CN102252898A - 基于“寿命-应力”模型的电子产品加速寿命试验方法 - Google Patents

基于“寿命-应力”模型的电子产品加速寿命试验方法 Download PDF

Info

Publication number
CN102252898A
CN102252898A CN2011101709736A CN201110170973A CN102252898A CN 102252898 A CN102252898 A CN 102252898A CN 2011101709736 A CN2011101709736 A CN 2011101709736A CN 201110170973 A CN201110170973 A CN 201110170973A CN 102252898 A CN102252898 A CN 102252898A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
stress
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101709736A
Other languages
English (en)
Other versions
CN102252898B (zh
Inventor
胡薇薇
祁邦彦
孙宇锋
赵广燕
丁潇雪
郑鹏洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Tianhang Changying Technology Development Co ltd
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201110170973.6A priority Critical patent/CN102252898B/zh
Publication of CN102252898A publication Critical patent/CN102252898A/zh
Application granted granted Critical
Publication of CN102252898B publication Critical patent/CN102252898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

基于“寿命-应力”模型的电子产品加速寿命试验方法,该方法有八大步骤。步骤一:定义样本寿命特征;步骤二:定义失效判据;步骤三:最大应力组合的加速寿命试验;步骤四:其他组合的加速寿命试验,即进行包括除最大应力组合外另外的四组不同应力组合的试验;步骤五:失效数据处理,即借助威布尔分布拟合分析方法拟合各组试验样本的寿命总体的威布尔分布模型,并求出相应的寿命特征参数;步骤六:估计加速模型参数;步骤七:使用条件下温湿应力确定;步骤八:外推使用条件下样本失效分布。本发明能显著地缩短电子产品加速寿命试验的时间,提高试验结果的精度。它在加速寿命试验技术领域里具有较好的实用价值和广阔的应用前景。

Description

基于“寿命-应力”模型的电子产品加速寿命试验方法
(一)技术领域:
本发明涉及一种基于“寿命-应力”模型的电子产品加速寿命试验方法,尤其涉及一种基于“寿命-应力”模型的电子产品加速寿命试验方法。它是一种基于威布尔寿命分布模型和Peck温湿模型的加速模型,属于加速寿命试验技术领域。 
(二)背景技术:
近年来,随着可靠性试验技术的发展,加速寿命试验逐渐成为鉴定产品的可靠性寿命的主要手段之一。所谓加速寿命试验,即是在不引入新的失效机理的前提下,通过采用加大应力的方法促使样品在短期内失效,以预测产品在正常工作条件或储存条件下的可靠性的试验。它以实验为手段,通过记录分析高应力下试验样本的失效数据,得到该应力下的样本总体的寿命特征,再外推样本使用应力下的寿命特征。 
加速寿命试验属于加速试验。加速试验一般有两种用途,其一是定性加速试验,主要用于确认产品的失效模式和失效机理;其二是定量加速试验,亦即加速寿命试验,主要是用于预测产品在使用条件下的寿命特征(如MTBF、MTTF等)。对于前者而言,加速寿命试验无疑是十分有效的,因为在加速条件下,较高的应力能使产品的薄弱环节尽快地暴露出来,从而发现设计生产环节的缺陷;而对第二个用途而言,情况就较为复杂。因为很难建立起加速条件和使用条件下产品失效特征的对应关系,很可能在加速条件下暴露出来的故障在使用条件下根本不会发生,或是加速条件设定不当导致引入新的故障机理,从而使加速寿命试验失去加速依据。并且,没有任何一种加速寿命模型能够精确的描述产品的寿命-应力关系,每种加速模型都仅适用于一类特定的产品,因此,选择合适的加速模型是加速寿命试验成功的关键。 
(三)发明内容:
1、目的:本发明的目的是提供基于“寿命-应力”模型的电子产品加速寿命试验方法,它是基于威布尔分布模型和Peck温湿加速模型的一种“寿命-应力”模型,并基于此模型提供一种电子产品加速寿命试验方法。 
2、技术方案:本发明是通过以下技术方案实现的: 
本发明一种基于“寿命-应力”模型的电子产品加速寿命试验方法,该方法具体步骤如下: 
步骤一:定义样本寿命特征。即定义被测样本的寿命特征是什么,置信度为多少。
步骤二:定义失效判据。是要根据具体的试验样本的失效机理和试验手段来确定故障判据。 
步骤三:最大应力组合的加速寿命试验。包括定义样本能承受的最大温湿应力组合、定义样本大小、计算最小时间Dmin、进行最大应力组合试验四个部分。 
步骤四:其他组合的加速寿命试验。即进行包括除最大应力组合外另外的四组不同应力组合的试验。这4组应力组合分别为:TmaxRHmed,TmaxRHmin,TmedRHmax,TminRHmax,其中med表示“中间”,min表示“最小”。则上述四组试验组合按次序即最大温度和中等湿度组合,最大温度和最小湿度组合,中等温度和最大湿度组合,最小温度和最大湿度组合。 
步骤五:失效数据处理。即借助威布尔分布拟合分析方法拟合各组试验样本的寿命总体的威布尔分布模型,并求出相应的寿命特征参数。即将失效数据作为输入,对于每一个独立故障模式,在威布尔图上画出失效前时间的数据和相应的不可靠度估计,然后通过回归方法拟合威布尔分布模型,进而求的样本在该组应力下的寿命分布。相关计算公式如下: 
其中xi,yi是失效数据线性化后的值,表示威布尔图上的一个点,且回归方程为: 
x i = ln ( TTFi ) y i = ln ( - ln ( 1 - F ( TTF i ) ) ) - - - ( 1 )
其中xi,yi是失效数据线性化后的值,表示威布尔图上的一个点,且回归方程为: 
yi=Axi+B    (2) 
A,B为两个回归参数,B的估计值为: 
B = Σ i = 1 p x i y i - Σ i = 1 N x i Σ i = 1 N y i p Σ i = 1 p x i 2 - ( Σ i = 1 p x i ) 2 p - - - ( 3 )
A的估计值为: 
A = 1 p Σ i = 1 p y i - B p Σ i = 1 p x i - - - ( 4 )
相关系数R2为: 
R 2 = ( Σ i = 1 p x i y i - Σ i = 1 N x i Σ i = 1 N y i p ) Σ i = 1 p x i 2 - ( Σ i = 1 p x i ) 2 p - - - ( 5 )
这里,N是一次试验的样本总量,p是故障个数,可得威布尔分布参数如下: 
β = B , η = e - A B - - - ( 6 )
根据上述过程分别求得五组应力下的威布尔分布参数,代入下一步计算求加速因子参数Ea和n。 
步骤六:估计加速模型参数。经过步骤五对失效数据的威布尔拟合,可得到五组应力条件下各个独立故障模式的威布尔分布参数β和η,对于每一种应力组合的每一个独立的故障模式,观察到的失效都用由其系数β、η和γ决定的威布尔分布来表示。原始输入的用来计算模型参数n和Ea的数据将会是五个η参数,它们可以记为:ηTmax RH max,ηTmax RH med,ηTmax RH min,ηTmed RH max,ηTmin RH max,按次序即最大温度和最大湿度组合、最大温度和中等湿度组合、最大温度和最小湿度组合、中等温度和最大湿度组合、最小温度和最大湿度组合分别对应的寿命特征参数。选择Tmax-RHmax作为对照组,将另外四组应力下得到的试验数据代 入表格2: 
表格1五组应力下的“寿命-应力”模型 
Figure BDA0000070624240000041
由此可得“寿命-应力”的两个参数Ea和n的估计值分别为: 
Figure BDA0000070624240000042
n ^ = Σ i = 1 4 X i Z i - B Σ i = 1 4 X i Y i Σ i = 1 4 X i 2 - - - ( 8 )
将上述参数代入下式可求得加速试验的加速因子: 
AF = ( RH u RH s ) - n e E a k ( 1 T u - 1 T s ) - - - ( 9 )
其中,RHu是使用条件下的百分比相对湿度;RHs是应力条件下的百分比相对湿度;Tu是使用条件下以K表示的温度;Ts是应力条件下以K表示的温度;Ea和n是与材料有关的参数。 
步骤七:使用条件下温湿应力确定。要确定使用条件下的温度应力与湿度应力,首先应获取使用地区一年以上的详细气象资料。再根据下述方法求年平均温度和平均相对湿 度。 
对于每一个确认的独立故障模式,年平均温度应该按如下步骤从年温度分布中计算出来: 
1)取每个月中最低和最高温度Ti(i=1...24)相对于20℃下的加速因子 
AT i = e E a k i ( 1 293 - 1 T i ) - - - ( 10 )
可以利用步骤六获得的Ea值、k=8.617×10-5是玻尔兹曼常数和Ti(单位K)计算得到。 
2)对各个温度的加速因子求平均值ATaverage,即: 
AT average = 1 24 Σ i = 1 24 A T i - - - ( 11 )
3)用求得的平均加速因子计算平均温度,即使用条件下的温度应力Tu: 
T u = 1 1 293 - k ln ( AT average ) E a - - - ( 12 )
其中Tu的单位是K。 
同样,对于每一个确认的故障模式,年平均湿度应该按如下步骤从年湿度分布中计算出来: 
1)取每一个月的平均相对湿度RHi(i=1...24),利用步骤六中获得的n值,使用公式 
AH i = ( 0.5 RH i ) - n - - - ( 13 )
计算AHi。此加速因子是在湿度RHi时和湿度50%时比较的加速因子。 
2)对各个湿度的加速因子求平均值AHaverage,即: 
AH average = 1 12 Σ i = 1 12 AH i - - - ( 14 )
3)用求得的平均加速因子计算平均湿度,即使用条件下的湿度应力RHu。 
RH u = 0.5 AH average - 1 n - - - ( 15 )
步骤八:外推使用条件下样本失效分布。即是利用上述七步求出的加速模型及加速系数将试验中得到的失效数据外推到使用应力条件下,并最终求得使用应力条件下样本的寿命参数,即样本的寿命估计。对于每一个独立故障模式,在不同的应力下所得到的加速因子不同,设TTFs是该故障模式在某一应力组合下的某一个故障的失效前时间,利用公式 
TTFu=TTFs×AF    (16) 
其中TTFu即使用条件下,该故障模式出现同一故障的失效前时间。将所有外推失效前时间与相应累积不可靠度F(TTFs)组成新的样本点即(TTFu,F(TTFs)),在威布尔分布图上描出这些点并进行威布尔线性拟合,可得使用条件下该故障模式的威布尔分布参数βu,ηu。则使用应力下样本寿命所服从的威布尔分布为: 
F i ( t ) = 1 - exp { - ( t η u ) β u } - - - ( 17 )
使用应力下不同失效模式的威布尔分布为: 
F i ( t ) = 1 - exp { - ( t η u i ) β u i } - - - ( 18 )
其中,i表示第i个故障模式。推导出所有故障模式的累积分布后,样本系统的累积分布为: 
F(t)=1-(1-F1(t)(1-F2(t)…(1-Fn(t))    (19) 
其中,n为故障模式个数。 
其中,在步骤一中所述的寿命特性,其典型的寿命特性是在Y年之后有F%的失效,例如在10年后有5%的失效。 
其中,在步骤一中所述的置信度,其典型的置信度是50%。 
其中,在步骤三中所述的计算最小时间Dmin,其计算最小时间Dmin的公式为: 
D min = MAX ( Y AF max [ ln ( 1 - UCL 1 ) ln ( 1 - C * F ) ] 1 β min , Y AF max [ ln ( 1 - UCL 1 ) ln ( 1 - C * F ) ] 1 β max ) - - - ( 20 )
其中: 
UCL1代表在置信度CL下第一个故障不可靠度的预估值, 
Figure BDA0000070624240000072
这里TTF1指的是首次故障时间;典型地,CL为50%,初始样本量为30; 
Y表示年数; 
F表示不可靠度; 
C表示在Y年中累积不可靠度F中的贡献比,通常考虑那些占累积故障大于15%的独立故障; 
AF表示加速因子、加速系数; 
Dmin的取值受样本大小影响。 
3、优点及功效: 
本发明针对一般加速模型不能准确描述电子产品的加速寿命试验的问题,提出了一种基于威布尔分布和Peck温湿模型的加速模型——“寿命-应力”模型,并提出一种基于该模型的加速寿命试验方法。采用本专利方法能显著地缩短电子产品加速寿命试验的时间,提高试验结果的精度。 
(四)附图说明:
图1本发明所述方法的工艺流程图 
图2单组试验时间循环 
图3最小试验时间Dmin与样本量N的关系 
图中符号说明如下: 
TmaxRHmax:最大温度和最大湿度组合; 
TmaxRHmed:最大温度和中等湿度组合; 
TmaxRHmin:最大温度和最小湿度组合; 
TmedRHmax:中等温度和最大湿度组合; 
TminRHmax:最小温度和最大湿度组合; 
Dmin:最小试验时间; 
Weibull拟合:基于威布尔分布的线性回归拟合方法。 
(五)具体实施方式:
本发明所述方法工艺流程图如图1所示。本发明一种基于“寿命-应力”模型的电子产品加速寿命试验方法,其步骤如下: 
步骤一:定义样本寿命特征。这一步定义所要检验的样本寿命特征是什么,有什么样的置信度。典型的寿命特性是在Y年之后有F%的失效(例如在10年后有5%的失效)。典型的置信度是50%。 
步骤二:定义失效判据。这一步是要根据具体的试验样本的失效机理和试验手段来确定故障判据。 
步骤三:最大应力组合的加速寿命试验。这一步包含四项内容,即 
1.定义样本能承受的最大温度、湿度应力组合。定义电子产品在规定电压Un和负载电流0.1Imax或0.5倍Imax条件下上电时所设计的能承受的最大的应力水平(记为TmaxRHmax)。 
2.定义样本大小。推荐的样本大小为30。这里样本量“30”指的是单次试验所采用的样本数量,如果囿于试验成本或试验设备等条件,不能满足至少30个样本的要求,可适当减少样本数量。但这样做所带来的一个直接的消极影响是会导致最小试验时间的延长,这使得试验时间延长的概率增加,因而增加试验费用,削弱了减少样本带来的成本经济效应。 
3.计算最小试验时间Dmin。这一步确定完成试验所需的最短时间(记作Dmin)。从理论上讲,样本在试验应力下暴露的时间越长,其老化加速越快,因而较长的试验时间可以得到较完整的失效数据;另一方面,受成本和时间效益制约,试验时间不可能无限制延长。综上,需要综合考虑两方面内容,使得选定的试验时间既能满足试验数据处理的要求,又能有较好的经济适用性。本专利提供了一种试验时间的确定方法,即计算最大应力下最小试验持续时间,并将其作为试验时间的度量,依据实际的试验情况,动态确定合适的试验时间。参考下列公式: 
D min = MAX ( Y AF max [ ln ( 1 - UCL 1 ) ln ( 1 - C * F ) ] 1 β min , Y AF max [ ln ( 1 - UCL 1 ) ln ( 1 - C * F ) ] 1 β max ) - - - ( 21 )
其中: 
UCL1代表在置信度CL下第一个故障不可靠度的预估值, 
Figure BDA0000070624240000082
这里TTF1指的是首次故障时间;典型地,CL为50%,初始样本量为30。 
Y表示年数,如Y=10年; 
F表示不可靠度,如F=4.1%; 
C表示在Y年中累积不可靠度F中的贡献比,一般只考虑那些占累积故障大于15%的独立故障; 
AF表示加速因子或加速系数。 
Dmin的取值受样本大小影响,其与样本量的关系如附图3所示。 
4.最大应力组合TmaxRHmax下,进行加速寿命试验。在最大应力组合TmaxRHmax下进行加速寿命试验,样本所加电压为Un,样本电流为0.1Imax(Imax是样本最大允许工作电流)或0.5Imax。这一步试验的目的是获取电子产品在相应失效分布情况下的所有主要的独立故障模式。在分离出主要独立故障模式后,分别记录其在加速寿命试验中的失效前时间(TTF)和累积不可靠度(F)。 
步骤四:其他组合的加速寿命试验。最大应力水平组合下的加速寿命试验数据能够提供一个威布尔寿命参数,根据本专利所提供的方法,还应定义四组不同应力的试验。且对这四组应力中的任意一组而言,应该保证温度应力和湿度应力至少有一个是最大应力组合中的一个,这4组应力组合分别为:TmaxRHmed,TmaxRHmin,TmedRHmax,TminRHmax。其中med表示“中间”,min表示“最小”。 
进行其余4组试验的试验条件和试验数据要求同最大应力组合下的加速寿命试验,这些试验的目的是增大每一个主要独立故障模式下的加速因子的变化。试验时,对于每一个主要独立故障模式都观察到至少5个失效数据时,试验即可终止;否则试验进行至2倍Dmin时间终止。 
步骤五:失效数据处理。在经过步骤三和步骤四的加速寿命试验后,对所记录的“失效前时间——累积不可靠度”数据将在本节进行处理。数据处理的方法是威布尔分布的线性拟合法,即将失效数据作为输入,对于每一个独立故障模式,在威布尔图上画出失效前时间的数据和相应的不可靠度估计,然后通过回归方法拟合威布尔分布模型,进而求的样本在该组应力下的寿命分布。相关计算公式如下: 
其中xi,yi是失效数据线性化后的值,表示威布尔图上的一个点,且回归方程为: 
x i = ln ( TTFi ) y i = ln ( - ln ( 1 - F ( TTF i ) ) ) - - - ( 22 )
其中xi,yi是失效数据线性化后的值,表示威布尔图上的一个点,且回归方程为: 
yi=Axi+B    (23) 
A,B为两个回归参数,B的估计值为: 
B = Σ i = 1 p x i y i - Σ i = 1 N x i Σ i = 1 N y i p Σ i = 1 p x i 2 - ( Σ i = 1 p x i ) 2 p - - - ( 24 )
A的估计值为: 
A = 1 p Σ i = 1 p y i - B p Σ i = 1 p x i - - - ( 25 )
可得威布尔分布参数如下: 
β = B , η = e - A B - - - ( 26 )
根据上述过程分别求得五组应力下的威布尔分布参数,代入下一步计算求加速因子参数Ea和n。 
步骤六:估计加速模型参数。经过步骤五对失效数据的威布尔拟合,我们得到了上述五组应力条件下各个独立故障模式的威布尔分布参数β和η,对于每一种应力组合的每一个独立的故障模式,观察到的失效都用由其系数β、η和γ决定的威布尔分布来表示。原始输入的用来计算模型参数n和Ea的数据将会是五个η参数,它们可以记为:ηTmax RH max,ηTmax RH med,ηTmax RH min,ηTmed RH max,ηTmin RH max。 
下面对如何利用这五组数据构建加速模型进行详细说明。 
前文已述,威布尔分布可以用来描述样本的寿命总体;而Peck温湿模型又可描述样本寿命与应力之间的关系(加速因子),基于这两种模型各自的特点,本专利方法将二者结合,提出新的“寿命-应力”模型。该模型能够直接由加速应力下的样本总体寿命特征参数推导样本总体在使用应力下的寿命特征。由可靠性相关理论易知,对于同一故障机理而言,其在不同应力下的威布尔形状参数相同,而尺度参数随应力变化而发生变化。尺度参数和加速因子存在下述关系: 
AF T max RH max AF TRH = η TRH η T max RH max - - - ( 27 )
引入Peck模型的加速因子公式: 
AF = ( RH u RH s ) - n e E a k ( 1 T u - 1 T s ) - - - ( 28 )
其中,RHu是使用条件下的百分比相对湿度;RHs是应力条件下的百分比相对湿度;Tu是使用条件下以K表示的温度;Ts是应力条件下以K表示的温度;Ea和n是与材料有关的参数。 
式(28)等号两边取自然对数,可得: 
ln ( AF ) = - n ln ( RH u RH S ) + E a k ( 1 T u - 1 T s ) - - - ( 29 )
由Tmax和RHmax定义的应力水平下的加速因子方程为: 
ln ( AF T max RH max ) = - n ln ( RH u RH max ) + E a k ( 1 T u - 1 T max ) - - - ( 30 )
T和RH定义的应力水平下的加速因子方程为: 
ln ( AF TRH ) = - n ln ( RH u RH ) + E a k ( 1 T u - 1 T ) - - - ( 31 )
结合公式(27),我们得到: 
ln ( η TRH η T max RH max ) = ln ( AF T max RH max AF TRH ) = - n ln ( RH RH max ) + E a k ( 1 T - 1 T max ) - - - ( 32 )
或 
ln ( η TRH η T max RH max ) = - n ln ( RH RH max ) + E a k ( 1 T - 1 T max ) - - - ( 33 )
公式(33)称为“寿命-应力”模型。参数解释如下:ηTmax RH max:在最大应力组合下进行的加速寿命试验,经威布尔拟合与判定所得到的样本的威布尔寿命参数(尺度参数); 
ηTRH:某一应力组合下进行的加速寿命试验,经威布尔拟合与判定所得到的样本的威布尔寿命参数(尺度参数);其中: 
RHu是使用条件下的百分比相对湿度; 
RHs是应力条件下的百分比相对湿度; 
Tu是使用条件下以K表示的温度; 
Ts是应力条件下以K表示的温度; 
Ea和n是与材料有关的参数; 
k是玻尔兹曼常数。 
公式(33)可以写成形如 
Z=nX+EaY    (34) 
的形式。选择Tmax-RHmax作为对照组,将另外四组应力代入公式(34)得到的结果如表格2所示: 
表格2五组应力下的“寿命-应力”模型 
Figure BDA0000070624240000121
根据最小二乘/秩回归原理,记 
F = Σ i = 1 4 ( nX i + E a Y i - Z i ) 4 - - - ( 35 )
令 
dF dn = 0 dF dE a = 0 - - - ( 36 )
求解上述方程,可得: 
Figure BDA0000070624240000131
n ^ = Σ i = 1 4 X i Z i - B Σ i = 1 4 X i Y i Σ i = 1 4 X i 2 - - - ( 38 )
其中, 
Figure BDA0000070624240000133
是Ea的估计值, 
Figure BDA0000070624240000134
是n的估计值: 
由上述推导可得,在最大应力组合Tmax-RHmax下进行一次加速寿命试验以确定样本在最大应力组合下的寿命特征参数 
Figure BDA0000070624240000135
之后再进行其他应力组合下的试验,求出其他应力组合所对应的寿命参数,最后代入Ea和n的估计式求解。 
步骤七:使用条件下温湿应力确定。电子产品的使用环境可分为室内环境和室外环境。室外环境受自然环境的影响,不同时间的温度湿度波动较大,而室内环境则相对较为封闭,有着比较稳定的温度和相对湿度。因而,对室外环境下温度和相对湿度的确定要比室内环境的温度湿度的确定更为复杂。 
对于室外装置,正常使用条件下的温度和湿度取决于电子产品装置即将安装的国家(或地区)的气候条件,首先应获取该地区1年以上的温度和相对湿度等气象资料后,再根据下述方法求年平均温度和平均相对湿度。 
对于每一个确认的独立故障模式,年平均温度应该按如下步骤从年温度分布中计算出来: 
1)取每个月中最低和最高温度Ti(i=1...24)相对于20℃下的加速因子 
AT i = e E a k i ( 1 293 - 1 T i ) - - - ( 39 )
可以利用步骤六获得的Ea值、k=8.617×10-5是玻尔兹曼常数和Ti(单位K)计算得到。 
2)对各个温度的加速因子求平均值ATaverage,即: 
AT average = 1 24 Σ i = 1 24 A T i - - - ( 40 )
3)用求得的平均加速因子计算平均温度,即使用条件下的温度应力Tu: 
T u = 1 1 293 - k ln ( AT average ) E a - - - ( 41 )
其中Tu的单位是K。 
同样,对于每一个确认的故障模式,年平均湿度应该按如下步骤从年湿度分布中计算出来: 
1)取每一个月的平均相对湿度RHi(i=1...24),利用步骤六中获得的n值,使用公式 
AH i = ( 0.5 RH i ) - n - - - ( 42 )
计算AHi。此加速因子是在湿度RHi时和湿度50%时比较的加速因子。 
2)对各个湿度的加速因子求平均值AHaverage,即: 
AH average = 1 12 Σ i = 1 12 AH i - - - ( 43 )
3)用求得的平均加速因子计算平均湿度,即使用条件下的湿度应力RHu。 
RH u = 0.5 AH average - 1 n - - - ( 44 )
对室内的装置来说,温度和湿度并不十分依赖气候条件。在这种情况下,正常使用时的温度和湿度条件应由样本产品安装手册规定,并且作为已知条件包含在加速寿命试验的报告中。 
步骤八:外推使用条件下样本失效分布。对于每一个独立故障模式,在不同的应力下所得到的加速因子不同,设TTFs是该故障模式在某一应力组合下的某一个故障的失 效前时间,则根据已经求得的该应力组合下的加速因子,将TTFs外推至正常使用条件,即 
TTFu=TTFs×AF    (45) 
其中TTFu即使用条件下,该故障模式出现同一故障的失效前时间。将所有外推失效前时间与相应累积不可靠度F(TTFs)组成新的样本点即(TTFu,F(TTFs)),在威布尔分布图上描出这些点并进行威布尔线性拟合,可得使用条件下该故障模式的威布尔分布参数βu,ηu。 
由公式(45)可以看出,对于不同应力下得到的样本总体的寿命参数,其相对于同一使用应力的加速因子(或加速倍数)是不同的。不同的加速因子由“寿命-应力”模型所确立的加速关系推得。 
从以上过程可以求得每一个正常使用条件下的主要独立故障模式的威布尔分布,可得分布函数如下: 
F i ( t ) = 1 - exp { - ( t η i ) β i } - - - ( 46 )
其中,i表示第i个故障模式。推导出所有故障模式的累积分布后,根据系统累积分布的定义,得 
F(t)=1-(1-F1(t)(1-F2(t)…(1-Fn(t))    (47) 
n为故障模式个数。 
实施案例1 
现有一型视频编解码器需要进行加速寿命试验,试验样本量为30,试验组数为5组,试验结果经威布尔拟合后如下表所示: 
表格3某型视频编解码器的加速寿命试验结果(威布尔拟合) 
  T(℃)   RH(%)   Beta   Eta   相关系数   接受阈值   检验结果
  85   95   1.05   2066   0.931   0.851   接受
  85   85   1.07   2927   0.963   0.819   接受
  85   75   1.05   4128   0.973   0.819   接受
  75   95   1.02   4979   0.925   0.819   接受
[0187] 
  T(℃)   RH(%)   Beta   Eta   相关系数   接受阈值   检验结果
  65   95   1.03   13474   0.959   0.819   接受
表格3中第一列是温度应力值(单位:℃),第二列是相对湿度应力值(单位:%)。第三列和第四列分别是威布尔分布的形状参数β和尺度参数η,这两个值是通过对原始的试验数据即“失效时间——累积不可靠度”数据进行威布尔拟合得到的。拟合得到的参数还应进行拟合优度检验,其相关系数和接受阈值如第五、六列所示,若相关系数≥接受阈值,则接受检验;否则即拒绝检验。根据本例的已知条件,五组试验得到的威布尔参数都通过了拟合优度检验。
根据“寿命-应力”模型,由表格2和表格3可得: 
表格4“寿命-应力”模型的计算表格 
  T(℃)   RH(%)   Z   X   Y
  85   85   0.348   0.111   0
  85   75   0.692   0.236   0
  75   95   0.879   0   0.931
  65   95   1.875   0   1.918
表格4中所列的是除最大应力组合外的试验结果所对应的Peck线性方程的系数值,根据上表,可以求出Peck模型的参数Ea和n,即有: 
n ^ = 2.968
最后,将Ea和n代入Peck模型加速因子公式求得加速因子AF。如在最大应力组合95℃-85%下,相对于正常应力20.4℃-72%而言,加速因子 
AF = ( 72 95 ) - 2.968 e 0.971 8.617 × 10 - 5 ( 1 273 + 20.4 - 1 273 + 85 ) = 2329
在求出加速因子之后,即可外推正常条件下样本的寿命分布。 

Claims (4)

1.基于“寿命-应力”模型的电子产品加速寿命试验方法,其特征在于:该方法具体步骤如下:
步骤一:定义样本寿命特征 即定义被测样本的寿命特征是什么,置信度为多少;
步骤二:定义失效判据 要根据具体的试验样本的失效机理和试验手段来确定故障判据;步骤三:最大应力组合的加速寿命试验 包括定义样本能承受的最大温湿应力组合、定义样本大小、计算最小时间Dmin、进行最大应力组合试验四个部分;
步骤四:其他组合的加速寿命试验 即进行包括除最大应力组合外另外的四组不同应力组合的试验;这4组应力组合分别为:TmaxRHmed,TmaxRHmin,TmedRHmax,TminRHmax,其中med表示“中间”,min表示“最小”,则上述四组试验组合按次序即最大温度和中等湿度组合,最大温度和最小湿度组合,中等温度和最大湿度组合,最小温度和最大湿度组合;
步骤五:失效数据处理 即借助威布尔分布拟合分析方法拟合各组试验样本的寿命总体的威布尔分布模型,并求出相应的寿命特征参数;即将失效数据作为输入,对于每一个独立故障模式,在威布尔图上画出失效前时间的数据和相应的不可靠度估计,然后通过回归方法拟合威布尔分布模型,进而求的样本在该组应力下的寿命分布;相关计算公式如下:
其中xi,yi是失效数据线性化后的值,表示威布尔图上的一个点,且回归方程为:
x i = ln ( TTFi ) y i = ln ( - ln ( 1 - F ( TTF i ) ) )
其中xi,yi是失效数据线性化后的值,表示威布尔图上的一个点,且回归方程为:
yi=Axi+B
A,B为两个回归参数,B的估计值为:
B = Σ i = 1 p x i y i - Σ i = 1 N x i Σ i = 1 N y i p Σ i = 1 p x i 2 - ( Σ i = 1 p x i ) 2 p
A的估计值为:
A = 1 p Σ i = 1 p y i - B p Σ i = 1 p x i
可得威布尔分布参数如下:
β = B , η = e - A B
根据上述过程分别求得五组应力下的威布尔分布参数,代入下一步计算求加速因子参数Ea和n;
步骤六:估计加速模型参数经过步骤五对失效数据的威布尔拟合,可得到五组应力条件下各个独立故障模式的威布尔分布参数β和η,对于每一种应力组合的每一个独立的故障模式,观察到的失效都用由其系数β、η和γ决定的威布尔分布来表示;原始输入的用来计算模型参数n和Ea的数据将会是五个η参数,它们可以记为:
ηTmax RH max,ηTmax RH med,ηTmax RH min,ηTmed RH max,ηTmin RH max,按次序即最大温度和最大湿度组合、最大温度和中等湿度组合、最大温度和最小湿度组合、中等温度和最大湿度组合、最小温度和最大湿度组合分别对应的寿命特征参数;
由此可得“寿命-应力”的两个参数Ea和n的估计值分别为:
Figure FDA0000070624230000021
n ^ = Σ i = 1 4 X i Z i - B Σ i = 1 4 X i Y i Σ i = 1 4 X i 2
将上述参数代入下式可求得加速试验的加速因子:
AF = ( RH u RH s ) - n e E a k ( 1 T u - 1 T s )
其中,RHu是使用条件下的百分比相对湿度;RHs是应力条件下的百分比相对湿度;Tu是使用条件下以K表示的温度;Ts是应力条件下以K表示的温度;Ea和n是与材料有关的参数;
步骤七:使用条件下温湿应力确定要确定使用条件下的温度应力与湿度应力,首先应获取使用地区一年以上的详细气象资料,再根据下述方法求年平均温度和平均相对湿度;
对于每一个确认的独立故障模式,年平均温度应该按如下步骤从年温度分布中计算出来:
1)取每个月中最低和最高温度Ti(i=1...24)相对于20℃下的加速因子
AT i = e E a k i ( 1 293 - 1 T i )
利用步骤六获得的Ea值、k=8.617×10-5是玻尔兹曼常数和Ti,单位是K计算得到;
2)对各个温度的加速因子求平均值ATaverage,即:
AT average = 1 24 Σ i = 1 24 A T i
3)用求得的平均加速因子计算平均温度,即使用条件下的温度应力Tu:
T u = 1 1 293 - k ln ( AT average ) E a
其中Tu的单位是K;
同样,对于每一个确认的故障模式,年平均湿度应该按如下步骤从年湿度分布中计算出来:
1)取每一个月的平均相对湿度RHi(i=1...24),利用步骤六中获得的n值,使用公式
AH i = ( 0.5 RH i ) - n
计算AHi;此加速因子是在湿度RHi时和湿度50%时比较的加速因子;
2)对各个湿度的加速因子求平均值AHaverage,即:
AH average = 1 12 Σ i = 1 12 AH i
3)用求得的平均加速因子计算平均湿度,即使用条件下的湿度应力RHu;
RH u = 0.5 AH average - 1 n
步骤八:外推使用条件下样本失效分布即是利用上述七步求出的加速模型及加速系数将试验中得到的失效数据外推到使用应力条件下,并最终求得使用应力条件下样本的寿命参数,即样本的寿命估计;对于每一个独立故障模式,在不同的应力下所得到的加速因子不同,设TTFs是该故障模式在某一应力组合下的某一个故障的失效前时间,利用公式
TTFu=TTFs×AF
其中TTFu即使用条件下,该故障模式出现同一故障的失效前时间;将所有外推失效前时间与相应累积不可靠度F(TTFs)组成新的样本点即(TTFu,F(TTFs)),在威布尔分布图上描出这些点并进行威布尔线性拟合,可得使用条件下该故障模式的威布尔分布参数βu,ηu;则使用应力下样本寿命所服从的威布尔分布为:
F i ( t ) = 1 - exp { - ( t η u ) β u }
使用应力下不同失效模式的威布尔分布为:
F i ( t ) = 1 - exp { - ( t η u i ) β u i }
其中,i表示第i个故障模式,推导出所有故障模式的累积分布后,样本系统的累积分布为:
F(t)=1-(1-F1(t)(1-F2(t)…(1-Fn(t))
其中,n为故障模式个数。
2.根据权利要求1所述的基于“寿命-应力”模型的电子产品加速寿命试验方法,其特征在于:在步骤一中所述的寿命特性,其典型的寿命特性是在Y年之后有F%的失效。
3.根据权利要求1所述的基于“寿命-应力”模型的电子产品加速寿命试验方法,其特征在于:在步骤一中所述的置信度,其典型的置信度是50%。
4.根据权利要求1所述的基于“寿命-应力”模型的电子产品加速寿命试验方法,其特征在于:在步骤三中所述的计算最小时间Dmin,其计算最小时间Dmin的公式为:
D min = MAX ( Y AF max [ ln ( 1 - UCL 1 ) ln ( 1 - C * F ) ] 1 β min , Y AF max [ ln ( 1 - UCL 1 ) ln ( 1 - C * F ) ] 1 β max )
其中:
UCL1代表在置信度CL下第一个故障不可靠度的预估值,
Figure FDA0000070624230000044
这里TTF1指的是首次故障时间;典型地,CL为50%,初始样本量为30;
Y表示年数;
F表示不可靠度;
C表示在Y年中累积不可靠度F中的贡献比,通常考虑那些占累积故障大于15%的独立故障;
AF表示加速因子、加速系数;
Dmin的取值受样本大小影响。
CN201110170973.6A 2011-03-09 2011-06-23 基于“寿命-应力”模型的电子产品加速寿命试验方法 Active CN102252898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110170973.6A CN102252898B (zh) 2011-03-09 2011-06-23 基于“寿命-应力”模型的电子产品加速寿命试验方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110056871 2011-03-09
CN201110056871.1 2011-03-09
CN201110170973.6A CN102252898B (zh) 2011-03-09 2011-06-23 基于“寿命-应力”模型的电子产品加速寿命试验方法

Publications (2)

Publication Number Publication Date
CN102252898A true CN102252898A (zh) 2011-11-23
CN102252898B CN102252898B (zh) 2015-01-21

Family

ID=44980291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110170973.6A Active CN102252898B (zh) 2011-03-09 2011-06-23 基于“寿命-应力”模型的电子产品加速寿命试验方法

Country Status (1)

Country Link
CN (1) CN102252898B (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494880A (zh) * 2011-11-24 2012-06-13 北京航空航天大学 一种航天驱动组件综合应力加速寿命试验剖面设计方法
CN102539136A (zh) * 2012-01-05 2012-07-04 北京航空航天大学 一种电真空器件加速贮存寿命试验方法
CN102589891A (zh) * 2012-03-02 2012-07-18 北京理工大学 一种车用电机驱动系统耐久寿命的估计方法
CN102788708A (zh) * 2012-08-07 2012-11-21 湖北工业大学 一种用于机电设备的加速寿命试验方法
CN103176077A (zh) * 2012-12-06 2013-06-26 华中科技大学 一种数控成品电路板在环境综合作用下的可靠性快速测评方法
CN103217264A (zh) * 2013-04-03 2013-07-24 中国人民解放军国防科学技术大学 一种适用于电子产品的加速可靠性鉴定试验方法
CN103616326A (zh) * 2013-12-10 2014-03-05 中国人民解放军军械工程学院 通过温湿度、电应力加速退化试验获得雷达寿命的方法
CN103810331A (zh) * 2014-01-24 2014-05-21 北京航空航天大学 一种印制电路板过孔几何尺寸对其寿命影响分析方法
CN104181457A (zh) * 2014-08-15 2014-12-03 中国电子科技集团公司第二十四研究所 一种半导体器件温湿度复合应力加速模型优选方法
CN104459408A (zh) * 2014-12-11 2015-03-25 中国电子科技集团公司第二十研究所 用加大温度应力的加速寿命试验验证产品可靠性的方法
CN104680005A (zh) * 2015-02-11 2015-06-03 北京航空航天大学 基于加速因子可行域选择的非平行贮存寿命试验评估方法
CN104820747A (zh) * 2015-05-06 2015-08-05 北京航空航天大学 一种基于仿真的dc-dc开关电源故障预测方法
CN105699058A (zh) * 2016-03-21 2016-06-22 上海时代之光照明电器检测有限公司 一种led灯具系统可靠性的评价方法
CN105954182A (zh) * 2016-06-06 2016-09-21 中国电力科学研究院 一种基于威布尔分布建立电力复合脂加速老化模型的方法及装置
CN106650043A (zh) * 2016-11-28 2017-05-10 中国电子产品可靠性与环境试验研究所 加速模拟试验与自然环境试验的相关性评价方法与系统
CN108304352A (zh) * 2017-12-28 2018-07-20 中国人民解放军63908部队 加速寿命试验样本分配方法及终端设备
CN108664690A (zh) * 2018-03-24 2018-10-16 北京工业大学 基于深度信念网络的多应力下长寿命电子器件可靠性寿命评估方法
CN109101750A (zh) * 2018-08-30 2018-12-28 电子科技大学 一种电子器件湿热环境下的加速寿命预测方法
CN109165108A (zh) * 2018-07-27 2019-01-08 同济大学 软件可靠性加速测试的失效数据还原方法及测试方法
CN109557397A (zh) * 2018-12-03 2019-04-02 北京遥感设备研究所 一种适用于真空器件的加速贮存试验方法
CN109766600A (zh) * 2018-12-26 2019-05-17 北京宇航系统工程研究所 一种多应力小子样的分离螺母装置贮存寿命评估方法
CN110208122A (zh) * 2019-05-08 2019-09-06 杭州电子科技大学 一种机器人线束耐磨可靠性加速测试方法
CN111859623A (zh) * 2020-06-23 2020-10-30 航天科工空间工程发展有限公司 卫星电子产品的可靠性鉴定方法、装置、设备及存储介质
CN111947703A (zh) * 2020-08-10 2020-11-17 中国电子科技集团公司第四十九研究所 一种基于双应力加速贮存试验的传感器寿命获取方法
CN112466387A (zh) * 2020-12-07 2021-03-09 武汉中原电子信息有限公司 一种nand flash芯片读写寿命的快速测试方法
CN112711826A (zh) * 2019-10-08 2021-04-27 中车时代电动汽车股份有限公司 一种电子产品的可靠度测量方法及其装置
CN113946983A (zh) * 2021-12-20 2022-01-18 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 产品可靠性薄弱环节评估方法、装置和计算机设备
CN115308558A (zh) * 2022-08-29 2022-11-08 北京智芯微电子科技有限公司 Cmos器件寿命预测方法、装置、电子设备及介质
CN116148106A (zh) * 2023-04-21 2023-05-23 清华四川能源互联网研究院 落球式耐久冲击与温湿度联合加速试验方法及系统
CN116930725A (zh) * 2023-09-15 2023-10-24 中国船舶集团有限公司第七一九研究所 一种船用电路板卡使用寿命试验与评估方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088764A (zh) * 2017-12-15 2018-05-29 佛山租我科技有限公司 基于Coffin-Manson模型的新能源汽车车载监控终端寿命测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128698A (ja) * 2006-11-17 2008-06-05 Ntn Corp 加速試験における有為差有無判定・有為寿命差見積もり方法および装置
CN101620034A (zh) * 2009-07-20 2010-01-06 北京航空航天大学 基于比例危害-比例优势模型的加速寿命试验优化设计方法
CN101620045A (zh) * 2009-07-31 2010-01-06 北京航空航天大学 基于时间序列的步进应力加速退化试验可靠性评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128698A (ja) * 2006-11-17 2008-06-05 Ntn Corp 加速試験における有為差有無判定・有為寿命差見積もり方法および装置
CN101620034A (zh) * 2009-07-20 2010-01-06 北京航空航天大学 基于比例危害-比例优势模型的加速寿命试验优化设计方法
CN101620045A (zh) * 2009-07-31 2010-01-06 北京航空航天大学 基于时间序列的步进应力加速退化试验可靠性评估方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EFREN M.BENAVIDES: "Reliability Model for Step-Stress and Variable-Stress Situations", 《IEEE TRANSACTIONS ON RELIABILITY》 *
徐晓岭 等: "威布尔分布场合下步进应力加速寿命试验的统计分析", 《运筹学学报》 *
李亦非 等: "基于寿命应力模型的电能表加速寿命试验研究", 《现代电子技术》 *
浦志勇 等: "加速寿命试验与电能表的可靠性试验方法", 《电测与仪表》 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494880B (zh) * 2011-11-24 2014-04-02 北京航空航天大学 一种航天驱动组件综合应力加速寿命试验剖面设计方法
CN102494880A (zh) * 2011-11-24 2012-06-13 北京航空航天大学 一种航天驱动组件综合应力加速寿命试验剖面设计方法
CN102539136A (zh) * 2012-01-05 2012-07-04 北京航空航天大学 一种电真空器件加速贮存寿命试验方法
CN102539136B (zh) * 2012-01-05 2014-11-05 北京航空航天大学 一种电真空器件加速贮存寿命试验方法
CN102589891A (zh) * 2012-03-02 2012-07-18 北京理工大学 一种车用电机驱动系统耐久寿命的估计方法
CN102589891B (zh) * 2012-03-02 2013-12-18 北京理工大学 一种车用电机驱动系统耐久寿命的估计方法
CN102788708A (zh) * 2012-08-07 2012-11-21 湖北工业大学 一种用于机电设备的加速寿命试验方法
CN103176077A (zh) * 2012-12-06 2013-06-26 华中科技大学 一种数控成品电路板在环境综合作用下的可靠性快速测评方法
CN103176077B (zh) * 2012-12-06 2016-05-04 华中科技大学 一种数控成品电路板在环境综合作用下的可靠性快速测评方法
CN103217264A (zh) * 2013-04-03 2013-07-24 中国人民解放军国防科学技术大学 一种适用于电子产品的加速可靠性鉴定试验方法
CN103217264B (zh) * 2013-04-03 2016-01-06 中国人民解放军国防科学技术大学 一种适用于电子产品的加速可靠性鉴定试验方法
CN103616326A (zh) * 2013-12-10 2014-03-05 中国人民解放军军械工程学院 通过温湿度、电应力加速退化试验获得雷达寿命的方法
CN103616326B (zh) * 2013-12-10 2017-06-20 中国人民解放军军械工程学院 通过温湿度、电应力加速退化试验获得雷达寿命的方法
CN103810331A (zh) * 2014-01-24 2014-05-21 北京航空航天大学 一种印制电路板过孔几何尺寸对其寿命影响分析方法
CN103810331B (zh) * 2014-01-24 2016-08-17 北京航空航天大学 一种印制电路板过孔几何尺寸对其寿命影响分析方法
CN104181457A (zh) * 2014-08-15 2014-12-03 中国电子科技集团公司第二十四研究所 一种半导体器件温湿度复合应力加速模型优选方法
CN104181457B (zh) * 2014-08-15 2017-01-18 中国电子科技集团公司第二十四研究所 一种半导体器件温湿度复合应力加速模型优选方法
CN104459408A (zh) * 2014-12-11 2015-03-25 中国电子科技集团公司第二十研究所 用加大温度应力的加速寿命试验验证产品可靠性的方法
CN104680005B (zh) * 2015-02-11 2018-04-27 北京航空航天大学 基于加速因子可行域选择的非平行贮存寿命试验评估方法
CN104680005A (zh) * 2015-02-11 2015-06-03 北京航空航天大学 基于加速因子可行域选择的非平行贮存寿命试验评估方法
CN104820747A (zh) * 2015-05-06 2015-08-05 北京航空航天大学 一种基于仿真的dc-dc开关电源故障预测方法
CN104820747B (zh) * 2015-05-06 2017-12-01 北京航空航天大学 一种基于仿真的dc‑dc开关电源故障预测方法
CN105699058A (zh) * 2016-03-21 2016-06-22 上海时代之光照明电器检测有限公司 一种led灯具系统可靠性的评价方法
CN105699058B (zh) * 2016-03-21 2021-05-28 上海时代之光照明电器检测有限公司 一种led灯具系统可靠性的评价方法
CN105954182A (zh) * 2016-06-06 2016-09-21 中国电力科学研究院 一种基于威布尔分布建立电力复合脂加速老化模型的方法及装置
CN105954182B (zh) * 2016-06-06 2020-10-27 中国电力科学研究院 一种基于威布尔分布建立电力复合脂加速老化模型的方法及装置
CN106650043B (zh) * 2016-11-28 2019-08-06 中国电子产品可靠性与环境试验研究所 加速模拟试验与自然环境试验的相关性评价方法与系统
CN106650043A (zh) * 2016-11-28 2017-05-10 中国电子产品可靠性与环境试验研究所 加速模拟试验与自然环境试验的相关性评价方法与系统
CN108304352A (zh) * 2017-12-28 2018-07-20 中国人民解放军63908部队 加速寿命试验样本分配方法及终端设备
CN108304352B (zh) * 2017-12-28 2021-12-17 中国人民解放军63908部队 加速寿命试验样本分配方法及终端设备
CN108664690A (zh) * 2018-03-24 2018-10-16 北京工业大学 基于深度信念网络的多应力下长寿命电子器件可靠性寿命评估方法
CN109165108A (zh) * 2018-07-27 2019-01-08 同济大学 软件可靠性加速测试的失效数据还原方法及测试方法
CN109101750A (zh) * 2018-08-30 2018-12-28 电子科技大学 一种电子器件湿热环境下的加速寿命预测方法
CN109557397A (zh) * 2018-12-03 2019-04-02 北京遥感设备研究所 一种适用于真空器件的加速贮存试验方法
CN109766600A (zh) * 2018-12-26 2019-05-17 北京宇航系统工程研究所 一种多应力小子样的分离螺母装置贮存寿命评估方法
CN109766600B (zh) * 2018-12-26 2023-11-21 北京宇航系统工程研究所 一种多应力小子样的分离螺母装置贮存寿命评估方法
CN110208122A (zh) * 2019-05-08 2019-09-06 杭州电子科技大学 一种机器人线束耐磨可靠性加速测试方法
CN112711826A (zh) * 2019-10-08 2021-04-27 中车时代电动汽车股份有限公司 一种电子产品的可靠度测量方法及其装置
CN111859623A (zh) * 2020-06-23 2020-10-30 航天科工空间工程发展有限公司 卫星电子产品的可靠性鉴定方法、装置、设备及存储介质
CN111947703A (zh) * 2020-08-10 2020-11-17 中国电子科技集团公司第四十九研究所 一种基于双应力加速贮存试验的传感器寿命获取方法
CN112466387A (zh) * 2020-12-07 2021-03-09 武汉中原电子信息有限公司 一种nand flash芯片读写寿命的快速测试方法
CN112466387B (zh) * 2020-12-07 2024-05-28 武汉中原电子信息有限公司 一种nand flash芯片读写寿命的快速测试方法
CN113946983A (zh) * 2021-12-20 2022-01-18 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 产品可靠性薄弱环节评估方法、装置和计算机设备
CN115308558A (zh) * 2022-08-29 2022-11-08 北京智芯微电子科技有限公司 Cmos器件寿命预测方法、装置、电子设备及介质
CN116148106A (zh) * 2023-04-21 2023-05-23 清华四川能源互联网研究院 落球式耐久冲击与温湿度联合加速试验方法及系统
CN116148106B (zh) * 2023-04-21 2023-07-14 清华四川能源互联网研究院 落球式耐久冲击与温湿度联合加速试验方法及系统
CN116930725A (zh) * 2023-09-15 2023-10-24 中国船舶集团有限公司第七一九研究所 一种船用电路板卡使用寿命试验与评估方法及系统
CN116930725B (zh) * 2023-09-15 2023-12-26 中国船舶集团有限公司第七一九研究所 一种船用电路板卡使用寿命试验与评估方法及系统

Also Published As

Publication number Publication date
CN106066274A (zh)
CN102252898B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
CN102252898A (zh) 基于“寿命-应力”模型的电子产品加速寿命试验方法
Li et al. Degradation data analysis based on a generalized Wiener process subject to measurement error
CN101793927B (zh) 步进应力加速退化试验优化设计方法
CN111859658B (zh) 一种产品贮存寿命与可靠性评估方法
CN105930976B (zh) 基于加权理想点法的节点电压暂降严重程度综合评估方法
CN107436963B (zh) 一种基于Copula函数多元退化的O型橡胶密封圈寿命预测方法
CN102629300A (zh) 一种基于灰色预测模型的步进应力加速退化数据评估方法
CN105069532B (zh) 一种多应力多退化量步进加速退化试验方案优化设计方法
CN107238765A (zh) 基于加速性能退化参数的led集成驱动电源可靠性分析方法
Jauregui-Rivera et al. Acceptability of four transformer top-oil thermal models—Part I: Defining metrics
CN102385046B (zh) 基于威布尔分布的智能电表加速寿命最小试验时间确定方法
CN108920341B (zh) 一种基于蒙特卡洛仿真的小卫星及其星座可用度评估方法
CN104678312B (zh) 一次性锂电池容量加速退化试验“倒挂”数据评估方法
CN104680005A (zh) 基于加速因子可行域选择的非平行贮存寿命试验评估方法
CN110260907A (zh) 一种用于传感器的温度应力无失效加速寿命试验方法
CN106950507A (zh) 一种智能时钟电池用高可靠性寿命评估方法
CN115962797B (zh) 一种基于温度应力下的传感器可靠性测试方法及系统
Yuan et al. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns
Li et al. Model selection for degradation-based Bayesian reliability analysis
CN109657260B (zh) 一种考虑失效相关性的涡轮转子系统可靠性分配方法
CN112329272B (zh) 综合光伏组件退化和寿命数据的剩余寿命拟合预测方法
CN114492074A (zh) 一种概率损伤容限评估分析方法
CN114169128A (zh) 一种基于Bayes分析的可靠性强化试验定量评估方法
CN109359375B (zh) 一种数据产品贮存寿命预测方法
CN110895625A (zh) 性能退化产品可靠度置信区间估计数值仿真方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210407

Address after: 215000 no.1-3-201, hangqiao Road, hejiajiao village, Wangting Town, Xiangcheng District, Suzhou City, Jiangsu Province

Patentee after: Suzhou Hangda Technology Innovation Development Co.,Ltd.

Address before: School of reliability and systems engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing, 100191

Patentee before: BEIHANG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231108

Address after: 215000 No.1-3, hangqiao Road, hejiajiao village, Wangting Town, Xiangcheng District, Suzhou City, Jiangsu Province

Patentee after: Suzhou Tianhang Changying Technology Development Co.,Ltd.

Address before: 215000 no.1-3-201, hangqiao Road, hejiajiao village, Wangting Town, Xiangcheng District, Suzhou City, Jiangsu Province

Patentee before: Suzhou Hangda Technology Innovation Development Co.,Ltd.

TR01 Transfer of patent right