CN102232124B - 生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法 - Google Patents

生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法 Download PDF

Info

Publication number
CN102232124B
CN102232124B CN2009801481665A CN200980148166A CN102232124B CN 102232124 B CN102232124 B CN 102232124B CN 2009801481665 A CN2009801481665 A CN 2009801481665A CN 200980148166 A CN200980148166 A CN 200980148166A CN 102232124 B CN102232124 B CN 102232124B
Authority
CN
China
Prior art keywords
blank
titanium
crystal grain
viscous deformation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801481665A
Other languages
English (en)
Other versions
CN102232124A (zh
Inventor
R·Z·瓦利夫
I·P·塞梅诺娃
E·B·亚库申纳
G·K·萨利姆加利瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano Matt Co. Ltd.
The form of National Aviation University of Technology
Original Assignee
G OBRAZOVATEL NOE UCHREZHDENIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G OBRAZOVATEL NOE UCHREZHDENIE filed Critical G OBRAZOVATEL NOE UCHREZHDENIE
Publication of CN102232124A publication Critical patent/CN102232124A/zh
Application granted granted Critical
Publication of CN102232124B publication Critical patent/CN102232124B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/924Material characteristic
    • Y10S623/925Natural
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S72/00Metal deforming
    • Y10S72/70Deforming specified alloys or uncommon metal or bimetallic work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Forging (AREA)

Abstract

本发明涉及一种具有UFG结构且机械与生物相容特性提高的工业纯钛,这种工业纯钛具有纳米晶α相晶粒和密排六方晶格,其中结构中尺寸为0.1...0.5μm且相互垂直平面内晶粒形状系数不大于2的晶粒所占比率不小于90%,60%以上的晶粒与相邻晶粒达15-90°角的大角度晶界位错。一种使用该材料制造钛棒的方法在T≤450℃且总累积应变e≥4的条件下进行坯料的等径角挤压,以实现坯料的剧烈塑性变形,其后在温度在450...350℃范围内递减、应变率为10-2...10-4s-1且应变程度为40-80%的条件下进行热机械处理,以实现附加塑性变形。

Description

生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法
相关引用 
本申请是2009年10月20日提交的国际专利申请WO 2010/047620A1(PCT/RU2009/000556)的中国国家阶段申请,并要求对2008年10月22日于俄罗斯联邦提交的专利申请2008141956享有优先权,上述专利申请均通过引用全文结合于此。 
发明背景 
1.发明领域 
本发明涉及一种具有超细晶(UFG)机构且机械和生物医学特性增强的纳米结构材料。更具体地,本发明涉及一种可用于制造在外科学、矫形外科学、创伤学和牙医学得到广泛应用的医疗植入物的钛及其合金,,以及一种制成保有具体机械和生物医学特性结构的材料加工技术。 
2.背景技术 
据了解,植入物的强度、可靠性和耐久性取决于其制造材料的化学组成以及机械与生物医学特性。同时,对具体材料而言,微结构对确定强度、塑性、疲劳度、可腐蚀性与生物相容性起着关键作用。根据加工方法,微结构能够具有不同相组成、晶粒尺寸与形状、晶界解取向、位错密度、其它晶格缺陷等(M.A.Shtremel,《合金强度,第一部分:晶格缺陷》,280页,莫斯科,冶金,1982年(M.A.Shtremel,Strength of Alloys,part 1:Lattice defects,280pp,Moscow,Metallurgy,1982);M.A.Shtremel,《合金强度,第二部分:变形》,莫斯科,莫斯科国立钢铁合金学院,1997年,527页,82-113页(M.A. Shtremel,Strength of Alloys,part 2:Deformation,Moscow,MISiS,1997,527pp.,pp82-113))。 
因具有高生物相容性,工业纯钛已被广泛用于制造牙医学和创伤学用植入物。(D.M.Brunette,P.Tengvall,M.Textor,P.Thomsen,《医用钛》,施普林格,2001年,1019页,562-570页,17.1段、17.2段(D.M.Brunette,P.Tengvall,M.Textor,P.Thomsen,″Titanium in medicine″,Springer,2001,1019pp.,pp.562-570,paragraphs  17.1,17.2)) 
同样,2000年3月20日提交的分类号为A61C 8/00和A61L 27/00的俄罗斯专利RU 2146535说明了一种用钛制造骨内牙植入物的方法。由于工业纯钛不具有高强度特性,使用了多层生物活性涂层来增加植入物的机械强度。借助等离子喷涂,涂层由五个相继喷涂的分层组成。 
植入物机械强度的增加也可通过使用高钛基合金来实现。例如,2002年10月4日出版的分类号为A61L 27/06和A61L 27/00的专利KR20020074843披露了一种使用钛合金Ti6Al4V、Ti5Al2.5Sn、Ti3Al13V11Cr、Ti15Mo5Zr3Tl或Ti6Al12NbTa制造活动骨骼假体的方法。但高钛合金的生物相容性值远低于工业纯钛的生物相容性值。这些合金制成的植入物在人体内长期停留可能造成钒和铬等有毒元素的积聚[D.M.Brunette等,同上]。正因如此,为提高生物相容性并优化骨整合过程,需要在加热至800...1000℃的真空炉里将钙羟基磷灰石(骨盐)粉的生物惰性涂层涂于植入物表面。 
因此,上述专利中使用工业纯钛制造可以在人体内长期停留的植入物。但这样做的主要缺点在于机械强度处于中等。就此而言,为提高植入物的强度特性,通常在产品表面或硬度、强度和耐疲劳度更高的高钛合金上喷涂特殊生物相容涂层。通过喷涂生物相容涂层,实现钛合金植入物的生物相容性。整体而言,采用昂贵的钛合金以及向植入物表面添加生物涂层,都会增加植入物的净成本。 
据了解,形成主要为大角度晶界的超细晶(UFG)结构可使金属和合金获得独特的强度、韧性与耐疲劳度组合(R.Z.Valiev,I.V. Alexandrov.《晶块纳米结构金属材料》,莫斯科:IKC“Academkniga”,2007年,398页[R.Z.Valiev,I.V.Alexandrov.Bulk nanostructural metallic materials.-M.:IKC“Academkniga”,2007.-398pp])。 
本领域也已知可通过剧烈塑性变形的联合技术制造具有UFG结构的工业纯钛(G.Kh.Sadikova,V.V.Latysh,I.P.Semenova,R.Z.Valiev.《剧烈塑性变形与热机械处理对钛结构和特性的影响》,《金属科学及金属热处理》,11(605)期,2005年,31-34页[G.Kh.Sadikova,V.V.Latysh,I.P.Semenova,R.Z.Valiev“Influence of severe plastic deformation and thermo mechanical treatment on the structure and properties of titanium”Metal science and heat treatment of metals,№11(605),2005,pp.31-34])。坯料横剖面微结构的特点是具有等轴α相晶与亚晶及密排六方(HCP)晶格,平均尺寸约为200nm,且位错密度高。这种技术解决方案被认为是最近的类似方法。 
但对于钛棒长度方向几个区域的研究发现,坯料纵剖面结构中α相晶粒沿变形方向伸长,长宽比(晶粒形状系数)达6∶1。伸长的晶粒的内部区域主要由小角度位错晶界分段。具有这种结构的材料的特点为坯料纵剖面与横剖面具有各向异性,这对医用植入物的使用寿命有不利影响。 
据了解,有一种工业纯钛的加工技术(2000年7月27日出版的俄罗斯专利2175685,分类号为C22F 1/18),等径角挤压(ECAP)后,经热机械处理,进行微结构细化,从而形成高强度状态。热机械处理包括在0.2-2小时内,交替进行30-90%程度的冷变形和250-500℃范围内的中间与最后退火。因而制成的棒形坯料具有晶粒尺寸约为0.1μm的超细晶结构。 
这种方法的缺点在于,由于坯料纵剖面与横剖面的晶粒形态不均,钛棒结构与特性的各向异性较高。这种材料虽然强度提高,但韧性有限,不能提供足够的抗疲劳失效性。 
发明内容
本发明的目的是通过纳米晶结构改进工业纯钛,确保提高其机械强度、抗疲劳失效性、生物医学特性等相关特性,并提出使用该材料制造钛棒的有效方法。 
本发明的目的是通过提供一种生物医学用工业纯钛实现的,这种工业纯钛具有纳米晶α相晶粒结构和密排六方晶格,其特点在于,结构中尺寸为0.1...0.5μm且相互垂直平面内晶粒形状系数不大于2的晶粒的容积率不小于90%,60%以上的晶粒与相邻晶粒达15-90°角的大角度晶界位错。 
本发明的目的是通过提供一种使用具有纳米晶结构的生物医学用工业纯钛制造钛棒的方法实现的,该方法包括温度不超过450℃且真累积应变e≥4条件下经等径角挤压及其后应变程度40-80%条件下经热机械处理的坯料剧烈塑性变形步骤,其中热机械处理步骤包括温度在T=450...350℃范围内递减且应变率为10-2...10-4s-1条件下执行塑性变形。 
通过按照本发明的方法在工业纯钛中形成纳米结构的独特特征,本发明可实现更高水平的机械和疲劳特性。 
首先,根据著名的霍尔佩奇比,结构中的超细晶粒尺寸(0.1...0.5μm)提高了塑性变形期间的流动应力,从而提高了钛的强度(《大塑性变形和金属失效》Rybin V.V.,莫斯科:冶金,1986年,224页[Large plastic deformations and metal failure.Rybin V.V.,M.:Metallurgy,1986,224pp.])。强度的大幅提高也归因为大角度晶界,其所占总比率不小于60%,与小角度和特殊晶界相比,极大地增进了强化。(R.Z.Valiev,I.V.Alexandrov.《晶块纳米结构金属材料》,莫斯科:“Academkniga”,2007年,398页[R.Z.Valiev,I.V.Alexandrov.Bulk nanostructured metallic materials.-M.:“Academkniga”,2007.-398pp.])。另外,塑性变形(如拉伸)期间,该尺寸范围内且晶界位错角度大的晶粒能发生晶界滑动(GBS)。 GBS作为附加的变形机制,有利于增加韧性至材料(R.Z.Valiev,I.V.Alexandrov,同上]),形状系数不超过2(晶粒的宽长比为2)的晶粒的形成减少了金属塑性流的不均、微应力水平,因而避免了可造成材料失效的早期变形局部化。上述材料的结构变化是在指定温度变率状态下通过建议处理技术实施的。 
据了解,工业纯钛的UFG结构提供了更高的生物相容性(D.M.Brunette,P.Tengvall,M.Textor,P.Thomsen,《医用钛》,施普林格,(2001年),1019页[D.M.Brunette,P.Tengvall,M.Textor,P.Thomsen,“Titanium in medicine”,Springer,(2001)p.1019])。 
总体而言,形成具有本发明建议特征组合的上述工业纯钛纳米晶结构,可同时增加强度和韧性,并相应的提高抗疲劳失效性,也增加了生物相容性。 
附图说明
根据下述说明,并结合所附附图,将更清楚地理解本发明的上述及其它目的,其中 
图1所示为根据本发明制造的钛棒的切割方案, 
图2是钛棒横剖面微结构的照片, 
图3是钛棒横剖面微结构的照片,示出了晶粒交线,以及 
图4是钛棒纵剖面微结构的照片。 
发明具体介绍 
使用工业纯钛棒作为坯料。坯料加工的第一阶段是在不超过450℃的温度下分四次操作通过等径角挤压进行加工,以使模具内真累积应变e≥4,且通道交叉角ψ=90°。每次操作后,绕纵轴顺时针旋转坯料90°以保持结构均匀。该阶段进行的是晶块坯料中微结构的主要细化,其尺寸并未改变。在塑性变形的初始阶段(第一次ECAP操作后e=1),由于产生了多数小角度位错晶界的变形双晶和晶胞,因此初始晶粒分裂。随着真累积应变增至e=4(第四次ECAP操作后),新 的双晶在结构中产生,且晶粒在这一过程中进一步分裂。同时,晶胞的位错墙变得更为狭窄、有序,其解取向角增加,因此有助于晶胞结构转为晶粒结构。由于ECAP过程中结构发生了转变,形成了钛的晶粒/亚晶结构。该结构的特点在于,非平衡晶界坚固,且晶界和晶格位错密度高,晶粒尺寸介于0.5...0.7μm范围内。 
ECAP操作后,对坯料进行热机械处理,该过程中,温度在T=450...350℃的范围内递减,总累积应变为40-80%,且应变率在10-2...10-4s-1范围内变化,即在接近材料超塑性条件的温度变率条件下实现塑性变形。上述温度变率条件下的塑性变形可通过温轧、单轴挤压、模锻等技术实现。塑性变形与加热的组合有助于进一步转变ECAP获得的结构:将亚晶界转为晶界,并因而增加大角度晶界所占比率;因恢复与动态再结晶同时进行,产生了新的晶粒,减小了晶格位错密度。 
因此,组合处理使得工业纯钛内形成纳米晶结构,平均尺寸为100...500nm且相互垂直平面内晶粒形状系数不超过2的晶粒所占比率达90%,其中约60%具有大角度晶界。 
本发明的实际实施例 
可使用直径40mm且长度150mm的牌号CP的4级工业纯钛棒作为初始坯料。在温度为400℃条件下,将坯料置于通道交叉角ψ=90°的模具中,分四次操作进行ECAP。每次操作后,绕纵轴顺时针旋转坯料90°。接着从模具中取出坯料并冷却至室温,之后进行车床加工,以去除缺陷层。 
ECAP操作后,对坯料进行热机械处理,该过程中,温度在T=450...350℃的范围内递减,总累积应变为80%,且应变率约为10-3s-1,在此条件下通过温轧实现塑性变形。该处理过程后,制成了直径~7mm且长度~3000mm的钛棒。 
从该钛棒切割样本,然后使用透射电子显微镜技术并借助JEM-100B显微镜对该样本的微结构进行了研究。碟形样本通过使用电腐蚀技术从钛棒的横剖面与纵剖面切割而获得。为制成薄箔,通过机械减薄使碟形样本厚度减至100μm,之后室温下使用含有高氯酸 (HClO4)、丁醇(C4H9OH)和甲醇(CH3OH)的电解溶液在Tenupol-5(司特尔(Struers))装置内进行电解抛光。 
图1所示为钛棒的切割方案,其中XY面为坯料的横剖面,ZX面为纵剖面。图2和3所示为钛棒横剖面的微结构的照片,图4所示为其纵剖面的微结构。图2中,据观测,钛棒横剖面的晶粒尺寸(1)平均为150nm。图3所示为大角度晶界(3)晶粒的三晶交线(2)。图4所示为钛棒纵剖面中,不同晶粒(4)形状细长,但其宽长比不大于2∶1. 
下表是室温拉伸试验的结果,样本从根据本发明的方法制造的工业纯4级钛切割获得。为进行比较,示出了根据先有技术制造的工业纯钛样本的机械试验结构[G.Kh.Sadikova,V.V.Latysh,I.P.Semenova,R.Z.Valiev.同上]。 
表 
工业纯钛的机械特性 
Figure DEST_PATH_GDA0000099913450000011
从上表可以看出,使用本发明制成的纳米结构钛的机械特性远大于根据先有技术制造的超细晶结构钛。 
也对移植人体造骨细胞CRL-11372至工业纯钛和Ti-6Al-4V合金的传统粗晶和纳米结构样本表面进行了试验。经证明,与这两种材料的粗晶状态相比,纳米结构状态下造骨细胞的粘附力要高得多(76%与15%)。细胞行为调查显示,纤维原细胞在钛表面上的定殖在纳米结构化之后大幅增加。细胞占据传统钛表面的比例在72小时后为53%,而纳米结构钛表面上达到87%[www.timplant.cz]。这些调查指出,与传统粗晶状态材料相比,纳米结构钛上骨整合率更高。 
因此,本发明允许在工业纯钛中形成纳米晶结构,确保提高材料强度、耐疲劳度和生物相容性,并允许使用该材料制成棒形坯料。 

Claims (9)

1.一种生物医学用纳米结构工业纯钛,具有纳米晶α相晶粒结构和密排六方晶格,其中尺寸为0.1-0.5μm且相互垂直平面内晶粒形状系数不大于2的晶粒容积率不小于90%,60%以上的晶粒与相邻晶粒达15-90°角的大角度晶界位错。
2.一种制造生物医学用纳米晶结构工业纯钛棒的方法,包括以下步骤:
提供坯料,
在温度不超过450℃且总累积真应变e≥4的条件下,经等径角挤压使坯料产生塑性变形,以及
应变程度为40-80%的条件下,使坯料产生附加塑性变形,附加塑性变形通过温度在T=450-350℃的范围内递减且应变率为10-2-10-4s-1条件下执行。
3.根据权利要求2所述的方法,其中等径角挤压步骤分四次操作执行,每次操作后绕纵轴旋转坯料90°。
4.根据权利要求2所述的方法,其中附加塑性变形通过温轧执行。
5.根据权利要求2所述的方法,其中附加塑性变形通过单轴挤压执行。
6.根据权利要求2所述的方法,其中附加塑性变形通过模锻执行。
7.一种制造生物医学用工业纯钛棒的方法,包括以下步骤:
提供坯料,
温度不超过450℃且总累积真应变e≥4的条件下,经等径角挤压使坯料产生塑性变形,以及
应变程度为40-80%的条件下,通过温度在T=450-350℃的范围内递减且应变率为10-2-10-4 s-1条件下的温轧对坯料进行后续热机械处理,从而在钛棒内形成纳米晶α相晶粒结构和密排六方晶格,其中尺寸为0.1-0.5μm且相互垂直平面内晶粒形状系数不大于2的晶粒容积率不小于90%,60%以上的晶粒与相邻晶粒达15-90°角的大角度晶界位错。
8.根据权利要求7所述的方法,其中等径角挤压步骤分四次操作执行,每次操作后绕纵轴旋转坯料90°。
9.根据权利要求7所述的方法,包括从模具中取出坯料并冷却至室温,然后进行车床加工以去除缺陷层的步骤。
CN2009801481665A 2008-10-22 2009-10-20 生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法 Expired - Fee Related CN102232124B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2008141956/02A RU2383654C1 (ru) 2008-10-22 2008-10-22 Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него
RU2008141956 2008-10-22
PCT/RU2009/000556 WO2010047620A2 (ru) 2008-10-22 2009-10-20 Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него

Publications (2)

Publication Number Publication Date
CN102232124A CN102232124A (zh) 2011-11-02
CN102232124B true CN102232124B (zh) 2013-09-11

Family

ID=42119869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801481665A Expired - Fee Related CN102232124B (zh) 2008-10-22 2009-10-20 生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法

Country Status (11)

Country Link
US (1) US8919168B2 (zh)
EP (1) EP2366808B1 (zh)
JP (1) JP5536789B2 (zh)
KR (1) KR101351143B1 (zh)
CN (1) CN102232124B (zh)
AU (1) AU2009307113B2 (zh)
BR (1) BRPI0920298A2 (zh)
CA (1) CA2741524C (zh)
ES (1) ES2497508T3 (zh)
RU (1) RU2383654C1 (zh)
WO (1) WO2010047620A2 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8613818B2 (en) * 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
AT510770B1 (de) * 2010-11-29 2015-01-15 Ait Austrian Inst Technology Verfahren zur herstellung eines gegenstandes aus einem metall oder einer legierung, daraus hergestellter gegenstand sowie presswerkzeug hierfür
EP2468912A1 (en) * 2010-12-22 2012-06-27 Sandvik Intellectual Property AB Nano-twinned titanium material and method of producing the same
RU2464116C1 (ru) * 2011-03-15 2012-10-20 Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет" (ГОУ ВПО ТГУ) Способ получения высокопрочных титановых прутков круглого сечения с ультрамелкозернистой структурой
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
KR101414505B1 (ko) 2012-01-11 2014-07-07 한국기계연구원 고강도 및 고성형성을 가지는 티타늄 합금의 제조방법 및 이에 의한 티타늄 합금
CN103484805B (zh) * 2012-06-07 2015-09-09 株式会社神户制钢所 钛板及其制造方法
CN103574273A (zh) * 2012-08-07 2014-02-12 江苏天工钛业科技有限公司 一种钛棒
WO2014038487A1 (ja) * 2012-09-04 2014-03-13 国立大学法人電気通信大学 部材の製造方法および生体材料
RU2503733C1 (ru) * 2012-11-14 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него
PL222390B1 (pl) * 2012-12-11 2016-07-29 Inst Wysokich Ciśnień Polskiej Akademii Nauk Sposób wytwarzania nanokrystalicznego tytanu, zwłaszcza na implanty medyczne, oraz tytanowy implant medyczny
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US20140271336A1 (en) 2013-03-15 2014-09-18 Crs Holdings Inc. Nanostructured Titanium Alloy And Method For Thermomechanically Processing The Same
US20160108499A1 (en) * 2013-03-15 2016-04-21 Crs Holding Inc. Nanostructured Titanium Alloy and Method For Thermomechanically Processing The Same
US10822670B2 (en) * 2013-06-14 2020-11-03 The Texas A&M University System Controlled thermal coefficient product system and method
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN103572088B (zh) * 2013-11-27 2015-09-09 山东建筑大学 具有纳米晶组织的钛基多孔烧结复合材料及其制备方法
CN104846363B (zh) * 2014-02-14 2018-08-10 宝山钢铁股份有限公司 一种纳米结构纯钛板的制备方法
RU2562591C1 (ru) * 2014-04-25 2015-09-10 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Способ изготовления длинномерных металлических прутков с нанокристаллической структурой для медицинских изделий (варианты)
FR3024160B1 (fr) * 2014-07-23 2016-08-19 Messier Bugatti Dowty Procede d'elaboration d`une piece en alliage metallique
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10385435B2 (en) 2015-11-03 2019-08-20 The Hong Kong Polytechnic University Preparation of nanostructured titanium at cryogenic temperatures for medical implant applications
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
DE102016122575B4 (de) 2016-11-23 2018-09-06 Meotec GmbH & Co. KG Verfahren zur Bearbeitung eines Werkstücks aus einem metallischen Werkstoff
CN107142434B (zh) * 2017-05-05 2018-09-07 东南大学 一种高强度钛合金棒线材的制备方法
CN106947929B (zh) * 2017-05-10 2018-09-14 东南大学 一种高强度细晶纯钛棒线材的制备方法
DE102017005618A1 (de) * 2017-06-14 2018-12-20 Johannes Scherer Dentalimplantatsystem umfassend wenigstens ein Zahnimplantat und ein separates Abutment
CN107881447B (zh) * 2017-11-22 2019-04-23 四川大学 一种高强韧性丝状晶粒纯钛及其制备方法
JP7368798B2 (ja) 2019-12-25 2023-10-25 国立大学法人豊橋技術科学大学 純チタン金属材料の加工方法
JP7464330B2 (ja) 2021-06-07 2024-04-09 株式会社丸ヱム製作所 スクリュー用母材、スクリューとその製造方法
CN113957368B (zh) * 2021-09-29 2022-04-15 四川大学 一种纳米晶钛膜的制备方法
CN114411074B (zh) * 2021-12-13 2022-08-02 四川大学 一种多层双相跨尺度结构纯钛的制备方法
CN115522151B (zh) * 2022-10-09 2023-10-27 攀枝花学院 高纯ta1钛材获得超细晶粒的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006379C2 (de) * 1989-03-03 1999-06-10 Univ Schiller Jena Verfahren zur Herstellung bioaktiver und mechanisch hoch belastbarer Implantate
RU2251588C2 (ru) * 2003-06-03 2005-05-10 Научно-исследовательское учреждение Институт физики прочности и материаловедения (НИУ ИФПМ СО РАН) Способ получения ультрамелкозернистых титановых заготовок
RU2277992C2 (ru) * 2004-09-06 2006-06-20 Риф Гайзуллович Баймурзин Способ получения заготовок с мелкозернистой структурой

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565683B1 (en) * 1996-06-21 2003-05-20 General Electric Company Method for processing billets from multiphase alloys and the article
RU2146535C1 (ru) 1998-07-20 2000-03-20 Консультативная стоматологическая поликлиника при СГМУ Способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием
US6878250B1 (en) * 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6399215B1 (en) * 2000-03-28 2002-06-04 The Regents Of The University Of California Ultrafine-grained titanium for medical implants
RU2175685C1 (ru) 2000-07-27 2001-11-10 Уфимский государственный авиационный технический университет Способ получения ультрамелкозернистых титановых заготовок
US6946039B1 (en) * 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
RU2259413C2 (ru) * 2001-02-28 2005-08-27 ДжФЕ СТИЛ КОРПОРЕЙШН Брусок из сплава титана и способ его изготовления
KR100431159B1 (ko) 2001-03-22 2004-05-12 김철생 생체활성 표면을 갖는 Ti-소재 경조직 대체재료의제조방법
JP4686700B2 (ja) * 2003-10-01 2011-05-25 独立行政法人産業技術総合研究所 微細組織チタン及びその製造方法
US20060213592A1 (en) * 2004-06-29 2006-09-28 Postech Foundation Nanocrystalline titanium alloy, and method and apparatus for manufacturing the same
US7617750B2 (en) * 2006-12-06 2009-11-17 Purdue Research Foundation Process of producing nanocrystalline bodies
KR101225122B1 (ko) * 2009-09-07 2013-01-22 포항공과대학교 산학협력단 저 변형량에서의 나노 결정립 티타늄 합금의 제조 방법
US8613818B2 (en) * 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006379C2 (de) * 1989-03-03 1999-06-10 Univ Schiller Jena Verfahren zur Herstellung bioaktiver und mechanisch hoch belastbarer Implantate
RU2251588C2 (ru) * 2003-06-03 2005-05-10 Научно-исследовательское учреждение Институт физики прочности и материаловедения (НИУ ИФПМ СО РАН) Способ получения ультрамелкозернистых титановых заготовок
RU2277992C2 (ru) * 2004-09-06 2006-06-20 Риф Гайзуллович Баймурзин Способ получения заготовок с мелкозернистой структурой

Also Published As

Publication number Publication date
CA2741524C (en) 2013-09-24
KR20110102309A (ko) 2011-09-16
WO2010047620A2 (ru) 2010-04-29
EP2366808A2 (en) 2011-09-21
AU2009307113B2 (en) 2015-07-30
CN102232124A (zh) 2011-11-02
WO2010047620A3 (ru) 2010-06-17
BRPI0920298A2 (pt) 2017-10-17
CA2741524A1 (en) 2010-04-29
KR101351143B1 (ko) 2014-01-14
AU2009307113A1 (en) 2010-04-29
US8919168B2 (en) 2014-12-30
ES2497508T3 (es) 2014-09-23
EP2366808B1 (en) 2014-08-13
US20110179848A1 (en) 2011-07-28
JP5536789B2 (ja) 2014-07-02
RU2383654C1 (ru) 2010-03-10
JP2012506290A (ja) 2012-03-15
EP2366808A4 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
CN102232124B (zh) 生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法
Dimić et al. Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion
EP2971201B1 (en) Nanostructured titanium alloy and method for thermomechanically processing the same
Valiev et al. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality
RU2656626C1 (ru) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
Kumar et al. Surface nanocrystallization of β-titanium alloy by ultrasonic shot peening
Valiev et al. Nanostructured titanium for biomedical applications: New developments and challenges for commercialization
KR101374233B1 (ko) 의료용 초세립 티타늄 합금 봉재의 제조방법 및 이에 의해 제조된 티타늄 합금 봉재
RU2717764C1 (ru) Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты)
Zhu et al. Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application
Mohammed Mechanical and wear properties of HPT-biomedical titanium: A review
RU2490356C1 (ru) Ультрамелкозернистый двухфазный альфа-бета титановый сплав с повышенным уровнем механических свойств и способ его получения
Kolobov et al. Regularities of formation and degradation of the microstructure and properties of new ultrafine-grained low-modulus Ti–Nb–Mo–Zr alloys
RU2503733C1 (ru) Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него
Li et al. Mechanical anisotropy of laser powder bed fusion fabricated Ti-41Nb alloy using pre-alloyed powder: Roles played by grain morphology and crystallographic orientation
Priyanka et al. Role of nanogrooves on the performance of ultra-fine grained titanium as a bio-implant
RU2367713C2 (ru) Способ обработки ультрамелкозернистых сплавов с эффектом памяти формы
Salimgareeva et al. Combined SPD techniques to fabricate nanostructured Ti rods for medical applications
Khani et al. The influence of new severe plastic deformation on microstructure, mechanical, and corrosion properties of Mg-0.8 Mn-0.5 Ca alloy
KR20200053297A (ko) 마그네슘 합금의 처리방법 및 강소성 가공된 마그네슘 합금재
KR101465091B1 (ko) 우수한 강도와 연성을 갖는 초미세결정립 다상 타이타늄 합금 및 그 제조방법
Sankar et al. Metallic Nanobiomaterials
Ghosh et al. Nanostructured biomaterials for load-bearing applications
Jung et al. Fabrication of a high performance Ti alloy implant for an artificial hip joint
Illarionov et al. Microstructure and Physico-Mechanical Properties of Biocompatible Titanium Alloy Ti-39Nb-7Zr after Rotary Forging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160517

Address after: Russian Federation oufa

Patentee after: The form of National Aviation University of Technology

Patentee after: Nano Matt Co. Ltd.

Address before: American Pennsylvania

Patentee before: G Obrazovatel Noe Uchrezhdenie

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911

Termination date: 20161020

CF01 Termination of patent right due to non-payment of annual fee