CN102225342A - N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用 - Google Patents

N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用 Download PDF

Info

Publication number
CN102225342A
CN102225342A CN 201110095853 CN201110095853A CN102225342A CN 102225342 A CN102225342 A CN 102225342A CN 201110095853 CN201110095853 CN 201110095853 CN 201110095853 A CN201110095853 A CN 201110095853A CN 102225342 A CN102225342 A CN 102225342A
Authority
CN
China
Prior art keywords
tio2
tio
catalyst
preparation
baal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110095853
Other languages
English (en)
Inventor
李硕
陈耀强
王健礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN 201110095853 priority Critical patent/CN102225342A/zh
Publication of CN102225342A publication Critical patent/CN102225342A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了属于催化剂范畴的一种复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+,该催化剂可用于气相有机污染物的催化转化。与纯TiO2相比,N-TiO2/BaAl2O4:Eu2+,Dy3+不仅催化活性大为提高,而且还具有了可见光响应能力。这是因在光照射下,BaAl2O4:Eu2+,Dy3+产生的部分光生空穴向N-TiO2的价带迁移,N-TiO2导带的光生电子则被BaAl2O4:Eu2+,Dy3+的晶格缺陷形成的陷阱能级所捕获,从而使N-TiO2的光生电子和光生空穴分离,复合率降低,催化活性得到提高;而在N-TiO2中,N2p轨道在TiO2的价带上方形成的局域态,使TiO2的禁带宽度变窄,吸收边红移,光谱响应范围拓展到了可见光区。

Description

N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用
技术领域:
本发明属催化剂范畴,特别涉及一种复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+的制备及其在光催化方面的应用。
背景技术:
随着环境污染日益突出,空气质量问题愈来愈受到人们的关注。1990年美国《清洁空气法》修正案列举了189种有毒有害气体,其中大部分是空气中挥发性有机污染物。过去几十年,人们曾把主要注意力放在外环境的空气污染及治理上,近十几年来,才意识到室内空气的卫生学意义。欧洲、北美、日本等国从二十世纪八十年代就开始了对室内环境质量的研究工作,而我国也于上世纪末陆续制定出一系列《室内空气质量标准》,以此做为评价室内空气污染水平的依据。有统计表明,在各类室内环境中检出的有机污染物种类多达200余种,它们中有些是有毒的,有些能够诱发疾病、致癌或致畸。根据对我国部分建筑物室内空气的检测数据,新装修后污染严重的房间,甲醛的峰值浓度能达到0.8~1mg/m3,超过国家标准限制值(0.08mg/m3)10倍以上。另外,室内的空调设备、家具、化纤织物等也散发出许多有毒有害物质,如各种烃类、醛、酮、苯、二甲苯等。恶劣的室内空气正在给人类的健康带来严重危害。
大部分室内污染物是可氧化的,光催化法是去除污染物的有效方法。TiO2是目前使用最多的一类半导体光催化剂。沈杭燕、唐新硕在“TiO2粉末催化剂光催化降解室内空气中有机污染物”《杭洲大学学报(自然科学版)》1998,25(4)中研究了TiO2对甲醛、乙醛、丙酮、邻二甲苯等室内有机污染物的催化降解性能。苏文悦、付贤智、魏可镁则在“溴代甲烷在TiO2上的光催化降解研究”《高等学校化学学报》2001,22(2)中考察了溶胶-凝胶法制备的TiO2降解CH3Br的气相光催化行为,均获得有意义的结果。各种有机污染物之所以能被TiO2光催化剂催化降解,是因TiO2具有特殊的电子结构:价带充满、导带全空和禁带较宽,因而价带电子可被紫外光激发,越过禁带进入导带,同时在价带上产生相应的空穴。光生电子和光生空穴能迅速迁移到催化剂表面并且有很强的氧化还原能力,光生空穴可夺取吸附在催化剂表面的有机物的电子,使原本不吸收入射光的有机物活化氧化分解。然而,TiO2光催化剂的应用仍然受到两方面的限制:一,由于TiO2的带隙较宽,约为3.2eV,仅能被波长小于389nm的紫外光所激发,因此拓宽TiO2光催化剂的光谱响应范围,使其在可见光照射下仍然具有催化活性,就成了一项急需解决的重要课题;二,TiO2被光激发后,产生的光生电子和光生空穴的寿命很短,二者一旦复合,就失去了催化活性。因此,促进光生电子和空穴的分离,阻止其复合,延长其寿命,增强TiO2光催化剂的催化活性,则是另外一项重要任务。
目前,解决第一个问题的方法主要有:(1),向TiO2中掺杂Cu2+、Fe3+等金属离子;(2),向TiO2中掺杂N、S等非金属离子;(3),TiO2表面敏化等。如李俊华、傅惠静、傅立新、郝吉明在“金属离子掺杂的TiO2薄膜的制备及其光催化降解甲苯的性能”《催化学报》2005,26(6)中;刘守新、陈孝云、李晓辉在“N掺杂对TiO2形态结构及光催化活性的影响”《无机化学学报》2008,24(2)中;张冬冬、莫越奇、宋琳、黄雄飞、仇荣亮在“芴与噻吩共聚物敏化半导体在可见光下催化降解罗丹明B”《过程工程学报》2008,8(1)中采用上述方法,均成功制备出了比纯TiO2禁带宽度窄光谱响应范围宽的光催化剂。
而解决第二个问题的方法则有:(1),TiO2表面担载Au、Ag、Pt等贵金属;(2),TiO2与其它半导体耦合;(3),选择合适的载体担载TiO2等。如毛立群、冯彩霞、金振声、张治军、党鸿辛在“Au/TiO2的制备及其光催化氧化丙烯的研究”《感光科学与光化学》2005,23(1)中;陈华军,尹国杰,吴春来在“纳米Bi2O3/TiO2复合光催化剂的制备及性能研究”《环境工程学报》2008,2(11)中;李硕、王唯诚、钟俊波、龚茂初、陈耀强在发明专利“一种以发光材料为载体的负载型TiO2光催化剂及制备方法和应用”申请号200510068963中采用上述方法,均使TiO2被紫外光激发后产生的光生电子和空穴有效分离,从而达到了阻止光生电子和空穴复合,提高光催化活性的目的。
本发明是选择长余辉发光材料BaAl2O4:Eu2+,Dy3+与N掺杂TiO2(N-TiO2)耦合,制备出了N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂。该催化剂的催化活性与纯TiO2相比不仅大为提高,而且还具有了可见光响应能力。这是因发光材料BaAl2O4:Eu2+,Dy3+在受光激发发光过程中,也产生大量光生电子和光生空穴。当BaAl2O4:Eu2+,Dy3+与N-TiO2耦合并受光照射后,BaAl2O4:Eu2+,Dy3+产生的部分光生空穴向N-TiO2的价带迁移,N-TiO2导带的光生电子则被BaAl2O4:Eu2+,Dy3+的晶格缺陷形成的陷阱能级所捕获,从而使N-TiO2的光生电子和光生空穴分离,复合率降低,催化活性得到提高;而TiO2掺N后,N2p轨道在TiO2价带上方形成了局域态,使TiO2的禁带宽度变窄,吸收边红移,光谱响应范围拓宽,从而具有了可见光响应能力。因此,N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂中,由于N-TiO2本身的光谱吸收特性及其与BaAl2O4:Eu2+,Dy3+之间耦合产生的协同效应,较好的解决了纯TiO2存在的两方面的问题。
发明内容:
1.本发明提供一种复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+,其活性组分为N-TiO2,另一组分为发光材料BaAl2O4:Eu2+,Dy3+
2.上述复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+的制备方法为:准确称取一定量N-TiO2和BaAl2O4:Eu2+,Dy3+,混合均匀,球磨,焙烧,冷却至室温保存。
3.上述复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+中,N-TiO2所占比例为2Wt%~6Wt%。
4.上述复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+用于气相有机污染物的催化转化。
本发明的优点为:
复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+较好的解决了纯TiO2存在的两方面的问题:不仅催化活性得到提高,而且将光谱响应范围拓展到了可见光区,因而具有良好的应用前景。
具体实施方式:
实施例一:
1.制备20g含2.0Wt%N-TiO2的N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂。其制备方法为:准确称取0.4g N-TiO2(N-TiO2的制备参照文献“N掺杂TiO2光催化剂的制备与表征”《应用化工》王岳俊,唐建军,周康根.2007,36(4)进行,即:将钛酸四丁酯与无水乙醇按1∶2混合形成A溶液;再将饱和尿素溶液与无水乙醇按1∶2混合制成B溶液。剧烈搅拌B液,以蠕动泵控制滴速,将A液缓慢滴入B液,A液与B液保持1∶2的体积比。水解产物经干燥,研磨,650℃焙烧3小时,冷却至室温保存。)和19.6gBaAl2O4:Eu2+,Dy3+(BaAl2O4:Eu2+,Dy3+的制备参照文献“Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+,R3+(M=Sr,Ba,Ca,R=Dy,Nd and La)nanoparticles and lumines-cence mechanism reseach”《Acta Mater》Zifeng Qiu,Yuanyuan Zhou,Mengkai Lu.2007,55(1)进行,即:分别称量Eu2O3、Dy2O3用硝酸溶解;Ba(NO3)2、Al(NO3)39H2O用去离子水溶解(其中Ba2+∶Eu3+∶Dy3+∶Al3+=0.97∶0.01∶0.02∶2),混合,再加入一定量尿素和硼酸。加热并搅拌使之沸腾,迅速送入650℃的马弗炉中。溶液中的水分瞬间蒸发并燃烧,冷却,研磨,室温保存。),混合均匀球磨2小时后,放进马弗炉中450℃焙烧3小时,冷却至室温保存。
2.为进行比较,参照文献“TiO2纳米微粒的溶胶-凝胶法制备及XRD分析”《材料科学与工程》陈琦丽,唐超群,肖循.2002,20(2)制备了纯TiO2。制备方法为:将水、无水乙醇和硝酸配成一定体积比的溶液,逐滴加入到钛酸四丁酯和无水乙醇的混合溶液中,钛酸四丁酯∶无水乙醇∶水∶硝酸=1∶4∶0.5∶0.2,充分搅拌,65℃干燥后,在马弗炉中450℃焙烧3小时,得TiO2
3.评价光催化剂的性能,是以苯为模拟气体污染物,在一种静态反应装置中进行。反应装置是由一个密闭的不锈钢腔体组成,总容积173L,内部支架上安装有一台小电风扇和三支10瓦的紫外灯(主波长253.7nm)或三支10瓦的日光灯。实验温度保持在40℃,通过反应器外放置的四个红外灯来控制。实验时,先把光催化剂均匀分散在反应器中总面积为100cm2的铝箔上,再将一定量液体苯注入反应器使之挥发,气态苯的初始浓度保持在1.0mg/L。吸附达到平衡后,取样测试初始浓度,然后打开紫外灯照射光催化剂并每隔半小时取样分析。初始浓度及反应开始后苯浓度变化值均用气相色谱仪检测。
紫外光照射下,20g2.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为31.9%。
紫外光照射下,0.4g纯TiO2对苯的降解率5小时为17.6%,催化剂在3小时时失活。
可见光照射下,20g2.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为10.1%。
可见光照射下,0.4g纯TiO2对苯没有降解活性。
实施例二:
1.制备20g含3.0Wt%N-TiO2的N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂。其制各方法为:准确称取0.6g N-TiO2(制备方法同实施例一中1.N-TiO2的制备)和19.4gBaAl2O4:Eu2+,Dy3+(制备方法同实施例一中1.BaAl2O4:Eu2+,Dy3+的制备),混合均匀球磨2小时后,放进马弗炉中450℃焙烧3小时,冷却至室温保存。
2.为进行比较,制备了纯TiO2。制备方法同实施例一中2。
3.评价光催化剂的性能,反应装置及评价方法同实施例一中3。
紫外光照射下,20g3.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为39.6%。
紫外光照射下,0.6g纯TiO2对苯的降解率5小时为22.8%,催化剂在3小时时失活。
可见光照射下,20g3.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为14.2%。
可见光照射下,0.6g纯TiO2对苯没有降解活性。
实施例三:
1.制备20g含4.0Wt%N-TiO2的N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂。其制备方法为:准确称取0.8g N-TiO2(制备方法同实施例一中1.N-TiO2的制备)和19.2gBaAl2O4:Eu2+,Dy3+(制备方法同实施例一中1.BaAl2O4:Eu2+,Dy3+的制备),混合均匀球磨2小时后,放进马弗炉中450℃焙烧3小时,冷却至室温保存。
2.为进行比较,制备了纯TiO2。制备方法同实施例一中2。
3.评价光催化剂的性能,反应装置及评价方法同实施例一中3。
紫外光照射下,20g4.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为44.8%。
紫外光照射下,0.8g纯TiO2对苯的降解率5小时为24.7%,催化剂在3.5小时时失活。
可见光照射下,20g4.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为16.9%。
可见光照射下,0.8g纯TiO2对苯没有降解活性。
实施例四:
1.制备20g含5.0Wt%N-TiO2的N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂。其制备方法为:准确称取1.0g N-TiO2(制备方法同实施例一中1.N-TiO2的制备)和19.0gBaAl2O4:Eu2+,Dy3+(制备方法同实施例一中1.BaAl2O4:Eu2+,Dy3+的制备),混合均匀球磨2小时后,放进马弗炉中450℃焙烧3小时,冷却至室温保存。
2.为进行比较,制备了纯TiO2。制备方法同实施例一中2。
3.评价光催化剂的性能,反应装置及评价方法同实施例一中3。
紫外光照射下,20g5.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为38.2%。
紫外光照射下,1.0g纯TiO2对苯的降解率5小时为26.3%,催化剂在3.5小时时失活。
可见光照射下,20g5.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为15.1%。
可见光照射下,1.0g纯TiO2对苯没有降解活性。
实施例五:
1.制备20g含6.0Wt%N-TiO2的N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂。其制备方法为:准确称取1.2g N-TiO2(制备方法同实施例一中1.N-TiO2的制备)和18.8gBaAl2O4:Eu2+,Dy3+(制备方法同实施例一中1.BaAl2O4:Eu2+,Dy3+的制备),混合均匀球磨2小时后,放进马弗炉中450℃焙烧3小时,冷却至室温保存。
2.为进行比较,制备了纯TiO2。制备方法同实施例一中2。
3.评价光催化剂的性能,反应装置及评价方法同实施例一中3。
紫外光照射下,20g6.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为35.4%。
紫外光照射下,1.2g纯TiO2对苯的降解率5小时为27.6%,催化剂在3.5小时时失活。
可见光照射下,20g6.0Wt%N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂对苯的降解率5小时为13.3%。
可见光照射下,1.2g纯TiO2对苯没有降解活性。

Claims (4)

1.一种复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+,其特征在于:所述的复合光催化剂的活性组分为N-TiO2,另一组分为发光材料BaAl2O4:Eu2+,Dy3+
2.根据权利要求1所述的复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+的制备方法,其特征在于:将N-TiO2和BaAl2O4:Eu2+,Dy3+混合,球磨,焙烧,冷却至室温保存。
3.根据权利要求2所述的复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+的制备方法,其特征在于:N-TiO2所占比例为2Wt%~6Wt%。
4.根据权利要求1所述的复合光催化剂N-TiO2/BaAl2O4:Eu2+,Dy3+,其特征在于:将此复合光催化剂用于气相有机污染物的催化转化。
CN 201110095853 2011-04-07 2011-04-07 N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用 Pending CN102225342A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110095853 CN102225342A (zh) 2011-04-07 2011-04-07 N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110095853 CN102225342A (zh) 2011-04-07 2011-04-07 N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
CN102225342A true CN102225342A (zh) 2011-10-26

Family

ID=44806361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110095853 Pending CN102225342A (zh) 2011-04-07 2011-04-07 N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN102225342A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816210A (zh) * 2018-06-14 2018-11-16 天津大学 一种多层多孔型二氧化钛催化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792424A (zh) * 2005-12-27 2006-06-28 四川大学 一种以发光材料为载体的负载型TiO2光催化剂及制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792424A (zh) * 2005-12-27 2006-06-28 四川大学 一种以发光材料为载体的负载型TiO2光催化剂及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Catalysis Communications》 20090116 Li Shuo, et al Fabrication and characterization of TiO2/BaAl2O4:Eu2+,Dy3+ and its photocatalytic performance towards oxidation of gaseous benzene 1048-1051 1-4 第10卷, *
《Nanoscale Research Letters》 20100820 Li Huihui, et al Persistent deNOx ability of CaAl2O4:(Eu,Nd)/TiO2-xNy Luminescent photocatalyst 1-4 第6卷, 第5期 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816210A (zh) * 2018-06-14 2018-11-16 天津大学 一种多层多孔型二氧化钛催化剂的制备方法
CN108816210B (zh) * 2018-06-14 2020-12-29 天津大学 一种多层多孔型二氧化钛催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN103861575B (zh) 一种掺杂改性TiO2/石墨烯复合材料的制备方法
CN103861600B (zh) 一种过渡金属离子、稀土离子镧、钇掺杂改性TiO2石墨烯复合材料的制备方法
Li et al. Effect of phase structures of TiO2− xNy on the photocatalytic activity of CaAl2O4:(Eu, Nd)-coupled TiO2− xNy
CN101195094B (zh) 可见光活化的二氧化钛卟啉纳米复合催化剂及其制备方法
CN105771980A (zh) 一种石墨烯/银/介孔二氧化钛纳米复合光催化剂及其制备工艺
CN101579624B (zh) 二氧化锡光催化剂的制备方法
CN107555468A (zh) 一种多孔氧化锌‑银微球的制备方法及其应用
CN104226340B (zh) 可见光纳米复合光催化剂AgCl-SnO2的制备方法
CN101690891B (zh) 一种可见光催化剂SnWO4的合成方法
CN105536765A (zh) 一种贝壳基掺硼二氧化钛复合光催化剂及其制备方法
Zhang et al. Uncovering Original Z Scheme Heterojunctions of COF/MOx (M= Ti, Zn, Zr, Sn, Ce, and Nb) with Ascendant Photocatalytic Selectivity for Virtually 99.9% NO‐to‐NO3− Oxidation
Yang et al. Long afterglow phosphor driven g-C3N4 photocatalyst for continuous water purification under light and dark conditions
CN107376905A (zh) 一种可降解甲醛的Ag/ZnO复合材料的制备方法
Cui et al. Synthesis and properties of Sm‐TiO2 coupled with g‐C3N4 for improved photocatalytic degradation toward methylene blue and tetracycline under visible‐light irradiation
CN102225342A (zh) N-TiO2/BaAl2O4:Eu2+,Dy3+复合光催化剂及制备方法和应用
CN101462047A (zh) 用于降解有机污染物的光催化剂及其制备方法
CN100348312C (zh) 一种以发光材料为载体的负载型TiO2光催化剂及制备方法和应用
CN101543774A (zh) Bi12SiO20负载TiO2光催化剂及制备方法和应用
CN113457650A (zh) 一种催化氧化甲醛和长效荧光光催化复合材料及制备方法
CN104888770A (zh) 一种负载金属Ag的C掺杂TiO2纳米颗粒可见光催化剂及其应用
Kukkar et al. The use of nanophotocatalysts for the effective mitigation of polycyclic aromatic hydrocarbons in aqueous phase
CN103191713A (zh) Sn/Ce共掺杂TiO2催化剂及其制备方法
CN104941625A (zh) 一种黑色氧化锌及其制备方法
CN106824214B (zh) FeSe/BiVO4复合光催化剂及制备方法
CN101632922B (zh) 高可见光催化活性钒钆氧复合氧化物催化剂及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111026