CN102282276B - Ni基单晶超合金 - Google Patents

Ni基单晶超合金 Download PDF

Info

Publication number
CN102282276B
CN102282276B CN2010800045549A CN201080004554A CN102282276B CN 102282276 B CN102282276 B CN 102282276B CN 2010800045549 A CN2010800045549 A CN 2010800045549A CN 201080004554 A CN201080004554 A CN 201080004554A CN 102282276 B CN102282276 B CN 102282276B
Authority
CN
China
Prior art keywords
quality
single crystal
turbine
tmf
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010800045549A
Other languages
English (en)
Other versions
CN102282276A (zh
Inventor
原田广史
横川忠晴
小泉裕
小林敏治
坂本正雄
川岸京子
冈田郁生
小熊英隆
鸟越泰治
种池正树
伊藤荣作
正田淳一郎
塚越敬三
小薮豪通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Institute for Materials Science filed Critical Mitsubishi Heavy Industries Ltd
Publication of CN102282276A publication Critical patent/CN102282276A/zh
Application granted granted Critical
Publication of CN102282276B publication Critical patent/CN102282276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Ni基单晶超合金为具有如下的化学组成的单晶,以质量%计含有Co:8~12%、Cr:5~7.5%、Mo:0.2~1.2%、W:5~7%、Al:5~6.5%、Ta:8~12%、Hf:0.01~0.2%、Re:2~4%、Si:0.005~0.1%,余量为Ni和不可避免的杂质。

Description

Ni基单晶超合金
技术领域
本发明涉及Ni基单晶超合金。
背景技术
Ni基超合金在喷气式发动机、燃气轮机等涡轮静翼(turbine blade)和涡轮动翼(turbine vane)的基材中使用时,初期的喷气式发动机中燃烧气体的温度并不是那么高,所以涡轮动翼和涡轮静翼在没有冷却的状态下使用。但是,以近年的喷气式发动机等为代表的燃气轮机中,为了提高输出和效率,涡轮的入口燃气温度进一步被高温化。伴随于此,尤其对于大型发电用燃气轮机的涡轮动翼、涡轮静翼,为了保持高温强度,具有中空翼的结构,且对翼片内部强制性地使用空气和蒸汽进行冷却,由此防止基材温度的上升。这样的涡轮动翼和涡轮静翼中,翼片表面温度超过900℃,而另一方面翼片内部温度为600℃左右。这样的翼片表面和翼片内部的温度差使其发生热疲劳(Thermo-mechanical fatigue:TMF)。
另外,特别是涡轮动翼被暴露于高温的燃烧气体的同时,由于高速旋转,所以必须耐受由离心力产生的高的应力,而对于该要求,高温下的蠕变特性、TMF也同样重要。
以往,已知有以耐热疲劳特性为目的的Ni基超合金(专利文献1、2)。另外,蠕变特性优异的Ni基超合金(专利文献3)在大多的高温仪器中实际使用的情况较多。
专利文献1:日本专利第2841970号公报
专利文献2:日本专利第3214330号公报
专利文献3:美国专利第4643782号公报
发明内容
发明所要解决的问题
随着近年的喷气式发动机和燃气轮机的进步而燃烧气体温度被高温化中,希望出现具有更优异的热疲劳特性和蠕变特性并且耐硫化腐蚀性能优异的Ni基超合金。
因此,本发明的具体目标为:900℃/392MPa下的蠕变特性为600小时以上,1000℃/245MPa下的蠕变特性为160小时以上,TMF特性为,温度范围:400~900℃的范围、应变范围:±0.64%、频率66min/周期、波形:三角波+梯形波、相位:反相位的条件为200次以上,且耐硫化腐蚀性能是指将75%Na2SO4+25%NaCl成分的盐加热到900℃并浸渍了20小时时的腐蚀减少量为0.001mm以下。
而且,本发明的课题是提供作为大型发电用燃气轮机的涡轮动翼和涡轮静翼等作为在高温、高应力下使用的高温部件适合的TMF特性、蠕变特性以及耐硫化腐蚀性能优异的Ni基单晶超合金。
用于解决问题的手段
本发明为解决上述的问题,具有以下的特征。
第1发明的特征为,其为具有如下的化学组成的单晶,其中,以质量%计含有:
Co:8~12%、
Cr:5~7.5%、
Mo:0.2~1.2%、
W:5~7%、
Al:5~6.5%、
Ta:8~12%、
Hf:0.01~0.2%、
Re:2~4%、和
Si:0.005~0.1%,
余量为Ni和不可避免的杂质。
第2发明为在上述的第1发明中,具有如下的化学组成的单晶,其中,以质量%计含有:
Co:8~11%、
Cr:5~7%、
Mo:0.2~1%、
W:5.5~7%、
Al:5~6%、
Ta:9~12%、
Hf:0.05~0.2%、
Re:2.5~4%、和
Si:0.005~0.08%,
余量为Ni和不可避免的杂质。
第3发明为在上述第2发明中,具有如下的化学组成的单晶,其中,以质量%计含有:
Co:8~10%、
Cr:6~7%、
Mo:0.5~1%、
W:5.5~6.5%、
Al:5~6%、
Ta:9~11%、
Hf:0.05~0.15%、
Re:2.5~3.5%、和
Si:0.005~0.08%,
余量为Ni和不可避免的杂质。
发明效果
根据本发明,提供TMF特性、蠕变特性以及耐硫化腐蚀性能优异的Ni基单晶超合金,该Ni基单晶合金适合用作大型发电用燃气轮机的涡轮动翼和涡轮静翼等在高温、高应力下使用的高温部件。
附图说明
图1为表示具有表1所示的化学组成的合金在900℃/392MPa下的蠕变特性和TMF特性(保持60分钟的压缩)的图。
图2为表示具有表1所示的化学组成的合金在1000℃/245MPa下的蠕变特性和TMF特性(保持60分钟得压缩)的图。
图3为表示实施例中的本发明合金和比较合金6的硫化腐蚀试验结果的图。
具体实施方式
本发明的Ni基单晶超合金中的化学组成的限定理由如下。
Co是与γ相的Ni置换并将基质固溶强化的元素。另外,该元素是具有通过使γ′相固溶温度(ガンマプライムソルバス温度)下降而将溶体化(溶体化)温度幅度扩大且使热处理特性提高的效果的元素。含量为8~12质量%。少于8质量%时溶体化温度幅度减小,多于12质量%时γ′相量减少,使强度下降。Co的含量优选为8~11%,更优选为8~10%。
Cr是使高温耐腐蚀性提高的元素。含量为5~7.5质量%。少于5质量%时使耐腐蚀性下降,超过7.5质量%时生成有害相且高温强度下降。Cr的含量优选为5~7%,更优选为6~7%。
Mo是使γ相/γ′相的错配(misfit)为负值从而促进作为高温下的强化机理之一的板状化(ラフト,raft)效果的元素。含量为0.2~1.2质量%。Mo固溶在基质中使高温强度提高,同时通过析出硬化而贡献于高温强度。少于0.2质量%时高温强度下降,超过4质量%时生成有害相且高温强度降低。Mo的含量优选为0.2~1%,更优选为0.5~1%。
W与Mo同样,具有固溶强化和析出硬化的作用。含量为5~7质量%。要想得到所要求的蠕变强度、TMF强度,最低也需要5质量%,另外,超过7质量%的添加会导致生成有害相,强度降低。W的含量优选为5.5~7%,更优选为5.5~6.5%。
Al与Ni化合,且以体积分率计为50~70%的比例形成在γ母相中析出的构成γ′相的Ni3Al所示的金属间化合物,并使TMF强度和蠕变强度提高。含量为5~6.5质量%。Al少于5质量%时γ′相量减少,无法得到所要求的TMF强度和蠕变强度,超过6.5质量%也无法得到所要求的TMF强度和蠕变强度。Al的含量优选为5~6%。
Ta是强化γ′相使蠕变强度提高的有效的元素。含量为8~12质量%。Ta小于8质量%时,无法得到所要求的TMF强度和蠕变强度,超过12质量%时促进共晶γ′相的生成,使溶体化热处理变得困难。Ta的含量优选为9~12%,更优选为9~11%。
Hf具有提高耐氧化性的效果,所以作为化学组成成分来添加是有效的。添加量为0.01~0.2质量%。Hf小于0.01质量%时无法得到耐氧化性的效果,超过0.2质量%时助长有害相的生成,所以使TMF强度和蠕变强度降低。Hf的添加量优选为0.05~0.2%,更优选为0.05~0.15%。
Re固溶于γ相,通过固溶强化而使高温强度提高。另外Re也具有使耐腐蚀性提高的效果。另一方面,大量添加Re时,有可能高温时TCP相析出而使TMF强度和蠕变强度降低。因此,添加量为2~4质量%。小于2质量%时强度下降,超过4质量%的添加时,由于TCP相的析出而蠕变强度下降。Re的添加量优选为2.5~4%,更优选2.5~3.5%。
Si是对提高耐氧化性有效的元素。含量为0.005~0.1质量%。小于0.005质量%时无法得到耐氧化性的效果。超过0.1质量%时无法得到所要求的蠕变强度。Si的含量优选为0.005~0.08%。
具有如上所述的化学组成的本发明的Ni基单晶合金,例如可通过以下的工艺来制造。
熔解具有上述化学组成的原料并铸造,得到单晶铸造物后,对该单晶铸造物实施溶体化处理-1次时效处理-2次时效处理,由此制造本发明的Ni基单晶合金。作为溶体化处理的条件,可例示在真空中1250~1350℃的温度范围保持1~20小时,接下来进行空气冷却。作为1次时效处理的条件,可例示在真空中1000~1200℃的温度范围保持1~10小时,接下来进行空气冷却。作为2次时效处理的条件,可例示在真空中850~900℃的温度范围保持15~30小时,接下来进行空气冷却。
予以说明,各处理采用的条件根据Ni基单晶超合金的化学组成而可适当的设定。
以下示出实施例。
予以说明,本发明并不限定于实施例。
[实施例]
【表1】
组成(质量%)
Figure BDA0000075735600000061
对具有表1所示的化学组成的Ni基超合金在真空中以200mm/h的凝固速度进行溶解、铸造得到单晶铸造物。接着,对得到的单晶铸造物实施在真空中、1300℃(10℃单位。以下相同)下预热1小时后,在1330℃保持10小时之后进行空气冷却的溶体化处理,然后实施在真空中1100℃下保持4小时后进行空气冷却的1次时效处理,和在真空中870℃下保持20小时后进行空气冷却的2次时效处理。
而且,将单晶合金铸造物加工成平行部直径4mm、平行部长度20mm的蠕变试验片,并在900℃、392MPa和1000℃、245MPa的条件下进行了蠕变试验。
另外,TMF试验在高频率下将试验片进行加热而实施。TMF试验中,使温度从下限的400℃到上限的900℃进行变动,施加应变为±0.64%,并使温度变动和应变联动。频率1个周期为66min,波形为三角波,压缩时保持60分钟。这些的试验条件是模拟燃气轮机的运行条件,假设涡轮翼片表面温度在稳定时为900℃、停止时为400℃而实施试验。另外,升降温速度为166.7℃/min。
图1和图2示出了蠕变试验和TMF试验的结果。
图3中将75%Na2SO4+25%NaCl成分的盐加热熔融到900℃,对在熔融后的盐中浸渍20小时的试料实施了硫化腐蚀试验。图3中的纵轴示出了换算成长度得硫化腐蚀减少量。
以上的结果汇集于表2示出。
【表2】
Figure BDA0000075735600000071
本发明合金的900℃/392MPa下的蠕变特性为600小时以上、1000℃/245MPa下的蠕变特性为160小时以上,TMF特性以上述条件为200次以上,且腐蚀减少量为0.001mm以下。可确认得到了TMF特性和蠕变特性及耐硫化腐蚀优异的Ni基单晶超合金。
【产业上的利用可能性】
本发明的Ni基单晶超合金TMF特性和蠕变特性以及耐硫化腐蚀优异,优选作为高温/高应力下使用的高温部件。

Claims (3)

1.一种Ni基单晶超合金,其特征在于,其是具有如下的化学组成的单晶,其中,以质量%计
Co:8~12%、
Cr:5~7.5%、
Mo:0.2~1.2%、
W:5~7%、
Al:5~6.5%、
Ta:8~12%、
Hf:0.01~0.2%、
Re:2~4%、和
Si:0.005~0.1%,
余量为Ni和不可避免的杂质。
2.如权利要求1所述的Ni基单晶超合金,其特征在于,其是具有如下的化学组成的单晶,其中,以质量%计
Co:8~11%、
Cr:5~7%、
Mo:0.2~1%、
W:5.5~7%、
Al:5~6%、
Ia:9~12%、
Hf:0.05~0.2%、
Re:2.5~4%、和
Si:0.005~0.08%,
余量为Ni和不可避免的杂质。
3.如权利要求2所述的Ni基单晶超合金,其特征在于,其是具有如下的化学组成的单晶,其中,以质量%计
Co:8~10%、
Cr:6~7%、
Mo:0.5~1%、
W:5.5~6.5%、
Al:5~6%、
Ta:9~11%、
Hf:0.05~0.15%、
Re:2.5~3.5%、和
Si:0.005~0.08%,
余量为Ni和不可避免的杂质。
CN2010800045549A 2009-01-15 2010-01-15 Ni基单晶超合金 Active CN102282276B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-006746 2009-01-15
JP2009006746A JP5439822B2 (ja) 2009-01-15 2009-01-15 Ni基単結晶超合金
PCT/JP2010/050428 WO2010082632A1 (ja) 2009-01-15 2010-01-15 Ni基単結晶超合金

Publications (2)

Publication Number Publication Date
CN102282276A CN102282276A (zh) 2011-12-14
CN102282276B true CN102282276B (zh) 2013-09-25

Family

ID=42339885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800045549A Active CN102282276B (zh) 2009-01-15 2010-01-15 Ni基单晶超合金

Country Status (7)

Country Link
US (1) US8900512B2 (zh)
EP (1) EP2381000B1 (zh)
JP (1) JP5439822B2 (zh)
KR (1) KR101618649B1 (zh)
CN (1) CN102282276B (zh)
CA (1) CA2749755C (zh)
WO (1) WO2010082632A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439822B2 (ja) * 2009-01-15 2014-03-12 独立行政法人物質・材料研究機構 Ni基単結晶超合金
JP2012027113A (ja) 2010-07-21 2012-02-09 Ricoh Co Ltd 投射光学系及び画像投射装置
EP2831283A4 (en) 2012-03-30 2015-11-04 Pacific Biosciences California METHODS AND COMPOSITION FOR SEQUENCING MODIFIED NUCLEIC ACIDS
JP6016016B2 (ja) 2012-08-09 2016-10-26 国立研究開発法人物質・材料研究機構 Ni基単結晶超合金
WO2015183955A2 (en) 2014-05-27 2015-12-03 Questek Innovations Llc Highly processable single crystal nickel alloys
CN111235433B (zh) * 2020-01-16 2021-10-08 成都航宇超合金技术有限公司 用于制备镍基单晶叶片的籽晶合金

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1212020A (en) * 1981-09-14 1986-09-30 David N. Duhl Minor element additions to single crystals for improved oxidation resistance
US4643782A (en) * 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
JP2841970B2 (ja) 1991-10-24 1998-12-24 株式会社日立製作所 ガスタービン及びガスタービン用ノズル
EP0560296B1 (en) * 1992-03-09 1998-01-14 Hitachi Metals, Ltd. Highly hot corrosion resistant and high-strength superalloy, highly hot corrosion resistant and high-strength casting having single crystal structure, gas turbine and combined cycle power generation system
WO1993024683A1 (en) * 1992-05-28 1993-12-09 United Technologies Corporation Oxidation resistant single crystal superalloy castings
WO1995030779A1 (en) * 1994-05-10 1995-11-16 United Technologies Corporation Method for improving oxidation and spalling resistance of diffusion aluminide coatings
EP0763604B1 (en) * 1995-09-18 2007-08-22 Howmet Corporation Clean single crystal nickel base superalloy
JP3214330B2 (ja) 1996-01-26 2001-10-02 株式会社日立製作所 ガスタービン及び複合発電プラント
DE19624055A1 (de) * 1996-06-17 1997-12-18 Abb Research Ltd Nickel-Basis-Superlegierung
JP3820430B2 (ja) * 1998-03-04 2006-09-13 独立行政法人物質・材料研究機構 Ni基単結晶超合金、その製造方法およびガスタービン部品
JPH11310839A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd 高強度Ni基超合金方向性凝固鋳物
JP4222540B2 (ja) * 2000-08-30 2009-02-12 独立行政法人物質・材料研究機構 ニッケル基単結晶超合金、その製造方法およびガスタービン高温部品
EP1184473B1 (en) 2000-08-30 2005-01-05 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
CA2479774C (en) * 2002-03-27 2012-09-04 National Institute For Materials Science Ni-base directionally solidified and single-crystal superalloy
CH695497A5 (de) 2002-04-30 2006-06-15 Alstom Technology Ltd Nickel-Basis-Superlegierung.
US7278829B2 (en) * 2005-02-09 2007-10-09 General Electric Company Gas turbine blade having a monocrystalline airfoil with a repair squealer tip, and repair method
US8353444B2 (en) * 2005-10-28 2013-01-15 United Technologies Corporation Low temperature diffusion braze repair of single crystal components
JP5439822B2 (ja) * 2009-01-15 2014-03-12 独立行政法人物質・材料研究機構 Ni基単結晶超合金

Also Published As

Publication number Publication date
CN102282276A (zh) 2011-12-14
JP5439822B2 (ja) 2014-03-12
WO2010082632A1 (ja) 2010-07-22
EP2381000A1 (en) 2011-10-26
JP2010163659A (ja) 2010-07-29
EP2381000B1 (en) 2016-06-01
CA2749755A1 (en) 2010-07-22
EP2381000A4 (en) 2015-02-25
CA2749755C (en) 2016-10-11
KR101618649B1 (ko) 2016-05-09
US8900512B2 (en) 2014-12-02
US20120014832A1 (en) 2012-01-19
KR20110106352A (ko) 2011-09-28

Similar Documents

Publication Publication Date Title
US9574451B2 (en) Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
CN102282276B (zh) Ni基单晶超合金
Kawagishi et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238
US6755921B2 (en) Nickel-based single crystal alloy and a method of manufacturing the same
KR101687320B1 (ko) Ni기 단결정 초합금
JP5252348B2 (ja) Ni基超合金とその製造方法およびタービンブレードまたはタービンベーン部品
JP5235383B2 (ja) Ni基単結晶合金及び鋳物
JP5526223B2 (ja) Ni基合金、並びにそれを用いたガスタービン動翼及び静翼
CN103114225A (zh) 一种高强抗热腐蚀镍基单晶高温合金
Hashizume et al. Development of novel Ni-based single crystal superalloys for power-generation gas turbines
US5925198A (en) Nickel-based superalloy
CN103132148B (zh) 一种低密度、低成本、高强镍基单晶高温合金
CN108866387A (zh) 一种燃气轮机用高强抗热腐蚀镍基高温合金及其制备工艺和应用
JP5396445B2 (ja) ガスタービン

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170707

Address after: Japan in Ibaraki County

Co-patentee after: Mitsubishi Hitachi Power System Ltd.

Patentee after: National Institute for Materials Science

Address before: Japan in Ibaraki County

Co-patentee before: Mit-subishi Heavy Industries Ltd.

Patentee before: National Institute for Materials Science

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Japan in Ibaraki County

Patentee after: NATIONAL INSTITUTE FOR MATERIALS SCIENCE

Patentee after: Mitsubishi Power Co., Ltd

Address before: Japan in Ibaraki County

Patentee before: NATIONAL INSTITUTE FOR MATERIALS SCIENCE

Patentee before: MITSUBISHI HITACHI POWER SYSTEMS, Ltd.