CN102340185B - 用于电力传输系统的介电材料 - Google Patents

用于电力传输系统的介电材料 Download PDF

Info

Publication number
CN102340185B
CN102340185B CN201110134191.7A CN201110134191A CN102340185B CN 102340185 B CN102340185 B CN 102340185B CN 201110134191 A CN201110134191 A CN 201110134191A CN 102340185 B CN102340185 B CN 102340185B
Authority
CN
China
Prior art keywords
coil
dielectric
concentrating element
power transmission
electrical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110134191.7A
Other languages
English (en)
Other versions
CN102340185A (zh
Inventor
K·M·克里什纳
J·查克拉博尔蒂
L·马塔尼
A·K·博霍里
S·M·N·巴特
S·拉马钱德拉帕尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44680924&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102340185(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102340185A publication Critical patent/CN102340185A/zh
Application granted granted Critical
Publication of CN102340185B publication Critical patent/CN102340185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本发明提出了非接触电力传输系统。所述电力传输系统包括包含介电材料的场聚焦元件。所述介电材料包含选自(Ba,Sr)TiO3或CaCu3Ti4O12家族的组分。所述(Ba,Sr)TiO3的组分包括诸如Ca1-x-yBaxSryTi1-zCrzO3-δNp的材料,其中0<x<1;0<y<1;0≤z≤0.01;0≤δ≤1;且0≤p≤1。CaCu3Ti4O12的组分包括诸如Ca1-x-yBaxSry(Ca1-zCuz)Cu2Ti4-δAlδO12-0.5δ的材料,其中0≤x<0.5;0≤y<0.5;0≤z≤1;且0≤δ≤0.1。

Description

用于电力传输系统的介电材料
相关申请的交叉引用
本申请与随其同时提交的题为“用于电力传输系统的介电材料”的同时待审的美国专利申请12/778166号(代理机构卷号为238312-1)相关,该申请在此通过引用结合到本文中。
技术领域
概括地讲,本发明涉及电力传输系统,具体地讲,涉及基于共振的非接触电力传输系统。
背景技术
在需要即时或连续能量传输、但互连导线不方便的某些应用中,合乎需要的是非接触电力传输。一种非接触电力传输方法是电磁感应方法,其基于初级变压器线圈产生主要磁场和在初级变压器线圈附近的次级变压器线圈产生相应电压的原理工作。由次级变压器线圈接收的磁场作为两线圈之间的距离的平方的函数而降低,由此对于大于数毫米的距离来说,初级线圈和次级线圈之间的耦合微弱。
另一非接触电力传输方法致力于通过共振感应耦合增加感应电力传输的效率。发射器和接收器元件在相同频率下共振,且在共振频率下出现最大感应。然而,这种共振感应对负载和间隙变化敏感。
需要可用间隔比当前可接受距离长的距离的线圈操作且在受到未对准或负载变化时有效的有效非接触电力传输系统。此外,需要在所需要频率范围可用于电力传输系统的具有高介电性质和低介电损耗因子的适合且有效的材料。
发明内容
简而言之,在一个实施方案中,提供了电力传输系统。所述电力传输系统包括包含介电材料的场聚焦元件。所述介电材料包含具有式Ca1-x-yBaxSryTi1-zCrzO3-δNp的组分(composition),其中x和y可在0和1之间变化,使得0<x<1且0<y<1;z可在0和0.01之间变化,使得0≤z≤0.01;且δ和p可在0和1之间变化,使得0≤δ≤1且0≤p≤1。
在一个实施方案中,提供了电力传输系统。所述电力传输系统包括耦合到电源的第一线圈和耦合到负载的第二线圈;和包含介电材料且布置在第一线圈和所述第二线圈之间的场聚焦元件。所述介电材料包含具有式Ca1-x-yBaxSryTi1-zCrzO3-δNp的组分,其中x和y可在0和1之间变化,使得0<x<1且0<y<1;z可在0和0.01之间变化,使得0≤z≤0.01;且δ和p可在0和0.5之间变化,使得0≤δ≤0.5且0≤p≤0.5。
在另一实施方案中,提供了电力传输系统。所述电力传输系统包括包含介电材料的场聚焦元件。所述介电材料包含Ca1-x-yBaxSry(Ca1-zCuz)Cu2Ti4-δAlδO12-0.5δ,其中x和y可在0和0.5之间变化,使得0≤x<0.5且0≤y<0.5;z可在0和1之间变化,使得0≤z≤1;且δ可在0和0.1之间变化,使得0≤δ≤0.1。
在一个实施方案中,提供了电力传输系统。所述电力传输系统包括耦合到电源的第一线圈、耦合到负载的第二线圈和布置在第一线圈和所述第二线圈之间的场聚焦元件。所述场聚焦元件包含介电材料,使得所述介电材料包含Ca1-x-yBaxSryCu3Ti4O12,其中x和y可在0和0.2之间变化,使得0<x<0.2且0<y<0.2。
在一个实施方案中,提供了电力传输系统。所述电力传输系统包括耦合到电源的第一线圈、耦合到负载的第二线圈和布置在第一线圈和所述第二线圈之间的场聚焦元件。所述场聚焦元件包含介电材料,其中所述介电材料包含Ca2-x-yBaxSryCu2Ti4-δAlδO12-0.5δ,其中x和y可在0和0.2之间变化,使得0≤x<0.2且0≤y<0.2;且δ可在0和0.1之间变化,使得0<δ≤0.1。
附图说明
当参考附图阅读以下详述时将更加透彻地理解本发明的这些和其它特征、方面和优势,在整个附图中相同的符号表示相同元件,其中:
图1示出了根据本发明的一个实施方案的示例性非接触电力传输系统;
图2示出了根据本发明的一个实施方案的示例性场聚焦元件;
图3示出了根据本发明的各种实施方案的场聚焦元件的多个示例性结构;
图4示出了多个共振器配置成阵列且作为场聚焦元件的实施方案;且
图5示出了根据本发明的一个实施方案的包埋材料的多个示例性结构。
具体实施方式
本发明的实施方案包括电力传输系统和可用于所述电力传输系统的介电材料。
在以下说明书和随后的权利要求书中,除非上下文另外明确指出,否则单数形式“一”和“该”包括复数个指示物。
非接触电力传输系统通常以在初级线圈和次级线圈之间的短距离电力传输为特征。例如,感应电力传输系统的一个实施方案使用初级线圈和次级线圈来以电流隔离方式在两个回路间传输电力。当耦合到电源时,在初级线圈周围建立磁场。从初级线圈传输到次级线圈的电量与连接次级线圈的初级磁场的水平成比例。电力变压器使用高磁导率磁芯连接在初级线圈和次级线圈之间的磁场,因此实现量级为至少约98%的效率。然而,当这种体系经构造以用于非接触电力传输时,所述两个线圈之间的空气间隙降低磁场耦合。所述降低的耦合影响非接触电力传输系统的效率。
本文公开的一些实施方案提供具有对负载变化敏感性降低、在线圈未对准期间有效传输电力和增强电力传输效率的场聚焦结构的稳固的非接触电力传输系统。
图1示出了根据本发明的一个实施方案的非接触电力传输系统10的实例,其包括耦合到电源14且经构造以产生磁场(未示出)的第一线圈12。第二线圈16经构造以从第一线圈12接收电力。如本文所用,术语“第一线圈”还可称为“初级线圈”,术语“第二线圈”还可称为“次级线圈”。初级线圈和次级线圈可由例如铜的任何良好导电材料构成。场聚焦元件18布置在第一线圈12和第二线圈16之间以便聚焦来自电源14的磁场。在另一实施方案中,场聚焦元件可于聚焦电场和/或电磁场。术语“磁场聚焦元件”和“场聚焦元件”可互换使用。在一个实施方案中,磁场聚焦元件18经构造为自共振线圈且当经第一线圈激发时具有驻波电流分布。在另一实施方案中,磁场聚焦元件包括作为有源阵列或无源阵列操作的多个共振器,各共振器经构造为具有驻波电流分布的自共振线圈。在又一实施方案中,磁场聚焦元件包括多组这样的共振器,各组这样的共振器在特定相位下激发。可以理解,当通过不同相位激发共振器组时,可在所要方向上增强场聚焦。
磁场聚焦元件18经进一步构造以将磁场聚焦到第二线圈16上,从而增强第一线圈12和第二线圈16之间的耦合。在一个实施方案中,非均匀的磁场分布通过在场聚焦元件18中产生驻波电流分布而围绕磁场聚焦元件18产生。在所说明的实施方案中,例如,场聚焦元件18较靠近第一线圈12放置。可能有利的是,在某些体系中,场聚焦元件18较靠近第二线圈16放置。负载20耦合到第二线圈16以使用从电源14传输的电力。在某些实施方案中,非接触电力传输系统10也可经构造以从第二线圈同时传输电力到第一线圈,使得体系能够双向电力传输。电势负载的非限制性实例包括灯泡、电池、计算机、传感器或需要电力来操作的任何装置。
非接触电力传输系统10可用以从电源14传输电力到负载20。在一个实施方案中,电源14包括单相AC发电机或三相AC发电机以及将AC电力转换为高频的电力转换电气设备。当第一线圈12在磁场聚焦元件18的共振频率下激发时,在场聚焦元件的两个开口末端(22、24)之间在磁场聚焦元件18内产生驻波电流分布。驻波电流分布导致围绕磁场聚焦元件18的非均匀磁场分布。这种非均匀的电流分布经构造以在任何所要方向上(例如在该实例中第二线圈16的方向上)聚焦磁场。当在共振频率下操作时,即使对磁场聚焦元件18少量激发也沿磁场聚焦元件的长度25产生大幅的电流分布。该非均匀分布的大电流幅度在第二线圈16的方向上产生放大且聚焦的磁场,这产生较高效率的电力传输。
图2示出了根据本发明的一个实施方案的场聚焦元件的实例。在可作为图1中的磁场聚焦元件18实施的各种结构之中,图2中示出了一种这样的结构。在所说明的实施方案中,参考数字30为在本文中作为“Ω结构”提到且在数兆赫兹范围内操作的场聚焦结构。“Ω结构”能够实现高电容和电感,而且能够在近共振频率下实现负磁导率。负磁导率有助于主要场响应且有效控制磁场。这种结构的共振频率可通过改变线匝(32、34、36)的数量、线匝之间的间隙(38)和螺旋的宽度(40)来控制。在具有与螺旋结构相比增加的周长的情况下,“Ω结构”需要减小的结构尺寸以在较低共振频率下操作。
图3示出了用于根据本发明的各种实施方案的场聚焦元件的结构的多个实例。在一个实施方案中,场聚焦元件包括单一环形线圈50。在另一实施方案中,场聚焦元件包括诸如以开环结构52、螺旋结构54、卷绕式(Swiss-roll)结构56或螺旋形线圈58的多种线匝。用于特定应用的结构的选择由场聚焦元件的大小和自共振频率决定。例如,在低功率应用(例如,小于约1瓦特)中,至多约1000MHz的共振频率是可行的。在高功率应用(例如,约100瓦特-约500千瓦特)中,量级为数百kHz的共振频率是可行的。
图4示出了多个共振器配置成阵列且作为场聚焦元件实施的实施方案。共振器阵列构成配置成以特定相位关系激发的诸如线性或平面阵列的特定阵列配置的多个共振器线圈。各个共振器(66-77)或子波长共振器经构造以在所要方向上聚焦磁场。在这种配置中,来自阵列中的共振器的场在所要方向上建设性地干扰(增加)以实现磁场聚焦并在剩余空间中破坏性地干扰(互相抵消)。在另一实施方案中,共振器以线性阵列、圆形阵列、平面阵列或三维阵列中的至少一种配置。在所说明的实施方案中,各个共振器70-74成行配置,且4个所述行66-69一个配置在另一个下面。作为阵列64的一部分的各个共振器集合地针对至少一种或多种共振频率构造。在一个特定的实施方案中,阵列的所有各个共振器在预期用于制造的正常范围的变化和其它共同源的变化内相同。
在本发明的电力传输系统的一个实施方案中,场聚焦元件18的共振器可以例如介电谐振腔形式由介电材料制成。场聚焦元件中使用的介电材料理想地具有高介电常数(介电电容率,ε)和低损耗角正切。高介电常数帮助在给定较小尺寸的共振器的情况下实现低频率共振,同时需要低损耗正切以保持介电损耗在可接受的极限内。
在一个实施方案中,场聚焦元件18包括在共振频率下激发后聚焦磁场的自共振线圈。所述共振器为任何形状的自共振线圈,其自共振频率取决于自电容和自感。线圈的自共振频率取决于线圈的几何参数。例如,在螺旋形共振器线圈的情况下,共振频率使得螺旋线的总长度为电磁激发的半波长或多个半波长。因此,这些低频率共振器的设计由于空间限制而具有挑战性。使共振器大小微型化的方法之一是将共振器包埋在高介电常数介质中。
在一个实施方案中,场聚焦元件18的共振器或共振器阵列包埋在具有高介电常数的材料或具有高磁导率的磁性材料或具有高介电电容率和高磁导率的磁电介质中以用较小尺寸的共振器实现较低共振频率。高磁导率材料增强共振器的自感且高电容率材料增强共振器的自电容从而降低共振频率。在另一实施方案中,高磁导率材料还经构造以增加初级线圈和场聚焦元件之间以及场聚焦元件和次级线圈之间的耦合。包埋材料的高介电常数帮助降低共振器的操作频率范围。介电常数对频率降低的作用示于表1中。
表1
  介电常数   频率kHz
  1   40600
  1000   1380
  10000   420
  100000   132
当将共振器包埋在电介质中时,线圈匝之间的内匝电容(inter-turn)增加,其继而帮助降低共振器的共振频率。在高介电常数的情况下,可以在很大程度上减小共振器的大小。高介电常数的另一优势在于限制共振器内的电场,因为辐射损耗减少而改善电力传输的效率。但是选择具有高介电常数的材料的关键设计标准之一是该材料在操作频率下的损耗角正切。低介电损耗角正切确保最大耦合效率。如果损耗角正切高,则共振器中以热形式的损耗将高。当功率水平高时,热损耗问题具有重要性。对于低功率水平,高损耗角正切值是可以接受的。在功率水平大于1kW的应用中,需要高介电常数和极低损耗角正切的介电材料。高介电常数有助于在数百kHz频率下得到微型化共振器且低损耗角正切有助于降低介电质中的损耗。
能够通过高介电常数和低损耗角正切材料实现的电力传输系统具有包括电动车辆充电器、用以旋转负载的电力传输、采矿车辆的非接触充电的应用,其中电力传输水平在数kW量级。具有高介电常数和高损耗介电材料的电力传输系统可用于如海底连接器的应用中,其中功率水平为几毫瓦特。
具有不同形状的高介电常数材料可用作场聚焦元件。例如,高介电常数圆形介电盘可在某些频率下充当共振器。在这种情况下,共振频率由共振器的几何构型决定。可用作场聚焦元件的共振器的不同形状的非限制性实例示于图5中。场聚焦元件18可作为多层共振器堆叠以产生多个共振频率。这种构造有助于多方向电力传输,其中可将通道之一用于电力传输,且可将其它通道用于不同装置之间的低功率数据传输。
也可将高介电常数材料用作金属表面上的薄膜或厚膜涂层以产生如卷绕式结构56的场聚焦结构。不同卷绕层之间的高介电常数增加结构的电容,由此显著降低频率。
诸如但不限于钛酸铜钙和钛酸锶钡的材料是表现出高介电常数的材料的实例。在一个实施方案中,所述介电材料作为大块材料(bulk material)使用。如本文所用的术语“大块材料”是指具有所有侧边均大于约1mm的三维结构的任何材料。在一个实施方案中,所述介电材料作为涂料使用。涂层可以薄膜形式或以厚膜形式。本文所用的“薄膜”具有小于约100微米的厚度,而厚膜具有约100微米-约1毫米的厚度。
在一个实施方案中,可使用材料的组合以便包埋共振器。例如,可将具有高介电常数的两种或更多种材料或具有高磁导率的两种或更多种材料的混合物用作包埋材料。在另一实施方案中,可将各自具有高介电常数或高磁导率的两种或更多种材料的混合物用作包埋材料。
钛酸锶钡(Ba,Sr)TiO3和钛酸铜钙CaCu3Ti4O12具有不同晶体结构且表现出不同的温度依赖性特征。例如,(Ba,Sr)TiO3属于钙钛矿家族且是在约120℃的温度下具有立方-四方晶体结构转变的铁电材料。CaCu3Ti4O12不是铁电材料且具有体心立方(b.c.c)结构。影响(Ba,Sr)TiO3和CaCu3Ti4O12体系中诸如介电常数和介电损耗角正切的介电性质的因子也可能不同。例如,据信偶极的产生和排序是(Ba,Sr)TiO3体系中的铁电现象和高介电常数的成因,同时认为CaCu3Ti4O12体系具有通过具有绝缘晶界和半导电晶粒而由阻挡层电容产生的作用。
在一个实施方案中,需要使用在所要应用的某些频率范围基本稳定的诸如介电常数和损耗角正切的介电性质的介电材料。本文中的术语“基本稳定”是指数值的改变不会导致电力传输系统的性能变化大于约10%。因此,频率范围的所需值和宽度可根据使用场聚焦元件的应用而变化。在一个实施方案中,所要频率范围为约100Hz-约100MHz。在一些实施方案中,所要频率范围为约1kHz-约100kHz。在另一实施方案中,所要频率范围为约100kHz-约1MHz。在又一实施方案中,所要频率范围为约1MHZ-约5MHz。
与具有低介电常数和高损耗角正切的材料相比,具有低介电损耗角正切以及高介电常数的材料将有效用以增强共振器在作为包埋材料或谐振腔使用时的自电容。因此,在共振器的操作频率下具有高介电常数和低介电损耗角正切二者的材料适用于场聚焦元件18。
待用于电力传输系统的场聚焦元件18中的介电材料通常需要等于或大于约100的高介电常数和尽可能低的损耗角正切。在一个实施方案中,等于或小于约0.1的损耗角正切对于待用于场聚焦元件的介电材料是可以接受的。在一个随后的实施方案中,等于或小于约0.01的损耗角正切对于介电材料是合乎需要的。
本发明人研究了改善属于(Ba,Sr)TiO3和CaCu3Ti4O12体系的介电材料的所要介电性质的不同方式。经研究用于增强性质的不同方法包括但不限于阳离子掺杂、阴离子掺杂、晶界掺杂、密度增加、复合物形成和改变烧结条件、烧结气氛以及结构和微结构外观。
因此,在一个实施方案中,提供用于例如上述电力传输系统的场聚焦元件18的具有式Ca1-x-yBaxSryTi1-zCrzO3-δNp(其中0<x<1;0<y<1;0≤z≤0.01;0≤δ≤1;且0≤p≤1)的材料体系。为了简化该体系在下文将被称作“BST材料体系”。本文所用的术语“大于0”表示指定组分是有意加入的,而不是可作为杂质存在的偶然量。如本文所用,在对于正常测定和工艺变化适当的情况下,范围的端点包括高于和低于所述值的偶然变化。在一个实施方案中,提供包含作为介电材料的BST材料体系的电力传输系统。
在一个实施方案中,提供用于例如上述电力传输系统的场聚焦元件18的具有式Ca1-x-yBaxSry(Ca1-zCuz)Cu2Ti4-δAlδO12-0.5δ(其中0≤x<0.5;0≤y<0.5;0≤z≤1;且0≤δ≤0.1)的材料体系。为了简化该体系在下文将被称作“CCT材料体系”。如本文在CCT材料体系中所用,式Ca1-x-yBaxSry(Ca1-zCuz)Cu2Ti4-δAlδO12-0.5δ为包括以由该式表示的指定比率的混合物和化合物的理论式,且未必是指以可通过标准表征技术鉴定的形式存在的单一化合物。简单地说,由上式规定的材料实际上可作为多个相存在,其总起来具有由该式规定的总组成(composition)。在一个实施方案中,提供包含作为介电材料的CCT材料体系的电力传输系统。
一般而言,发现阳离子掺杂剂通过吸收氧空位而增加晶界阻抗,由此降低介电常数和损耗角正切二者。通过在阳离子位点掺杂,掺杂的阳离子通过吸收晶界处的电子密度而还原,由此降低晶界的传导性,因此导致介电常数和损耗降低。
一般而言,通过在阴离子位点掺杂,晶格的阳离子通过吸收电子密度而还原,由此在晶粒中产生绝缘面缺陷。绝缘平面缺陷可降低晶粒内势垒(internal barrier)的电阻率,由此降低介电损耗。
在BST材料体系中,改变钡和锶的含量并研究其对有利介电性质的作用。因此,在一个实施方案中,提供包含BST材料体系的电力传输系统,使得0.3≤x。因此,在该实施方案中,钡含量等于或大于约0.3。在另一实施方案中,x+y=1。因此,在该实施方案中,BST材料体系在钡或锶位点不含任何其它掺杂剂。在一个实施方案中,BST材料体系中锶含量使得0.4≤y<1。因此,在该实施方案中,锶含量始终等于或大于约0.4。上述BST材料体系的实例包括但不限于Ba0.3Sr0.7TiO3和Ba0.4Sr0.6TiO3
在具有BST材料体系的电力传输系统的一个实施方案中,BST材料体系的钡或锶被诸如钙的阳离子部分置换以增强有利的介电性质。在一个实施方案中,BST材料体系使得0.9≤x+y<1。因此,在该实施方案中,BST材料体系在钡或锶位点含有其它掺杂剂,但掺杂剂的值始终等于或小于约0.1。上述BST材料体系的实例包括但不限于Ba0.55Sr0.40Ca0.05TiO3和Ba0.5Sr0.4Ca0.1TiO3
在具有BST材料体系的电力传输系统的一个实施方案中,钛被铬部分置换,其可帮助降低损耗角正切。在一个实施方案中,铬替换BST材料体系中小于约2%原子的钛。在一个随后的实施方案中,铬替换在约0.01%原子-约1%原子范围内。因此,在该实施方案中,上式中的量z在约0.0001至约0.01之间变化。在另一实施方案中,铬替换在约0.2%原子-约1%原子钛范围内,其中z值在约0.002至约0.01之间变化。在一个实施方案中,在BST材料体系中,z>0且δ和p都等于0。在该实施方案中,BST材料体系包括阳离子替换,而不是阴离子替换。上述BST材料体系的实例包括但不限于Ba0.3Sr0.7Cr0.002Ti0.998O3。在BST体系中,当钛用诸如上述实例中的铬的三价阳离子替换时,氧含量也可以化学计量方式改变。例如,在上述实例中,氧原子的数目可为2.999,而不是3,以适应替换0.002原子的铬。在另一实施方案中,在BST材料体系中,钡或锶被诸如钙或镧的阳离子部分置换;且钛被铬部分置换。上述BST材料体系的实例包括但不限于Ba0.55Sr0.4Ca0.5Cr0.002Ti0.998O3。下表2代表具有变化的钡和锶含量以及具有一些阳离子掺杂剂的BST材料体系的一些实例和其介电性质。
表2
在具有BST材料体系的电力传输系统的一个实施方案中,氧通过阴离子掺杂被氮部分置换。氮和氟是用于替换氧的阴离子掺杂剂的两个实例。在一个实施方案中,在BST材料体系中,氮被替换,使得0≤δ≤1且0≤p≤1。因此,在一个实施方案中,阴离子替换使得BST材料体系中约25%或以下的氧被氮替换。在一个实施方案中,根据工艺条件,在替换BST材料体系中的氧时,氮是以-3的氧化态。在一个实施方案中,氮被替换,使得0≤δ≤1且0≤p≤0.8。在一个实施方案中,氮替换置换BST材料体系中小于约10%原子的氧。在一个实施方案中,氮被替换,使得0.1≤δ≤0.8且0.1≤p≤0.8。在一个实施方案中,氧被氟而不是氮替换,使得0≤δ≤1且p=0。在另一实施方案中,氧被氟而不是氮替换,使得0.1≤δ≤1且p=0。在另一实施方案中,氧在一定条件下被氮和氟两者替换,使得0.1≤δ≤0.5且0.05≤p≤0.3。
在具有BST材料体系的电力传输系统的一个实施方案中,氧被另一阴离子替换,使得z=0且δ和p都大于0。因此,在该实施方案中,阴离子替换在不存在阳离子替换的情况下进行。例如,提供具有组成Ba0.3Sr0.7TiO2.8N0.13的BST材料体系。上述材料在约2.5MHz的频率下表现出约0.0001的极低介电损耗、约506的合适介电常数。
在所述电力传输系统的一个实施方案中,BST材料体系掺杂有阳离子和阴离子二者。在一个实施方案中,钛被铬部分置换且氧被氮部分置换,使得z、δ和p全部大于0。在一个实例中,提供具有组成Ba0.4Sr0.6Cr0.005Ti0.995O2.8N0.13的材料,其在约3.13MHz的频率下表现出约0.003的损耗角正切以及约819的介电常数。在另一实施方案中,0<x+y<1且z、δ和p全部大于0,使得在钡或锶位点存在阳离子掺杂剂,铬部分替换钛且氮部分替换氧。表3提供在有或没有阳离子掺杂剂的BST材料体系中一些阴离子掺杂材料的介电值。
表3
如先前所提供,在一个实施方案中,提供包括包含CCT材料体系的场聚焦元件18的电力传输系统,使得Ca1-x-yBaxSry(Ca1-zCuz)Cu2Ti4-δAlδO12-0.5δ,其中0≤x<0.5;0≤y<0.5;0≤z≤1;且0≤δ≤0.1。在一个实施方案中,所述CCT材料体系包含CaCu3Ti4O12。在另一实施方案中,所述CCT材料体系包含在约100kHz频率下具有大于约3500的介电常数和小于约0.07的损耗角正切的Ca2Cu2Ti4O12
在一个实施方案中,在包含CCT材料体系的电力传输系统中,x>0。在另一实施方案中,y>0。在另一实施方案中,x>0且y>0。因此,在上述实施方案中,钙被钡和/或锶部分置换。用钡和锶掺杂剂制备且显示很好介电性质的CCT材料体系的一个实例为Ba0.01Sr0.2Ca0.79Cu3Ti4O12。该材料在广泛频率范围内具有基本均匀的介电常数和损耗角正切值,这使得该材料可用于将在变化频率范围工作的应用中。对于约1kHz-约100kHz的整个频率范围,材料Ba0.01Sr0.2Ca0.79Cu3Ti4O12的介电常数在约4500-5000范围内且损耗角正切在约0.06-0.08范围内。所述材料适合在约1kHz-100kHz范围内的任何频率下的非接触电力传输。
在包含待用于场聚焦元件18的CCT材料体系的电力传输系统的一个实施方案中,x和y都等于0且z=1,且铜被诸如镧的其它合适阳离子部分置换。在又一实施方案中,钛被铁、铝、铬、锆或任何其组合部分置换。在一个实施方案中,上述置换中的任一者或所有同时存在。
下文提供的实施例描绘可用于上文提供的场聚焦元件18的不同CCT材料体系以及其近似测定的介电常数和损耗角正切值。虽然在本文中提供了一些特定的实施例,但是本领域技术人员将了解掺杂剂组合和含量的变化。
显示出优良介电性质的CCT材料体系的一个实例为CaCu3Ti4O12。表4列出纯净的CaCu3Ti4O12材料和掺杂的CaCu3Ti4O12材料的一些性质。
表4
  CCT材料体系   频率   介电常数   损耗角正切
  CaCu3Ti4O12   10kHz-30kHz   >6000   <0.1
  CaCu2.9La0.067Ti3.94Al0.06O11.97   10kHz-60kHz   >6000   <0.1
  CaCu3Ti3.94Al0.06O11.97   ~10kHz   >14000   ~0.11
  CaCu3Ti3.99Zr0.01O12   ~10kHz   >12000   <0.08
  CaCu2.9La0.067Ti3 98Cr0.02O11.99   ~10kHz   >12000   <0.2
  CaCu3Ti3.98Cr0.02O11.99   10kHz-100kHz   >2000   <0.1
在一个实施方案中,在电力传输系统的场聚焦元件18的CCT材料体系中,x、y和z全部等于0且铜被诸如镧的其它合适阳离子部分置换。在又一实施方案中,钛被铁、铝、铬、锆或任何其组合部分置换。在一个实施方案中,上述置换中的任一者或所有同时存在。
以下提供的实施例描绘上文针对具有包含CCT材料体系的场聚焦元件的电力传输系统提供的不同实施方案以及所述材料的近似测定的介电常数和损耗角正切值。虽然在本文中提供了一些特定的实施例,本领域技术人员将了解掺杂剂组合和含量的变化。
在一个实施方案中,Ca2Cu2Ti4O12为在场聚焦元件18的CCT材料体系中具有约33.3%摩尔CaCu3Ti4O12和约66.7%摩尔CaTiO3的材料。以纯净形式和掺杂形式的该材料显示出从表5中可见的一些优良介电性质。
表5
在所述电力传输系统的一个实施方案中,场聚焦元件的介电材料包含SrTiO3以及CCT材料体系。该介电材料的一个实例为(0.6CaCu3Ti4O12+0.4SrTiO3)。该组合在约10kHz-约35kHz的频率范围下具有大于约7000的介电常数值和小于约0.09的损耗角正切值。该介电材料的另一实例为(0.6CaCu3Ti3.94Al0.06O11.97+0.4SrTiO3)。该组合在约1kHz-约10kHz的频率范围下具有大于约9000的介电常数值和小于约0.09的损耗角正切值。
本发明人发现材料的密度对材料的介电性质也起重要作用。如果介电材料的微结构是致密的,则该材料在材料体中包含较少气孔。空气通常具有比介电材料低的介电常数,因此预期当存在于材料中时产生总体较低的介电常数。因此,本发明人进行实验以增加材料的总密度,由此增加介电常数。在一个实施方案中,不同BST和CCT材料体系在不同高温下烧结且研究其介电常数和损耗角正切值。发现介电常数随烧结温度增加而增加,而对于高温烧结样品来说,损耗角正切值降低。此外,观察到,在BST材料体系和CCT材料体系两者中,与较久烧结时间的较低温度烧结相比,较短烧结时间的高温烧结帮助降低损耗角正切值。例如,与在1350℃下烧结12小时的相同材料相比,在1440℃下烧结2小时的诸如Ba0.55Sr0.4Ca0.05TiO3的BST材料体系产生具有较低损耗角正切值的材料。类似地,与在1050℃下烧结12小时的相同材料相比,在1100℃下烧结2小时的CCT材料体系产生具有较低损耗角正切值的材料。
在所述电力传输系统的一个实施方案中,在烧结之前,对意欲用于场聚焦元件18的BST材料和CCT材料进行冷等静压(CIP)以增加材料密度。在一个实施方案中,通过CIP和最后烧结得到的BST材料的密度大于那些组分理论密度的约80%。在一个实施方案中,所述密度大于所述理论密度的约90%。在另一实施方案中,所述密度大于所述理论密度的约96%。在另一实施方案中,所述密度大于所述理论密度的约98%。
通过CIP处理的示例性组分包括Ba0.55Sr0.4Ca0.05TiO3和Ba0.5Sr0.4Ca0.1TiO3。在正常处理的样品和进行CIP的样品之间的一些示例性材料的介电常数值的比较示于表6中,而表7表示损耗角正切值的比较。从表中可以看出,虽然观察到所有材料在所有频率下在烧结之前对材料进行CIP实现了介电常数增加,但是对于相对较高频率范围测定观察到CIP降低损耗角正切值的作用。
表6
表7
然而,所有上述材料通过进行CIP在约10kHz-约2MHz的频率范围内表现出大于约2000的很好介电常数值和小于约0.08的低损耗角正切值,使得所述材料良好地用于非接触电力传输应用的场聚焦元件18以及用于其它应用。
本发明人还通过在诸如富氧气氛、氮气氛或诸如氢气氛的还原气氛的不同气氛中处理材料来对介电材料进行实验。例如,富氧气氛能够实现CCT和BST家族材料的介电性质的改变。观察到,在CCT家族材料中,在氧气氛中烧结补偿材料中的氧空位,因此产生较低介电常数和较低损耗角正切。在BST材料体系中,在氧气氛中烧结增加材料的密度,因此增加介电常数。预期在氮气氛中烧结从材料中取出一些氧,因此使得材料缺氧,增加了氧空位和电子密度,且产生高介电常数和增加的损耗角正切。表8和9分别提供了示例性材料Ba0.5Sr0.4Ca0.1TiO3和Ba0.55Sr0.4Ca0.05TiO3在约100Hz-约1MHz的频率范围下的介电常数和损耗角正切值的比较。类似于高温烧结的作用,发现对BST材料体系的氧气氛烧结增加了介电常数,同时还发现增加了损耗角正切值。
表8
表9
在一个实验中,对BST材料进行CIP并还将其在氧气氛中烧结以便得到较佳介电值。实例包括但不限于在氧气氛中在约1440℃下烧结2小时、产生在约1MHz-约10MHz的频率范围大于约1900的介电常数值和小于约0.01的损耗角正切值的Ba0.55Sr0.4Ca0.05TiO3。此外,该材料在约2.91MHz的频率下具有大于约1900的介电常数和约0.0008的损耗角正切值。在氧气氛中在约1440℃下烧结2小时的Ba0.55Sr0.4Ca0.05Cr0.01Ti0.99O3在约4.95kHz的频率下具有大于约1300的介电常数值和小于约0.001的损耗角正切值。
在所述电力传输系统的一个实施方案中,介电材料以大块材料形式存在且为具有晶粒和晶界的多晶。BST或CCT材料体系中的晶界导电性增加可增加介电常数和损耗角正切两者。例如,晶界处的金属沉淀物由于金属和电子界面产生静电电位,由此增加晶界导电性,因此增加介电常数和损耗角正切。
在所述电力传输系统的一个实施方案中,包含在场聚焦元件中的任何上述材料用诸如氧化铋的含铋材料掺杂。在另一实施方案中,铋存在于在用于场聚焦元件的多晶材料的晶界中的金属相中。在一个相关实施方案中,将氧化铋掺杂并在介电材料的晶界中还原为金属铋。在一个实施方案中,在使BST材料形成为可结合到场聚焦元件18的大块形式并烧结之前,通过混合Bi2O3和TiO2与煅烧的BST粉末而将氧化铋引入晶界中。在一个实施方案中,BST材料体系存在小于约3%摩尔的Bi2O3.3TiO2。在一个实施方案中,BST材料体系在晶界中具有金属铋相。发现BST材料体系的介电常数通过在晶界中具有金属铋相而显著增加。在一些情况下,通过在晶界中布置金属铋使BST材料体系的介电常数值增加大于约两个数量级。可将掺杂有1%摩尔Bi2O3.3TiO2的Ba0.4Sr0.6TiO3材料视为一个实例。该材料在约315kHz的频率下显示大于约30,800的极高介电常数、约0.001的极低损耗角正切因子,因此,其为用于如本文所述的非接触电力传输系统的场聚焦元件的良好材料。
在一个实验中,烧结之前,BST材料体系通过冷等静压致密化。在另一实施方案中,还将该材料用氧化铋掺杂在晶界中且氧化铋通过在约1200℃下在诸如在氮气中的5%氢气的还原气氛处理约12小时而还原为金属铋。在一个实施方案中,提供包括包含铋掺杂的BST材料体系的场聚焦元件的电力传输系统。实例包括诸如Ba0.4Sr0.6Cr0.01Ti0.99O3+1%摩尔Bi2O3.3TiO2和Ba0.4Sr0.6Cr0.01Ti0.99O3+1%摩尔Bi2O3.3TiO2的材料。上述材料在约100Hz的频率下显示大于约11,030,000的极高介电常数。然而,所述材料的介电损耗角正切在约100Hz的频率下具有约0.9的稍高值。这些材料可用于其中高介电常数非常重要的应用中,同时高损耗角正切值可适合诸如低电力传输应用。
在一个实施方案中,具有场聚焦元件的电力传输系统包含掺杂有阳离子和晶界掺杂剂两者的BST材料体系。具有阳离子掺杂和晶界掺杂两者且表现出所要介电性质的BST材料的实例包括掺杂有约1%摩尔Bi2O3.3TiO2的Ba0.3Sr0.7Cr0.002Ti0.998O3。该材料在约1.4MHz下表现出约7668的介电常数、约0.007的介电损耗。虽然可设想其它应用,但是上述材料特别适合适于本文所述的高电力传输的非接触电力传输系统中的场聚焦元件。具有阳离子掺杂和晶界掺杂两者的介电材料的另一实例为掺杂有1%摩尔Bi2O3.3TiO2的Ba0.3Sr0.7Cr0.005Ti0.995O3。该材料在约100Hz的频率下显示大于约3,470,000的极高介电常数。然而,该材料还具有约1的高损耗角正切值,该高损耗角正切值可限制该材料在用于高电力传输的场聚焦元件中应用。
在一个实施方案中,具有场聚焦元件18的电力传输系统包含掺杂有阴离子掺杂剂和晶界掺杂剂两者的BST材料体系材料。在一个实施方案中,氧被氮部分置换且铋布置在晶界中。具有阴离子掺杂和晶界掺杂两者且表现出所要介电性质的BST材料的实例包括掺杂有约1%摩尔Bi2O3.3TiO2的Ba0.3Sr0.7TiO2.8N0.13。上述材料在约100Hz的频率下表现出约1,793,610的极高介电常数。然而,该材料具有约1的损耗角正切。该材料可用于低电力传输体系。此外,对不同替换或降低损耗角正切值的方法进行实验可产生更适用于场聚焦元件的材料。
在一个实施方案中,具有场聚焦元件18的电力传输系统包含掺杂有阳离子、阴离子和晶界掺杂剂的BST材料体系材料。在一个实施方案中,钛被铬部分置换,氧被氮部分置换,且金属铋布置在晶界中。在BST材料体系中的具有阳离子、阴离子和晶界掺杂剂的材料的一个实例为具有约1%摩尔Bi2O3.3TiO2的Ba0.3Sr0.7Cr0.005Ti0.995O2.8N0.13。该材料在约150kHz的频率下具有大于约63,000的极高介电常数和约0.006的介电损耗角正切。因此,该材料非常适用于本文所述的电力传输系统中的场聚焦元件中。
在一个实例中,如先前在表3中所述,本发明人改变原料以便制备BST材料体系材料且注意到损耗角正切减小。Ba0.4Sr0.6TiO3材料通过使用分别作为钡源和锶源的BaF2和SrF2来制备。用钡和锶的氟化物源做原料,预期一些氟将替换氧,因此改变BST材料体系的介电值。通过使用BaF2和SrF2制备的Ba0.4Sr0.6TiO3在从100Hz-10MHz的整个频率范围表现出小于约0.01的介电损耗因子,在1.4MHz下最小值为0.0001。该材料在上述整个频率范围还表现出约415的均匀介电常数。该材料可有利地用于在约100Hz-约10MHz的任何频率范围下非接触地传输电力。
在所述电力传输系统的一个实施方案中,希望使用诸如介电常数和损耗角正切的介电性质在室温附近的某一温度范围下稳定的介电材料以适应由于例如环境或操作改变引起的温度改变。在一个实施方案中,如果所述介电材料的介电性质从约-50℃至约150℃基本稳定,则所述介电材料是有益的。如本文所用的“基本稳定”是指材料的介电性质在给定温度范围改变不大于约10%其室温值。在一个实施方案中,本文提供的介电材料具有从约-15℃至约120℃基本稳定的介电性质。在另一实施方案中,所述介电材料具有从约-20℃至约60℃基本稳定的介电性质。在一个实施方案中,本文提供的BST和CCT材料为在广泛温度范围稳定且具有在室温附近稳定的介电性质的陶瓷材料。
实施例
以下实施例根据具体实施方案说明方法、材料和结果,因而不应将其看作对权利要求书施加限制。所有组分都可从常见化学品供应商购得。
制备材料:
下文概述不同实施例中确定的BST和CCT材料体系的通用制备方法。然而,本领域技术人员应理解,原料;制备、煅烧和烧结的温度、时间和气氛;所制备粉末和大块材料的大小和形状变化的细小变化可适应下文提供的实施例。
制备纯净和掺杂的CCT和BST材料体系
将化学计量浓度的CaCO3、CuO和TiO2混合,在干燥条件下球磨且在1000℃下在空气中煅烧24小时。对于一些材料改变煅烧温度和气氛以研究温度和气氛的影响。通过固态混合加入所需摩尔百分比的BaCO3、SrCO3、Cr2O3、Al2O3、La2O3、Fe2O3、ZrO2以便在需要时分别掺杂钡、锶、铬、铝、镧、铁和锆掺杂剂。加入约1%摩尔Bi2O3.3TiO2以便晶界掺杂。通过固态混合并煅烧将尿素用于在氧位点的氮掺杂。将化学计量之量的BaF2、SrF2和/或CaF2用作原料以便在氧位点包括氟掺杂剂。
将煅烧的混合物与约2%重量聚乙酸乙烯酯(PVA)加在一起并使用玛瑙研钵充分混合。在异丙醇介质中使用球磨进一步研磨混合物。使用具有4MPa、接着6MPa的压力的液压将粉末压成生粒料。为了得到冷等静压(CIP)粒料,使用CIP机使等静压粒料进一步致密化。随后根据需要将粒料在1050℃、1100℃、1350℃或1440℃下在空气、氧气或氮气氛中烧结2、12或24小时。在烧结期间使用在氮气氛中5%的氢气将氧化铋还原为金属铋。对于介电测定的目的来说,将烧结粒料用银膏涂覆。介电测定使用Agilent 4294A电阻分析器进行且使用Novocontrol α-K电阻分析器检验。检验煅烧并烧结的样品的XRD。虽然上文概述了材料的制备、加工和介电值测定的通用方法,但是下文提供的实施例含有一些所选材料的制备、加工、测定和结果的具体细节。
实施例1.通过CIP加工的Ba 0.55 Sr 0.4 Ca 0.05 TiO 3
将约13.071克BaCO3、9.579克TiO2、10.152克Sr(NO3)2和0.6克CaCO3加在一起并使用研钵和研棒手动混合15分钟。将混合物与近似相等体积的异丙醇和约3倍体积的氧化锆研磨介质加在一起且齿条铣磨约6小时。将均相混合物转移到氧化铝坩埚中并在1100℃下煅烧2小时。加入约2%重量PVA并使用玛瑙研钵使其与煅烧粉末混合。将相等体积的异丙醇加到所得材料中并再次齿条铣磨。
随后使用具有约4MPa的压力的液压将粉末压成约3克重的粒料。将粒料真空密封在聚乙烯薄膜中并用约30MPa压力冷等静压。在1440℃下在空气中将粒料烧结2小时。将数微米厚的银膏涂料施用到烧结的粒料并在200℃下干燥2小时。随后使用Agilent 4294A电阻分析器测定粒料的介电常数和损耗角正切。表10提供该材料的介电测定结果。
表10
实施例2.Ba 0.01 Sr 0.2 Ca 0.79 Cu 3 Ti 4 O 12
将约0.079克BaCO3、12.790克TiO2、1.175克SrCO3、3.165克CaCO3和9.554克CuO加在一起并使用研钵和研棒手动混合15分钟。将混合物与近似相等体积的异丙醇和约3倍体积的氧化锆研磨介质加在一起且齿条铣磨约6小时。将均相混合物转移到氧化铝坩埚中并在1000℃下煅烧24小时。加入约2%重量PVA并使用玛瑙研钵使其与煅烧粉末混合。将相等体积的异丙醇加到所得材料中并再次齿条铣磨。
随后使用具有约6MPa的压力的液压将粉末压成约3克重的粒料。在1100℃下在空气中将粒料烧结2小时。将数微米厚的银膏涂料施用到烧结的粒料并在200℃下干燥2小时。随后使用Agilent 4294A电阻分析器测定粒料的介电常数和损耗角正切。表11提供该材料的介电测定结果。
表11
实施例3.Ca2Cu2Ti3.94Al0.06O11.97
将约8.497克CaCO3、6.753克CuO、13.357克TiO2和0.955克Al(NO3)3.9H2O加在一起并使用研钵和研棒手动混合15分钟。将混合物与近似相等体积的异丙醇和约3倍体积的氧化锆研磨介质加在一起且齿条铣磨约6小时。将均相混合物转移到氧化铝坩埚中并在1000℃下煅烧24小时。加入约2%重量PVA并使用玛瑙研钵使其与煅烧粉末混合。将相等体积的异丙醇加到所得材料中并再次齿条铣磨。
随后使用具有约6MPa的压力的液压将粉末压成约3克重的粒料。在1100℃下在空气中将粒料烧结2小时。将数微米厚的银膏涂料施用到烧结的粒料并在200℃下干燥2小时。随后使用Agilent 4294A电阻分析器测定粒料的介电常数和损耗角正切。表12提供该材料的介电测定结果。
表12
有利地,如本文中的某些实施方案中所公开的电力传输系统经构造以包括场聚焦元件且对负载随着共振频率的变化较不敏感。如本文所述,场聚焦元件18可用于增强非接触电力传输系统的磁场聚焦和效率。此外,所述场聚焦元件包含包括BST材料体系、CCT材料体系或两者的组合的介电材料。使用所述介电材料增加场聚焦元件的磁场聚焦,使得电力和数据传输可同时跨初级线圈、场聚焦元件和次级线圈来实现。
虽然在本文中仅说明并描述了本发明的某些特征,但本领域的技术人员将想到许多修改和变化。因此,所附权利要求书将涵盖所有这类属于本发明的真实精神内的修改和变化。
10  电力传输系统
12  第一线圈
14  电源
16  第二线圈
18  场聚焦元件
20  负载
22  场聚焦元件的一个开口端
24  场聚焦元件的另一开口端
25  场聚焦元件的长度
30  Ω场聚焦结构
32,34,36  Ω结构中线匝编号
38  线匝之间的间隙
40  螺旋的宽度
50  单一环形线圈
52  开环结构
54  螺旋结构
56  卷绕式结构
58  螺旋形线圈
64  共振器阵列
66,67,68,69  共振器行
70,71,72,73,74  成行配置的各个共振器
75,77,79  各个共振器
76,78  共振器之间的位移

Claims (18)

1.电力传输系统,其包括:
耦合到电源的第一线圈;
耦合到负载的第二线圈;和
布置在第一线圈和第二线圈之间且包含介电材料的场聚焦元件,其中所述介电材料包含Ca1-x-yBaxSry(Ca1-zCuz)Cu2Ti4-δAlδO12-0.5δ
其中0≤x;y<0.5;0≤z≤1;且0≤δ≤0.1,
并且当δ=0时,x大于0。
2.权利要求1的系统,其中,当δ=0时,x和y都大于0。
3.权利要求2的系统,其中,当δ=0时,x和y都大于0且z=1。
4.权利要求3的系统,其中所述介电材料包含Ba0.01Sr0.2Ca0.79Cu3Ti4O12
5.权利要求1的系统,其中x、y和z都等于0且δ>0。
6.权利要求5的系统,其中所述介电材料包含Ca2Cu2Ti3.94Al0.06O11.97
7.权利要求1的系统,其中x+y≤0.3。
8.权利要求1的系统,其中δ≤0.6。
9.权利要求1的系统,其中所述介电材料还包含锆。
10.权利要求9的系统,其中所述介电材料包含Ca2Cu2Ti3.99Zr0.01O12
11.权利要求1的系统,其中所述介电材料还包含镧。
12.权利要求1的系统,其中所述介电材料为包含晶粒和晶界的多晶材料。
13.权利要求1的系统,其中所述第一线圈与场聚焦元件隔开。
14.权利要求13的系统,其中所述第二线圈与场聚焦元件隔开。
15.电力传输系统,其包括:
耦合到电源的第一线圈;
耦合到负载的第二线圈;和
布置在第一线圈和第二线圈之间且包含介电材料的场聚焦元件,其中所述介电材料包含Ca1-x-yBaxSryCu3Ti4O12
其中0<x<0.2且0<y<0.2。
16.权利要求15的电力传输系统,其中所述场聚焦元件包含多个共振器。
17.电力传输系统,其包括:
耦合到电源的第一线圈;
耦合到负载的第二线圈;和
布置在第一线圈和第二线圈之间且包含介电材料的场聚焦元件,其中所述介电材料包含Ca2-x-yBaxSryCu2Ti4-δAlδO12-0.5δ
其中0≤x<0.2;0≤y<0.2;且0<δ≤0.1。
18.权利要求17的电力传输系统,其中所述场聚焦元件包含多个共振器。
CN201110134191.7A 2010-05-12 2011-05-12 用于电力传输系统的介电材料 Active CN102340185B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/778,189 US8968609B2 (en) 2010-05-12 2010-05-12 Dielectric materials for power transfer system
US12/778189 2010-05-12

Publications (2)

Publication Number Publication Date
CN102340185A CN102340185A (zh) 2012-02-01
CN102340185B true CN102340185B (zh) 2015-05-20

Family

ID=44680924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110134191.7A Active CN102340185B (zh) 2010-05-12 2011-05-12 用于电力传输系统的介电材料

Country Status (6)

Country Link
US (1) US8968609B2 (zh)
EP (2) EP2386531B1 (zh)
JP (1) JP5813364B2 (zh)
CN (1) CN102340185B (zh)
BR (1) BRPI1101998B1 (zh)
SG (1) SG176378A1 (zh)

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959603B (zh) 2011-12-07 2016-07-06 株式会社Ihi 电力传输系统
US9412513B2 (en) * 2012-03-30 2016-08-09 Tdk Corporation Wireless power transmission system
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10186913B2 (en) * 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9124125B2 (en) * 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10206185B2 (en) * 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US20140368048A1 (en) * 2013-05-10 2014-12-18 DvineWave Inc. Wireless charging with reflectors
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9941754B2 (en) * 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US20140008993A1 (en) * 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9450449B1 (en) 2012-07-06 2016-09-20 Energous Corporation Antenna arrangement for pocket-forming
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US10103582B2 (en) * 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9876380B1 (en) 2013-09-13 2018-01-23 Energous Corporation Secured wireless power distribution system
JP6216966B2 (ja) * 2013-03-29 2017-10-25 株式会社エクォス・リサーチ 電力伝送システム
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US9521926B1 (en) 2013-06-24 2016-12-20 Energous Corporation Wireless electrical temperature regulator for food and beverages
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10218207B2 (en) 2015-12-24 2019-02-26 Energous Corporation Receiver chip for routing a wireless signal for wireless power charging or data reception
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102226403B1 (ko) 2016-12-12 2021-03-12 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
KR20210123329A (ko) 2019-02-06 2021-10-13 에너저스 코포레이션 안테나 어레이에 있어서의 개별 안테나들에 이용하기 위해 최적 위상을 추정하는 시스템 및 방법
US11456536B2 (en) 2019-03-29 2022-09-27 Honeywell International Inc. Resonant loop or antenna for wireless power transfer and secure communication
JP2019187237A (ja) * 2019-05-24 2019-10-24 株式会社リューテック 無線電力伝送システム
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation SYSTEMS AND METHODS FOR PROTECTING WIRELESS POWER RECEIVERS USING MULTIPLE RECTIFIER AND ESTABLISHING IN-BAND COMMUNICATIONS USING MULTIPLE RECTIFIER
WO2021055900A1 (en) 2019-09-20 2021-03-25 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corp CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
CN111875371B (zh) * 2020-07-23 2022-12-09 国网甘肃省电力公司张掖供电公司 一种介电陶瓷的制备方法及其产品
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384079A (zh) * 2002-06-21 2002-12-11 清华大学 一种锂钛共掺杂氧化镍基陶瓷的制备方法及其应用
CN1663118A (zh) * 2002-06-26 2005-08-31 皇家飞利浦电子股份有限公司 用于无线功率传递的平面谐振器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2839976A1 (de) 1977-09-16 1979-03-29 Murata Manufacturing Co Halbleiterkeramik fuer grenzschichtkondensatoren
JPS5843612B2 (ja) 1979-07-16 1983-09-28 日産自動車株式会社 クリアランス調整装置
JPH0687367B2 (ja) 1984-11-27 1994-11-02 京セラ株式会社 誘電体磁器組成物
US4888246A (en) 1985-05-23 1989-12-19 Matsushita Electric Industrial Co., Ltd. Dielectric thin film, and method for making the thin film
JPH02150808U (zh) 1989-05-22 1990-12-27
EP0571948B1 (en) 1992-05-29 2000-02-09 Texas Instruments Incorporated Donor doped perovskites for thin film dielectrics
US6268054B1 (en) 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials
WO2001084572A2 (en) * 2000-05-04 2001-11-08 E. I. Du Pont De Nemours And Company Tunable devices incorporating cacu3ti4o¿12?
US6690251B2 (en) 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US7187288B2 (en) 2002-03-18 2007-03-06 Paratek Microwave, Inc. RFID tag reading system and method
JP2005132698A (ja) 2003-10-31 2005-05-26 Tdk Corp 電子部品、誘電体磁器組成物およびその製造方法
JP2005200232A (ja) 2004-01-13 2005-07-28 Tdk Corp 誘電体磁器組成物
EP1676814A1 (fr) * 2004-12-30 2006-07-05 Stmicroelectronics Sa Matériaux oxydes diélectriques
US20070121274A1 (en) * 2005-07-12 2007-05-31 Talvacchio John J Small volume thin film and high energy density crystal capacitors
US7741396B2 (en) 2005-11-23 2010-06-22 General Electric Company Composites having tunable dielectric constants, methods of manufacture thereof, and articles comprising the same
US7465497B2 (en) 2005-11-23 2008-12-16 General Electric Company High dielectric constant nanocomposites, methods of manufacture thereof, and articles comprising the same
DE102006017902B4 (de) 2006-04-18 2009-11-12 Forschungszentrum Karlsruhe Gmbh Keramisches Dielektrikum, Herstellverfahren für Dünn- und/oder Dickschichten enthaltend mindestens ein keramisches Dielektrikum und Verwendung davon
JP4946197B2 (ja) 2006-06-20 2012-06-06 新東工業株式会社 流動バレル研磨装置
US7830644B2 (en) * 2007-03-05 2010-11-09 Northop Grumman Systems Corporation High dielectric capacitor materials and method of their production
CN101778806B (zh) 2007-06-07 2013-01-02 威世科技公司 用于宽带uhf天线的陶瓷介电配方
CN101803224A (zh) 2007-08-13 2010-08-11 高通股份有限公司 远程低频率谐振器和材料
WO2009031639A1 (ja) 2007-09-06 2009-03-12 Showa Denko K.K. 非接触充電式蓄電源装置
JP4453741B2 (ja) 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
US7843288B2 (en) 2007-11-15 2010-11-30 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly
JP4946822B2 (ja) 2007-11-22 2012-06-06 Tdk株式会社 誘電体磁器組成物および電子部品
CN102165669B (zh) * 2008-09-25 2013-03-20 丰田自动车株式会社 供电系统和电动车辆
EP3185432B1 (en) 2008-09-27 2018-07-11 WiTricity Corporation Wireless energy transfer systems
EP2317756A1 (en) 2009-10-16 2011-05-04 Axis AB Pan tilt camera
US9174876B2 (en) 2010-05-12 2015-11-03 General Electric Company Dielectric materials for power transfer system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384079A (zh) * 2002-06-21 2002-12-11 清华大学 一种锂钛共掺杂氧化镍基陶瓷的制备方法及其应用
CN1663118A (zh) * 2002-06-26 2005-08-31 皇家飞利浦电子股份有限公司 用于无线功率传递的平面谐振器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AC CONDUCTIVITY OF (A=Sr or Ba) with x=0.0 and x=0.2 CERAMICS;M.Mazni等;《Solid State Science and Technology》;20090131;第17卷(第1期);第222-228页 *
Effect_of_Al_Doping_on_the_Electric_and_Dielectric_Properties_of_CaCu3Ti4O12;Sung-Woo等;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20070921;第90卷(第12期);摘要,第1部分Introduction *
Enhanced dielectric properties and sinterability of CaCu3Ti4O12 ceramics by Sr2+ doping;Wang Li等;《PHYSICA B.CONDENSED MATTER,AMSTERDAM,NL》;20100215;第405卷(第4期);摘要以及第1部分Introduction *
聚合物/无机复合材料在介电材料领域的应用;李曹等;《材料导报》;20030831;第17卷(第8期);全文 *

Also Published As

Publication number Publication date
JP5813364B2 (ja) 2015-11-17
EP3116002A1 (en) 2017-01-11
SG176378A1 (en) 2011-12-29
JP2011239671A (ja) 2011-11-24
US20110278941A1 (en) 2011-11-17
US8968609B2 (en) 2015-03-03
BRPI1101998B1 (pt) 2019-12-17
EP2386531A1 (en) 2011-11-16
EP3116002B1 (en) 2019-07-03
BRPI1101998A2 (pt) 2012-12-04
EP2386531B1 (en) 2016-11-09
CN102340185A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
CN102340185B (zh) 用于电力传输系统的介电材料
CN102244417B (zh) 用于电力传输系统的介电材料
Ma et al. Fine-grained BNT-based lead-free composite ceramics with high energy-storage density
US9954580B2 (en) Dielectric materials for power transfer systems
KR102259183B1 (ko) 페라이트 조성물 및 적층 전자 부품
CN109336588A (zh) 一种高温稳定高介低损耗高绝缘无铅陶瓷电容器材料及制备
Das et al. An experimental insight of the multiferroic properties of magnetoelectrically coupled xLNCZFO+ (1− x) BSTDO composites
Yi et al. SrLn2Al2O7 (Ln= La, Nd, Sm) microwave dielectric ceramic new materials
Yang et al. Hybrid processing and properties of Ni0. 8Zn0. 2Fe2O4/Ba0. 6Sr0. 4TiO3 magnetodielectric composites
Yu et al. Influence of MnO2 addition on the dielectric properties of 0.95 MgTiO3-0.05 CaTiO3 ceramics sintered in a reducing atmosphere
Goel et al. Investigations on magnetoelectric response in binary ferroelectric {0.94 Na0. 5Bi0. 5TiO3 (NBT)-0.06 Ba0. 85Sr0. 15Zr0. 1Ti0. 9O3 (BSZT)}-ferrimagnetic (NiFe2O4) particulate composites
EP2551250B1 (en) Dielectric materials for power tranfer system
Lather et al. CuO: V2O5 driven alterations in dielectric, ferroelectric and structural properties of Barium Zirconate Titanate ceramics
Zhang et al. Preparation, characterization and dielectric properties of Ba 3 M 0.33 Ta 4.67 O 15 (M= Zn, Ni) ceramics
Silva Bi3R2Ti3FeO15 (R= Bi, Gd, and Nd): from structural properties to microwave device applications
KR101531844B1 (ko) 졸­겔 방법을 이용한 Ag­BaTiO3 복합유전체 조성물 및 그 제조방법
Shen Effects of CuO flux addition on the dielectric properties of BaTiO3

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant