CN102254068A - 大跨度桥梁抖振响应的多尺度分析方法 - Google Patents

大跨度桥梁抖振响应的多尺度分析方法 Download PDF

Info

Publication number
CN102254068A
CN102254068A CN2011101969589A CN201110196958A CN102254068A CN 102254068 A CN102254068 A CN 102254068A CN 2011101969589 A CN2011101969589 A CN 2011101969589A CN 201110196958 A CN201110196958 A CN 201110196958A CN 102254068 A CN102254068 A CN 102254068A
Authority
CN
China
Prior art keywords
buffeting
centerdot
bridge
response
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101969589A
Other languages
English (en)
Inventor
王浩
李爱群
宗周红
周锐
李峰峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2011101969589A priority Critical patent/CN102254068A/zh
Publication of CN102254068A publication Critical patent/CN102254068A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

大跨度桥梁抖振响应的多尺度分析方法是为了解决主梁精细抖振响应的分析计算方法这一桥梁抖振分析中的难点问题,实现结构健康监测系统实测数据和抖振响应计算结果在应力层面上的对比。在已有大跨度桥梁结构抖振分析技术的基础上,引入了结构多尺度有限元模拟技术来获得结构关键部位的精细抖振响应,以提高精细抖振响应分析技术的可行性和有效性。显然与现有的获得抖振精细响应的方法相比,多尺度技术的引入大大提高了分析的效率和分析结果的精度,同时节约了成本,便于广大工程人员中推广应用。由于大型桥梁结构的健康监测已成为发展趋势,该技术必将产生巨大的经济和社会效益。

Description

大跨度桥梁抖振响应的多尺度分析方法
技术领域
本发明涉及一套完整的大跨度桥梁抖振精细响应的多尺度分析方法,尤其适用于获得桥梁结构在风荷载作用下的精细内力、应力及位移等抖振响应。 
背景技术
风灾在全世界范围内造成了巨大的人员伤亡和经济损失。以我国华东沿海遭受的台风袭击为例,2004年的台风“云娜”造成直接经济损失超过200亿人民币。2005年的台风“麦莎”、“泰利”、“卡努”,直接经济损失就达到数百亿人民币。2006年的8号超强台风“桑美”、2007年的“圣帕”、“韦帕”、“罗莎”,2008年的“海鸥”、“凤凰”、“森拉克”,2009年的“莫拉克”、2010年的“凡亚比”、“鲇鱼”等,风灾损失也非常惊人。我国有着漫长的海岸线,有数千公里处于台风直接侵袭范围,每次台风均造成大量工程结构的损坏和倒塌。因此,有必要加强风对结构作用的研究,以提高结构的抗风能力,降低强风所造成的损失。 
另一方面,我国当前正处于土木工程建设的蓬勃发展阶段,从20世纪90年代中期开始先后建成的大跨度桥梁包括主跨900米的西陵长江大桥、主跨888米的虎门大桥、主跨1377米的香港青马大桥、主跨1385米的江阴长江大桥以及主跨1490米的润扬长江大桥悬索桥。同时国内很多特大规模的跨江跨海桥梁工程正处于建设阶段。对于大跨度桥梁而言,随着桥跨的不断增加,结构趋向柔性,对风的敏感性加大。由于跨度及桥宽的不断增加,使得风致抖振问题变得日益突出,当风速较高时,抖振内力和位移响应均将非常显著,有可能会引起桥梁构件的强度或疲劳破坏、车辆行驶不稳定等严重后果,其影响不容忽视。 
经过数十年的发展,目前已可以采用风洞实验、理论分析和数值计算等方法来进行桥梁抗风研究,但通过这些手段所得成果最终还是要通过结构的现场实测结果来进行检验。近年来,大型桥梁结构的健康监测已经成为世界范围内土木工程领域的前沿研究方向。一些大跨度或重要桥梁上已安装结构健康监测系统,其中大都包含了风环境监测子系统和结构响应监测子系统,如日本明石海峡大桥、南备赞濑户悬索桥、美国Sunshine Skyway斜拉桥、丹麦Faroe跨海斜拉桥、Great Belt悬索桥、 我国香港青马大桥、上海徐浦大桥、滨州黄河公路大桥、润扬长江公路大桥、江阴长江公路大桥、苏通大桥等。其中我国的这些大型桥梁很多都位于东南沿海强/台风多发地区,每年都可能获得强/台风及桥梁响应的监测数据,为建立桥址区强风特性数据库、开展大跨度桥梁抖振响应现场实测研究提供了良好的平台。 
结构健康监测系统提供了桥梁结构的结构真实响应,包括加速度、位移及应变时程等,给桥梁结构理论验证及模型识别提供了可靠的实测依据。然而由于在传统的大跨桥梁风振反应分析中通常采用“脊骨梁”模型,分析结果也主要体现在关键截面的位移或加速度响应这一层面,无法获得主梁关键部位准确应力响应时程,使得实测的应变时程数据目前尚难以用于对理论结果的验证。对特大跨桥梁整体结构进行精细微观建模及分析目前是不现实的,取出局部模型精细模拟,又存在边界条件难确定的问题。多尺度计算是解决以上问题的有效途径,该方法对用户关心的结构关键部位进行精细模拟,通过结构宏观与细观模型之间的有效衔接来获取精细分析结果,目前已在土木工程等领域内得到广泛应用。因此,迫切需要基于已有的多尺度理论发明一套适用于大跨度桥梁抖振响应的精细化分析方法。 
发明内容
技术问题:本发明的目的是对现有的桥梁抖振响应分析方法进行了精细化改进,同时引入了多尺度有限元模拟技术,在此基础上发展了一套完整的、能够获得结构关键部位精细应力时程的大跨度桥梁抖振响应多尺度分析方法,实现了健康监测系统实测结果与抖振分析结果在应力层面上的对比。 
技术方案:针对上述问题,本发明开发了一种专用于大跨度桥梁抖振响应分析的多尺度方法,可以获得用户所关心部位的准确应力时程。该方法以弹性力学中最为基本的圣维南原理为基础,理论模型较为简单,便于在广大桥梁风工程技术人员中推广应用。为了将整体模型分析结果准确施加至局部精细模型上,需编制二者之间的有效衔接程序,同时保持局部模型原有的荷载和边界条件不变,自动将整体模型的计算结果插值到切割边界上,进行精细模型的分析计算。按照圣维南原理的要求,必须保证局部精细模型的尺寸足够大才能够获得准确分析结果。 
解决上述问题所采用的技术方案流程如图1所示,具体包括如下8个步骤: 
第一步:根据结构设计图纸,采用可编程参数化设计语言建立大跨度桥梁的有限元计算整体模型,该模型是一个网格划分相对粗糙的模型,如图2所示; 
第二步:根据用户的具体需求,采用可编程参数化设计语言建立大跨度桥梁关键部位的局部精细有限元模型,该模型网格划分较细,如图2所示,且局部模型尺 寸能够满足圣维南原理的要求; 
第三步:基于计算流体力学技术或风洞试验识别出大跨度桥梁主梁断面的气动导数,并将其以可调用数组方式进行存储,为主梁断面所受气动自激力的计算奠定基础; 
第四步:根据用于抖振分析的风速数据以及识别出的气动导数来确定主梁断面所受气动自激力的大小; 
第五步:作用在主梁单位长度上的静力风荷载按照体轴坐标系、利用静力三分力系数进行计算; 
第六步:作用在单位长度上的抖振力按照Scanlan教授的准定常理论计算; 
第七步:在整体有限元计算模型上添加静力风荷载、气动自激力及抖振力时程,进行抖振响应非线性时程分析。 
第八步:维持局部模型原有的荷载和边界条件不变,编制整体和局部模型之间的衔接程序,利用第六步所得分析结果对局部模型的切割边界进行插值,进行局部精细模型的抖振响应分析。 
其中:第二步所述的大跨度桥梁关键部位的局部精细有限元模型可根据用户进行抖振分析时的具体需求来建立。即有限元计算整体模型都由第一步得到,就局部模型而言,用户关心桥梁结构哪个部位的抖振精细响应,则建立这个部位的局部精细有限元模型。 
第八步所述的局部精细模型抖振响应分析的过程中,必需注意多尺度分析中需要维持局部模型原有的荷载和边界条件不变,通过所编制的整体和局部模型之间的衔接程序,利用第七步所得分析结果对局部模型的切割边界进行插值计算。 
有益效果:现有健康监测系统中存在着大量的台风期间的结构应变响应监测时程数据,但由于没有合适的精细分析方法,这些应变数据无法与数值计算结果进行对比验证。该专利发明了一大跨度桥梁抖振响应的多尺度分析方法,能够获得获得结果关键部位和用户关心部位的精细应力响应时程,在保证了分析结果精度的基础上,通过多尺度技术的引入大大提过了分析效率,节约了宝贵的社会资源,同时编制了全部相关计算程序,便于工程技术人员利用结构健康监测系统监测得到的宝贵应变时程数据进行对比验证。由于大型桥梁结构的健康监测已成为发展趋势,因此改技术具有广阔的工程应用前景,经济社会效益巨大。 
附图说明
图1大跨度桥梁抖振响应的多尺度分析流程图, 
图2大跨度桥梁主梁多尺度有限元模拟示意图, 
图3风荷载作用下桥梁主梁断面的气动自激力示意图。 
具体实施方式
根据上述技术方案,在计算大跨度桥梁的精细抖振响应时,可以采用多尺度技术来对结构进行有限元模拟,包括对结构整体的相对粗糙有限元模拟和结构关键部位的局部精细有限元模拟,再借助于现有的抖振响应分析方法和结构多尺度衔接技术进行分析计算,该方法应用于大跨度桥梁抖振响应精细分析中的流程图如图1所示,具体包括如下8个步骤: 
1)根据设计图纸建立大跨度桥梁的有限元计算整体模型; 
2)建立大跨度桥梁关键部位的局部精细有限元模型; 
3)基于计算流体力学或风洞试验识别出大跨度桥梁主梁断面的气动导数; 
4)根据风速数据和气动导数共同确定主梁断面的气动自激力; 
5)利用静力三分力系数计算静力风荷载; 
6)按照Scanlan教授的准定常理论计算抖振力; 
7)施加静力风荷载、气动自激力及抖振力,进行整体模型抖振响应分析。 
8)维持局部模型原有的荷载和边界条件不变,编制结构整体和局部模型之间的衔接程序,利用整体模型抖振响应分析结果进行局部精细模型的抖振响应分析。 
具体如下: 
有限元计算整体模型建立过程中,用较粗的网格对整体结构进行划分,不考虑结构局部的一些构造细节。建立用户所关心部位的局部精细模型时,应根据结构实际的尺寸、构造以及分析目标的要求,采用恰当的单元,此时的网格密度增大。根据圣维南原理,只要所建局部模型尺寸足够大,远离边界的截面应力在精细模型内就可以得到较精确的结果,因此,应保证局部模型尺寸能够满足圣维南原理的要求。大跨度桥梁的有限元计算整体模型和局部精细模型示意图均可参见图2。 
根据Scanlan教授提出的气动自激力表达式,主梁单位长度上所受的气动升力Lse、气动阻力Dse和气动扭矩Mse可分别表示为竖向位移h、水平位移p和扭转位移α的函数,采用无量纲气动导数 H i * , P i * , A i * , ( i = 1,2 , · · · , 6 ) 来表达: 
L ae = 1 2 ρ U 2 ( 2 B ) [ KH 1 * h · U + KH 2 * B α · U + K 2 H 3 * α + K 2 H 4 * h B + KH 5 * p · U + K 2 H 6 * p B ] - - - ( 1 a )
D ae = 1 2 ρ U 2 ( 2 B ) [ KP 1 * p · U + KP 2 * B α · U + K 2 P 3 * α + K 2 P 4 * p B + KP 5 * h · U + K 2 P 6 * h B ] - - - ( 1 b )
M ae = 1 2 ρ U 2 ( 2 B 2 ) [ KA 1 * h · U + KA 2 * B α · U + K 2 A 3 * α + K 2 A 4 * h B + KA 5 * p · U + K 2 A 6 * p U ] - - - ( 1 c )
式(1)中,ρ为空气密度;U为平均风速;B为桥面宽度;K=Bω/U为无量纲频率;ω为振动圆频率;气动导数 H i * , P i * , A i * , ( i = 1,2 , · · · , 6 ) 是无量纲风速 
Figure BSA00000538045200054
或无量纲频率的函数,它们的值与桥梁截面的几何形状有关。Lse、Dse和Mse的方向及B、α等参数的示意见附图3。 
静力风荷载利用基于静力三分力系数的常用公式进行计算。 
抖振力时程按照式“2a、2b、2c”计算: 
L b ( t ) = 1 2 ρ U 2 B [ 2 C L ( α 0 ) u ( t ) U + ( C L ′ ( α 0 ) + C D ( α 0 ) ) w ( t ) U ] - - - ( 2 a )
D b ( t ) = 1 2 ρ U 2 B [ 2 C D ( α 0 ) u ( t ) U + C D ′ ( α 0 ) w ( t ) U ] - - - ( 2 b )
M b ( t ) = 1 2 ρ U 2 B 2 [ 2 C M ( α 0 ) u ( t ) U + C M ′ ( α 0 ) w ( t ) U ] - - - ( 2 c )
式“2a、2b、2c”中,Lb(t)、Db(t)和Mb(t)分别表示升力时程、阻力时程和升力矩时程,ρ为空气密度,U为平均风速,B为桥面宽度,α0为平均风攻角,CL、CD、CM分别为升力、阻力和升力矩系数, 
Figure BSA00000538045200058
分别为升力、阻力和升力矩系数曲线斜率,u(t)、v(t)和w(t)分别代表顺风向、横风向和竖向脉动风速。 
在多尺度分析计算过程中,应维持局部模型原有的荷载(如车辆、温度、拉索拉力、吊杆拉力等)和边界条件(自由、铰接、固定等)不变,编制结构整体和局部模型之间的衔接程序,将整体分析所得相应结果作为边界条件自动施加到局部精细模型上进行求解。整体模型和局部模型之间的衔接示意图如图2所示。 

Claims (4)

1.一种大跨度桥梁抖振响应的多尺度分析方法,其特征在于该方法包括以下步骤:
第一步:根据结构设计图纸,采用可编程参数化设计语言建立大跨度桥梁的有限元计算整体模型;
第二步:根据用户的具体需求,采用可编程参数化设计语言建立大跨度桥梁关键部位的局部精细有限元模型;
第三步:基于计算流体力学技术或风洞试验识别出大跨度桥梁主梁断面的气动导数,并将其以可调用数组方式进行存储;
第四步:根据用于抖振分析的风速数据以及识别出的气动导数、采用Scanlan气动自激力表达式来确定主梁断面所受气动自激力的大小;
第五步:作用在主梁单位长度上的静力风荷载按照体轴坐标系、利用静力三分力系数进行计算;
第六步:作用在单位长度上的抖振力按照Scanlan教授的准定常理论计算;
第七步:在整体有限元计算模型上添加静力风荷载、气动自激力及抖振力时程,进行抖振响应非线性时程分析;
第八步:维持局部模型原有的荷载和边界条件不变,编制整体和局部模型之间的衔接程序,利用第七步所得分析结果对局部模型的切割边界进行插值,进行局部精细模型的抖振响应分析。
2.根据权利要求1所述的大跨度桥梁抖振响应的多尺度分析方法,其特征在于第四步所述的Scanlan气动自激力表达式如下:
L ae = 1 2 ρ U 2 ( 2 B ) [ KH 1 * h · U + KH 2 * B α · U + K 2 H 3 * α + K 2 H 4 * h B + KH 5 * p · U + K 2 H 6 * p B ] - - - ( 1 a )
D ae = 1 2 ρ U 2 ( 2 B ) [ KP 1 * p · U + KP 2 * B α · U + K 2 P 3 * α + K 2 P 4 * p B + KP 5 * h · U + K 2 P 6 * h B ] - - - ( 1 b )
M ae = 1 2 ρ U 2 ( 2 B 2 ) [ KA 1 * h · U + KA 2 * B α · U + K 2 A 3 * α + K 2 A 4 * h B + KA 5 * p · U + K 2 A 6 * p U ] - - - ( 1 c )
式(1)中,Lse为主梁单位长度上所受的气动升力;Dse为主梁单位长度上所受的气动阻力;Mse为主梁单位长度上所受的气动扭矩;h为主梁竖向位移;p为主梁水平位移;α为主梁扭转位移;
Figure FSA00000538045100014
分别为主梁竖向、水平和扭转位移的导数; H i * , P i * , A i * , ( i = 1,2 , · · · , 6 ) 为无量纲气动导数,由第三步获得;ρ为空气密度;U为平均风速;B为桥面宽度;K=Bω/U为无量纲频率;ω为振动圆频率。
3.根据权利要求1所述的大跨度桥梁抖振响应的多尺度分析方法,其特征在于第二步所述的大跨度桥梁关键部位的局部精细有限元模型根据用户进行抖振分析时的具体需求来建立,且局部模型的尺寸能够满足圣维南原理的要求,所关心部位的响应必需离局部模型的边界较远。
4.根据权利要求1所述的大跨度桥梁抖振响应的多尺度分析方法,其特征在于第八步所述的局部精细模型抖振响应分析的过程中,必需维持局部模型原有的荷载和边界条件不变,通过所编制的整体和局部模型之间的衔接程序,利用第七步所得分析结果对局部模型的切割边界进行插值。
CN2011101969589A 2010-12-01 2011-07-06 大跨度桥梁抖振响应的多尺度分析方法 Pending CN102254068A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101969589A CN102254068A (zh) 2010-12-01 2011-07-06 大跨度桥梁抖振响应的多尺度分析方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010567173 2010-12-01
CN201010567173.3 2010-12-01
CN2011101969589A CN102254068A (zh) 2010-12-01 2011-07-06 大跨度桥梁抖振响应的多尺度分析方法

Publications (1)

Publication Number Publication Date
CN102254068A true CN102254068A (zh) 2011-11-23

Family

ID=44981331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101969589A Pending CN102254068A (zh) 2010-12-01 2011-07-06 大跨度桥梁抖振响应的多尺度分析方法

Country Status (1)

Country Link
CN (1) CN102254068A (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567630A (zh) * 2011-12-20 2012-07-11 东南大学 一种大跨桥梁结构风致振动响应的确定方法
CN102768694A (zh) * 2012-01-19 2012-11-07 长安大学 集成有限元分析模型修正技术的健康监测系统
CN103032271A (zh) * 2012-12-24 2013-04-10 东南大学 一种基于风能效应的大跨径桥梁自供能系统
CN103218481A (zh) * 2013-03-26 2013-07-24 东南大学 大跨度桥梁风致灾变全过程的模拟方法
CN103234728A (zh) * 2013-04-03 2013-08-07 东南大学 一种测试多主跨悬索桥抖振邻跨干扰效应的方法
CN103761402A (zh) * 2014-02-14 2014-04-30 东南大学 一种确定结构多尺度动力分析中子模型尺寸的方法
CN104461677A (zh) * 2014-10-30 2015-03-25 中国运载火箭技术研究院 一种基于cfd和fem技术的虚拟热试验方法
CN104899349A (zh) * 2015-04-24 2015-09-09 浙江工业大学 一种大跨桥梁监测数据空间插值与可视化方法
CN104899388A (zh) * 2015-06-17 2015-09-09 卢伟 一种空间钢结构环境荷载作用下的结构安全评估方法
CN104964808A (zh) * 2015-07-02 2015-10-07 华北电力大学 一种风雨致输电导线振动的非定常气动力系数计算方法
CN105117574A (zh) * 2015-10-14 2015-12-02 盐城工学院 T形梁桥断面设计优化方法
CN105758602A (zh) * 2016-03-01 2016-07-13 西南交通大学 一种桁架梁桥断面抖振力同步测量方法
CN102768694B (zh) * 2012-01-19 2016-11-30 长安大学 集成有限元分析模型修正技术的健康监测系统
CN106682255A (zh) * 2016-10-18 2017-05-17 武汉理工大学 一种沥青路面结构设计应力响应的跨尺度分析方法
CN108376184A (zh) * 2018-01-05 2018-08-07 深圳市市政设计研究院有限公司 一种桥梁健康监控的方法及系统
CN108509710A (zh) * 2018-03-28 2018-09-07 东南大学 一种平行双幅桥静风稳定分析方法
CN109086480A (zh) * 2018-06-22 2018-12-25 东南大学 一种桥梁断面非线性自激力的识别方法
CN109614650A (zh) * 2018-11-12 2019-04-12 深圳大学 桥梁风致行为的非线性特性分析方法、存储介质及服务器
CN110018695A (zh) * 2018-03-29 2019-07-16 重庆大学 超大跨度悬索桥颤振气动翼板主动控制方法
CN110688963A (zh) * 2019-09-30 2020-01-14 哈尔滨工业大学 基于聚类算法的大跨度桥梁涡激振动自动识别方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221553A (zh) * 2008-01-04 2008-07-16 东南大学 斜风作用下大跨度桥梁抖振响应分析时域方法
CN101261651A (zh) * 2008-04-11 2008-09-10 东南大学 主梁断面气动自激力的全过程数值模拟方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221553A (zh) * 2008-01-04 2008-07-16 东南大学 斜风作用下大跨度桥梁抖振响应分析时域方法
CN101261651A (zh) * 2008-04-11 2008-09-10 东南大学 主梁断面气动自激力的全过程数值模拟方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
王浩等: "大跨度缆索支撑桥梁分阶段有限元模型修正", 《工程力学》 *
王浩等: "带中央扣的超大跨度悬索桥多尺度有限元模拟方法", 《中国公路学报》 *
王浩等: "斜风作用下大跨度桥梁抖振响应时域分析(I):分析方法", 《土木工程学报》 *
王浩等: "润扬悬索桥钢箱梁受力分析及实验研究", 《哈尔滨工业大学学报》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567630A (zh) * 2011-12-20 2012-07-11 东南大学 一种大跨桥梁结构风致振动响应的确定方法
CN102567630B (zh) * 2011-12-20 2015-01-28 东南大学 一种大跨桥梁结构风致振动响应的确定方法
CN102768694A (zh) * 2012-01-19 2012-11-07 长安大学 集成有限元分析模型修正技术的健康监测系统
CN102768694B (zh) * 2012-01-19 2016-11-30 长安大学 集成有限元分析模型修正技术的健康监测系统
CN103032271A (zh) * 2012-12-24 2013-04-10 东南大学 一种基于风能效应的大跨径桥梁自供能系统
CN103032271B (zh) * 2012-12-24 2014-12-17 东南大学 一种基于风能效应的大跨径桥梁自供能系统
CN103218481A (zh) * 2013-03-26 2013-07-24 东南大学 大跨度桥梁风致灾变全过程的模拟方法
CN103234728A (zh) * 2013-04-03 2013-08-07 东南大学 一种测试多主跨悬索桥抖振邻跨干扰效应的方法
CN103761402B (zh) * 2014-02-14 2016-10-26 东南大学 一种确定结构多尺度动力分析中子模型尺寸的方法
CN103761402A (zh) * 2014-02-14 2014-04-30 东南大学 一种确定结构多尺度动力分析中子模型尺寸的方法
CN104461677B (zh) * 2014-10-30 2017-09-29 中国运载火箭技术研究院 一种基于cfd和fem技术的虚拟热试验方法
CN104461677A (zh) * 2014-10-30 2015-03-25 中国运载火箭技术研究院 一种基于cfd和fem技术的虚拟热试验方法
CN104899349A (zh) * 2015-04-24 2015-09-09 浙江工业大学 一种大跨桥梁监测数据空间插值与可视化方法
CN104899388A (zh) * 2015-06-17 2015-09-09 卢伟 一种空间钢结构环境荷载作用下的结构安全评估方法
CN104899388B (zh) * 2015-06-17 2019-02-05 卢伟 一种空间钢结构环境荷载作用下的结构安全评估方法
CN104964808A (zh) * 2015-07-02 2015-10-07 华北电力大学 一种风雨致输电导线振动的非定常气动力系数计算方法
CN105117574A (zh) * 2015-10-14 2015-12-02 盐城工学院 T形梁桥断面设计优化方法
CN105117574B (zh) * 2015-10-14 2018-09-25 盐城工学院 T形梁桥断面设计优化方法
CN105758602A (zh) * 2016-03-01 2016-07-13 西南交通大学 一种桁架梁桥断面抖振力同步测量方法
CN106682255A (zh) * 2016-10-18 2017-05-17 武汉理工大学 一种沥青路面结构设计应力响应的跨尺度分析方法
CN106682255B (zh) * 2016-10-18 2020-02-04 武汉理工大学 一种沥青路面结构设计应力响应的跨尺度分析方法
CN108376184A (zh) * 2018-01-05 2018-08-07 深圳市市政设计研究院有限公司 一种桥梁健康监控的方法及系统
CN108509710A (zh) * 2018-03-28 2018-09-07 东南大学 一种平行双幅桥静风稳定分析方法
CN110018695A (zh) * 2018-03-29 2019-07-16 重庆大学 超大跨度悬索桥颤振气动翼板主动控制方法
CN110018695B (zh) * 2018-03-29 2020-12-15 重庆大学 超大跨度悬索桥颤振气动翼板主动控制方法
CN109086480A (zh) * 2018-06-22 2018-12-25 东南大学 一种桥梁断面非线性自激力的识别方法
CN109086480B (zh) * 2018-06-22 2021-10-19 东南大学 一种桥梁断面非线性自激力的识别方法
CN109614650A (zh) * 2018-11-12 2019-04-12 深圳大学 桥梁风致行为的非线性特性分析方法、存储介质及服务器
CN109614650B (zh) * 2018-11-12 2023-04-18 深圳大学 桥梁风致行为的非线性特性分析方法、存储介质及服务器
CN110688963A (zh) * 2019-09-30 2020-01-14 哈尔滨工业大学 基于聚类算法的大跨度桥梁涡激振动自动识别方法

Similar Documents

Publication Publication Date Title
CN102254068A (zh) 大跨度桥梁抖振响应的多尺度分析方法
CN105956216B (zh) 大跨钢桥基于均匀温度响应监测值的有限元模型修正方法
CN101476988B (zh) 风谱模型的精细模拟方法
Li et al. Analysis and assessment of bridge health monitoring mass data—progress in research/development of “Structural Health Monitoring”
CN109740800B (zh) 适用于隧道tbm掘进岩爆风险分级及预测方法与系统
CN104200005A (zh) 基于神经网络的桥梁损伤识别方法
CN108444662B (zh) 一种基于日温度效应的桥梁损伤在线监测方法
CN104200004A (zh) 一种优化的基于神经网络的桥梁损伤识别方法
CN106197910A (zh) 一种基于车桥耦合振动分析的桥梁检测方法与检测系统
CN104200265A (zh) 一种改进的基于神经网络的桥梁损伤识别方法
CN106289947B (zh) 一种轻质高强梁结构损伤识别方法
Solari et al. Dynamic response of structures to thunderstorm outflows: Response spectrum technique vs time-domain analysis
Cao et al. Identification of Rational Functions using two-degree-of-freedom model by forced vibration method
CN103439070A (zh) 一种桥梁长期挠度效应的分离方法
CN105930571A (zh) 基于单位温度响应监测值的大跨钢桥有限元模型修正方法
CN105956218A (zh) 基于非均匀温度响应监测值的钢桥有限元模型修正方法
CN102243671A (zh) 大跨钢桥扁平钢箱梁的温度梯度效应分析方法
CN107301282A (zh) 基于多源监测时序数据的混凝土坝力学参数反演方法
CN106529049A (zh) 一种用于模型修正的应变模态相关性评价方法
CN104133960A (zh) 一种改进的静力传感器的优化布设方法
Zhou et al. Damage detection for SMC benchmark problem: A subspace-based approach
Zhang et al. Experimental study and analysis for the long-term behavior of the steel–concrete composite girder bridge
CN102998367B (zh) 一种基于虚拟派生结构的损伤识别方法
CN104424373A (zh) 一种空间变量相关性的精细表达方法
CN116663126A (zh) 一种基于通道注意力BiLSTM模型的桥梁温度效应预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111123