CN102224597A - 具衬底内分布式发射器的光伏电池及制造此电池的方法 - Google Patents

具衬底内分布式发射器的光伏电池及制造此电池的方法 Download PDF

Info

Publication number
CN102224597A
CN102224597A CN200980146434XA CN200980146434A CN102224597A CN 102224597 A CN102224597 A CN 102224597A CN 200980146434X A CN200980146434X A CN 200980146434XA CN 200980146434 A CN200980146434 A CN 200980146434A CN 102224597 A CN102224597 A CN 102224597A
Authority
CN
China
Prior art keywords
substrate
photovoltaic cell
blind hole
conductive semiconductor
interarea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980146434XA
Other languages
English (en)
Other versions
CN102224597B (zh
Inventor
珍-保尔·格兰德特
闾客·妃德中尼
扬尼克·维斯切蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of CN102224597A publication Critical patent/CN102224597A/zh
Application granted granted Critical
Publication of CN102224597B publication Critical patent/CN102224597B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏电池(100),其包含一由第一型导电性半导体所组成的衬底(102),包含实质上相互平行的二主面(104、106),此处所述衬底包含复数个盲孔(108),其开口位于所述二主面的单个主面(106),且此处所述盲孔是由与第一型导电性相反的第二型导电性半导体所填充而形成光伏电池的发射器,此处所述衬底形成光伏电池的底座,此处所述电池也包含由第二型导电性半导体所组成与光伏电池的发射器接触的第一集电极引脚(112),以及由第一型导电性半导体所组成与衬底接触且与第一集电极引脚相互交叉的第二集电极引脚(114)。

Description

具衬底内分布式发射器的光伏电池及制造此电池的方法
技术领域
本发明涉及光伏电池领域,特别是具有后触点(rear contacts),即具有位在未接收光子的电池面上的触点的光伏电池领域。本发明也涉及以比用于微电子的标准品质更低品质的半导体来制造光伏电池。
背景技术
光伏电池的制造主要是通过固化液态硅浴中的晶锭(ingot)而得单晶或多晶硅衬底,然后通过切割此晶锭的晶片以获得衬底或平板。然后在无尘室内使用各种用于在这些硅衬底上沉积的技术以制得光伏电池。
通过称为”同质结”的传统技术制作光伏电池的期间,首先将结晶硅晶锭切割成在其上制造电池的晶片。接着通过化学侵蚀使此些晶片具特定结构以改善光被即将从这些晶片所制得的光伏电池所捕集。然后通过在这些晶片中气体扩散来制得p-n型接面。其后制造PECVD沉积以改善电池的遮光性质并钝化重组缺陷。然后通过在两面上丝网印刷来沉积导电层以允许光生载流子被收集,且光伏电池的电触点被制造。
然而,对于这种称为”同质结”技术的类型,其达到工业化的能源效率是有限的,通常约为15%,即使具有”微电子”品质的碱性硅。
为了获得高于20%的效率,必须使用不同结构的光伏电池,像是具有异质结的光伏电池(非晶硅/晶硅)及/或RCC(后触点电池)型电池,其能明显地使位于电池正面上与存在收集导体有关的遮光物能够被克服(所有触点位于电池背面上)。
无论所制作的电池是什么类型,达到有利的能源效率先决条件为在电池核心的光生少数载流子的最大数目为了被收集将能够到达p-n接面,因此它们的扩散长度大于晶片的厚度。这对于RCC电池来说是非常特别地,因载流子主要于第一微米光硅内产生,在电池正面的区域内,因此在收集前必须横越整个晶片。因此RCC型电池的制作需要使用从微电子品质(microelectronics quality)的硅中所制得的单晶体,其具有高扩散长度的少数载流子,然而其主要缺点为昂贵的。
其他较低成本的硅的类型是存在的,但具有较低纯度,所以所给的少数载流子为较低扩散长度。这些较低品质的硅因而无法用于RCC型电池的制作。
也具有EWT(发射极环绕)型的光伏电池。此些电池从例如p型的硅晶片中制得。通过激光雕刻硅晶片而产生孔洞(其直径等于大约60微米,间隔大约2公厘)。然后通过在正面上、在孔洞壁内,且也在电池背面的部份上气体扩散来制作n+型层而形成电池的发射器。因此,p-n+接面分为多个区块的电池容积,使得少数载流子在被收集前所能传送的距离减少。
然而,这样的EWT电池所具有的最大缺点为其具有高制作成本,由于其制作必须在无尘室内进行,且使用了用于在衬底内产生孔洞的激光。
发明内容
本发明之一目的为提出一种新的光伏电池结构,使少数电荷载流子的收集与传送最优化,其制作成本更低,且可从比微电子品质更低品质的半导体中制得。
为实现此点,本发明提出一种光伏电池,其包含由第一型导电性半导体所组成的衬底,具有实质上相互平行的二主面,此处衬底包含复数个盲孔,其开口位于此二主面的单个主面,且此处所述的盲孔是由第二型导电性半导体所填充,其与第一型导电性相反且形成光伏电池的发射器,以及此处所述衬底形成光伏电池的底座。
此光伏电池的发射器是以分布在盲孔内、在衬底的核心内的数个半导体部分的形式来分布。因此,相较于现存的光伏电池结构,光伏电池内的p-n接面的此排列方式可使光伏电池里面所收集与传送的少数电荷载流子能够最优化,因而允许使用品质劣于微电子品质的半导体在其制造上,像是举例来说,与高分子混合的半导体粉末。因此此电池可使用例如来自微塑料(microplasturgy)的技术以低成本来制作。
此外,相较于EWT型光伏电池,根据本发明的光伏电池提供较大的可能性来调节形成电池发射器的半导体部分的尺寸、配置及间距。相较于EWT技术,此光伏电池结构也允许等效电导的低度掺杂半导体的使用。
每一盲孔可具有一实质上与衬底的二主面垂直的中心对称轴。因此电池的发射器是通过设置于光伏电池的衬底内的半导体纵向部分来形成。
每一盲孔在穿过所述盲孔的开口所位处的衬底的主面的一平面上,可包含一面积比盲孔的底壁面积大的截面。因此通过选择这样的盲孔且因而这样的半导体部分以形成光伏电池的发射器,这些盲孔的截面面积随着衬底内的盲孔高度变化,以通过设置于衬底中的半导体来考虑入射光子的光谱吸收,使得少数电荷载流子的运送能被改善。
在这种情况下,就每一盲孔而言,在穿过盲孔的开口所位处的衬底的主面的所述平面的区域上的所述盲孔的截面面积,与所述盲孔的底壁面积之间的比率可为1至3。
每一盲孔可具有一实质上截顶的圆锥或尖拱形状。
每一盲孔在一与衬底的主面中任一主面平行的平面上,可包含一多边形状或例如一星形的截面。因此,通过凭借形成光伏电池发射器的这些半导体部分的原始横断面形状的方法来选择形成电池发射器的半导体部分的特定外形,收集少数电荷载流子的概率随着增加相较于衬底内特定体积的发射器面积而增加。
衬底的所述主面中的至少一主面是可结构化的,通过此手段来改善光被光伏电池所捕集。
发射器的第二型导电性半导体中每立方厘米的掺杂原子或载流子原子浓度可为1016至1021,且更好为1018至1020。衬底的第一型导电性半导体中每立方厘米的掺杂原子浓度可为1015至1018,且更好为1016至1017
有利地,衬底的厚度可小于300微米且每一盲孔的深度可较衬底的一半厚度大。
光伏电池在盲孔的开口所位处的衬底的主面上,也可包含由至少一第二型导电性半导体所组成的第一集电极引脚,其与电池发射器接触,以及由至少一第一型导电性半导体所组成的第二集电极引脚,其与衬底接触且与第一集电极引脚相互交叉。
在这种情况下,第二集电极引脚的第一型导电性与第一集电极引脚的第二型导电性的半导体中每立方厘米的掺杂原子浓度可为1019至1021
本发明也涉及一种制作光伏电池的方法,其至少包含下列步骤:
a)制作一由第一型导电性半导体所组成的衬底,其具有实质上相互平行的二主面;
b)于所述衬底制作复数个盲孔,使得此些盲孔的开口仅位于二主面中的一主面;
c)通过一由与第一型导电性相反的第二型导电性半导体所组成的材料来填充盲孔,形成光伏电池的发射器。
步骤a)可通过将一由第一型导电性半导体所组成的材料注入一模具来实施。
在此方法的过程中,将衬底维持在最初模具中是可能的,移除后者的基座来减轻所有对齐的问题。
填充步骤c)也可在盲孔的开口所位处的衬底的主面上,并透过对着具有盲孔开口的衬底主面所放置的第一掩膜,来制作由至少一第二型导电性半导体所组成与电池的发射器接触的第一集电极引脚,且也包含在步骤c)后移除第一掩膜,并凭着透过设置在盲孔的开口所位处的衬底主面的对面的第二掩膜的注入,来制作由至少一第一型导电性半导体所组成与衬底接触且与第一集电极引脚相互交叉的第二集电极引脚。
所述衬底及/或发射器及/或集电极引脚是由半导体材料及高分子粉末所组成的材料混合物所制成,且所述方法在填充步骤c)后也可包含一脱脂(debinding)混合物的步骤,其是在大约300℃至600℃温度并经过大约12小时至36小时的时间下所进行,以及一烧结脱脂后所得的粉末的步骤,其是在大约1000℃至1350℃温度并经过大约1小时至8小时的时间下所完成。
所述脱脂步骤及/或所述烧结步骤可在一还原空气下,例如在一氢空气下进行。
附图说明
本发明将凭着阅读所给实施例的范例描述,其纯粹作为表明且未以此限制,并参考附加图解而更加了解,其中:
-图1为根据一特定实施例,描绘一构成本发明主题的光伏电池由截面与侧面来看的局部视图;
-图2为根据一特定实施例,描绘从一构成本发明主题的光伏电池的下方来看的局部视图;
-图3为根据一特定实施例,描绘一构成本发明主题的光伏电池的部分截面视图;
-图4为描绘于构成本发明主题的光伏电池的衬底所制作的盲孔的外形与截面的范例。
下述不同图式的相同、类似或均等部件具有相同数字符号,以便于从一图移至另一图。
为了使图式更易读取,图中所描绘的不同部件不一定以统一的比例来绘制。
须了解各种可能性(变体及实施例)并不相互排斥的,且能互相结合。
具体实施方式
首先参照图1,其为根据一特定实施例所描绘的一光伏电池100由截面与侧面来看的局部视图。
此处的p型光伏电池100包含由p型硅所组成的衬底102。所述衬底102包含为了接收光线的正面104,以及背面106。在图1的范例中,为了更好补集抵达光伏电池100的光,正面104是具有特定结构的。在不同的实施例中,背面106也可以被结构化,不论是否以类似于正面104的方式。举例来说,衬底102的厚度是大约50微米至300微米,且更好的是大约100微米至200微米。
所述盲孔108形成于衬底102中,每一盲孔108具有一在衬底102的背面106的开口。如图1所示,盲孔108所具有的外形使得在背面106区域中的盲孔108的截面面积较盲孔108的底壁面积大。图3为图1所示的AA轴上的光伏电池100的截面视图,其能够看到所述盲孔108在此情况下于与背面106平行的平面上具有三角形状的截面。
所述盲孔108以半导体110填充,在此实例中是n+型硅。因此,硅110的部分形成光伏电池100的发射器且衬底102形成光伏电池100的底座。因此,获得分布遍及光伏电池100的体积的p-n接面。
光伏电池100中所产生的电流的收集是通过由n+型硅所组成且与硅110的部分接触的第一集电极引脚112来完成,且其与由p+型硅所组成且与衬底102的背面106接触的第二集电极引脚114相互交叉(看图1与图2)。
在平行于衬底102的主面104与106中的任一主面的平面上的盲孔108的截面可具有三角形之外的形状,举例来说圆形(举例来说,看图4所示的截面110c)。然而,盲孔108的截面更好是选择圆形之外的形状,举例来说如图3中的三角形、方形、星形(举例来说,看图4所示的截面110d与110f)、或多边形,不论是规则或不规则(举例来说,看图4所示的八角形截面110e)。这些形状能够使位在盲孔108中的半导体(所述发射器)与衬底102之间的接触面积增加,其使得在光伏电池100中收集少数电荷载流子的可能性增加。对于一给定的体积,相对于圆形截面,三角形状的截面能够使发射器的面积增加大约30%。再次相较于圆形截面,对于通过迭加两等边三角形所构成的规则六角形状的截面而言,其所得的面积增加接近2倍。最后,如有需要,更复杂的形状可被设想(不论规则或不规则,具有n边的多边形,或具n分支的三角形及/或星状物的迭加)。
依据所使用半导体的品质且特别是其扩散长度,半导体110的两相邻部分间的距离,其对应于两相邻盲孔108的距离,可为大约40微米至300微米之间,且更好的是60微米至100微米。
在图1的范例中,盲孔108具有一外形使得盲孔108截面的尺寸根据相对于背面106的截面的距离有规律地减少,举例来说一锥形外形110a(图4)。在一变体中,盲孔108可具有不同形状的外形,像是举例来说,截顶的尖拱形状(参考图4的110b),其截面的尺寸不是沿着外形的全长而规律的减少,但主要发生在盲孔108的底壁。所述的盲孔108具有不同形状的外形也是有可能的(举例来说,圆柱形,也就是截面的尺寸沿着外形的全长是相同的)。有利地,在穿过背面106的平面上的每一盲孔108包含一面积较所述盲孔108的底壁面积大的截面,与图1的范例中的实例相同。因此,盲孔108的截面面积随着光伏电池100的高度而变化以通过衬底102的半导体材料来考虑到入射光子的光谱吸收。其为可能的,举例来说,在背面106区域中的盲孔108的截面面积与盲孔108的底壁面积之间的比率为大约1至3,且更好的是大约1.2至2。此比率的数值特别是通过所使用材料的光子的吸收图谱按照光源所选择得。
为了限制与由硅110部分所形成的n+区域的高重组活性有关的活性体积的耗损,尽可能的限制盲孔108的体积是可能的,同时考虑到与盲孔108的制作有关的技术限制为孔洞的形状因数。高度,也就是如图1所示在Y轴上的尺寸,与盲孔108的一截面的一侧(或在圆形的情况下直径)的尺寸之间的比率可例如小于或等于10。另外,半导体部分的高度对应于盲孔108的深度是至少相等于衬底102厚度的一半。
上述光伏电池100是p型,也就是包含在盲孔108中通过由p型硅与n+型硅110组成的衬底102所形成p-n接面。在一变体中,所述的光伏电池100可以是n型,也就是包括在盲孔108中通过由n型硅与p+型硅110组成的衬底102所形成的p-n接面。另外,用于制作光伏电池100的半导体可为硅之外的半导体,举例来说锗。在上述的范例中,集电极引脚112、114因此分别为n+型与p+型。
一般来说,(p型或n型)的衬底具有每立方厘米的掺杂原子浓度为1015至1018,且有利的是1016至1017。所述发射器具有每立方厘米的掺杂原子浓度为1016至1021,且有利的是1018至1020。所述集电极引脚具有较其接触的半导体高的掺杂原子浓度。因此,所述第一集电极引脚具有每立方厘米的掺杂原子浓度为1019至1021,且有利的是1020至1021。若形成所述发射器的半导体具有足够高的浓度,其也可适用于构成所述第二集电极引脚。这些第二集电极引脚(基座)可因此具有每立方厘米的掺杂原子浓度大约为1019至1021,且有利的是5*1019至5*1020
现在描述的一种方法是用以制造光伏电池100。此方法使用来自微塑料(microplasturgy)的低成本技术,其在高分子载体基质中使用含有硅粉末的存料混合物。
对于p型光伏电池100的制作,首先制备由p型、p+型与n+型硅粉末以及特别用来保护硅粉末不受其自然氧化的高分子所组成的3存料混合物或填充物。这些混合物的载体高分子是以烯羟型单体为基础的聚烯羟类型。多种聚烯羟的共聚高分子也可被使用。此处所描述的范例中,硅粉末与聚乙烯混合,且硅粉末的体积分率大约是等于50%。在此例示性实施例中,p型填充物每立方具有厘米的硼原子浓度大约是等于5*1016。所述p+型填充物具有每立方厘米的硼原子浓度大约是等于2*1020。最后,n+型填充物具有每立方厘米的磷原子浓度大约是等于2*1020
此方法的第一步骤在于将p型填充物注入模型内以形成衬底102。当渴望制作特定结构的正面时,所述模具可复制出此正面所期望的特定结构。有利地,也可能架构电池100的背面106以进一步改善电池100的光学器件。模具的高度可稍为大于衬底102所期望的厚度。在此处所描述的范例中,所述模具具有横向尺寸(对应于如图2所示在X与Z轴上的尺寸)等于大约10公分,以及高度等于大约250微米。
将所述模具的下部,也就是对着衬底102的背面106所设置的模具底部移除,然后通过矩阵印刷衬底102以在衬底102中共同地形成盲孔108。此处所描述的范例中,对于等于大约100微米的扩散长度的材料及250微米厚度的衬底而言,通过镍基基质来印刷衬底102,其可具有引脚(意图沉入衬底102内以形成盲孔108),具有一截顶的圆锥体以及三角形截面的形状,此处等边三角形的侧边在孔洞的顶部与底部之间具有30微米至40微米的尺寸。所制得的盲孔108具有等于大约200微米的深度,且彼此间的间隔距离等于大约200微米。此间隔一般将根据构成衬底的半导体的品质来选择:其将有利地比少数载流子的扩散强度的两倍数值低。
然后对着背面106涂布第一掩膜,其仅处于暴露意图与半导体110部分接触的集电极引脚112的位置,且将n+填充物注入盲孔108以形成半导体110部分而形成光伏电池100的发射器。此掩膜具有一定的高度,例如等于大约20微米,以也形成第一集电极引脚112。
移除第一掩膜,然后对着背面106涂布能使第二集电极引脚114由p+硅填充物形成的第二掩膜。
依据所使用的载体高分子性质,使电池100在大约300℃至600℃,且优先地400℃至500℃的温度下经历一脱脂(debinding)步骤,其持续时间在大约12小时与36小时之间,优先地在大约18小时与30小时之间变化。此处所描述的范例中,所述脱脂步骤是在电阻炉中等于大约450℃的温度下大约24小时完成。
将脱脂步骤结果所得的结构在大约1000℃至1350℃,且优先地1200℃至1300℃的温度下经历烧结步骤,其持续时间在大约1小时与8小时之间,优先地在大约3小时与6小时之间变化。此处所描述的范例中,所述烧结步骤是在1300℃下大约4小时完成。
这些脱脂及/或烧结步骤更好是在一还原空气下,优先地是在氢气或氢化氩下完成以允许光伏电池100的硅的核心氢化作用。

Claims (14)

1.一种光伏电池(100),其特征在于:其包含一由第一型导电性半导体所组成的衬底(102),包含实质上相互平行的二主面(104、106),此处所述衬底(102)包含复数个盲孔(108),其开口位于所述二主面的单个主面(106),且此处所述盲孔(108)是由与第一型导电性相反的第二型导电性半导体(110)所填充而形成所述光伏电池(100)的发射器,此处所述衬底(102)形成所述光伏电池(100)的底座,此处所述光伏电池(100)在包含所述盲孔(108)的所述开口的所述衬底(102)的所述主面(106)上,也包含由至少一所述第二型导电性半导体所组成与所述光伏电池(100)的所述发射器(110)接触的第一集电极引脚(112),以及由至少一所述第一型导电性半导体所组成与所述衬底(102)接触并与所述第一集电极引脚(112)相互交叉的第二集电极引脚(114)。
2.根据权利要求1所述的光伏电池(100),其特征在于:每一盲孔(108)具有一实质上与所述衬底(102)的所述二主面(104、106)垂直的中心对称轴。
3.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:每一盲孔(108)在穿过包含所述盲孔(108)的所述开口的所述衬底(102)的所述主面(106)的一平面上,包含一面积比所述盲孔(108)的底壁面积大的截面。
4.根据权利要求3所述的光伏电池(100),其特征在于:就每一盲孔(108)而言,在穿过所述盲孔的所述开口所处的所述衬底(102)的所述主面(106)的所述平面的区域上的所述盲孔(108)的所述截面的面积,与所述盲孔(108)的所述底壁面积之间的比率为1至3。
5.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:每一盲孔(108)具有一实质上截顶的圆锥或尖拱形状。
6.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:每一盲孔(108)在一与所述衬底(102)的所述主面(104、106)中任一主面平行的平面上,具有一多边形状的截面。
7.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:所述衬底(102)的所述主面(104、106)中至少一主面是结构化的。
8.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:所述发射器的所述第二型导电性半导体(110)中每立方厘米的掺杂原子浓度为1016至1021、或1018至1020,而所述衬底(102)的所述第一型导电性半导体中每立方厘米的掺杂原子浓度为1015至1018、或1016至1017
9.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:所述衬底(102)的厚度小于300微米且每一盲孔(108)的深度较所述衬底(102)的一半厚度大。
10.根据前述权利要求中任一项所述的光伏电池(100),其特征在于:所述第二集电极引脚(114)的所述第一型导电性半导体以及所述第一集电极引脚(112)的所述第二型导电性半导体中每立方厘米的掺杂原子浓度为1019至1021。
11.一种制作光伏电池(100)的方法,其特征在于:其至少包含下列步骤:
a)制作一由第一型导电性半导体所组成的衬底(102),其具有实质上相互平行的二主面(104、106);
b)于所述衬底(102)制作复数个盲孔(108),使得所述盲孔(108)的开口仅位于所述二主面中的一主面(106);
c)通过一由与第一型导电性相反的第二型导电性半导体所组成的材料来填充所述盲孔(108),形成所述光伏电池(100)的发射器(110);
其中所述填充步骤c)也在所述盲孔(108)的所述开口所位处的所述衬底(102)的所述主面(106)上,并透过对着具有所述盲孔(108)的所述开口的所述衬底(102)的所述主面(106)所放置的第一掩膜,来制作由至少一所述第二型导电性半导体所组成与所述电池(100)的所述发射器(110)接触的第一集电极引脚(112),且也包含在所述步骤c)后移除所述第一掩膜,并凭着透过设置在所述盲孔(108)的所述开口所位处的所述衬底(102)的所述主面(106)对面的第二掩膜的注入,来制作由至少一所述第一型导电性半导体所组成与所述衬底(102)接触且与所述第一集电极引脚(112)相互交叉的第二集电极引脚(114)。
12.根据权利要求11所述的方法,其特征在于:所述步骤a)是通过将一由第一型导电性半导体所组成的材料注入一模具来实施。
13.根据权利要求11或12所述的方法,其特征在于:所述衬底(102)及/或所述发射器(110)及/或所述集电极引脚(112、114)是由半导体材料及高分子粉末所组成的材料混合物所制成,且所述方法在所述填充步骤c)后也包含一脱脂所述混合物的步骤,其是在大约300℃至600℃温度并经过12小时至36小时的时间下所进行,以及一烧结脱脂后所得的粉末的步骤,其是在大约1000℃至1350℃温度并经过大约1小时至8小时的时间下所完成。
14.根据权利要求13所述的方法,其特征在于:所述脱脂步骤及/或所述烧结步骤是在一还原空气下进行。
CN200980146434XA 2008-11-21 2009-11-20 具衬底内分布式发射器的光伏电池及制造此电池的方法 Expired - Fee Related CN102224597B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0857926A FR2938972B1 (fr) 2008-11-21 2008-11-21 Cellule photovoltaique a emetteur distribue dans un substrat et procede de realisation d'une telle cellule
FR0857926 2008-11-21
PCT/EP2009/065521 WO2010057964A1 (fr) 2008-11-21 2009-11-20 Cellule photovoltaique a emetteur distribue dans un substrat et procede de realisation d'une telle cellule

Publications (2)

Publication Number Publication Date
CN102224597A true CN102224597A (zh) 2011-10-19
CN102224597B CN102224597B (zh) 2013-08-14

Family

ID=40831687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980146434XA Expired - Fee Related CN102224597B (zh) 2008-11-21 2009-11-20 具衬底内分布式发射器的光伏电池及制造此电池的方法

Country Status (9)

Country Link
US (1) US20110220193A1 (zh)
EP (1) EP2351095B1 (zh)
JP (1) JP5568564B2 (zh)
KR (1) KR101561427B1 (zh)
CN (1) CN102224597B (zh)
ES (1) ES2400989T3 (zh)
FR (1) FR2938972B1 (zh)
PL (1) PL2351095T3 (zh)
WO (1) WO2010057964A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959599B1 (fr) 2010-04-28 2013-12-20 Commissariat Energie Atomique Dispositif et procede de texturation mecanique d'une plaquette de silicium destinee a constituer une cellule photovoltaique, plaquette de silicium obtenue
KR101241015B1 (ko) * 2011-09-01 2013-03-11 현대자동차주식회사 집전극을 갖는 염료감응 태양전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292381A (ja) * 1985-06-19 1986-12-23 Sharp Corp 太陽電池セル
CN1906332A (zh) * 2003-12-18 2007-01-31 新日本石油株式会社 纳米阵列电极的制造方法以及使用其的光电转换元件
US20070134840A1 (en) * 2004-10-25 2007-06-14 Gadeken Larry L Methods of making energy conversion devices with a substantially contiguous depletion regions
US7253017B1 (en) * 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234352A (en) * 1978-07-26 1980-11-18 Electric Power Research Institute, Inc. Thermophotovoltaic converter and cell for use therein
US4227942A (en) * 1979-04-23 1980-10-14 General Electric Company Photovoltaic semiconductor devices and methods of making same
US4838952A (en) * 1988-04-29 1989-06-13 Spectrolab, Inc. Controlled reflectance solar cell
JPH11330517A (ja) * 1998-05-12 1999-11-30 Hitachi Cable Ltd 太陽電池,及び太陽電池モジュール
US6150603A (en) * 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
DE10142481A1 (de) * 2001-08-31 2003-03-27 Rudolf Hezel Solarzelle sowie Verfahren zur Herstellung einer solchen
US6613974B2 (en) * 2001-12-21 2003-09-02 Micrel, Incorporated Tandem Si-Ge solar cell with improved conversion efficiency
US20040025932A1 (en) * 2002-08-12 2004-02-12 John Husher Variegated, high efficiency solar cell and method for making same
JP4869061B2 (ja) * 2003-04-14 2012-02-01 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク 焼結された半導体材料
US7170001B2 (en) * 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) * 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
JP2005064246A (ja) * 2003-08-12 2005-03-10 Canon Inc 光電変換素子、その製造方法および太陽電池
JP2005310830A (ja) * 2004-04-16 2005-11-04 Sharp Corp 太陽電池および太陽電池の製造方法
EP1955363A4 (en) * 2005-11-24 2010-01-06 Newsouth Innovations Pty Ltd SCREEN PRINTING METAL CONTACT STRUCTURE WITH SMALL SURFACE CONTENT AND METHOD
US20090038669A1 (en) * 2006-09-20 2009-02-12 Translucent Photonics, Inc. Thin Film Solar Cell III
US20100154861A1 (en) * 2008-12-23 2010-06-24 Formfactor, Inc. Printed solar panel
FR2959599B1 (fr) * 2010-04-28 2013-12-20 Commissariat Energie Atomique Dispositif et procede de texturation mecanique d'une plaquette de silicium destinee a constituer une cellule photovoltaique, plaquette de silicium obtenue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292381A (ja) * 1985-06-19 1986-12-23 Sharp Corp 太陽電池セル
US7253017B1 (en) * 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
CN1906332A (zh) * 2003-12-18 2007-01-31 新日本石油株式会社 纳米阵列电极的制造方法以及使用其的光电转换元件
US20070134840A1 (en) * 2004-10-25 2007-06-14 Gadeken Larry L Methods of making energy conversion devices with a substantially contiguous depletion regions

Also Published As

Publication number Publication date
PL2351095T3 (pl) 2013-05-31
FR2938972B1 (fr) 2011-04-29
EP2351095A1 (fr) 2011-08-03
US20110220193A1 (en) 2011-09-15
KR20110084985A (ko) 2011-07-26
JP5568564B2 (ja) 2014-08-06
KR101561427B1 (ko) 2015-10-19
ES2400989T3 (es) 2013-04-16
JP2012509584A (ja) 2012-04-19
EP2351095B1 (fr) 2012-12-05
WO2010057964A1 (fr) 2010-05-27
CN102224597B (zh) 2013-08-14
FR2938972A1 (fr) 2010-05-28

Similar Documents

Publication Publication Date Title
CN100470850C (zh) 太阳能电池及其制造方法
CN102763226B (zh) 使用薄平面半导体的高效光伏背触点太阳能电池结构和制造方法
US9324887B2 (en) Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
EP3138130B1 (en) Methods and apparati for making thin semi-conductor wafers with locally controlled regions that are relatively thicker than other regions
JP6482692B2 (ja) 太陽電池素子
CN101919064A (zh) 制造背接触式光伏电池的方法及由该方法制得的背接触式光伏电池
CN101982889B (zh) 一种太阳能电池片的制作方法
CN100481522C (zh) 形成穿过电介质的金属/半导体触点的方法
JP2009521819A (ja) 相変化インクを用いて、半導体ウェハ上に電気接点を形成するプロセス
CN101088159A (zh) 发射器穿绕的背接触太阳能电池的工艺和制造方法
EP3050120A1 (en) Nanostructured silicon based solar cells and methods to produce nanostructured silicon based solar cells
JP6199727B2 (ja) 太陽電池の製造方法
CN102224597B (zh) 具衬底内分布式发射器的光伏电池及制造此电池的方法
CN109888029B (zh) 一种用于改善perc电池铝空洞的烧结方法
JP2016051767A (ja) 太陽電池素子の製造方法
TW201431101A (zh) 太陽能電池、其模組及其製造方法
KR102060710B1 (ko) 태양 전지 및 이의 제조 방법
CN106784047A (zh) 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池
CN112186072A (zh) 一种perc太阳电池的制备方法
KR20130069678A (ko) 고상성장을 이용한 태양전지 도핑층 형성방법
CN201796899U (zh) 一种单深结密栅线结构太阳电池
CN104425634A (zh) 钝化发射极背电极硅晶太阳能电池及其制造方法
KR102283834B1 (ko) 다른 영역보다 상대적으로 더 두꺼운 국부적으로 제어된 영역을 갖는 얇은 반도체 웨이퍼를 제조하는 방법, 장치, 및 그 웨이퍼
CN113990958A (zh) 一种N型TopCon电池及其制备方法
CN202996909U (zh) 一种n型硅衬底加有机晶体双面异质结太阳能电池片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20161120