CN102282762B - 用于多模收发器的超低噪声高线性度lna - Google Patents

用于多模收发器的超低噪声高线性度lna Download PDF

Info

Publication number
CN102282762B
CN102282762B CN200980154750.1A CN200980154750A CN102282762B CN 102282762 B CN102282762 B CN 102282762B CN 200980154750 A CN200980154750 A CN 200980154750A CN 102282762 B CN102282762 B CN 102282762B
Authority
CN
China
Prior art keywords
lna
coupled
stop
amplifier
enable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980154750.1A
Other languages
English (en)
Other versions
CN102282762A (zh
Inventor
Z·杨
C·纳拉通
B·孙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN102282762A publication Critical patent/CN102282762A/zh
Application granted granted Critical
Publication of CN102282762B publication Critical patent/CN102282762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45386Indexing scheme relating to differential amplifiers the AAC comprising one or more coils in the source circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45481Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7221Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch at the output of the amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

一种用于在低、中或高线性度模式中工作的放大器,所述放大器包括:耦合到第二低噪声放大器(LNA)的第一低噪声放大器,用于提供放大;耦合到第一LNA的第一退化电感(340),用于提供阻抗匹配;耦合到第二LNA的输出的-g3生成单元,用于消除三阶跨导失真;以及第一启用/停用元件(350),其耦合到第二LNA的输出并与-g3生成单元并联排列,用于在低、中或高线性度模式中的一个模式下操作第一和第二LNA中的至少一个。

Description

用于多模收发器的超低噪声高线性度LNA
技术领域
本公开总体上涉及放大器。更具体地,本公开涉及超低噪声高线性度LNA。
背景技术
现有的多模多标准无线通信系统需要高性能无线电接收机(也称为接收机)。该多模接收机必须为微弱信号提供足够的信噪比(SNR)性能以获得最高的灵敏度性能。另外,多模接收机必须以最小的失真线性地处理在宽动态范围上的信号和干扰电平。也就是说,需要高线性度性能。失真是由例如互调和增益压缩引起的。更高的线性度导致降低的互调电平和增益压缩。因此,也需要低噪声、高增益性能。通常,同时提供高线性度和低噪声的接收机设计技术是难以实现的,并受限于设计折衷。另外,许多移动的无线通信设备依赖于作为它们的能量源的可充电电池,因此也需要低直流电消耗以延长电池寿命。
高性能接收机的一个重要部件是低噪声放大器(LNA)。LNA是接收机的总体噪声性能的主要决定因素。换句话说,LNA的特性(例如高线性度和低噪声)会对总体的接收机性能产生决定性影响。通常,LNA布置在接收机的前端,靠近接收天线接口,以最小化天线和LNA之间的射频(RF)损耗。LNA被设计用于提供高增益,同时只产生超出LNA输入处出现的噪声的最少量的额外噪声。这个属性被称为低噪声系数。为了获得高线性度特性,LNA也应具有高的三阶输入截点(IIP3)。IIP3是当三阶互调产物电平等于外推线性期望输出电平时的输入电平。通常,高的IIP3值表明高线性度性能。
一种在接收机中实现高线性度的方式是并入高性能LNA设计,其在包LNA输入处包括退化电感切换方案,以实现低线性度(LL)模式、中线性度(ML)模式或高线性度(HL)模式。在一个方面,低线性度对应于低噪声。在LNA设计中加入退化电感改进了设备输入/输出阻抗匹配、噪声匹配、稳定性和线性度,但是降低了增益。然而,在高频尤其是2GHz及以上的频率范围内(包括国际移动电信(IMT)和更高频带),具有切换退化电感方案的LNA设计与在较低频率时的性能相比,具有降低的噪声性能(即,增加的噪声系数)。
典型的接收机在LNA之后还包括下变频混频器,以将接收机射频(RF)频带转换到中频(IF)频带。执行下变频的原因是:在IF频带更便于使用随后的信号处理,例如增益控制、带通滤波等。在一些接收机中,在下变频混频器之前包括带通滤波器,以从频率下变频消除不想要的产物(例如发送到接收噪声泄露)。在接收器设计中使用的带通滤波器的一个例子是表面声波(SAW)滤波器。然而,该带通滤波器向接收机设计增加了插入损耗和质量。因此,通过增加带通滤波器减轻了接收机对于不想要的产物(例如,发送到接收噪声泄露)的脆弱性,其代价是增加了插入损耗和质量,因此需要在LNA上有更好的噪声性能以补偿由额外的插入损耗而导致的更坏的SNR。
发明内容
公开了一种装置和方法,用于在接收机设计中实现超低噪声和高线性度,特别适用于高频(2GHz及以上)范围。本领域的技术人员可以理解,与接收机设计相关联的特征可以在收发器的接收部件中实现,并不影响本公开的范围和精神。根据一个方面,一种用于在低、中或高线性度模式下工作的放大器包括:耦合到第二低噪声放大器(LNA)的第一低噪声放大器,用于提供放大;耦合到第一LNA的第一退化电感,用于提供阻抗匹配;耦合到第二LNA的输出的-g3生成单元,用于消除三阶跨导失真;以及耦合到第二LNA的输出并与-g3生成单元并联排列的第一启用/停用元件,用于在低、中或高线性度模式中的一个模式下操作第一和第二LNA中的至少一个。
根据另一个方面,一种用于在低线性度、中线性度或高线性度模式下工作的放大器包括:RF输入端口;第一低噪声放大器(LNA)和第二低噪声放大器,上述两者均耦合到所述RF输入端口,用于提供放大;耦合到第一LNA和第二LNA的第一退化电感,用于提供阻抗匹配;耦合到第二LNA的输出的-g3生成单元,用于消除三阶跨导失真;耦合到第二LNA的输出并与-g3生成单元并联排列的第一开关;以及第二开关,其与-g3生成单元并联排列,同时在第一端耦合到第二LNA并且在第二端耦合到地;其中a)关闭第一开关以在低线性度模式中操作第一和第二LNA,或者b)打开第一开关并且关闭第二开关,以在高线性度模式中操作第一和第二LNA。
本公开的优点包括实现了超低噪声和高线性度性能,同时消除了在接收机设计中与关联于下变频器的带通滤波器(例如,SAW滤波器)相关的插入损耗和质量。本公开的LNA设计允许对于低、中和高线性度模式使用双LNA,从而在所有三种模式中实现了最好的性能。
可以理解,对于本领域的技术人员来说,根据下面的详细描述,其它方面将变得显而易见,其中,通过示例说明的方式示出和描述了各个方面。附图和详细描述实际上应被视为是说明性的,而非限制性的。
附图说明
图1说明了接收机100的一个示例性框图。
图2说明了用于例如接收机中以实现高线性度特性的LNA设计的现有技术的构思。
图3说明了用于例如接收机中以同时实现低噪声和高线性度特性的单端双LNA结构的例子。
图3a说明了图3中单端双LNA结构的三个实施例。
图4说明了改进的单端双LNA结构的例子,其用于例如接收机中以实现低线性度、中线性度或高线性度特性。
图4a和4b说明了图4中的改进的单端双LNA结构的各种实施例。
图5a-8b说明了图4中显示的改进的单端双LNA结构的各种差分结构变形。
图9说明了图7a中所示的双LNA结构的示例性输入匹配性能数据。
具体实施方式
下面阐明的详细说明连同附图旨在说明本公开的各个方面,并不旨在表示可以实施本公开的唯一方面。本公开中描述的每个方面仅仅作为本公开的例子或说明,不应必然被解释为比其它方面更优选或更有利。为了便于彻底理解本公开,详细说明中包括了具体的细节。然而,对本领域的技术人员来说,本公开可以在没有这些具体细节的情况下实施是显而易见的。在一些例子中,以框图的形式显示公知的结构和设备,以避免模糊本公开的构思。可以仅仅为了方便和清楚而使用首字母缩略词及其它描述性术语,并不旨在限制本公开的范围。
尽管为了简化说明,将方法显示和描述为一系列的动作,但是应该理解和意识到,方法不应限制于动作的顺序,因为根据一个或多个方面,一些动作可以按照与本文所示的顺序不同的顺序发生和/或与其它动作同时发生。例如,本领域的技术人员可以理解和意识到,一种方法可以替代性地被表示为一系列相关的状态或事件,例如以状态图表示。另外,并不需要所有说明的动作来实现根据一个或多个方面的方法。
图1说明了接收机100的示例性框图。如图1所示,RF输入105被接收天线110接收。本领域的技术人员能够理解,本领域的许多技术人员提及接收机时不包括接收天线,而本领域的其他技术人员提及接收机时包括接收天线。提及接收机100时有或者没有接收天线110不影响本公开的范围和精神。框120中包括各种RF元件,例如隔离器、开关等等。本领域的技术人员可以理解,可以基于期望的总体接收机性能来选择包括在接收机内的RF元件。接下来,提供低噪声放大器(LNA)130以便以高增益和低额外噪声来放大该RF输入。LNA的RF输出被输入到下变频混频器140,其将该RF输出从RF频带变频到期望的IF频带。通过本地振荡器(LO)150的频率设定来促使频率变换。在一个例子中,所述LO包括频率合成器(未示出),其允许各种用于频率下变频的频率设定。下变频混频器的输出被输入到IF滤波器160,以设置信号通频带并拒绝不想要的混频器产物。然后,IF滤波器的输出被输入到基带处理器170,以用于随后的信号处理。在一个例子中,所述基带处理器包括同相/正交(I/Q)检测、解调、模数(A/D)转换等等。本领域的技术人员可以理解,如图1所示的接收机100的元件不是排它性的。在不影响本公开的范围与精神的情况下,根据期望的总体接收机性能,可以添加其它元件或者可以不包括图1中显示的一些元件。另外,根据期望的总体接收机性能,如图1所示的接收机100的元件的顺序是可变的。
图1中示出的接收机的线性度特性取决于LNA 130。在一个例子中,该LNA 130包括至少一个场效应晶体管(FET),以提供低噪声放大。在LNA130内的场效应晶体管(FET)是非线性器件。当FET工作在它们的非线性区时,它们产生各种输出失真分量。特别的,决定输出失真分量的产生的FET被称作主FET。如果该主FET被偏置在饱和区,那么小信号漏源电流iDS的简单数学模型是栅源电压VGS的三阶泰勒级数展式,如等式(1)所示:
iDS=g1VGS+g2VGS 2+g3VGS 3    (1)
其中g1是小信号线性跨导系数,g2与g3分别是二阶和三阶跨导失真分量。特别的,三阶互调失真(IMD3)与三阶输入截点(IIP3)由三阶跨导失真分量g3确定。一些种类的消除方案可用于最小化g3,但是,这种消除(也称为-g3生成器)通常同时产生负的g1,从而降低了增益和噪声系数。IIP3是用于表征放大器中的非线性度的指数,其中高线性度放大器具有高的IIP3值。在一个例子中,该IIP3的幅度用等式(2)表示为:
IIP 3 = ( 4 / 3 ) | g 1 / g 3 | - - - ( 2 )
实际上,在同一系统中期望具有低线性度(LL)和高线性度(HL)两者,但是允许在LL(即高灵敏度低噪声模式)和HL(即较低的灵敏度但是较高的动态范围模式)之间切换。通常,因为IIP3必须满足且来自失真消除电路的噪声恶化是可容忍的,尤其在低频率范围中,所以折衷地选择噪声系数(NF)以获得高线性度。但是,当工作频率变得更高时,噪声影响更加显著且不再能忍受。在噪声与线性度性能之间的权衡变得更加困难。从系统的角度来看,噪声系数的恶化可能是不适宜的。
图2说明了现有技术中的LNA设计的一个例子,其用于例如接收机中,以获得高线性度特性。如图2所示,两个LNA 210和220并联。两个LNA210、220中的每一个包括FET 230a、230b和退化电感240a、240b。图2示出了两条用于RF输入105的LNA路径,一条来自LNA 210,另一条来自LNA 220。与LNA 220关联的LNA路径还在LNA 220之前包括增益单元β250a,在LNA 220之后包括衰减单元1/β3250b。与LNA 220关联的LNA路径是前馈通路,用于消除由LNA 210中的非线性而产生的三阶跨导失真分量g3并用于实现较高的线性度。在Yongwang Ding等人所著的“A+18dBmIIP3 LNA in 0.35um CMOS”(2001IEEE International Solid State CircuitsConference(ISSCC 2001),Session 10/Wireless Building Blocks I/10.5)中描述了图2中示出的现有技术LNA设计的例子。在大规模生产中实现这样的结构存在困难,其中包括来自前馈通路的额外噪声恶化,两个路径之间在PVT(工艺、电压、温度)上的匹配以及β250a和1/β3250b之间在PVT上的匹配也有困难。
图3说明了单端双LNA结构的一个例子,其用于例如接收机中,以获得低噪声和高线性度特性。在图3说明的例子中,对于高线性度模式仅启用具有g3消除生成器的LNA路径。在图3的例子中,在低噪声放大之后执行三阶跨导失真分量g3消除。如图3所示,两个LNA 310和320并联地为RF输入105提供两条LNA路径,一条来自LNA 310,另一条来自LNA320。如图3所示,LNA 310包括FET 330a,LNA 320包括FET 330b。在两个LNA310、320之间共享单个退化电感340,从而节省了硅片面积。在图2所示的结构中,共享退化电感并不总是可行的,这是因为LNA 210和220需要不同的电感值。相比于图2所示的使用两个分离的电感,其中每个位于一个LNA内,共享单个退化电感340促进了更好的阻抗匹配。
在图3中,由-g3生成器单元350执行三阶跨导失真分量g3消除,-g3生成器单元350的输入可以连接LNA 320内的多个节点。在这个特定的图中,-g3生成器的输入连接到LNA 320的输出。在一个方面,在LNA 320之后实现-g3生成器单元350具有在LNA输入处负荷更少的益处,从而导致更好的噪声性能。-g3生成器单元350包括启用线(由EN表示),用于启用或停用该-g3生成器单元350。在图3说明的LNA结构中,LNA 310、320都用于高线性度(HL)模式。LNA320和-g3生成器单元350的组合会补偿LNA 310的线性度特性,从而产生更高的组合线性度特性。在一个方面,仅LNA 310用于低线性度(LL)模式(也称为高灵敏度模式)。尽管LNA 320对于低线性度模式是关闭的,但它仍加载RF输入并降低噪声系数,因此它具有高的最小可达噪声系数。另外,开启或关闭LNA 320改变了输入匹配,其同样影响RF性能。
图3a说明了图3中单端双LNA结构的三个实施例。尽管这些例子显示在单端放大器中,但通过本领域技术人员所公知的技术,可以将每个例子转换到差分放大器。注意,这些例子实际上是说明性的而非限制性的。例如,为了更好匹配的益处,本领域的技术人员可以增加级联设备。在图3a中,可以用Vg1来启用LNA1(图3中的LNA 310)。可以用Vg2或Vgc2来启用LNA2(图3中的LNA 320)。可以用Vg3来启用-g3生成器。如图3a中示出的各个例子所示,-g3生成器的输入可以连接到LNA2的各个节点。
图4说明了一个改进的单端双LNA结构的例子,其用于例如接收机中以获得低线性度、中线性度或高线性度特性。在一个方面,低线性度对应于低噪声。在一个例子中,图4说明了一个放大器。如图4所示,两个LNA410和420为RF输入105(也称为RF输入端口)并联地提供两条LNA路径。一条来自LNA 410,另一条来自LNA 420。RF输入105接收到LNA结构的输入信号。如图4所示,LNA 410包括FET 430a,LNA 420包括FET430b。在两个LNA410、420之间共享单个退化电感440。在一个方面,相比于图2所示的使用两个分离的电感,每个位于一个LNA内,共享单个退化电感440节省了硅片面积并促进了更好的阻抗匹配。然而,本领域的技术人员可以理解,具有两个退化电感并不影响本公开的范围和精神。
在一个方面,LNA 410用于低线性度(LL)模式(也称为高灵敏度模式)。如果LNA 410用于低线性度模式,则LNA 410的噪声系数对于低线性度模式的性能是决定性的。然而,在图4中还示出了路径460,其连接到LNA 420并且也可以利用智能切换而用于低线性度模式。示出的路径460具有开关470。开关470可以通过LNA 420之后的级联设备容易地实现。开关470位于LNA之后,因此对系统性能具有最小的影响。在一个例子中,开关470的功能由启用/停用元件执行。在一个方面,由处理器控制该启用/停用元件(或开关470)的启用或停用(即,打开或关闭开关)。由处理器进行控制允许智能切换,即,基于预定的参数和/或由处理器执行的分析来决定启用还是停用。当开关470打开时,路径460停用。当开关470关闭时,路径460启用。尽管图4中示出了开关470,本领域的技术人员可以理解,在不影响本公开的范围和精神的情况下,可以使用许多其它公知的元件和技术来启用或停用一个电路。
如图4中所示,当路径460启用时,LNA 410和LNA 420都能在低线性度模式期间提供增益(等式1中的g1)。与图3中的LNA 320比较,LNA420在LL(低线性度)模式中不再仅仅起负载作用,它对系统提供了有用的增益并且非常有助于噪声性能,尤其对于高频范围。实际上,使用这种结构,在LL模式中,LNA410和LNA420可以被看作是在RF输入处没有额外负载的简单的电感退化LNA,因此它具有最低的可能的噪声系数。在低线性度模式中使用双LNA的一个益处是实现了更低的噪声系数,而不增加LNA电流消耗。具有更低的噪声系数的一个必然的好处是放宽了发射到接收噪声泄露要求。另外,不论在何种线性度模式,都保持稳定的输入阻抗匹配(S11参数)。在大多数通信系统中,在低线性度模式中的操作是主要的,因此增强了在低线性度模式中使用双LNA的重要性,以便在不增加LNA电流消耗的情况下获得更低的噪声系数。
作为例子,在图4中还示出了路径480中的第二开关(开关490)。如图所示,开关490连接到LNA420和AC地(电源或地面电源)。如果开关470被打开并且开关490被关闭,则LNA 410和LNA 420都用于高线性度模式。由-g3生成器单元450执行三阶跨导失真分量g3消除,-g3生成器单元450的输入可以连接自LNA420的各个节点。-g3生成器单元450的输出用于消除三阶跨导失真分量,即,LNA410的非线性失真输出。在单元450中可以采用的消除方法包括,但不限于改进的失真叠加(Modified DistortionSuperposition,MDS)和后线性化(Post Linearization)技术。在V.Aparin和L.E.Larson所著的“Modified derivative superposition method forlinearizing FET low-noise amplifiers,”(IEEE Trans.Microwave Theory andTech.,vol.53,no.2,Feb.2005,pp.571-581)中记载了改进的导数叠加技术。在N.Kim等人所著的“A Cellular-Band CDMA 0.25um CMOS LNALinearized Using Active Post-Postdistortion,”(IEEE JSSC,vol.41,no.7,July2006,pp.1530-1534)中详细记载了后线性化技术。各种线性化技术对本领域技术人员来说是公知的,在本公开中不详细讨论。
-g3生成器单元450包括一个启用线(由ENg3表示),用于启用或停用该-g3生成器单元450。在一个方面,LNA410与LNA420和-g3生成器单元450一同工作,以提供高线性度模式。
在一个例子中,如图4所示,RF输入端口105耦合到第一LNA输入和第二LNA输入。在一个例子中,LNA410包括由EN1表示的启用线,用于启用或停用,LNA 420包括由EN2表示的启用线,用于启用或停用。通过智能地配置图4中示出的启用线和开关,可以实现更多的线性度/噪声模式。例如,通过以下述方式配置图4中示出的双LNA结构可以实现中线性度(ML)模式:开启EN1、EN2、ENg3、关闭开关470、打开开关490。在上述操作中,在-g3生成器单元的输出处的非线性失真足以消除来自LNA410的失真,但来自LNA 420的失真未被消除。因此,在ML模式中,线性度性能劣于HL模式,但优于LL模式。同时,ML模式的噪声性能优于HL模式,但劣于LL模式。更多的线性度/噪声模式便于对系统级别性能的权衡。它增加了通信系统的智能。
图2中说明的LNA设计实现了高线性度性能,但当期望低噪声特性时,其并不适合。图3中说明的LNA设计组合了两个LNA,LNA 310更适于低噪声性能,而LNA 320更适于高线性度性能。图4中说明的LNA设计包括了允许在两个LNA之间进行智能切换的增加的路径和开关。因此,图4中的LNA设计对于低噪声模式和高线性度模式允许使用两个LNA,从而使得在LL和HL模式中都获得最好的性能。
图4a和4b说明了图4中的改进的单端双LNA结构的各种实施例。尽管这些例子显示在单端放大器中,但通过本领域技术人员所公知的技术,可以将每个例子转换到差分放大器。本领域的技术人员可以理解,这些例子实际上是说明性的,不应被认为是限制性的。在图4a中,可以使用Vg1来启用/停用LNA410和LNA420。并且可以使用Vg3来启用/停用-g3生成器单元。-g3生成器单元的输入可以连接到LNA420的各个节点。分别通过Vgc2b和Vgc2来实现图4中示出的开关470和开关490的控制。
在图4b,通过Vg2来启用/停用LNA420。通过Vg1来启用/停用LNA410,其中,Vg1与Vg2分离。图4b中的例子增加了灵活性,但付出了到RF输入的额外负载的代价,因此降低了噪声性能。
图5a-8b说明了图4中显示的双LNA结构的各种差分结构变形。图5a-8b中示出的差分结构变形被优化以便为高频操作提供稳定的输入匹配,出色的低线性度噪声性能,并且不损害线性度。如上所述,本领域的技术人员可以理解,在双LNA结构中的退化电感的数量,无论是一个或两个,都不会影响本公开的范围和精神。
图5a和5b说明了图4中显示的双LNA结构的差分结构变形的第一组例子。-g3生成器(辅助路径)的输入连接到在它自己所在半平面中的(如图5a所示)或者在另一半平面中的(如图5b所示)LNA 420的输入(Main2器件的栅极)。根据性能需求,可以在辅助路径中采用或者省略退化电感。辅助路径的输出与LNA 410的输出在放大器的共发共基放大器部分之后结合。
图6a和6b说明了图4中所示的双LNA结构的差分结构变形的第二组例子。-g3生成器(辅助路径)的输入连接到在它自己所在半平面中的(如图6a所示)或者在另一半平面中的(如图6b所示)LNA 420的输出(Main2器件的漏极)。根据性能需求,可以在辅助路径中采用或者省略退化电感。辅助路径的输出与LNA 410的输出在放大器的共发共基放大器部分之前结合。
图7a和7b说明了图4中所示的双LNA结构的差分结构变形的第三组例子。-g3生成器(辅助路径)的输入连接到在它自己所在半平面中的(如图7a所示)或者在另一半平面中的(如图7b所示)LNA 420的输出(Main2器件的漏极)。根据性能需求,可以在辅助路径中采用或者省略退化电感。辅助路径的输出与LNA 410的输出在放大器的共发共基放大器部分之前结合。
图8a和8b说明了图4中所示的双LNA结构的差分结构变形的第四组例子。-g3生成器(辅助路径)的输入连接到在它自己所在半平面中的(如图8a所示)或者在另一半平面中的(如图8b所示)LNA 420的输出(Main2器件的漏极)。根据性能需求,可以在辅助路径中采用或者省略退化电感。辅助路径的输出与LNA 410的输出在放大器的共发共基放大器部分之后结合。
尽管图5a-8b中示出的双LNA结构被说明为差分放大器,但是通过本领域技术人员公知的技术,可以将每个设计转换为单端放大器。另外,本领域的技术人员可以理解,在不影响本公开的范围和精神的情况下,可以使用双LNA结构的差分或单端结构变形的其它例子。另外,本领域的技术人员可以意识到,图4-8b中说明的LNA结构可以用于许多应用,包括但不限于:无线通信系统、例如GPS接收机这样的导航接收机、高数据速率接收机等。
图9说明了图7a中所示的双LNA结构的示例性输入匹配性能数据。横轴示出了从2.6GHz到2.7GHz的RF频率。纵轴示出了用分贝(dB)表示的输入反射参数S11。S11性能针对a)三个温度-30C、55C和110C;b)三个工艺角(process corners):典型的(TT)、快速角(FF)和慢速角(SS);以及c)HL和LL模式。如预计的那样,S11在频率上很稳定。
本领域的技术人员将进一步意识到,结合本文公开的例子所描述的各种说明性的元件、逻辑框、模块、电路和/或算法步骤可以实现为电子硬件、固件、计算机软件或它们的组合。为了清楚地说明硬件、固件和软件之间的可交换性,以上就各种说明性的元件、单元、模块、电路和/或算法步骤的功能进行了一般性的描述。将上述的功能实现为硬件、固件还是软件依赖于特定应用和施加于整个系统的设计约束。针对每个特定应用,本领域的技术人员可以以不同的方式实现所述功能,但是这样的实现决定不应被解释为偏离了本公开的范围或精神。
例如,对于硬件实现,可以在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、其它用于执行本文所述功能的电子单元、或它们的组合内实现处理单元。使用软件时,可以通过执行本文所述功能的模块(例如,过程、函数等)来实现。软件代码可以存储在存储单元中并由处理器单元执行。另外,本文描述的各种说明性的流程图、逻辑框、模块和/或算法步骤也可以编码为在本领域已知的任何计算机可读介质上存储的计算机可读指令,或者被实现为本领域已知的任何计算机程序产品。
提供以上所公开方面的说明以使得本领域的任何技术人员能够实施或使用本公开。对于本领域的技术人员来说,对这些方面的各种修改将是显而易见的,在不脱离本公开的精神或范围的情况下,可以将本文限定的一般原理应用到其它方面。

Claims (17)

1.一种用于在低、中或高线性度模式下工作的放大器,所述放大器包括:
耦合到第二低噪声放大器LNA的第一低噪声放大器,用于提供放大;
耦合到所述第一LNA的第一退化电感,用于提供阻抗匹配;
耦合到所述第二LNA的输出的-g3生成单元,用于消除三阶跨导失真;
第一启用/停用元件,其耦合到所述第二LNA的输出并与所述-g3生成单元并联排列,用于在所述低、中或高线性度模式中的一个模式下操作所述第一和第二LNA中的至少一个;以及
与所述第一启用/停用元件并联排列的第二启用/停用元件,其在第一端耦合到所述第二LNA并且在第二端耦合到地。
2.根据权利要求1所述的放大器,其中,启用所述第一启用/停用元件以在所述低线性度模式中操作所述第一和第二LNA。
3.根据权利要求1所述的放大器,其中,停用所述第一启用/停用元件并且启用所述第二启用/停用元件,以在所述高线性度模式中操作所述第一和第二LNA。
4.根据权利要求1所述的放大器,其中,所述-g3生成单元使用改进的失真叠加MDS技术或后线性化技术来消除三阶跨导失真。
5.根据权利要求1所述的放大器,其中,所述第一退化电感还耦合到所述第二LNA,以在所述第一LNA和所述第二LNA之间被共享。
6.根据权利要求1所述的放大器,其中,启用所述第一启用/停用元件以在所述低线性度模式中操作所述第一和第二LNA。
7.根据权利要求1所述的放大器,其中,所述第一LNA包括用于启用/停用所述第一LNA的第一启用线,所述第二LNA包括用于启用/停用所述第二LNA的第二启用线。
8.根据权利要求1所述的放大器,其中,所述第一LNA包括用于启用/停用所述第一LNA的第一启用线,所述第二LNA包括用于启用/停用所述第二LNA的第二启用线。
9.根据权利要求8所述的放大器,其中,所述-g3生成单元包括第三启用线,用于启用所述-g3生成单元以消除三阶跨导失真。
10.根据权利要求9所述的放大器,还包括处理器,所述处理器用于通过配置所述第一启用线、第二启用线、第三启用线、第一启用/停用元件和第二启用/停用元件中的一个或多个来控制所述第一LNA、所述第二LNA和所述-g3生成单元。
11.根据权利要求10所述的放大器,其中,所述处理器将所述第一、第二和第三启用线配置为启用状态,将所述第一启用/停用元件配置为启用状态并且将所述第二启用/停用元件配置为停用状态,以在所述中线性度模式中操作所述放大器。
12.根据权利要求1所述的放大器,其中,所述-g3生成单元包括启用线,用于启用所述-g3生成单元以消除三阶跨导失真。
13.根据权利要求12所述的放大器,还包括:
耦合到第一LNA输入和第二LNA输入的RF输入端口,用于接收输入信号。
14.根据权利要求13所述的放大器,其中,a)启用所述第一启用/停用元件,以在所述低线性度模式中操作所述第一和第二LNA;或者b)停用所述第一启用/停用元件并且启用所述第二启用/停用元件,以在所述高线性度模式中操作所述第一和第二LNA。
15.根据权利要求14所述的放大器,其中,所述第一或第二启用/停用元件中的一个是由处理器控制的开关,所述处理器用于打开或关闭所述开关。
16.根据权利要求13所述的放大器,还包括:
耦合到所述第二LNA的第二退化电感,用于为所述第二LNA提供阻抗匹配。
17.一种用于在低线性度、中线性度或高线性度模式下工作的放大器,所述放大器包括:
RF输入端口;
第一低噪声放大器LNA和第二LNA,两者均耦合到所述RF输入端口,用于提供放大;
耦合到所述第一LNA和所述第二LNA的第一退化电感,用于提供阻抗匹配;
耦合到所述第二LNA的输出的-g3生成单元,用于消除三阶跨导失真;
第一开关,其耦合到所述第二LNA的输出并与所述-g3生成单元并联排列;以及
第二开关,其与所述-g3生成单元并联排列,同时在第一端耦合到所述第二LNA并且在第二端耦合到地,并且其中,a)关闭所述第一开关以在所述低线性度模式中操作所述第一和第二LNA;或者b)打开所述第一开关并且关闭所述第二开关,以在所述高线性度模式中操作所述第一和第二LNA。
CN200980154750.1A 2009-01-19 2009-04-17 用于多模收发器的超低噪声高线性度lna Active CN102282762B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/355,860 2009-01-19
US12/355,860 US7911269B2 (en) 2009-01-19 2009-01-19 Ultra low noise high linearity LNA for multi-mode transceiver
US12/355860 2009-01-19
PCT/US2009/041041 WO2010082949A1 (en) 2009-01-19 2009-04-17 Ultra low noise high linearity lna for multi-mode transceiver

Publications (2)

Publication Number Publication Date
CN102282762A CN102282762A (zh) 2011-12-14
CN102282762B true CN102282762B (zh) 2014-05-07

Family

ID=40989692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980154750.1A Active CN102282762B (zh) 2009-01-19 2009-04-17 用于多模收发器的超低噪声高线性度lna

Country Status (6)

Country Link
US (1) US7911269B2 (zh)
EP (1) EP2380278B1 (zh)
JP (1) JP5161374B2 (zh)
CN (1) CN102282762B (zh)
TW (1) TW201029317A (zh)
WO (1) WO2010082949A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9026070B2 (en) * 2003-12-18 2015-05-05 Qualcomm Incorporated Low-power wireless diversity receiver with multiple receive paths
US9450665B2 (en) * 2005-10-19 2016-09-20 Qualcomm Incorporated Diversity receiver for wireless communication
US8175568B2 (en) * 2009-03-24 2012-05-08 Qualcomm Incorporated Method of improving battery life
JP5293411B2 (ja) * 2009-06-01 2013-09-18 ソニー株式会社 受信装置
US9178669B2 (en) 2011-05-17 2015-11-03 Qualcomm Incorporated Non-adjacent carrier aggregation architecture
US9252827B2 (en) 2011-06-27 2016-02-02 Qualcomm Incorporated Signal splitting carrier aggregation receiver architecture
US9154179B2 (en) 2011-06-29 2015-10-06 Qualcomm Incorporated Receiver with bypass mode for improved sensitivity
US9325535B2 (en) * 2011-09-27 2016-04-26 Skyworks Solutions, Inc. Apparatus and methods for variable DC bias to improve linearity in signal processing circuits
US8774334B2 (en) 2011-11-09 2014-07-08 Qualcomm Incorporated Dynamic receiver switching
CN102496042A (zh) * 2011-12-21 2012-06-13 天龙智联(北京)科技有限公司 一种电子标签设备
CN103248393B (zh) * 2012-02-14 2015-06-17 英特尔移动通信有限责任公司 Rf二阶互调失真的消除
US9362958B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Single chip signal splitting carrier aggregation receiver architecture
US9172402B2 (en) 2012-03-02 2015-10-27 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
US9020449B2 (en) 2012-03-15 2015-04-28 Newlans, Inc. Software-defined radio with broadband amplifiers and antenna matching
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
US9154356B2 (en) 2012-05-25 2015-10-06 Qualcomm Incorporated Low noise amplifiers for carrier aggregation
US9867194B2 (en) 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
US9300420B2 (en) 2012-09-11 2016-03-29 Qualcomm Incorporated Carrier aggregation receiver architecture
US9543903B2 (en) 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
US8810316B2 (en) 2012-11-28 2014-08-19 Motorola Solutions, Inc. Method and apparatus for implementing a low noise amplifier with associated gain and input impedance
US8774745B2 (en) 2012-12-10 2014-07-08 Qualcomm Incorporated Reconfigurable receiver circuits for test signal generation
US9154243B2 (en) 2012-12-17 2015-10-06 Qualcomm Incorporated Receiver calibration with LO signal from inactive receiver
US8995591B2 (en) 2013-03-14 2015-03-31 Qualcomm, Incorporated Reusing a single-chip carrier aggregation receiver to support non-cellular diversity
US9276532B2 (en) * 2013-08-28 2016-03-01 Analog Devices, Inc. High speed amplifier
CN103675860A (zh) * 2013-12-23 2014-03-26 上海艾为电子技术有限公司 全球卫星导航系统接收装置
US9225369B2 (en) 2014-01-17 2015-12-29 Qualcomm Incorporated Filtering blocker components of a signal
US20150230185A1 (en) * 2014-02-12 2015-08-13 Qualcomm Incorporated Low Noise Amplifier Device with Auxiliary Gain Control
US9130563B1 (en) * 2014-05-22 2015-09-08 Xilinx, Inc. Programmable receivers and methods of implementing a programmable receiver in an integrated circuit
US9641139B2 (en) 2014-11-17 2017-05-02 Mediatek Inc. Amplifier and related method
US9391651B1 (en) * 2015-04-07 2016-07-12 Qualcomm Incorporated Amplifier with reduced harmonic distortion
KR102476218B1 (ko) * 2015-07-22 2022-12-09 삼성전자주식회사 멀티 모드 가변형 증폭기 및 이를 포함하는 아날로그 필터
US9912311B2 (en) * 2015-07-22 2018-03-06 Samsung Electronics Co., Ltd Multimode reconfigurable amplifier and analog filter including the same
US9825597B2 (en) 2015-12-30 2017-11-21 Skyworks Solutions, Inc. Impedance transformation circuit for amplifier
US10177722B2 (en) 2016-01-12 2019-01-08 Qualcomm Incorporated Carrier aggregation low-noise amplifier with tunable integrated power splitter
US10062670B2 (en) 2016-04-18 2018-08-28 Skyworks Solutions, Inc. Radio frequency system-in-package with stacked clocking crystal
US10211795B2 (en) 2016-07-21 2019-02-19 Skyworks Solutions, Inc. Impedance transformation circuit and overload protection for low noise amplifier
KR102504292B1 (ko) * 2016-11-18 2023-02-28 삼성전자 주식회사 광대역 rf 신호를 수신하는 수신기, 수신기를 포함하는 무선 통신 장치 및 무선 통신 장치의 동작 방법
TWI744822B (zh) 2016-12-29 2021-11-01 美商天工方案公司 前端系統及相關裝置、積體電路、模組及方法
US10515924B2 (en) 2017-03-10 2019-12-24 Skyworks Solutions, Inc. Radio frequency modules
CN109639241B (zh) * 2018-11-13 2021-03-26 天津大学 一种无电感下变频混频器
US11469721B2 (en) 2020-01-08 2022-10-11 Qorvo Us, Inc. Uplink multiple input-multiple output (MIMO) transmitter apparatus
US11336240B2 (en) 2020-01-16 2022-05-17 Qorvo Us, Inc. Uplink multiple input-multiple output (MIMO) transmitter apparatus using transmit diversity
US11387795B2 (en) * 2020-01-28 2022-07-12 Qorvo Us, Inc. Uplink multiple input-multiple output (MIMO) transmitter apparatus with pre-distortion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026357A (zh) * 2006-02-21 2007-08-29 立积电子股份有限公司 串迭与串接式并以单端输入差动输出实施的低噪声放大器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251307A (ja) * 1985-08-30 1987-03-06 Hitachi Ltd フイ−ドフオワ−ド受信回路
JP3684861B2 (ja) * 1998-09-28 2005-08-17 松下電器産業株式会社 可変利得増幅器
JP2003017957A (ja) * 2001-07-04 2003-01-17 Clarion Co Ltd 高周波増幅装置及びそれを用いた受信機
JP4405113B2 (ja) * 2001-08-16 2010-01-27 パナソニック株式会社 利得可変増幅回路
US7301396B1 (en) 2004-12-16 2007-11-27 Anadigics, Inc. System and method for distortion cancellation in amplifiers
KR100680302B1 (ko) * 2004-12-20 2007-02-07 인티그런트 테크놀로지즈(주) 선형성 및 주파수대역이 향상된 멀티플 게이티드트랜지스터를 이용한 증폭회로.
US7474158B1 (en) * 2006-04-10 2009-01-06 Rf Micro Devices, Inc. Dynamic match low noise amplifier with reduced current consumption in low gain mode
US8086207B2 (en) 2007-03-19 2011-12-27 Qualcomm Incorporated Linear transconductor for RF communications
US7696828B2 (en) * 2008-01-04 2010-04-13 Qualcomm, Incorporated Multi-linearity mode LNA having a deboost current path

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026357A (zh) * 2006-02-21 2007-08-29 立积电子股份有限公司 串迭与串接式并以单端输入差动输出实施的低噪声放大器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A 2.5GHz 90nm CMOS Triple Gain Mode LNA for WiMAX Applications;CHe-Sheng Chen et al.;《International Symposium on Signals Systems and Electronics 2007》;20070802;同上 *
Apain et al..Modified Derivative Superposition Method for Linearizing FET Low-Noise Amplifiers.《Radio Frequency Integrated Circuits(RFIC) Symposium 2004》.2004,第105-108页.
CHe-Sheng Chen et al..A 2.5GHz 90nm CMOS Triple Gain Mode LNA for WiMAX Applications.《International Symposium on Signals Systems and Electronics 2007》.2007,第367-369页.
Modified Derivative Superposition Method for Linearizing FET Low-Noise Amplifiers;Apain et al.;《Radio Frequency Integrated Circuits(RFIC) Symposium 2004》;20040608;第105-108页 *

Also Published As

Publication number Publication date
JP5161374B2 (ja) 2013-03-13
EP2380278A1 (en) 2011-10-26
US7911269B2 (en) 2011-03-22
JP2012515500A (ja) 2012-07-05
WO2010082949A1 (en) 2010-07-22
US20100182090A1 (en) 2010-07-22
CN102282762A (zh) 2011-12-14
EP2380278B1 (en) 2019-10-02
TW201029317A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
CN102282762B (zh) 用于多模收发器的超低噪声高线性度lna
EP2412093B1 (en) Amplifier supporting multiple gain modes
EP2557687B1 (en) Low-noise amplifier, receiver, method and computer program
US9077290B2 (en) Low-noise amplifier with impedance boosting circuit
US7834698B2 (en) Amplifier with improved linearization
EP2685630B1 (en) A two stage single-ended input, differential output current reuse low noise amplifier
CN105262443A (zh) 一种高线性低噪声跨导放大器
CN103117711A (zh) 一种单片集成的射频高增益低噪声放大器
CN102969984A (zh) 一种电流复用噪声抵消低噪声放大器
CN115664349B (zh) 一种有源差分低噪声放大电路和射频接收前端系统
CN109167578A (zh) 一种带有源电感的超宽带低噪声放大器
Datta et al. Fully concurrent dual-band LNA operating in 900 MHz/2.4 GHz bands for multi-standard wireless receiver with sub-2dB noise figure
CN109194291A (zh) 一种高增益高线性带旁路功能的单片式低噪声放大器
CN213783253U (zh) 基于反相器的低噪声放大器、接收器与电子设备
KR100789918B1 (ko) 광대역 저잡음 증폭기의 입력 매칭 회로
KR101123211B1 (ko) 저잡음 증폭기 및 무선수신기
CN102318186B (zh) 放大器电路、集成电路以及射频通信单元
Zhu et al. A 10.56-GHz broadband transceiver with integrated T/R switching via matching network re-use in 28-nm CMOS technology
CN113794450B (zh) 一种采用线性度优化技术的宽带高线性度低噪声放大器
Kumar et al. Concurrent Dual Band CMOS LNA with improved IIP3 using Modified DS technique
CN113890551B (zh) 宽带射频前端接收电路
Werth et al. A low power, high dynamic range LNA for filterless RF receiver front-ends in 90-nm CMOS
CN118117976A (zh) 双路噪声消除模块、低噪声放大器和芯片及设备
CN112436810A (zh) 基于反相器的低噪声放大器、接收器与电子设备
Zheng et al. A Blocker-Tolerant Receiver With+ 20dBm IIP3, 13.7 MHz-BB-BW and< 3.5 dB NF for SAW-Less sub-6GHz applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant