需要关节转矩控制系统和线张力控制系统,是繁杂的。例如,在专利文献1中公开了进行如下控制的技术。在该技术中,首先根据要移动的机械手的末端的目的位置,计算线的位移的目标位置。并且,测定线的实际位移。接着,对线的位移的目标位置与实际位移进行比较,根据该比较求出对线施加的张力,对机械手进行驱动控制。
现有技术文献
专利文献
专利文献1:日本特开平6-31662号公报
发明内容
发明要解决的课题
所述这种机械手用于各种领域。例如,如内窥镜装置那样要求较长、小径和轻量化。在可确保的内径受限的机械手中,当为了增加自由度而增加线的数量时,必须配设在有限空间内的线的数量增加。这种情况下,使用较细的线。同样,在要求更细的机械手的情况下,空间减少,所以为了设置相同数量的关节,采用更细的线。
在对机械手的线施加的张力超过线的强度的情况下,该线可能损伤。例如在用于内窥镜手术等的机械手中,在线损伤的情况下,有时手术被中断。鉴于这些情况,例如在用于内窥镜手术等的机械手中,从空间的观点来看,要求使用较细的线,另一方面,要求使用具有不会损伤的强度的线。
但是,在使用线的多关节机械手中,对各个线施加的张力不同。并且,用于使机械手的末端成为同一位置和姿势的关节的位移的组合存在多个。因此,在使机械手的末端成为目标位置和姿势时,如果优先牵引多个线中的施加张力低的线,则能够防止对线施加的张力超过线的强度。
因此,本发明的目的在于,提供如下的线驱动型的多关节机械手装置以及具有该装置的内窥镜系统:为了避免线的损伤,优先牵引多个线中的施加张力较低的线,使机械手的末端移动到目标位置和姿势。
用于解决课题的手段
为了实现上述目的,在本发明的多关节机械手装置的一个方式中,该多关节机械手装置具有:管状部件(2),其具有多个关节部(18);多个线状动力传递部件(19),其贯穿插入所述管状部件中,其一端固定在任意一个所述关节部附近;驱动部(25),其固定有所述线状动力传递部件(19)的另一端,使该线状动力传递部件在长度方向上移动以使所述管状部件屈曲;位置检测器(26),其检测所述线状动力传递部件(19)的位置;张力检测器(27),其检测对所述线状动力传递部件(19)施加的张力;操作部(6),其接受所述管状部件(2)和安装在该管状部件上的部件(16)中被关注的部分即关注部位的目标位置和姿势的输入;以及移动量计算部(11),其根据所述位置检测器(26)检测到的所述线状动力传递部件(19)的所述位置,计算所述关注部位的当前位置和姿势,根据所述张力检测器(27)检测到的对该线状动力传递部件施加的所述张力,计算使该关注部位从该当前位置和姿势移动到所述目标位置和姿势所需要的该线状动力传递部件的移动量。
为了实现上述目的,在本发明的内窥镜系统的一个方式中,该内窥镜系统具有:体腔插入部(38a2),其对所述多关节机械手装置包覆了外皮;摄像部(38a5),其设置在一端配设有所述驱动部(25)的所述体腔插入部的另一端;照明部(38a4),其设置在所述体腔插入部(38a2)的所述另一端;以及显示部(52),其显示所述摄像部(38a5)所拍摄的图像。
发明效果
根据本发明,能够提供如下的线驱动型的多关节机械手装置以及具有该装置的内窥镜系统:为了避免线的损伤,通过考虑了基于对线施加的张力的加权后的控制,优先牵引多个线中的施加张力较低的线,使机械手的末端移动到目标位置和姿势。
附图说明
图1是示出本发明的第1实施方式的多关节机械手装置的整体结构例的框图。
图2A是示出本发明的第1实施方式的多关节机械手的结构例的外观的概要的图。
图2B是示出本发明的第1实施方式的多关节机械手的结构例的剖面的概要的图。
图3A是示出本发明的第1实施方式的多关节机械手的结构、坐标、参数的例子的图,是示出机械手延伸的状态的概略的图。
图3B是示出本发明的第1实施方式的多关节机械手的结构、坐标、参数的例子的图,是示出机械手屈曲的状态的概略的图。
图4是示出本发明的第1实施方式的多关节机械手装置的动作处理例的流程图。
图5是示出应用了本发明的第2实施方式的多关节机械手装置的内窥镜系统的结构例的图。
具体实施方式
[第1实施方式]
首先,参照附图说明本发明的第1实施方式。本实施方式的多关节机械手装置1是主从型装置。如图1所示,多关节机械手装置1大体具有:多关节机械手2;装置主体3,其进行多关节机械手2的驱动控制;主机部4,其生成与用户操作量对应的操作信号;以及机械手驱动部5,其驱动多关节机械手2。
图2A示出多关节机械手2的外观的概略,图2B示出剖面的概要。如这些图所示,多关节机械手2具有:夹持部16、多个圆筒形状的弯曲块17(17-1、17-2、...、17-n)、多个铆钉形状的轴部件18(18-1、18-2、...、18-n)、多个线(或者角度线)19(19-1、19-2、...、19-n)。夹持部16设置在多关节机械手2的末端部。铆钉形状的轴部件18(18-1、18-2、...、18-n)弯折自如地连接各弯曲块17之间而形成关节。线19(19-1、19-2、...、19-n)的一端通过焊接等固定在弯曲块17的关节附近,通过其移动,以轴部件18为旋转轴使弯曲块17转动。另外,在图2A和图2B中,作为例子示出了关节数为4的机械手。并且,在以下的说明中,在多关节机械手2中,设安装夹持部16等功能部位等的一侧为末端,设固定在装置等上的一侧为基端。多关节机械手2还具有挠性管15、连接部件22、挠性线圈21(21-1、21-2、...、21-n)。挠性管15配置在多关节机械手2的基端侧,能够比较灵活地具有弹性地弯曲。连接部件22连接挠性管15和基端侧的弯曲块17-1。挠性线圈21(21-1、21-2、...、21-n)设置成从弯曲块17贯通到挠性管15的基端侧。一端固定在弯曲块17上的各线19贯穿插入挠性线圈21(21-1、21-2、...、21-n)中。并且,在设置成从弯曲块17贯通到挠性管12的基端侧的挠性管20中,贯穿插入有用于使夹持部16开闭而进行夹持动作的操作线23。
对弯曲块17和轴部件18的连接方式进行说明。在多关节机械手2中的除了配置在末端侧和基端侧的弯曲块以外的各弯曲块17中,分别设有隔着弯曲块的圆筒中心设置在其末端侧的舌片状的2个末端侧突出部、以及在与末端侧突出部正交的方向(90度旋转后的方向)上隔着弯曲块的圆筒中心设置在其基端侧的舌片状的2个基端侧突出部。弯曲块的连接结构例如如下所述。如图2A所示,例如,关于弯曲块17-2和弯曲块17-3,使在弯曲块17-2的基端侧突出部上开设的孔与在弯曲块17-3的末端侧突出部上开设的孔重合,在该孔中嵌装铆钉形状的轴部件18,以转动自如的方式进行连接。当多级地进行基于这种弯曲块17之间的轴部件18的万向联轴节连接时,成为在弯曲块17的前后错开90度的连接方式。
这样,在弯曲块17的与轴部件18连接的连接位置交替错开90度的万向联轴节连接的方式中,当牵引与期望的弯曲块17连接的一对线19中的一方时,该弯曲块17以2个轴部件18为中心轴振动。因此,根据与期望的弯曲块17连接的线19的牵引情况,使各弯曲块17之间自由弯折或延伸,由此能够使多关节机械手2的末端的夹持部16三维地位移到期望的位置和姿势。
如图1所示,主机部4具有:作为输入部位的操作部6,其供用户输入操作指示;以及操作信号生成部7,其生成与操作部6的操作量对应的操作信号。主机部4的操作指示相对于多关节机械手2具有主从关系,作为从属的多关节机械手2按照作为主导的主机部4的操作指示进行弯曲动作。操作部6例如是一般的输入设备即按钮开关、操纵杆、键盘、鼠标等输入装置。例如如果是具有2个机械手的多关节机械手装置1,则操作部6也可以具有2个操纵杆以用于各多关节机械手2。操作信号生成部7根据从操作部6输入的指示,生成操作信号并输出到装置主体3。
机械手驱动部5具有:作为线19的驱动源的多个致动器25(25-1、25-2、...、25-n)、检测对各线19施加的张力的多个张力传感器27(27-1、27-2、...、27-n)、以及检测各线19的位移的多个位置传感器26(26-1、26-2、...、26-n)。作为一例,各致动器25具有将皮带轮(未图示)嵌装在旋转轴上的电动机(未图示)。如上所述,在一个弯曲块17上至少固定有2根线19的一端。这些线19的另一端分别连接或卷绕在皮带轮上。通过所述电动机旋转,皮带轮旋转,牵引一条线19,送出另一条线19。通过这种线19的动作,弯曲块17以轴部件18为中心转动。
装置主体3具有控制部8、操作信号处理部9、驱动控制部13。操作信号处理部9对从操作信号生成部7输入的操作信号实施包含数字化处理的各种信号处理,将处理后的信号输出到控制部8。控制部8包含运算部10和牵引量计算部11。运算部10进行与多关节机械手装置1的各部的控制等有关的运算。牵引量计算部11根据从张力传感器27输入的线19的张力、从位置传感器26输入的线19的位置、从运算部10输入的操作者的操作指示,计算操作者指示的多关节机械手2的末端到达目标位置和姿势所需要的线19的牵引量。牵引量计算部11将计算出的线19的牵引量输出到运算部10。运算部10将该牵引量输出到驱动控制部13。驱动控制部13根据从运算部10输入的基于线19的牵引量的控制信号,对致动器25的驱动进行控制。
这样,例如,包含挠性管15、弯曲块17、轴部件18、挠性线圈21和连接部件22的多关节机械手2作为具有多个关节部的管状部件发挥功能;例如,通过焊接等固定在弯曲块17的关节附近的线19作为如下的多个线状动力传递部件发挥功能:贯穿插入管状部件中,其一端固定在任意一个关节部附近;例如,致动器25作为如下的驱动部发挥功能:固定了线状动力传递部件的另一端,使线状动力传递部件在长度方向上移动以使管状部件屈曲;例如,位置传感器26作为检测线状动力传递部件的位置的位置检测器发挥功能;例如,张力传感器27作为检测对线状动力传递部件施加的张力的张力检测器发挥功能;例如,操作部6作为如下的操作部发挥功能:接受管状部件和安装在管状部件上的部件中被关注的部分即关注部位的目标位置和姿势的输入;例如,牵引量计算部11作为如下的移动量计算部发挥功能:根据位置检测器检测到的线状动力传递部件的位置,计算关注部位的当前位置和姿势,根据张力检测器检测到的对线状动力传递部件施加的张力,计算使关注部位从当前位置和姿势移动到目标位置和姿势所需要的线状动力传递部件的移动量。
接着,说明这样构成的多关节机械手2的屈曲动作。图3A和图3B示出具有4个旋转关节的多关节机械手2的多关节构造模型。这里,为了简便,以4个旋转关节的情况为例进行说明,但是,关节数当然可以是任意的,也可以使用直动关节等。
图3A示出多关节机械手2直线延伸的状态。从基端侧起排列有5个弯曲块17-1~弯曲块17-5。这些弯曲块17-1~弯曲块17-5通过4个轴部件18-1~轴部件18-4连接。在各轴的轴部件18中,如该图所示,设定彼此正交的局部x轴、y轴、z轴。轴部件18-1和轴部件18-3进行以y轴为旋转轴的旋转运动,轴部件18-2和轴部件18-4进行以x轴为旋转轴的旋转运动。
图3B示出在轴部件18-1和轴部件18-3中分别转动、弯曲块17-1和弯曲块17-2之间以及弯曲块17-3和弯曲块17-4之间屈曲的状态的多关节机械手2的例子。在图3B所示的例子中,轴部件18-1的弯折角度θ1为-α,轴部件18-3的弯折角度θ3为β。
接着,参照图4说明由控制部8进行的处理。
在步骤S1中,牵引量计算部11起动未图示的计时器。
在步骤S2中,牵引量计算部11根据位置传感器26取得的线19的位移,使用线19的位移与多关节机械手2的关节角度的关系式,计算多关节机械手2的当前关节角度Φnow。具有n自由度的多关节机械手2的关节角度Φnow由下式(1)表示。
[数式1]
Φnow=(θ1,now,θ2,now,····,θn,now)T...(1)
这里,θ1,now、θ2,now、...、θn,now分别表示关节1、关节2、...、关节n的角度。
在步骤S3中,牵引量计算部11根据在步骤S2中计算出的当前关节角度Φnow,使用位置和姿势E与关节角度Φ的关系式E=A(Φ),通过下式(2)计算夹持部16等位于多关节机械手2的末端部的末端执行器(end effector)的当前位置和姿势Enow。
[数式2]
Enow=A(Φnow)=(xnow,ynow,znow,Rollnow,Yawnow,Pitchnow)T...(2)
这里,xnow、ynow、znow、Rollnow、Yawnow、Pitchnow分别表示末端执行器的当前x轴方向位置、y轴方向位置、z轴方向位置、滚动、偏转、以及俯仰。
在步骤S4中,牵引量计算部11经由操作信号处理部9和运算部10取得操作者使用操作部6输入且由操作信号生成部7生成的末端执行器的目标位置和姿势Etarget。这里,末端执行器的目标位置和姿势Etarget由下式(3)表示。
[数式3]
Etarget=(xtarget,ytarget,ztarget,Rolltarget,Yawtarget,Pitchtarget)T...(3)
这里,xtarget、ytarget、ztarget、Rolltarget、Yawtarget、Pitchtarget分别表示末端执行器的目标x轴方向位置、y轴方向位置、z轴方向位置、滚动、偏转、以及俯仰。
在步骤S5中,牵引量计算部11从张力传感器27取得关节i用的线19的张力Ti。这里,i=1、2、...、n。
在步骤S6中,牵引量计算部11根据张力Ti,使用下式(4)计算加权系数α。
[数式4]
α=(a1,a2,····,an)
这里,Bi表示常数,Tave表示全部张力Ti的平均值。
在步骤S7中,牵引量计算部11通过数值计算,计算使末端执行器从当前位置和姿势Enow位移到目标位置和姿势Etarget所需要的关节角度的位移量、即满足Etarget=A(Φnow+ΔΦ)的关节角度位移ΔΦ。在该数值计算中使用由下式(5)表示的雅可比矩阵J(Φ)。
[数式5]
首先,在数值计算中,对初始值E1设定当前位置和姿势Enow。接着,反复进行下式(6)的计算,直到关节角度Φ收敛为止。
[数式6]
Φj+1=Φj+J-1(Φj)(Etarget-Ej)α...(6)
其结果得到的关节角度Φ的收敛值是希望求出的关节角度位移ΔΦ。另外,关节角度位移ΔΦ由下式(7)表示。
[数式7]
ΔΦ=(Δθ1,Δθ2,····,Δθn)T...(7)
这里,Δθ1、Δθ2、...、Δθn表示使末端执行器从当前位置和姿势Enow位移到目标位置和姿势Etarget所需要的关节1、关节2、...、关节n的各个关节角度的位移量。
在步骤S8中,牵引量计算部11计算关节1、关节2、...、关节n的各个关节角度的位移Δθ1、Δθ2、...、Δθn所需要的各线的位移量。
在步骤S9中,牵引量计算部11经由运算部10将根据在步骤S8中计算出的各线的位移量驱动各致动器25的指令输出到驱动控制部13。驱动控制部13根据从运算部10输入的指令,使各致动器25动作。并且,当在S1中开始的计时器的时间成为规定值后,牵引量计算部11对计时器进行复位,再次起动并转移到S2。
通过如上所述那样进行动作,能够优先牵引多条线19中的施加张力较小的线19,使操作者指示的末端执行器移动到目标位置和姿势。即,在步骤S7中实施的数值计算所使用的式(6)中,考虑在步骤S6中设定的基于该时间点对线19施加的张力的α的值。在该计算中,α的值具有增大与施加张力较小的线19相关联的关节的Δθ的值的效果。因此,具有如下效果:与施加张力较小的线19相关联的关节优先移动,另一方面,减小与施加张力较大的线19相关联的关节的Δθ的值。即,与施加张力较大的线19相关联的关节的动作被抑制。其结果,能够降低线19损伤的可能性。
并且,在步骤S5中取得的线19的张力Ti中存在超过预先设定的阈值的张力Ti的情况下,也可以将在步骤S6中计算出的加权系数α中的与该线19有关的值控制为0。即,例如,在对线19-x(x为n以下的自然数)施加的张力超过预先设定的阈值的情况下,将在步骤S6中计算出的加权系数的与线19-x有关的ax的值设为0。于是,步骤S7中的数值计算的结果所得到的ΔΦ的Δθx的值为0。即,与该线19-x有关的轴部件18-x不用于末端执行器的移动。即,不会过度牵引线19-x。通过追加以上的步骤,能够避免在线19可能损伤的状态下进一步增大对该线19施加的张力。其结果,能够进一步增大线19的损伤防止效果。
另外,基于步骤S2和步骤S3的末端执行器的当前位置和姿势Enow的取得、基于步骤S4的末端执行器的目标位置和姿势Etarget取得、以及基于步骤S5和步骤S6的加权系数α的计算的顺序可以是任意的。因此,这些步骤的次序可以彼此调换。
[第2实施方式]
接着,参照附图说明第2实施方式。本实施方式是如下的实施方式:将所述第1实施方式的多关节机械手装置应用于内窥镜系统中的内窥镜主体的弯曲部和配设在内窥镜内的处置器械的弯曲驱动部。
图5示出在手术室内设置了本实施方式的内窥镜系统31的结构例。在该手术室内的中央配置有供被检体仰卧的手术台32。在手术台32附近配设有用于进行体腔内的病变的诊断和处置的诊断/处置装置33、以及该诊断/处置装置33的操作装置34。以与它们对置的方式在手术台32的相反侧的附近配设有内窥镜控制装置35和处置器械控制装置36。
诊断/处置装置33具有:内窥镜支承装置37、支承在该内窥镜支承装置37上且使用了所述多关节机械手2的内窥镜38、以及第1、第2有源处置器械39a、39b。这些第1、第2有源处置器械39a、39b是使用了所述多关节机械手2的多关节构造的机器人学处置器械。
内窥镜支承装置37具有:以可移动或固定的方式设有滚轮的架台40、以及安装在架台40上的多级臂构造的支承臂41。操作装置34具有操作内窥镜38的内窥镜操作单元42、以及处置器械操作单元43。
内窥镜操作单元42具有可移动的支架44、以及安装在支架44上的内窥镜控制器45。内窥镜控制器45具有对内窥镜38的弯曲动作进行操作的例如操纵杆。
处置器械操作单元43具有:可移动的支架46、以及安装在支架46上的第1、第2指示输入部47、48。第1、第2指示输入部47、48具有相对于第1、第2有源处置器械39a、39b成为主导的主从关系(主从方式)。第1、第2指示输入部47、48是具有多个棒和关节部的臂机构的主机型致动器。
内窥镜控制装置35具有光源装置50、作为照相机控制单元的显示用处理器51、以及显示装置52。处置器械控制装置36具有电手术刀控制部53、把持钳子控制部54、以及第1、第2有源处置器械39a、39b的控制图像的显示装置55。另外,内窥镜图像的显示装置52和第1、第2有源处置器械39a、39b的控制图像的显示装置55也可以使用共用的监视器。
内窥镜支承装置37的支承臂41具有水平臂41a、第1垂直臂41b、第2垂直臂41c、2个(第1、第2)平行连杆臂41d、41e、以及臂支承体41f。水平臂41a的一端与架台40上部连接,以便能够以第1垂直轴O1为中心转动。第1垂直臂41b的下端与水平臂41a的另一端连接,以便能够以第2垂直轴O2为中心转动。第2垂直臂41c与第1垂直臂41b平行地配置。第1、第2平行连杆臂41d、41e架设在第1垂直臂41b与第2垂直臂41c之间。臂支承体41f在将第2垂直臂41c支承为能够以第3垂直轴O3为中心转动的水平臂41a上安装有第1、第2有源处置器械39a、39b的第1、第2有源机构61、62。
第1、第2平行连杆臂41d、41e的各一端与第1垂直臂41b的上端连接,以便能够以水平轴O4、O5为中心转动。第1、第2平行连杆臂41d、41e的各另一端与臂支承体41f连接,以便能够以水平轴O6、O7为中心转动。由此,通过第1垂直臂41b、第1、第2平行连杆臂41d、41e、臂支承体41f,形成将第2垂直臂41c支承为能够在上下方向上平行移动的平行四边形连杆。
在第2垂直臂41c的下端形成有在水平方向上屈曲的屈曲部41c1。在该屈曲部41c1上将内窥镜保持架63支承为能够以水平轴O8为中心转动。在内窥镜保持架63上以能够以第4垂直轴O9为中心转动且能够装卸的方式支承内窥镜38的基端部。
内窥镜38具有插入体内的细长的插入部38a、以及与该插入部38a的基端部连接的近前侧端部38b。该插入部38a具有:细长的挠性管部38a1、与挠性管部38a1的末端连接并对所述图2A所示的多关节机械手2包覆了外皮的弯曲部38a2、以及与弯曲部38a2的末端连接的公知的末端硬性部38a3。
在该末端硬性部38a3的末端面设有一个观察窗部、2个照明部38a4、以及2个处置器械贯穿插入用的通道的开口部(未图示)。在该观察窗部的内侧配设有摄像部38a5,该摄像部38a5具有物镜等光学系统和CCD等摄像元件。通过该摄像部对体腔内的病变部等进行摄像。然后,由内窥镜38的摄像部得到的摄像信号通过连接电缆发送到显示用处理器51,将其转换成影像信号,通过该影像信号在显示装置52上映出由内窥镜38拍摄的像。
通过对内窥镜控制器45的操纵杆进行倾动操作,远程地使弯曲部38a2进行弯曲动作。该弯曲动作如在第1实施方式的说明中所述的那样,优先牵引施加张力较小的线,使利用轴部件连接的弯曲块弯折。通过使该弯曲部38a2弯曲的动作,能够在观察视野(或摄像视野)内捕捉到期望的观察对象物(病变部等)。
在近前侧端部38b和插入部38a的连接部附近形成有分别与2个处置器械贯穿插入用的通道连通的2个通道口。从内窥镜的基端侧分别插入的第1、第2有源处置器械39a、39b从这些通道口延伸出来。在第1、第2有源处置器械39a、39b中,从通道口延伸出来的弯曲驱动部与所述内窥镜38同样,使用多关节机械手2。作为处置器械,例如在它们的末端安装有电手术刀66或把持病变部的把持部67。
在本实施方式中,示出了在2个贯穿插入用通道中分别各贯穿插入一个第1、第2有源处置器械39a、39b的结构,但是,也可以在一个贯穿插入用通道中插入多个内窥镜用处置器械。并且,也可以在近前侧端部38b设置使弯曲部38a2弯曲的操纵杆或十字键等的弯曲操作部64。
这样,例如,弯曲部38a2作为对多关节机械手装置包覆了外皮的体腔插入部发挥功能;例如,摄像部38a5作为设置在一端配设有驱动部的体腔插入部的另一端的摄像部发挥功能;例如,照明部38a4作为设置在体腔插入部的另一端的照明部发挥功能;例如,显示装置52作为显示摄像部所拍摄的图像的显示部发挥功能;例如,第1有源处置器械39a和第2有源处置器械39b作为多关节机械手装置即处置器械用机械手发挥功能;例如,电手术刀66和把持部67作为设置在处置器械用机械手的末端的处置器械发挥功能。
如以上说明的那样,在本实施方式中,将本发明的多关节机械手2用于内窥镜系统的内窥镜主体的有源弯曲部和处置器械的有源机器人臂(弯曲驱动部)。通过使用本发明的多关节机械手2,即使手术医生不考虑线的张力而进行操作,也优先牵引对线施加的张力较小的线,驱动机械手使其移动到目标位置和姿势。这样,通过优先使用对线施加的张力较小的线,能够降低线损伤的可能性。
另外,在本实施方式的说明中,示出了在有源处置器械39a、39b的末端配设电手术刀66和把持部67的例子,但是不限于有源电手术刀和把持部,当然可以使用例如超声波照射装置等其他各种处置器械等。
如上所述,本发明的多关节机械手装置能够应用于内窥镜装置的弯曲部或机器人学处置器械的弯曲驱动部。并且,除此之外,还能够用于工业用机器人的臂机构。例如,能够搭载于汽车等工业产品的组装机器人、发电厂中的进行核燃料的芯块的装填和输送的远程操作机器人、物品的装载和装卸用的机器人、在宇宙空间内移动和输送物品的输送机器人等各种机器人中。本发明的多关节机械手装置能够抑制线的损伤,所以在配设在离操作者较远的场所的机器人的驱动中特别有用。
另外,本发明不限于上述实施方式本身,在实施阶段能够在不脱离其主旨的范围内对结构要素进行变形并具体化。并且,通过上述实施方式所公开的多个结构要素的适当组合,能够形成各种发明。例如,在即使从实施方式所示的全部结构要素中删除若干个结构要素也能够解决发明要解决的课题一栏所述的课题且能够得到发明效果的情况下,删除了该结构要素后的结构也能够作为发明来提取。进而,也可以适当组合不同实施方式的结构要素。
标号说明
1:多关节机械手装置;2:多关节机械手;3:装置主体;4:主机部;5:机械手驱动部;6:操作部;7:操作信号生成部;8:控制部;9:操作信号处理部;10:运算部;11:牵引量计算部;13:驱动控制部;15:挠性管;16:夹持部;17:弯曲块;18:轴部件;19:线;20:挠性管;21:挠性线圈;22:连接部件;23:操作线;25:致动器;26:位置传感器;27:张力传感器;31:内窥镜系统;32:手术台;33:诊断/处置装置;34:操作装置;35:内窥镜控制装置;36:处置器械控制装置;37:内窥镜支承装置;38:内窥镜;38a:插入部;38a1:挠性管部;38a2:弯曲部;38a3:末端硬性部;38a4:照明部;38a5:摄像部;39a、39b:第1、第2有源处置器械;40:架台;41:支承臂;42:内窥镜操作单元;43:处置器械操作单元;44:可移动支架;45:内窥镜控制器;46:可移动支架;47、48:第1、第2指示输入部;50:光源装置;51:显示用处理器;52:显示装置;53:电手术刀控制部;54:把持钳子控制部;55:显示装置;61、62:第1、第2有源机构;63:内窥镜保持架;64:弯曲操作部;66:电手术刀;67:把持部。
Claims (7)
1.一种多关节机械手装置,该多关节机械手装置具有:
管状部件(2),其具有多个关节部(18);
多个线状动力传递部件(19),其贯穿插入所述管状部件中,其一端固定在任意一个所述关节部附近;
驱动部(25),其固定有所述线状动力传递部件(19)的另一端,使该线状动力传递部件在长度方向上移动以使所述管状部件屈曲;
位置检测器(26),其检测所述线状动力传递部件(19)的位置;
张力检测器(27),其检测对所述线状动力传递部件(19)施加的张力;
操作部(6),其接受所述管状部件(2)和安装在该管状部件上的部件(16)中被关注的部分即关注部位的目标位置和姿势的输入;以及
移动量计算部(11),其根据所述位置检测器(26)检测到的所述线状动力传递部件(19)的所述位置,计算所述关注部位的当前位置和姿势,根据所述张力检测器(27)检测到的对该线状动力传递部件施加的所述张力,计算使该关注部位从该当前位置和姿势移动到所述目标位置和姿势所需要的该线状动力传递部件的移动量。
2.根据权利要求1所述的多关节机械手装置,其中,
所述移动量计算部(11)在所述线状动力传递部件(19)的所述移动量的计算中,使用用于使所述张力低的该线状动力传递部件优先移动的、基于对该线状动力传递部件施加的该张力的加权系数。
3.根据权利要求2所述的多关节机械手装置,其中,
所述移动量计算部(11)将所述张力为预先设定的张力以上的所述线状动力传递部件(19)的所述移动量设为零。
4.根据权利要求2所述的多关节机械手装置,其中,
所述移动量计算部(11)通过与所述关注部位的位置和姿势以及所述关节部的位移有关的使用了雅可比矩阵的收敛数值计算,计算所述线状动力传递部件(19)的所述移动量。
5.根据权利要求1所述的多关节机械手装置,其中,
所述移动量计算部(11)通过与所述关注部位的位置和姿势以及所述关节部的位移有关的使用了雅可比矩阵的收敛数值计算,计算所述线状动力传递部件(19)的所述移动量。
6.一种内窥镜系统,该内窥镜系统具有:
体腔插入部(38a2),其对所述权利要求1的多关节机械手装置包覆了外皮;
摄像部(38a5),其设置在一端配设有所述驱动部(25)的所述体腔插入部的另一端;
照明部(38a4),其设置在所述体腔插入部(38a2)的所述另一端;以及
显示部(52),其显示所述摄像部(38a5)所拍摄的图像。
7.根据权利要求6所述的内窥镜系统,其中,
该内窥镜系统还具有:
作为所述权利要求1的多关节机械手装置的处置器械用机械手(39a、39b),其贯穿插入所述体腔插入部(38a2)内并从该体腔插入部的所述另一端延伸出来;以及
处置器械(66、67),其设置在所述处置器械用机械手的末端。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-257319 | 2009-11-10 | ||
JP2009257319 | 2009-11-10 | ||
PCT/JP2010/069312 WO2011058893A1 (ja) | 2009-11-10 | 2010-10-29 | 多関節マニピュレータ装置及びそれを有する内視鏡システム |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102341057A true CN102341057A (zh) | 2012-02-01 |
CN102341057B CN102341057B (zh) | 2014-03-05 |
Family
ID=43991552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080010099.3A Active CN102341057B (zh) | 2009-11-10 | 2010-10-29 | 多关节机械手装置以及具有该装置的内窥镜系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8376934B2 (zh) |
EP (1) | EP2382939B1 (zh) |
JP (1) | JP4781492B2 (zh) |
CN (1) | CN102341057B (zh) |
WO (1) | WO2011058893A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104027061A (zh) * | 2012-04-24 | 2014-09-10 | 王东 | 基于电控驱动器械的软式内窥镜系统 |
CN105559735A (zh) * | 2014-11-05 | 2016-05-11 | 深圳市古安泰自动化技术有限公司 | 内窥镜 |
CN108938047A (zh) * | 2018-07-06 | 2018-12-07 | 北京大学第三医院 | 一种鼻内手术钳和鼻内手术系统 |
CN109095242A (zh) * | 2018-08-31 | 2018-12-28 | 合肥美亚光电技术股份有限公司 | 管线输送系统及其控制方法 |
US10456012B2 (en) | 2014-09-29 | 2019-10-29 | Tao Dong | Disposable endoscope and system |
CN110831653A (zh) * | 2017-06-28 | 2020-02-21 | 奥瑞斯健康公司 | 器械插入补偿 |
US11298195B2 (en) | 2019-12-31 | 2022-04-12 | Auris Health, Inc. | Anatomical feature identification and targeting |
US11602372B2 (en) | 2019-12-31 | 2023-03-14 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
US11660147B2 (en) | 2019-12-31 | 2023-05-30 | Auris Health, Inc. | Alignment techniques for percutaneous access |
US11712154B2 (en) | 2016-09-30 | 2023-08-01 | Auris Health, Inc. | Automated calibration of surgical instruments with pull wires |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
US9101379B2 (en) * | 2010-11-12 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Tension control in actuation of multi-joint medical instruments |
EP2620094B1 (en) * | 2011-08-01 | 2015-10-14 | Olympus Corporation | Apparatus for displaying shape of insertion portion |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
JP6012950B2 (ja) * | 2011-10-14 | 2016-10-25 | オリンパス株式会社 | 湾曲動作システム |
JP5893330B2 (ja) * | 2011-10-18 | 2016-03-23 | オリンパス株式会社 | 操作入力装置および操作入力装置の初期化方法 |
WO2013116869A1 (en) | 2012-02-02 | 2013-08-08 | Transenterix, Inc. | Mechanized multi-instrument surgical system |
US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
CN103462694A (zh) * | 2013-09-06 | 2013-12-25 | 天津大学 | 用于多自由度丝传动手术工具的力感觉系统 |
WO2015042453A1 (en) | 2013-09-20 | 2015-03-26 | Canon U.S.A., Inc. | Control apparatus for tendon-driven device |
US20170127911A1 (en) * | 2014-03-19 | 2017-05-11 | Endomaster Pte Ltd | Master - slave flexible robotic endoscopy system |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
CN110772323B (zh) * | 2014-09-17 | 2022-05-17 | 直观外科手术操作公司 | 用于利用增广雅可比矩阵控制操纵器接头移动的系统和方法 |
JP6689832B2 (ja) | 2014-09-30 | 2020-04-28 | オーリス ヘルス インコーポレイテッド | 仮軌道および可撓性内視鏡を有する構成可能なロボット手術システム |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
US10716639B2 (en) | 2015-03-10 | 2020-07-21 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
WO2016199228A1 (ja) * | 2015-06-09 | 2016-12-15 | オリンパス株式会社 | 医療用マニピュレータ制御装置 |
WO2017003468A1 (en) * | 2015-06-30 | 2017-01-05 | Canon U.S.A., Inc. | Method and apparatus for controlling manipulator |
WO2017066253A1 (en) | 2015-10-15 | 2017-04-20 | Canon U.S.A., Inc. | Steerable medical instrument |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
JP6632487B2 (ja) * | 2016-07-13 | 2020-01-22 | キヤノン株式会社 | 連続体ロボット、その運動学の補正方法、および連続体ロボットの制御方法 |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
AU2018243364B2 (en) | 2017-03-31 | 2023-10-05 | Auris Health, Inc. | Robotic systems for navigation of luminal networks that compensate for physiological noise |
US11278366B2 (en) | 2017-04-27 | 2022-03-22 | Canon U.S.A., Inc. | Method for controlling a flexible manipulator |
CN110831498B (zh) | 2017-05-12 | 2022-08-12 | 奥瑞斯健康公司 | 活检装置和系统 |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US11007641B2 (en) | 2017-07-17 | 2021-05-18 | Canon U.S.A., Inc. | Continuum robot control methods and apparatus |
US11188069B2 (en) | 2017-08-16 | 2021-11-30 | Covidien Lp | Preventative maintenance of robotic surgical systems |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
WO2019113249A1 (en) | 2017-12-06 | 2019-06-13 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
CN110869173B (zh) | 2017-12-14 | 2023-11-17 | 奥瑞斯健康公司 | 用于估计器械定位的系统与方法 |
US11160615B2 (en) | 2017-12-18 | 2021-11-02 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
CN110891514B (zh) | 2018-02-13 | 2023-01-20 | 奥瑞斯健康公司 | 用于驱动医疗器械的系统和方法 |
CN110913791B (zh) | 2018-03-28 | 2021-10-08 | 奥瑞斯健康公司 | 用于显示所估计的器械定位的系统和方法 |
EP3801280B1 (en) | 2018-05-31 | 2024-10-02 | Auris Health, Inc. | Robotic systems for navigation of luminal network that detect physiological noise |
JP7146949B2 (ja) | 2018-05-31 | 2022-10-04 | オーリス ヘルス インコーポレイテッド | 画像ベースの気道分析及びマッピング |
CN112770690A (zh) | 2018-09-28 | 2021-05-07 | 奥瑞斯健康公司 | 用于对接医疗器械的系统和方法 |
KR20220058569A (ko) | 2019-08-30 | 2022-05-09 | 아우리스 헬스, 인코포레이티드 | 위치 센서의 가중치-기반 정합을 위한 시스템 및 방법 |
JP7451686B2 (ja) | 2019-08-30 | 2024-03-18 | オーリス ヘルス インコーポレイテッド | 器具画像信頼性システム及び方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631662A (ja) * | 1992-07-14 | 1994-02-08 | Kobe Steel Ltd | マニピュレータの制御方法とその装置 |
US6270453B1 (en) * | 1998-12-28 | 2001-08-07 | Suzuki Motor Corporation | Bending device for examining insertion tube |
US20020124712A1 (en) * | 2001-03-06 | 2002-09-12 | Yamaha Corporation | Music operator with tension string for sensing action input |
CN101227854A (zh) * | 2005-07-25 | 2008-07-23 | 奥林巴斯医疗株式会社 | 医疗用控制装置 |
JP2008212349A (ja) * | 2007-03-02 | 2008-09-18 | Olympus Medical Systems Corp | 内視鏡装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007013350A1 (ja) * | 2005-07-25 | 2007-02-01 | Olympus Medical Systems Corp. | 医療用制御装置 |
JP4960112B2 (ja) * | 2007-02-01 | 2012-06-27 | オリンパスメディカルシステムズ株式会社 | 内視鏡手術装置 |
-
2010
- 2010-10-29 JP JP2011514982A patent/JP4781492B2/ja active Active
- 2010-10-29 CN CN201080010099.3A patent/CN102341057B/zh active Active
- 2010-10-29 WO PCT/JP2010/069312 patent/WO2011058893A1/ja active Application Filing
- 2010-10-29 EP EP10829853.0A patent/EP2382939B1/en active Active
-
2011
- 2011-04-22 US US13/092,702 patent/US8376934B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631662A (ja) * | 1992-07-14 | 1994-02-08 | Kobe Steel Ltd | マニピュレータの制御方法とその装置 |
US6270453B1 (en) * | 1998-12-28 | 2001-08-07 | Suzuki Motor Corporation | Bending device for examining insertion tube |
US20020124712A1 (en) * | 2001-03-06 | 2002-09-12 | Yamaha Corporation | Music operator with tension string for sensing action input |
CN101227854A (zh) * | 2005-07-25 | 2008-07-23 | 奥林巴斯医疗株式会社 | 医疗用控制装置 |
JP2008212349A (ja) * | 2007-03-02 | 2008-09-18 | Olympus Medical Systems Corp | 内視鏡装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104027061B (zh) * | 2012-04-24 | 2016-07-06 | 王东 | 基于电控驱动器械的软式内窥镜系统 |
CN104027061A (zh) * | 2012-04-24 | 2014-09-10 | 王东 | 基于电控驱动器械的软式内窥镜系统 |
US10456012B2 (en) | 2014-09-29 | 2019-10-29 | Tao Dong | Disposable endoscope and system |
CN105559735A (zh) * | 2014-11-05 | 2016-05-11 | 深圳市古安泰自动化技术有限公司 | 内窥镜 |
US11712154B2 (en) | 2016-09-30 | 2023-08-01 | Auris Health, Inc. | Automated calibration of surgical instruments with pull wires |
CN110831653A (zh) * | 2017-06-28 | 2020-02-21 | 奥瑞斯健康公司 | 器械插入补偿 |
CN108938047A (zh) * | 2018-07-06 | 2018-12-07 | 北京大学第三医院 | 一种鼻内手术钳和鼻内手术系统 |
CN109095242A (zh) * | 2018-08-31 | 2018-12-28 | 合肥美亚光电技术股份有限公司 | 管线输送系统及其控制方法 |
CN109095242B (zh) * | 2018-08-31 | 2024-01-12 | 合肥美亚光电技术股份有限公司 | 管线输送系统及其控制方法 |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
US11298195B2 (en) | 2019-12-31 | 2022-04-12 | Auris Health, Inc. | Anatomical feature identification and targeting |
US11602372B2 (en) | 2019-12-31 | 2023-03-14 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
US11660147B2 (en) | 2019-12-31 | 2023-05-30 | Auris Health, Inc. | Alignment techniques for percutaneous access |
Also Published As
Publication number | Publication date |
---|---|
EP2382939B1 (en) | 2013-09-04 |
US20110257480A1 (en) | 2011-10-20 |
JP4781492B2 (ja) | 2011-09-28 |
EP2382939A4 (en) | 2012-03-07 |
JPWO2011058893A1 (ja) | 2013-03-28 |
EP2382939A1 (en) | 2011-11-02 |
WO2011058893A1 (ja) | 2011-05-19 |
CN102341057B (zh) | 2014-03-05 |
US8376934B2 (en) | 2013-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102341057B (zh) | 多关节机械手装置以及具有该装置的内窥镜系统 | |
JP4601727B2 (ja) | 内視鏡処置用ロボットシステム | |
JP7455427B2 (ja) | モバイルマニピュレーションシステム | |
JP5085684B2 (ja) | 処置具システム及びマニピュレータシステム | |
US6738691B1 (en) | Control handle for intelligent assist devices | |
EP2583616B1 (en) | Endoscope | |
JP4580973B2 (ja) | 処置具システム | |
CN103237633B (zh) | 主操作输入装置以及主-从机械手 | |
EP3123922B1 (en) | Steerable, follow the leader device | |
CN110809425B (zh) | 胶囊内窥镜控制设备 | |
EP4183315A1 (en) | Endoscopy system components | |
JP2011185925A (ja) | 配管内作業装置 | |
JP2010069587A5 (ja) | ロボットシステムおよびロボットの制御方法 | |
JP2017104964A (ja) | マスターアーム入力装置 | |
Kumar et al. | Design of a vision-guided microrobotic colonoscopy system | |
KR101138532B1 (ko) | 로봇 관절용 토크 측정 장치 및 그 방법 | |
JP2002137180A (ja) | 遠隔移動ロボット | |
JPH0761800A (ja) | 補力装置により空中に支持された荷重を移動させるための操作方法及びそのための操作部 | |
EP4048489B1 (en) | System and method for moving a wire-carrying support for supply lines of operating heads, in particular for robotic systems | |
WO2023162628A1 (ja) | 操作システムおよび操作システムの制御方法 | |
WO2020240940A1 (ja) | 天井移動型マニピュレータ及びマニピュレーションシステム | |
JPH0654835A (ja) | マイクロマシンシステム | |
CN117653351A (zh) | 一种外科手术系统 | |
CN117653352A (zh) | 一种外科手术系统及力反馈方法 | |
ITMI941654A1 (it) | Apparecchiatura di ausilio per chirurgia stereotassica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20151210 Address after: Tokyo, Japan, Japan Patentee after: Olympus Corporation Address before: Tokyo, Japan, Japan Patentee before: Olympus Medical Systems Corp. |