CN102253681A - 一种完全与标准cmos工艺兼容的温度补偿电流源 - Google Patents
一种完全与标准cmos工艺兼容的温度补偿电流源 Download PDFInfo
- Publication number
- CN102253681A CN102253681A CN2010101805620A CN201010180562A CN102253681A CN 102253681 A CN102253681 A CN 102253681A CN 2010101805620 A CN2010101805620 A CN 2010101805620A CN 201010180562 A CN201010180562 A CN 201010180562A CN 102253681 A CN102253681 A CN 102253681A
- Authority
- CN
- China
- Prior art keywords
- pipe
- nmos
- current source
- pmos
- nmos pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Amplifiers (AREA)
Abstract
本发明属集成电路技术领域,具体涉及一种完全与标准CMOS工艺兼容的新型温度补偿电流源。它由四个NMOS管、三个PMOS管、一个补偿电阻和一个运算放大器组成。运算放大器的结构为传统的两级密勒补偿运算放大器,并自带偏置电路。高增益的运算放大器保证差分输入端的电压相同,其余的四个NMOS管、三个PMOS管和一个补偿电阻构成了温度补偿电流源的主体电路,利用电阻、MOS管的迁移率和阈值电压的不同温度系数实现完全与标准CMOS工艺兼容的温度补偿电流源,本发明结构简单,温度系数低,面积小,成本低,适用于各种模拟电路、模数混合电路中。
Description
技术领域
本发明属于集成电路技术领域,具体涉及一种完全与标准CMOS工艺兼容的新型温度补偿电流源。
背景技术
电流源是CMOS集成电路中非常重要的基本电路之一,它为芯片中其它模块提供正常工作所必需的偏置电流,因此它的性能也很大程度上影响了整个芯片的性能。与温度无关的电流源广泛应用于模数转换器、数模转换器、Viterbi解码器中。
目前,多数应用的电流源温度系数较高,大于1000ppm/℃,不能满足高精度电路对参考电流源的要求。虽然近年来出现了一些能够实现低温度系数的电流源,但是它们通常来源于双极型带隙基准,结构比较复杂,占用面积大,制造成本高;有些甚至需要在BiCMOS的工艺下实现,不能与标准CMOS工艺兼容。
因此,设计得到一种结构简单、性能稳定、占用芯片面积小,温度系数低、完全与标准CMOS工艺兼容的恒定电流参考源是CMOS高性能集成电路设计领域需要解决的一项重要课题。
发明内容
本发明的目的是为了解决现有技术存在的问题,提共一种完全与标准CMOS工艺兼容的新型温度补偿电流源。本发明能克服现有技术的电流源面积大、电流随温度变化明显、制造工艺成本高的缺点,迎合当今电子产品对模拟电流源的要求。
本发明的新型温度补偿电流源由四个NMOS管、三个PMOS管、一个补偿电阻和一个运算放大器组成。运算放大器的结构为传统的两级密勒补偿运算放大器,并自带偏置电路。高增益的运算放大器保证差分输入端的电压相同,其余的四个NMOS管、三个PMOS管和一个补偿电阻构成了温度补偿电流源的主体电路,利用电阻、MOS管的迁移率和阈值电压的不同温度系数实现了一种温度系数低、面积小、完全与标准CMOS工艺兼容的新型温度补偿电流源。
具体而言,本发明提出的一种完全与标准CMOS工艺兼容的新型温度补偿电流源由PMOS管4、5、6,NMOS管1、2、3、7,补偿电阻8,运算放大器9经电路连接构成;其中,PMOS管4、5、6,NMOS管1、2、3、7,补偿电阻8为电流源的主体电路,利用电阻、迁移率、阈值电压的不同温度系数实现电流源的温度补偿;运算放大器具有很高的增益,以保证运算放大器的输入端所连接的节点电压相同。
本发明中,新型温度补偿电流源的主体电路由PMOS管4、5、6,NMOS管1、2、3、7,补偿电阻8经电路连接构成;其中,PMOS管4、5、6的源极接电源,栅极与放大器的输出端28相连接,补偿电阻8的一端与PMOS管4的漏极相连,另一端与连接成二极管形式的NMOS管1的栅极相连,NMOS管1、2、3的源极均接地,NMOS管2的漏极与PMOS管5的漏极、NMOS管7的栅极连接在一起,NMOS管7的漏极与PMOS管6的漏极连接,源极与连接成二极管形式的NMOS管3相连。PMOS管4、5、6,NMOS管1、2、3、7均工作在饱和区,其中,NMOS管2、3的尺寸相同,PMOS管4、5、6的尺寸相同,以保证三条支路的电流相等,补偿电阻8的电阻值与NMOS管3的跨导在同一量级、并在版图设计中保证NMOS管1、2的阈值电压相差较小,以满足实现温度补偿电流源的基本条件,NMOS管1的尺寸较大以满足整体环路的稳定要求。
本发明中,应用运算放大器9保证节点10、11电压相等,它由PMOS管20~25,NMOS管12~19,电阻27,补偿电容26经电路连接构成;其中,PMOS管20、21连接成电流镜的形式,NMOS管12~15连接成共源共栅电流镜的模式,电阻27连接在NMOS管13的源极与地之间,它们共同组成了放大器的偏置电路;PMOS管22镜像PMOS管21的电流,为运算放大器的第一级提供尾电流源,PMOS管24、25构成差分输入对形式,NMOS管16、17为差分输入管的电流镜负载;NMOS管19作为第二级运放的输入管,它的栅极与第一级运放的输出端29相接,PMOS管23的漏极与NMOS管19的漏极相连,作为NMOS管19的负载,工作在线性区的NMOS管18的栅极与PMOS管21的漏端相接,NMOS管18与电容26串联在第一级运放的输出端与第二级运放的输出端之间,形成动态的密勒补偿,运放的输出端28与PMOS管4、5、6的栅极连接在一起。其中,除了NMOS管18工作在线性区,其他MOS管均工作在饱和区,为了实现低功耗、高增益的特点,MOS管的栅长大于1μm,偏置电流、MOS管的宽长比较小。
本发明的优点在于:
本发明所实现的温度补偿电流源具有完全与标准CMOS工艺兼容、温度系数低,结构简单,面积小,成本低等优点,适用于各种模拟电路、模数混合电路中。
附图说明
图1:本发明完全与标准CMOS工艺兼容的温度补偿电流源的电路实现图。
图2本发明中应用的运算放大器的电路实现图。
图中标号说明:1、2、3、7、12、13、14、15、16、17、18、19为NMOS管,4、5、6、20、21、22、23、24、25为PMOS管,8为补偿电阻,9为运算放大器,26为补偿电容,27为偏置电阻,10、11为运算放大器的输入端口,28为运算放大器的输出端口。
具体实施方式
下面结合附图进一步描述本发明。
实施例1
本发明示例性的整个温度补偿电流源的电路实现如图1所示。图中,PMOS管4、5、6接成电流镜的形式以保证三条之路的电流相等,运算放大器9有足够高的增益使得节点10、11的电压相等,即得到电阻8与NMOS管1的栅源电压之和等于NMOS管3、7的栅源电压之和,通过这一等式关系,使得参考电流源能够利用电阻、MOS管迁移率、阈值电压的不同温度系数实现温度补偿,从而得到一个温度系数较低的参考电流源。其中,PMOS管4、5、6的源极接电源,栅极与放大器的输出端28相连接,补偿电阻8的一端与PMOS管4的漏极相连,另一端与连接成二极管形式的NMOS管1的栅极相连,NMOS管1、2、3的源极均接地,NMOS管2的漏极与PMOS管5的漏极、NMOS管7的栅极连接在一起,NMOS管7的漏极与PMOS管6的漏极连接,源极与连接成二极管形式的NMOS管3相连。PMOS管4、5、6,NMOS管1、2、3、8均工作在饱和区,其中,NMOS管2、3的尺寸相同,PMOS管4、5、6的尺寸相同,以保证三条支路的电流相等,补偿电阻8的电阻值与NMOS管3的跨导在同一量级、并在版图设计中保证NMOS管1、2的阈值电压相差较小,以满足温度补偿所需的假设条件,NMOS管1的尺寸应较大以满足整体环路稳定的要求。
图2所示为图1中运算放大器9的电路实现。图中PMOS管20、21连接成电流镜的形式,NMOS管12~15连接成共源共栅电流镜的模式,电阻27连接在NMOS管13的源极与地之间,它们共同组成了放大器的偏置电路;PMOS管22镜像PMOS管21的电流,为运算放大器的第一级提供尾电流源,PMOS管24、25构成差分输入对形式,NMOS管16、17为差分输入管的电流镜负载;NMOS管19作为第二级运算放大器的输入管与第一级运算放大器的输出端29相接,PMOS管23作为NMOS管19的负载,工作在线性区的NMOS管18与电容26串联在第一级运算放大器的输出端与第二级运算放大器的输出端之间,NMOS管18的栅极与PMOS管21的漏端相接,形成动态的密勒补偿,运算放大器的输出端28与电流源主体电路中的PMOS管4~6的栅极连接在一起。其中,除了NMOS管18工作在线性区,其他MOS管均工作在饱和区,为了实现低功耗、高增益的特点,所有MOS管的栅长均大于1μm,MOS管的宽长比较小。
本发明所实现的温度补偿电流源具有完全与标准CMOS工艺兼容、温度系数低,结构简单,面积小,成本低等优点,适用于各种模拟电路、模数混合电路中。
以上所述仅是本发明的优选实施方式,应当指出,在不脱离本发明原理的前提下,所作出的若干改进和润饰也应视为本发明的保护范围。
Claims (4)
1.一种完全与标准CMOS工艺兼容的温度补偿电流源,其特征在于由PMOS管(4、5、6)、NMOS管(1、2、3、7)、补偿电阻(8)、运算放大器(9)经电路连接构成;其中,运算放大器具有高增益,保证运算放大器的输入端所连接的节点电压相同,PMOS管(4、5、6)、NMOS管(1、2、3、7)、补偿电阻(8)组成电流源的主体电路,电阻、MOS管的迁移率和阈值电压的不同温度系数实现电流源的温度补偿。
2.根据权利要求1所述的完全与标准CMOS工艺兼容的温度补偿电流源,其特征在于所述的主体电路由PMOS管(4、5、6)、NMOS管(1、2、3、7)经电路连接构成;其中,PMOS管(4、5、6)的源极接电源,栅极与放大器的输出端(28)相连接,补偿电阻(8)的一端与PMOS管(4)的漏极相连,另一端与连接成二极管形式的NMOS管(1)的栅极相连,NMOS管(1、2、3)的源极均接地,NMOS管(2)的漏极与PMOS管(5)的漏极以及NMOS管(7)的栅极连接在一起,NMOS管(7)的漏极与PMOS管(6)的漏极连接,NMOS管(7)的源极与连接成二极管形式的NMOS管(3)相连。
3.根据权利要求2所述的完全与标准CMOS工艺兼容的温度补偿电流源,其特征在于所述的电流源主体电路中,所有MOS管均工作在饱和区,其中,NMOS管(2、3)的尺寸相同,PMOS管(4、5、6)的尺寸相同,补偿电阻(8)的电阻值与NMOS管(3)的跨导在同一量级、并在版图设计中保证NMOS管(1、2)的阈值电压相差较小;NMOS管(1)的尺寸较大。
4.根据权利要求1所述的完全与CMOS工艺兼容的温度补偿电流源,其特征在于所述的运算放大器电路(9)由PMOS管(20~25)、NMOS管(12~19)、电阻(27)、补偿电容(26)经电路连接构成;其中,PMOS管(20、21)连接成电流镜的形式,NMOS管(12~15)连接成共源共栅电流镜的模式,电阻(27)连接在NMOS管(13)的源极与地之间,它们共同组成放大器的偏置电路;PMOS管(22)镜像PMOS管(21)的电流,为运放的第一级提供尾电流源,PMOS管(24、25)构成差分输入对形式,NMOS管(16、17)为差分输入管的电流镜负载;NMOS管(19)作为第二级运放的输入管,它的栅极与第一级运放的输出端(29)相接,PMOS管(23)作为NMOS管(19)的负载,工作在线性区的NMOS管(18)的栅极与PMOS管(21)的漏端相接,NMOS管(18)与电容(26)串联在第一级运放的输出端与第二级运放的输出端之间,形成动态的密勒补偿,运放的输出端(28)与PMOS管(4~6)的栅极连接在一起。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101805620A CN102253681A (zh) | 2010-05-20 | 2010-05-20 | 一种完全与标准cmos工艺兼容的温度补偿电流源 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101805620A CN102253681A (zh) | 2010-05-20 | 2010-05-20 | 一种完全与标准cmos工艺兼容的温度补偿电流源 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102253681A true CN102253681A (zh) | 2011-11-23 |
Family
ID=44980988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101805620A Pending CN102253681A (zh) | 2010-05-20 | 2010-05-20 | 一种完全与标准cmos工艺兼容的温度补偿电流源 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102253681A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102622030A (zh) * | 2012-04-05 | 2012-08-01 | 四川和芯微电子股份有限公司 | 具有温度补偿的电流源电路 |
CN105958965A (zh) * | 2016-04-27 | 2016-09-21 | 华中科技大学 | 一种应用于人体生理信号的低通滤波器 |
CN106685359A (zh) * | 2016-11-11 | 2017-05-17 | 合肥兆芯电子有限公司 | 时钟信号产生电路、存储器储存装置及时钟信号产生方法 |
CN107592078A (zh) * | 2017-08-23 | 2018-01-16 | 刘欣亮 | 运算放大器电路及设计方法 |
CN110120791A (zh) * | 2019-05-14 | 2019-08-13 | 电子科技大学 | 一种抗总剂量的cmos运算放大器 |
CN111897391A (zh) * | 2020-08-17 | 2020-11-06 | 上海艾为电子技术股份有限公司 | 电流镜电路、偏置电路结构、集成电路、电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101290526A (zh) * | 2007-04-18 | 2008-10-22 | 中国科学院半导体研究所 | 高电压偏置pmos电流源电路 |
US20090051341A1 (en) * | 2007-08-22 | 2009-02-26 | Faraday Technology Corporation | Bandgap reference circuit |
TW200910048A (en) * | 2007-08-22 | 2009-03-01 | Faraday Tech Corp | Bandgap reference circuit |
US20090146625A1 (en) * | 2007-12-05 | 2009-06-11 | Industrial Technology Research Institute | Voltage generating apparatus |
-
2010
- 2010-05-20 CN CN2010101805620A patent/CN102253681A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101290526A (zh) * | 2007-04-18 | 2008-10-22 | 中国科学院半导体研究所 | 高电压偏置pmos电流源电路 |
US20090051341A1 (en) * | 2007-08-22 | 2009-02-26 | Faraday Technology Corporation | Bandgap reference circuit |
TW200910048A (en) * | 2007-08-22 | 2009-03-01 | Faraday Tech Corp | Bandgap reference circuit |
US20090146625A1 (en) * | 2007-12-05 | 2009-06-11 | Industrial Technology Research Institute | Voltage generating apparatus |
Non-Patent Citations (1)
Title |
---|
FRANCO FIORI AND PAOLO STEFANO CROVETTI,: "A New Compact Temperature-Compensated CMOS Current Reference", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102622030A (zh) * | 2012-04-05 | 2012-08-01 | 四川和芯微电子股份有限公司 | 具有温度补偿的电流源电路 |
CN105958965A (zh) * | 2016-04-27 | 2016-09-21 | 华中科技大学 | 一种应用于人体生理信号的低通滤波器 |
CN106685359A (zh) * | 2016-11-11 | 2017-05-17 | 合肥兆芯电子有限公司 | 时钟信号产生电路、存储器储存装置及时钟信号产生方法 |
CN107592078A (zh) * | 2017-08-23 | 2018-01-16 | 刘欣亮 | 运算放大器电路及设计方法 |
CN107592078B (zh) * | 2017-08-23 | 2024-07-16 | 刘欣亮 | 运算放大器电路及设计方法 |
CN110120791A (zh) * | 2019-05-14 | 2019-08-13 | 电子科技大学 | 一种抗总剂量的cmos运算放大器 |
CN111897391A (zh) * | 2020-08-17 | 2020-11-06 | 上海艾为电子技术股份有限公司 | 电流镜电路、偏置电路结构、集成电路、电子设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102122189A (zh) | 一种宽温度范围兼容标准cmos工艺的温度补偿电流源 | |
Blalock et al. | Body-driving as a low-voltage analog design technique for CMOS technology | |
US10411597B1 (en) | Ultra-low power and ultra-low voltage bandgap voltage regulator device and method thereof | |
CN102129264A (zh) | 一种完全兼容标准cmos工艺的低温度系数电流源 | |
US7956597B2 (en) | Reference buffer circuits for providing reference voltages | |
CN101951236B (zh) | 一种数字可变增益放大器 | |
CN102253681A (zh) | 一种完全与标准cmos工艺兼容的温度补偿电流源 | |
CN104216455B (zh) | 用于4g通信芯片的低功耗基准电压源电路 | |
CN101963819A (zh) | 基准电压电路和电子设备 | |
CN102096436B (zh) | 采用mos器件实现的低压低功耗带隙基准电压源 | |
US20080290934A1 (en) | Reference buffer circuits | |
KR101163457B1 (ko) | 저전압 레귤레이티드 캐스코드 회로 및 이를 이용한 시모스아날로그 회로 | |
CN102117091A (zh) | 高稳定性全cmos基准电压源 | |
CN201846315U (zh) | 一种数字可变增益放大器 | |
CN101895264A (zh) | 用于流水线模数转换器的高速低功耗大摆幅运算放大器 | |
CN1266838C (zh) | 低电源电压下亦可产生稳定恒流的半导体集成电路器件 | |
US7605654B2 (en) | Telescopic operational amplifier and reference buffer utilizing the same | |
CN104881071A (zh) | 低功耗基准电压源 | |
CN111384940B (zh) | 一种高线性度宽摆幅cmos电压跟随器 | |
Wu et al. | An ADC input buffer with optimized linearity | |
CN106527558B (zh) | 一种低功耗的与绝对温度成正比的电流源电路 | |
Blalock et al. | A one-volt, 120-/spl mu/W, 1-MHz OTA for standard CMOS technology | |
Kai et al. | A 168 dB high gain folded cascode operational amplifier for Delta-Sigma ADC | |
US20080191920A1 (en) | Low-voltage drop reference generation circuit for A/D converter | |
CN107888184B (zh) | 单端转差分电路及其构成的缓冲器电路和采样保持电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111123 |