CN102163001A - 控制光刻设备的方法和设备 - Google Patents

控制光刻设备的方法和设备 Download PDF

Info

Publication number
CN102163001A
CN102163001A CN2011100423708A CN201110042370A CN102163001A CN 102163001 A CN102163001 A CN 102163001A CN 2011100423708 A CN2011100423708 A CN 2011100423708A CN 201110042370 A CN201110042370 A CN 201110042370A CN 102163001 A CN102163001 A CN 102163001A
Authority
CN
China
Prior art keywords
lithographic equipment
substrate
subsystem
subclass
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100423708A
Other languages
English (en)
Other versions
CN102163001B (zh
Inventor
B·曼科特柴可夫
A·帕迪尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN102163001A publication Critical patent/CN102163001A/zh
Application granted granted Critical
Publication of CN102163001B publication Critical patent/CN102163001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure

Abstract

本发明提供一种控制光刻设备的方法和设备。使用扫描器在衬底上执行光刻曝光过程。扫描器包括若干子系统。在曝光期间存在有在系统中产生的重叠误差。使用散射仪测量重叠误差以获得重叠测量值。执行模型化以通过重叠测量值单独地确定估计的模型参数的不同子集,例如场变形模型参数、扫描/步进方向模型参数以及位置/变形模型参数。每个子集与光刻设备的相应的具体子系统中引起的重叠误差相关。最后,通过控制扫描器的具体子系统来控制扫描器中的曝光,其中使用估计的模型参数的相应子集控制所述扫描器的具体子系统。这导致产品晶片以被良好控制的重叠而曝光。

Description

控制光刻设备的方法和设备
技术领域
本发明涉及控制光刻设备、以用于校正可用于例如通过光刻技术制造器件的光刻过程中的误差,诸如重叠误差。
背景技术
光刻设备是一种将所需图案应用到衬底上,通常是衬底的目标部分上的机器。例如,可以将光刻设备用在集成电路(ICs)的制造中。在这种情况下,可以将可选地称为掩模或掩模版的图案形成装置用于生成待形成在所述IC的单层上的电路图案。可以将该图案转移到衬底(例如,硅晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯)上。所述图案的转移通常是通过将图案成像到提供到衬底上的辐射敏感材料(抗蚀剂)层上。通常,单个衬底将包含连续形成图案的相邻目标部分的网络。公知的光刻设备包括:所谓的步进机,在所述步进机中,通过将整个图案一次曝光到所述目标部分上来辐射每一个目标部分;以及所谓的扫描器,在所述扫描器中,通过辐射束沿给定方向(“扫描”方向)扫描所述图案、同时沿与该方向平行或反向平行的方向扫描所述衬底来辐射每一个目标部分。也可能通过将图案压印(imprinting)到衬底的方式从图案形成装置将图案转移到衬底上。
为了监测光刻过程,测量图案化的衬底的参数。参数可以包括例如形成在图案化衬底内或图案化衬底上的连续的层之间的重叠误差和显影的光致抗蚀剂的临界线宽。这种测量可以在产品衬底和/或在专用的量测目标上执行。存在多种工艺测量在光刻过程中形成的微结构,包括使用扫描电子显微镜和各种专用工具。快速且非侵入式的专用检验工具是散射仪,其中辐射束被引导到衬底表面上的目标上,测量散射或反射束的性质。通过对比在其被衬底反射或散射之前和之后的束,可以确定衬底的性质。这可以例如通过将反射束与存储在已知的测量值的库中的与已知衬底性质相关的数据进行对比来完成。已知两种主要类型的散射仪。光谱散射仪引导宽带辐射束到衬底上,并且测量散射到特定的窄的角度范围的辐射的光谱(强度作为波长的函数)。角度分辨散射仪使用单色辐射束,并且测量散射辐射的强度作为角度的函数。
通常,跨经曝光场和跨经晶片衬底测量衬底的性质,例如晶片上的重叠误差。在每个测量点处重叠误差不被控制。相反,参数化被用于表征跨经场和晶片的重叠。
这种参数化描述重叠误差作为晶片和场位置的函数。这种参数化可以是简单的,例如10个参数模型,或较复杂的,例如一个基组的高次多项式。使用这种参数化,可以计算校正,其应该在光刻设备应用,目标为驱使跨经晶片(场)的重叠误差为零。
目前,离线参数化模型以一般的方法考虑重叠误差。由于在光刻设备应用非优化的校正,这会导致不有效的维护保养。这种维护的不精确导致需要执行较频繁的光刻设备的在线重新校准,或导致对于其他场位置和尺寸是不通用的用于校准的场位置和尺寸的具体校正(校准vs生产布局)。
发明内容
因此,需要的是一种改善离线参数化建模的有效系统和方法。
在本发明的一个实施例中,提供一种控制光刻设备的方法,包括:测量在所述光刻过程中产生的衬底性质以获得衬底性质测量值;和通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集。此外,每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的误差相关。进一步,光刻设备的控制包括控制光刻设备的具体子系统,其中使用估计的模型参数的所述被控制的具体子系统的相应子集控制所述光刻设备的所述具体子系统。
在本发明的另一实施例中,提供一种用于利用用以在衬底上执行光刻过程的光刻设备控制光刻工艺的设备,其中所述设备包括:检验设备,用于测量所述光刻过程中产生的衬底性质以获得衬底性质测量值;和处理器,用于通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集。此外,每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的误差相关。进一步,光刻设备的控制包括控制所述光刻设备的具体子系统,其中使用估计的模型参数的所述被控制的具体子系统的相应子集控制所述光刻设备的具体子系统。
在本发明的还一实施例中,提供一种计算机程序产品,包含一个或多个机器可读指令序列,用于利用用以在衬底上执行光刻过程的光刻设备来控制光刻工艺,所述指令适于引起一个或多个处理器接收所述光刻过程中产生的衬底性质测量值,和通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集。此外,每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的误差相关。进一步,光刻设备的控制包括控制所述光刻设备的具体子系统,其中使用估计的模型参数的所述被控制的具体子系统的相应子集控制所述光刻设备的具体子系统。
下面参照附图详细地描述本发明的其他实施例、特征以及优点,以及本发明的不同实施例的结构和操作。应该注意,本发明不限于这里描述的具体实施例。这里给出的这些实施方式仅是用于示例。基于这里包含的教导其他实施例对本领域技术人员是显而易见的。
附图说明
下面仅通过示例的方式,参考附图对本发明的实施例进行描述,其中示意性附图中相应的标记表示相应的部件。此外,附图在这里并入并形成说明书的一部分,其示出本发明,并且与说明书一起进一步用于解释本发明的原理,并且允许本领域技术人员实现和使用本发明。
图1示出根据本发明一个实施例的光刻设备。
图2示出根据本发明一个实施例的光刻单元或簇。
图3示出根据本发明一个实施例的第一散射仪。
图4示出根据本发明一个实施例的第二散射仪。
图5是显示根据本发明一个实施例的光刻设备的部件的示意图,其具有分开的测量和曝光台;
图6示意地示出根据本发明一个实施例的、根据已知实践的、在图5的设备中的测量和曝光过程中的台;
图7示出根据本发明一个实施例的用于在衬底上移动晶片台的布置的第一示例;
图8示出根据本发明一个实施例的用于在衬底上移动晶片台的布置的第二示例;
图9示出根据本发明一个实施例的在使用扫描器稳定模块的光刻过程中的控制回路;
图10是根据本发明一个实施例的示出所述方法的流程图。
通过下面给出的详细的描述,结合附图,本发明的特征和优点将会变得清楚,其中相同的参考特征与对应的元件一致。在附图中,相同的附图标记基本上表示相同的、功能类似的和/或结构类似的元件。
具体实施方式
本说明书公开了并入本发明的特征的一个或更多个实施例。所公开的实施例仅给出本发明的示例。本发明的范围不限于所公开的实施例。本发明通过未决的权利要求进行限定。
所述的实施例和在说明书提到的“一个实施例”、“实施例”、“示例性实施例”等表示所述的实施例可以包括特定特征、结构或特性,但是每个实施例不必包括所述特定特征、结构或特性。而且,这些段落不必指的是同一个实施例。此外,当特定特征、结构或特性与实施例结合进行描述时,应该理解,无论是否明确描述,本领域技术人员所知的知识可以实现将这些特征、结构或特性与其他实施例结合。
本发明实施例可以应用到硬件、固件、软件或其任何组合。本发明实施例还可以应用为存储在机器可读介质上的指令,其可以通过一个或更多个处理器读取和执行。机器可读介质可以包括任何用于以机器(例如计算设备)可读形式存储或传送信息的机构。例如,机器可读介质可以包括:只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光学存储介质;闪存设备;传播信号(例如,载波、红外信号、数字信号等)的电、光、声或其他形式,以及其他。此外,这里可以将固件、软件、程序、指令描述成执行特定操作。然而,应该认识到,这些描述仅为了方便并且这些操作实际上由计算设备、处理器、控制器或其他执行所述固件、软件、程序、指令等的设备来完成的。
然而,在更详细地描述这些实施例之前,指导性地给出其中可以应用本发明的实施例的示例性环境。
图1示意地示出根据本发明的一个实施例的光刻设备。所述设备包括:照射系统(照射器)IL,其配置用于调节辐射束B(例如紫外(UV)辐射或深紫外(DUV)辐射);支撑结构(例如掩模台)MT,其构造用于支撑图案形成装置(例如掩模)MA,并与配置用于根据特定的参数精确地定位图案形成装置的第一定位装置PM相连;衬底台(例如晶片台)WT,其构造用于保持衬底(例如涂覆有抗蚀剂的晶片)W,并与配置用于根据特定的参数精确地定位衬底的第二定位装置PW相连;和投影系统(例如折射式投影透镜系统)PL,其配置成用于将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或多根管芯)上。
照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其它类型的光学部件、或其任意组合,以引导、成形、或控制辐射。
所述支撑结构支撑,即承载图案形成装置的重量。支撑结构以依赖于图案形成装置的方向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其他条件的方式保持图案形成装置。所述支撑结构可以采用机械的、真空的、静电的或其它夹持技术保持图案形成装置。所述支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。所述支撑结构可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。这里使用的术语“掩模版”或“掩模”可以看作与更为上位的“图案形成装置”同义。
这里所使用的术语“图案形成装置”应该被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何装置。应该注意的是,赋予辐射束的图案可能不与衬底的目标部分上的所需图案精确地相同(例如,如果图案包括相移特征或所谓的辅助特征)。通常,被赋予辐射束的图案将与在目标部分上形成的器件中的特定的功能层相对应,例如集成电路。
图案形成装置可以是反射式的或透射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻术中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地倾斜,以便沿不同方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜矩阵反射的辐射束。
这里使用的术语“投影系统”可以广义地解释为包括各种的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统、或其任意组合,如对于所使用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。这里使用的术语“投影透镜”可以认为是与更上位的术语“投影系统”同义。
例如,在该施例中,所述设备是透射型的(例如,采用透射式掩模)。替代地,所述设备可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列,或采用反射式掩模)。
光刻设备可以是具有两个(双台)或更多衬底台(例如,两个或更多的掩模台)的类型。在这种“多台”机器中,可以并行地使用附加的台,或可以在一个或更多个台上执行预备步骤的同时,将一个或更多个其它台用于曝光。
所述光刻设备还可以是这种类型,其中衬底的至少一部分可以由具有相对高的折射率的液体覆盖(例如水),以便填满投影系统和衬底之间的空间。浸没液体还可以施加到光刻设备的其他空间中,例如掩模和投影系统之间的空间。浸没技术在本领域是熟知的,用于提高投影系统的数值孔径。这里使用的术语“浸没”并不意味着必须将结构(例如衬底)浸入到液体中,而仅意味着在曝光过程中液体位于投影系统和该衬底之间。
参照图1,照射器IL接收从辐射源SO发出的辐射束。源SO和光刻设备可以是分立的实体(例如当源是准分子激光器)。在这种情况下,不会将源考虑成形成光刻设备的一部分,并且通过包括例如合适的定向反射镜和/或扩束器的束传递系统BD的帮助,将所述辐射束从所述源SO传到所述照射器IL。在其它情况下,所述源可以是所述光刻设备的组成部分(例如当源是汞灯)。源SO和照射器IL与需要时的束传递系统BD一起可以称为辐射系统。
所述照射器IL可以包括用于调整所述辐射束的角强度分布的调整器AD。通常,可以对所述照射器IL的光瞳平面中的强度分布的至少所述外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,所述照射器IL可以包括各种其它部件,例如积分器IN和聚光器CO。可以将所述照射器IL用于调节所述辐射束,以在其横截面中具有所需的均匀性和强度分布。
所述辐射束B入射到保持在支撑结构(例如,掩模台MT)上的所述图案形成装置(例如,掩模MA)上,并且通过所述图案形成装置MA来形成图案。已经穿过掩模MA之后,所述辐射束B通过投影系统PL,所述投影系统将辐射束聚焦到所述衬底W的目标部分C上。通过第二定位装置PW和位置传感器IF(例如,干涉仪器件、线性编码器、二维编码器或电容传感器)的帮助,可以精确地移动所述衬底台WT,例如以便将不同的目标部分C定位于所述辐射束B的路径中。类似地,例如在从掩模库中机械获取之后或在扫描期间,可以将所述第一定位装置PM和另一个位置传感器IF(在图1中没有明确地示出)用于相对于所述辐射束B的路径精确地定位掩模MA。通常,可以通过形成所述第一定位装置PM的一部分的长行程模块(例如,粗定位)和短行程模块(例如,精定位)的帮助来实现掩模台MT的移动。类似地,可以采用形成所述第二定位装置PW的一部分的长行程模块和短行程模块来实现所述衬底台WT的移动。在步进机的情况下(与扫描器相反),掩模台MT可以仅与短行程致动器相连,或可以是固定的。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准掩模MA和衬底W。尽管所示的衬底对准标记占据了专用目标部分,但是他们可以位于目标部分之间的空间(这些公知为划线对齐标记)上。类似地,在将多于一个的管芯设置在掩模MA上的情况下,所述掩模对准标记可以位于所述管芯之间。
可以将所示的设备用于以下模式中的至少一种中:
1.在步进模式中,在将掩模台MT和衬底台WT保持为基本静止的同时,将赋予所述辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后将所述衬底台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。在步进模式中,曝光场的最大尺寸限制了在单一的静态曝光中成像的所述目标部分C的尺寸。
2.在扫描模式中,在对掩模台MT和衬底台WT同步地进行扫描的同时,将赋予所述辐射束的图案投影到目标部分C上(即,单一的动态曝光)。衬底台WT相对于掩模台MT的速度和方向可以通过所述投影系统PL的(缩小)放大率和图像反转特征来确定。在扫描模式中,曝光场的最大尺寸限制了单一的动态曝光中的所述目标部分的宽度(沿非扫描方向),而所述扫描移动的长度确定了所述目标部分的高度(沿所述扫描方向)。
3.在另一个模式中,将用于保持可编程图案形成装置的掩模台MT保持为基本静止状态,并且在将赋予所述辐射束的图案投影到目标部分C上的同时,对所述衬底台WT进行移动或扫描。在这种模式中,通常采用脉冲辐射源,并且在所述衬底台WT的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的无掩模光刻中。
也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。
如图2所示,根据本发明的实施例,光刻设备LA形成光刻单元LC的一部分(有时也称为光刻元或者光刻簇),光刻单元LC还包括用以在衬底上执行曝光前和曝光后处理的设备。通常,这些包括用以沉积抗蚀剂层的旋涂器SC、用以显影曝光后的抗蚀剂的显影器DE、激冷板CH和烘烤板BK。衬底输送装置或机械手RO从输入/输出口I/O1、I/O2拾取衬底,然后在不同的处理设备之间移动衬底,然后将衬底移动到光刻设备的进料台LB。经常统称为轨道的这些装置处在轨道控制单元TCU的控制之下,所述轨道控制单元TCU自身由管理控制系统SCS控制,所述管理控制系统SCS也经由光刻控制单元LACU控制光刻设备。因此,不同的设备可以被操作用于将生产量和处理效率最大化。
为了由光刻设备曝光的衬底被正确地和一致地曝光,需要检验经过曝光的衬底以测量其性质,例如连续层之间的重叠误差、线厚度、临界尺寸(CD)等。如果检测到误差,例如可以对连续衬底的曝光进行调整(尤其是如果检验能够即刻完成并且足够迅速到使同一批次的其他衬底仍处于待曝光状态时)。此外,已经曝光过的衬底也可以被剥离并被重新加工(以提高产率),或可以被遗弃,由此避免在已知存在缺陷的衬底上进行曝光。在仅仅衬底的一些目标部分存在缺陷的情况下,可以仅对认为是无缺陷的那些目标部分进行进一步曝光。
检验设备被用于确定衬底的性质,且尤其,用于确定不同的衬底或同一衬底的不同层的性质如何从层到层变化。检验设备可以被集成到光刻设备LA或光刻单元LC中,或可以是独立的装置。为了能进行最迅速的测量,需要检验设备在曝光后立即测量在经过曝光的抗蚀剂层上的性质。然而,抗蚀剂中的潜影具有很低的对比度(因为在经过辐射曝光的抗蚀剂部分和没有经过辐射曝光的抗蚀剂部分之间仅有很小的折射率差),且并非所有的检验设备都对潜影的有效测量具有足够的灵敏度。因此,测量可以在曝光后的烘烤步骤(PEB)之后进行,所述曝光后的烘烤步骤通常是在经过曝光的衬底上进行的第一步骤,且增加了抗蚀剂的经过曝光和未经曝光的部分之间的对比度。在该阶段,抗蚀剂中的图像可以被称为半潜在的。也能够在抗蚀剂的曝光部分或者未曝光部分已经被去除的点上,或者在诸如刻蚀等图案转移步骤之后,对经过显影的抗蚀剂图像进行测量。后一种可能性限制了有缺陷的衬底进行重新加工的可能,但是仍旧可以提供有用的信息。
根据本发明的一个实施例,图3示出散射仪SM1,其可以用于本发明。散射仪包括宽带(例如白光)辐射投影装置2,其将辐射投影到衬底W上。反射的辐射通至光谱仪检测器4,光谱仪检测器4测量镜面反射辐射的光谱10(例如强度,作为波长的函数)。通过这个数据,引起被检测的光谱的结构或轮廓可以通过处理单元PU(例如通过严格耦合波分析和非线性回归,或通过与图3底部示出的模拟光谱库进行比较)进行重建。通常,对于所述重建,获知所述结构的通常形式,且通过根据所述结构的制作工艺的知识假定一些参数,仅留有一些结构参数根据散射仪的数据确定。这种散射仪可以被配置为正入射散射仪或斜入射散射仪。
根据本发明的一个实施例,可以用于本发明的另一个散射仪如图4所示。在该装置中,由辐射源2发出的辐射采用透镜系统12校准,并且通过干涉滤光片13和偏振器17被透射,由部分反射表面16反射并经由具有高数值孔径(NA)(例如优选至少大约0.9或更优选至少大约0.95)的显微镜物镜15聚焦到衬底W上。浸没式散射仪甚至可以具有数值孔径超过1的透镜。然后,所反射的辐射通过部分反射表面16透射入检测器18,以便检测散射光谱。检测器可以位于在透镜系统15的焦距处的后投影光瞳平面11上,然而,光瞳平面可以替代地以辅助的光学元件(未示出)在检测器上重新成像。所述光瞳平面是在其上辐射的径向位置限定入射角而角位置限定辐射的方位角的平面。在一个示例中,所述检测器优选为二维检测器,以使得可以测量衬底目标30的两维角散射谱。检测器18可以是例如电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器的阵列,且可以采用例如每帧40毫秒的积分时间。
参考束经常被用于例如测量入射辐射的强度。为此,当辐射束入射到分束器16上时,辐射束的一部分通过所述分束器作为参考束朝向参考反射镜14透射。然后,所述参考束被投影到同一检测器18的不同部分上或可替换地投影到不同的检测器(未示出)。
一组干涉滤光片13可用于在如405-790nm或甚至更低(例如200-300nm)的范围中选择感兴趣的波长。干涉滤光片可以是可调谐的,而不是包括一组不同的滤光片。光栅可能被用于替代干涉滤光片。
检测器18可以测量单一波长(或窄波长范围内)的被散射光的强度,所述强度在多个波长上是独立的,或者所述强度集中在一个波长范围上。进而,检测器可以分立地测量横向磁场和横向电场偏振光的强度和/或在横向磁场和横向电场偏振光之间的相位差。
能够采用给出大集光率的宽带光源(即具有宽的光频率范围或波长以及由此具有宽范围的色彩的宽带光源),由此允许多个波长的混合。在宽带上的多个波长优选每个具有Δλ的带宽和至少2Δλ(即带宽的两倍)的间距。多个辐射“源”可以是已经用光纤束被分割的扩展辐射源的不同部分。以这样的方式,角度分辨散射谱可以并行地在多个波长上被测量。可以测量包含比二维光谱更多的信息的三维光谱(诸如波长和两个不同的角度)。这允许更多的信息被测量,这增加量测工艺的鲁棒性(robustness)。这在欧洲专利EP1,628,164A中进行了更详细的描述,该文档以引用的方式整体并入本文中。
衬底W上的目标30可以是一维光栅,其被印刷成使得在显影之后,所述条纹为实抗蚀剂线的形式。目标30可以是二维光栅,其被印刷成使得在显影之后,所述光栅由抗蚀剂中的实抗蚀剂柱或通道形成。所述条纹、柱或通道(vias)可以替代地被蚀刻到所述衬底中。该图案对于光刻投影设备(尤其是投影系统PL)中的色差和照射对称度敏感,且这种像差的存在将表明自身在所印刷的光栅中的变化。相应地,所印刷的光栅的散射仪数据被用于重建光栅。一维光栅的参数(例如线宽和线形),或二维光栅的参数(例如柱或通道宽度或长度或形状)可以被输入到重建过程中,所述重建过程由处理单元PU根据印刷步骤和/或其他的散射仪工艺的知识实现。
根据本发明的一个实施例,图5示意地示出图1中的设备的一个实施例的布置,其中所述设备是具有双衬底支撑结构和单独的量测和曝光站的类型。
基础框架FB在地面上支撑并围绕所述设备。在用作精确的定位参照的所述设备内,量测框架FM支撑在气体轴承402上,其将量测框架与环境中的振动隔离开。安装在该框架上的是投影系统PS,其自然形成曝光站EXP的核心,还有设备404、406、408,它们是量测站MET的功能元件。在这些站的上面,掩模台MT和掩模MA安装在投影系统PS之上。第一定位装置PM包括长行程(例如粗)致动器410和短行程(例如精)致动器412和414。这些致动器通过主动反馈控制操作以获得想要的掩模MA相对于投影系统PS的位置,和因此掩模MA相对于量测框架FM的位置。测量值在416示意地示出。掩模MA的整个定位机构经由主动空气轴承418等支撑在基础框架上B处。平衡质量420设置用以模拟掩模台MT的至少粗移动和定位,以减少振动传递到框架和其他部件。低频率伺服控制将平衡质量420保持在想要的平均位置。类似地,图中所示的位于投影系统下面的晶片台WT具有用于相对于投影系统PS的出射透镜精确地定位衬底W的粗致动器422和精致动器424,426。此外,根据该示例的双台布置,设置二重的(duplicate)晶片台WT’和定位机构PW’。如图所示,这些二重元件支撑第二衬底W’在量测站MET。晶片台WT、WT’和它们对应的定位装置PW和PW’被承载并连接到共用的平衡质量428。再次,例如在430示意地示出空气轴承或其他合适的轴承(例如磁性的、静电的,等等)。相对于在量测站的元件406和在曝光站的PS执行用于晶片W和W’的位置的粗和精控制的晶片台位置的测量,这些测量最终参照量测框架FM。
根据本发明的一个实施例,图6示出在图5的双台设备中的用以曝光在衬底W上的管芯的步骤。在虚线框内左手边的是在量测站MET执行的步骤,而右手边示出在曝光站EXP执行的步骤。衬底W已经被装载到曝光站。通过未示出的机构,在步骤500,新的衬底W’被装载至所述设备。这两个衬底平行地处理,以便在整体上提高量测过程的产出。首先看新装载的衬底W’,其可以是前面没有处理或加工的衬底,已经预备有用于在所述设备内第一曝光的新的光抗蚀剂。然而,通常,所描述的光刻过程将是一系列曝光和处理步骤中的仅一个步骤,使得衬底W’已经通过所述设备和/或其他光刻设备若干次,并且还可以经历随后的多次处理。在502,使用衬底标记P1等和图像传感器等的对准测量被用于测量和记录衬底相对于衬底台WT的对准。在实际应用中,将测量跨经衬底W’的若干标记以建立“晶片栅格”,其极为精确地绘出衬底上的标记分布,包括相对于名义规则的栅格的任何变形或扭曲。在步骤504,还测量晶片高度相对于X-Y位置的图,用于精确聚焦曝光的图案。
当装载衬底W’时,接收条件手段数据(recipe data)506,限定将要执行的曝光,还有晶片的性质和前面形成的和将要在晶片上形成的图案。对于这些,条件手段数据被加到在步骤502、504中进行的测量,使得全部的条件手段和量测数据组508可以传送到曝光台。在步骤510,交换晶片W’和W,使得测量的衬底W’变成进入曝光设备的W。这种交换通过在设备内交换支撑结构WT和WT’来执行,使得保持将衬底W和W’精确地夹持并定位在这些支撑结构上,以保持衬底台和衬底本身之间的相对对准。因此,一旦台已经被交换,确定投影系统PS和衬底台WT(前面的WT’)之间的相对位置是对使用衬底W(前面的W’)的测量信息502、504控制曝光步骤所必要的。在步骤512,使用掩模对准标记执行掩模版对准。在步骤514、516、518,在跨经衬底W的连续的管芯位置应用扫描动作和辐射脉冲,以便完成多个图案的曝光。归功于对准和水平绘图数据,这些图案被精确地相对于想要的位置对准,并且具体地,相对于前面装载到同一衬底上的特征而被对准。在步骤520,现在用W”表示的曝光过的衬底从所述设备卸载,以根据曝光的图案进行蚀刻或其他处理。
通过采用单独的衬底台,设备在通过曝光台的衬底产出方面的性能被保持,同时允许执行相对耗时的测量系列,以表征晶片和前面沉积到晶片上的图案。
正如上面所述,在图1中示出的晶片台WT和图5中示出的晶片台WT、WT’具有粗致动器422和精致动器424、426,用于相对于投影系统PS的出射透镜精确地定位衬底W。
已存在用于移动晶片台和掩模台以及用于测量它们的位置的不同机制。根据本发明的一个实施例的一种这种系统(这里称为NXT)示意地在图7中示出,其使用平面马达驱动两个晶片台WT和WT’。在该实施例中的平衡质量428包括磁板,并且晶片台WT和WT’的下侧包括用于沿x、y和z方向(z方向是离开页面的平面的方向)移动台的力致动器。在图7中示出的这种类型的系统中,通过定位在量测框架(在图5中表示为FM)的下侧的编码器测量台WT和WT’的位置,并且在相关的晶片卡盘上设置图像传感器以经由台的编码器监测位置。编码器协作操作以输出晶片台在(x,y)坐标中的位置。
图8中示出本发明的替换的实施例(这里称为XT)。在该实施例中,通过用于沿x方向(在图中向左和向右)移动台的致动器800、800’和用于沿y方向(例如在图中向上和向下)移动台的致动器802、802’控制平衡质量428上的晶片台WT、WT’的位置。台WT、WT’的位置通过投影束到晶片台的镜像侧壁表面上的干涉仪进行测量。通常,“x”干涉仪提供一个晶片台在x轴线上的位置,“y”干涉仪提供一个晶片台在y轴线上的位置。每个“x”和“y”干涉仪可以包括位于平衡质量428两侧的发射器,其布置用以引导干涉仪的束朝向晶片台的相对的侧面。
精确的光刻术的关键因素是提高的用以控制光刻扫描器和扫描功能的能力。当提到“扫描器”时,应该认识到,其包括这里描述的所有扫描模式和功能,以及其他扫描功能。通过申请人的BaselinerTM扫描器稳定模块,最近已经实现对扫描器的聚焦和重叠(例如层到层的对准、一致性)的改进,这导致对于给定的特征尺寸和芯片应用的优化的工艺窗口,能够连续地形成更小的、更先进的芯片。
当第一次安装光刻系统时,必须进行校准以便确保优化操作。然而,经过一段时间,系统性能参数将会漂移。少量的漂移可以容忍,但是太大的漂移将导致系统超出技术要求。因此,制造商需要周期地停止生产以重新校准。较频繁地校准系统给出较大的工艺窗口,但是这要花费较多的规定停工时间。
扫描器稳定模块极大地减少了这种生产停止。相反,其每天自动地将系统重新设置至预定义基线。为此,其获取使用量测工具从监测晶片取得的标准测量值。使用包含特定散射仪标记的特定掩模版曝光监测晶片。通过那天的测量值,扫描器稳定模块确定系统已经漂移离开基线多远。然后,计算晶片水平重叠和聚焦校正组。然后,光刻系统将这些校正组转变成用于在随后的生产晶片上的每一次曝光的具体校正。
对于批量生产,当指定用于曝光的多个层到扫描器时,期望具有充分的灵活性。替换的层扫描器专用将会使得每月一次的生产率遭受风险,因为光刻簇的任何小的扰动直接在该月的输出产品中显示出来。用以克服这种风险的一种已知的方法是通过重叠栅格匹配。所有扫描器栅格被特意偏置一点,使得所有的扫描器或多或少具有相同的、或平均的栅格用于重叠。这种栅格通常称为“神圣(holy)”或“黄金”栅格。此时每个产品层可以在相同类型的每个扫描器上曝光。这种“黄金”栅格被曝光并蚀刻到所谓的“参考晶片”上。如果这些“黄金”匹配晶片被用作用于重叠稳定控制的基线,代替随机监测晶片,在单个自动化的步骤中可以实现重叠栅格匹配和长期稳定。
根据本发明的一个实施例,图9示出并入扫描器稳定模块500的整个光刻和量测方法,例如实质上是在服务器上运行的应用。图示的是三个主处理控制回路。第一回路提供使用扫描器稳定模块500和监测晶片的局部扫描器控制。如图所示,监测晶片505通过主光刻单元510,已经被曝光以便为聚焦和重叠设定基线参数。随后,量测单元515读取这些基线参数,它们随后通过扫描器稳定模块500进行解释,以便计算被传递至主光刻单元510的校正程序550,并且在执行另一曝光时使用。
第二(APC)回路是用于局部扫描器控制在产产品(on-product)(确定焦点、剂量以及重叠)。曝光过的产品晶片520被传送到量测单元515,随后传送到高级过程控制(APC)模块525。来自量测单元515的数据再次被传送至扫描器稳定模块500。在制造执行系统(MES)接管控制之前进行工艺校正540,提供扫描器控制至主光刻单元510,与扫描器稳定模块500通信。
第三回路是为了使量测集成进入到第二APC回路中(例如用于双图案化)。蚀刻后的晶片530被传送至量测单元515,随后传送至高级过程控制(APC)模块。该回路与第二回路一样继续。
本发明涉及用于控制通过光刻设备(例如扫描器)的曝光,以便减少在光刻过程中的误差(例如重叠中的误差)的实施例。
扫描器误差
通过扫描器稳定模块的应用,下面的重叠误差已经被确认是引起将要进行校正的误差的重要原因:
1.定位漂移(用于XT的反射镜和用于NXT的栅格板/编码器)。
2.向上/向下扫描和向左/向右步进效应,其显示出反射镜变形依赖于用于XT的移动以及依赖于移动的NXT的编码器偏移。参照上面结合图7和8对NXT和XT系统的描述。
3.由晶片夹持指纹以及曝光过程中晶片变形的漂移引起的晶片变形。
4.场指纹漂移(例如,由于透镜或掩模版台漂移)。
5.依赖于扫描方向的场内指纹(由于例如动力透镜扰动引起的“摆动”效应)。
模型
校正这些误差的模型假定:
1.定位误差的低频漂移,其是定位类型的具体的
a.反射镜变形(XT):每个卡盘的一次多项式dx~P_n(y)和dy~P_n(x)(XT定位概念)。
b.编码器/栅格板变形(NXT)将通过依赖位置的编码器偏移的多项式来确定:dh(x,y)~P_n(x,y),其中dx和dy确定为(dx,dy)~编码器模型(dh(x,y))=编码器模型(P_n(x,y))。将对每个编码器应用二次多项式关系式。
2.向上/向下扫描和向左/向右步进误差绝对值相同(对于相同位置),符号相反。这些误差描述了依赖于移动历史过程的定位和变形的改变。为了减小校准的噪音,还假定这些误差具有低频属性。对XT,这些定位和变形误差通过多项式表示。对NXT,通过设置在卡盘的具体位置上的编码器信号确定定位。因此,为了描述依赖于扫描/步进的误差,仅编码器上的误差必须进行考虑,而不是卡盘的全部变形需要被考虑。因此,对于NXT,将依赖于扫描/步进的定位误差看作依赖于移动的编码器偏移。依赖于晶片变形的误差被看作与XT/NXT系统类型类似,因为它们是与定位无关的。
3.依赖于晶片上的位置的二次误差的其他部分通过二次多项式描述,并且它表示晶片栅格变形。
4.由透镜/RS引起的场指纹对于所有场是恒定的,并且与误差的其他部分是不相关的。
5.依赖于扫描方向的场内误差将通过三个一次多项式描述为低频掩模版台定位误差:dx~P_n(y),dy~P_n(y),dy~x*P_n(y)(这表示旋转误差)。
确定重叠误差的思想不保证被校准的参数的绝对准确性。其可以保证,被确定的参数是不相关的,并且这些参数在扫描器的应用范围内(对通常的场尺寸的动态曝光)是正确的。此外,由于不考虑可能由反射镜形状引起的二次晶片变形项,一次反射镜形状校准与二次晶片变形无关。
定位误差
如果反射镜变形存在,其将影响曝光,与扫描或步进方向没有关系。因此,反射镜的多项式模型形式是
dx(y_w)=Sum(a_n*y_w^n)
dy(x)=Sum(b_n*x^n)
其中x是场的中心点的x坐标,y_w是散射仪目标标记的y坐标。这表示由XT扫描器产生的物理定位误差。
定位误差的NXT模型更为复杂。因为每个编码器可以影响x和y偏移,该模型变成二次的。而且,其必须针对每个编码器/栅格板单独地确定
(dx,dy)=Encoder_model(Sum(Sum(c_i_n_m*x^n*y^m)))
其中i表示编码器i。
依赖于扫描/步进的误差
向上/向下扫描和向左/向右步进误差可能由曝光卡盘或晶片的变形引起。在这种情况下,变形将导致不同移动(XT)或漂移的编码器位置(NXT)的变形的反射镜。因此,为了描述XT向上/向下扫描和向左/向右步进效应,使用下面的多项式
dx_up(y)=Sum(d_n*y^n)
dx_down(y)=-dx_up(y)
dy_up(x)=Sum(e_n*x^n)
dy_down(x)=-dy_up(x)
dx_left(y)=Sum(f_n*y^n)
dx_right(y)=-dx_left(y)
dy_left(x)=Sum(g_n*x^n)
dy_right(x)=-dy_left(x)
其中(x,y)是曝光过的场(中心点)的位置。
对于NXT,使用下面的关系式:
(dx_up,dy_up)=Encoder model(h_up)
(dx_left,dy_left)=Encoder model(h_left)
(dx_down,dy_down)=-(dx_up,dy_up)
(dx_right,dy_right)=-(dx_left,dy_left)
同样,在曝光过程中,可以预期晶片或晶片台的变形。为了描述晶片和晶片台的变形,使用二次多项式模型:
dx_up=Sum(u_n_m*x^n*y^m)
dy_up=Sum(v_n_m*x^n*y^m)
dx_down(x,y)=-dx_up(x,y)
dy_down(x,y)=-dy_up(x,y)
晶片变形
栅格误差的其他部分被认为是由晶片变形引起的,其可能具有机械的或热属性。晶片可能例如在晶片夹持期间在力的作用下静态地变形,或晶片可能在曝光期间变形。因为正常的系统用途是曝光,可以假定当BL的校准布局被选定为是“典型的或常用的”(场的数量、场尺寸、正常曝光),由于曝光引起的晶片变形在产品和校准之间应该没有偏离太多。
因此,晶片变形的关系式可以是
dx=Sum(Sum(r_n_m*x^n*y^m))
dy=Sum(Sum(s_n_m*x^n*y^m))
其中(x,y)是YS标记在晶片上的位置。
此外,该模型可以延伸到例如双图案化的应用,其中一个晶片在两次通过中曝光,例如图像。在这种情形中,第二或更多图像由于例如热扰动而具有不同的变形。对于这些应用,通过在一个晶片上执行多次曝光并确定在每次曝光通过中的晶片变形(如上所述),可以一致地校准晶片变形。
场误差
场校正模型可以如下进行表示(符号P_n(x)=Sum(a_n*x^n)):
dx~P_n(x)(n<4)
dx~P_n(y)
dy~P_n(x)(n<3)
dy~P_n(y)
dy~x*P_n(y)
在延伸归因于依赖y的透镜误差(由于扫描透镜元件或焦点偏移)的校正机制的情况下,通过在扫描操作期间仅调整透镜或焦点偏移可以延伸场内校正,因此还可以校正例如下面的误差:
dx~P_n_m(x,y)=Sum(t_n_m*x^n*y^m),n<4
dy~P_n_m(x,y)=Sum(w_n_m*x^n*y^m),n<3
注意的是,通过调整透镜元件可以仅校正与x的幂成比例的误差,因此具有有限的校正能力。
依赖于扫描方向的场误差
扫描方向误差假定,扫描扰动发生在影响掩模版的定位的掩模版台上。这些误差引起依赖于扫描方向的定位指纹,将在场水平面上校正为:
dx_up~P_n(y)
dy_up~P_n(y)
dy_up~x*P_n(y)
dx_down=-dx_up
dy_down=-dy_up
用于模型参数估计的方法
通过下面步骤、由测量数据可以确定这些影响:
1.首先,确定场变形(场内误差)。基于扫描器误差的知识,可以假定场变形由掩模版台或透镜引起并且其与栅格误差的其他部分不相关。
2.确定扫描/步进方向误差(晶片和掩模版台定位误差)。因为这些误差对重叠的影响将具有高频属性(相邻的场将显示显著的改变),可以与位置和变形误差独立地确定这些误差(相邻的场将显示轻微的改变)。接缝数据或测量的重叠数据可以用于确定这些误差。因此,存在若干种方法确定这些误差。
3.同时确定扫描/步进方向校准的剩余数据的定位和变形误差。与场和/扫描/步进方向误差不同,定位和晶片变形中的误差不能有效地分开。因此,这些误差必须同时确定以提供最好的校正。可选地,扫描/步进方向误差确信同时与栅格误差进行确定。这里可以使用独立的参照,例如蚀刻的参照晶片。
为了能够确定校正,必须测量场的足够数量的点(在x和y坐标内大约7个)。此外,曝光图案必须选择为使得其代表扫描/步进方向。
校正方法
根据本发明的一个实施例的校正方法是单独地应用到扫描器的不同子系统的所有上面的模型化的参数的结合:
1.定位误差通过低水平定位控制器校正以便能够校正在一次曝光中快速的栅格变化。这将给出在校正方面执行的最佳的性能。其是新的功能。
2.依赖于扫描/步进方向的误差通过定位或量测控制器进行校正。此外,如在步骤1中那样,如果需要在场内对快速变化的情况的误差进行校正,则在低水平定位模块上执行。
3.栅格变形误差可以通过调整曝光过的场的设定点来校正。
4.场误差可以通过调整透镜/掩模版台设定点而被进行校正。
5.依赖于扫描的掩模版台定位指纹(YTX,YTY和YRZ)可以在扫描驱动器中校正为依赖于方向的掩模版台扫描图校正。
根据本发明的一个实施例,参照图10,示出根据本发明的一个实施例的一种控制光刻设备的方法。
使用扫描器1006在衬底1004上执行(1002)一种光刻曝光工艺1000。扫描器包括若干子系统1008、1010、1012。存在在曝光期间在重叠中由子系统引起的误差。使用散射仪测量(1014)重叠误差以获得重叠测量值1016。执行模型化1018以单独地通过重叠测量值确定估计的模型参数的不同子集,例如场变形模型参数1020、扫描/步进方向模型参数1022以及位置/变形模型参数1024。每个子集与由光刻设备的相应的具体子系统引起的重叠误差相关,如上所述。最后,通过分别使用其相应的估计的模型参数1024、1022、1020的子集控制扫描器的具体子系统1008、1010、1012而在扫描器1006内控制(1026)曝光。这导致产品晶片1028以被良好控制的重叠1030而被曝光。
通过考虑重叠误差以便考虑扫描器误差的具体指纹(fingerprint),本发明的实施例的应用导致更加有效的维护和保养。提供根据本发明的一个实施例的有关扫描器具体误差的知识给离线的模型化应用提高了维护保养的精确性。因此,较少地需要在系统上执行在线重新校准,这也有利于减小维护时间。本发明的实施例提供有效的维护保养,其不需要扫描器时间来执行太多的测量。
虽然在本文中详述了光刻设备用在制造ICs(集成电路),但是应该理解到这里所述的光刻设备可以有其他的应用,例如制造集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCDs)、薄膜磁头等。本领域技术人员应该认识到,在这种替代应用的情况中,可以将这里使用的任何术语“晶片”或“管芯”分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检验工具中。在可应用的情况下,可以将所述公开内容应用于这种和其他衬底处理工具中。另外,所述衬底可以处理一次以上,例如为产生多层IC,使得这里使用的所述术语“衬底”也可以表示已经包含多个已处理层的衬底。
尽管以上已经做出了具体的参考,在光学光刻术的情况中使用本发明的实施例,但应该理解的是,本发明可以用于其它应用中,例如压印光刻术,并且只要情况允许,不局限于光学光刻术。在压印光刻术中,图案形成装置中的拓扑限定了在衬底上产生的图案。可以将所述图案形成装置的拓扑印刷到提供给所述衬底的抗蚀剂层中,在其上通过施加电磁辐射、热、压力或其组合来使所述抗蚀剂固化。在所述抗蚀剂固化之后,所述图案形成装置从所述抗蚀剂上移走,并在抗蚀剂中留下图案。
这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,包括:紫外(UV)辐射(例如具有约365、355、248、193、157或126nm的波长)或极紫外(EUV)辐射(例如具有5-20nm范围的波长),以及粒子束,例如离子束或电子束。
在允许的情况下,术语“透镜”可以表示不同类型的光学构件中的任何一种或其组合,包括折射式的、反射式的、磁性的、电磁的和静电的光学构件。
尽管以上已经描述了本发明的具体实施例,但应该认识到,本发明可以以与上述不同的方式来实现。例如,本发明可以采用包含用于描述一种如上面公开的方法的一个或更多个机器可读指令序列的计算机程序的形式,或具有存储其中的所述计算机程序的数据存储介质(例如半导体存储器、磁盘或光盘)的形式。
应该理解,具体描述部分而不是发明内容和摘要部分是用于解释权利要求的。发明内容和摘要部分可以给出发明人预期的本发明的一个或多个但不是全部的实施例,并因此不应以任何方式限制本发明和所附的权利要求。
上面通过表示具体功能及其之间的关系的功能组合存储块描述了本发明。为了描述方便,这里已经任意地限定了这些功能组合存储块的边界。可以限定其他边界,只要可以正确地执行具体的功能及其关系。
前面具体实施例的前述描述将充分反应本发明的总的性质,以至于在不脱离本发明的总的构思的情况下,其他的性质可以通过应用本领域技术人员的知识对这些具体实施例的不同的应用容易地修改和/或适应,而不需要过多的实验。因此,基于此处给出的教导和启示,这些适应和修改是在公开的实施例的等价物的范围和含义之内的。可以理解,这里所用的术语或措词是为了描述而不是限定,使得目前的说明书的术语或措词将通过本领域技术人员根据教导和启示进行解释。
本发明的宽度和范围不应该受到上述的示例性实施例的限制,而应该仅通过随附的权利要求及其等同物进行限定。

Claims (10)

1.一种控制光刻设备的方法,所述方法包括下列步骤:
使用所述光刻设备在衬底上执行光刻过程;
测量在所述光刻过程中产生的衬底性质,以获得衬底性质测量值;
通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集,其中每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的误差相关;和
通过控制所述光刻设备的具体子系统、由所述光刻设备控制光刻工艺,其中使用估计的模型参数的所述被控制的具体子系统的相应子集控制所述光刻设备的具体子系统。
2.如权利要求1所述的方法,其中,估计的模型参数的所述多个子集中的至少一个包括与在所述衬底性质中由所述光刻设备的相应的定位子系统中引起的定位误差相关的参数。
3.如权利要求1或2所述的方法,其中,估计的模型参数的所述多个子集中的至少一个包括与在所述衬底性质中由所述光刻设备的相应的机械或热子系统引起的衬底变形误差相关的参数。
4.一种用于控制用以在衬底上执行光刻过程的光刻设备所实施的光刻工艺的设备,所述设备包括:
检验设备,用于测量所述光刻过程中产生的衬底性质、以获得衬底性质测量值;和
处理器,配置成:
通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集,其中每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的误差相关;和
通过控制所述光刻设备的具体子系统、由所述光刻设备控制光刻工艺,其中使用估计的模型参数的所述被控制的具体子系统的相应子集来控制所述光刻设备的具体子系统。
5.根据权利要求4所述的设备,其中,估计的模型参数的所述多个子集中的至少一个包括与在所述衬底性质中由所述光刻设备的相应的定位子系统中引起的定位误差相关的参数。
6.根据权利要求4或5所述的设备,其中,估计的模型参数的所述多个子集中的至少一个包括与在所述衬底性质中由所述光刻设备的相应的机械或热子系统引起的衬底变形误差相关的参数。
7.一种计算机程序产品,包含一个或多个序列的机器可读指令,用于控制用以在衬底上执行光刻过程的光刻设备实施的光刻工艺,所述指令适于引起一个或多个处理器执行下列动作:
接收所述光刻过程中产生的衬底性质测量值;
通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集,其中每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的误差相关;和
通过控制所述光刻设备的具体子系统、由所述光刻设备控制光刻工艺,其中使用估计的模型参数的所述被控制的具体子系统的相应子集来控制所述光刻设备的具体子系统。
8.一种用于控制光刻工艺的设备,包括:
检验设备,配置用以测量光刻过程中产生的衬底性质以获得衬底性质测量值;和
处理器,配置成:
通过所述衬底性质测量值单独地确定所述光刻设备的估计的模型参数的多个子集,其中每个子集与所述衬底性质中由所述光刻设备的相应的具体子系统中引起的一个或多个误差相关;和
通过控制所述光刻设备的具体子系统、由所述光刻设备控制光刻工艺,其中使用估计的模型参数的所述被控制的具体子系统的相应子集来控制所述光刻设备的具体子系统。
9.根据权利要求8所述的设备,其中,估计的模型参数的所述多个子集中的至少一个包括与在所述衬底性质中由所述光刻设备的相应的定位子系统中引起的定位误差相关的参数。
10.根据权利要求8所述的设备,其中,估计的模型参数的所述多个子集中的至少一个包括与在所述衬底性质中由所述光刻设备的相应的机械或热子系统引起的衬底变形误差相关的参数。
CN2011100423708A 2010-02-19 2011-02-18 控制光刻设备的方法和设备 Active CN102163001B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30611110P 2010-02-19 2010-02-19
US61/306,111 2010-02-19

Publications (2)

Publication Number Publication Date
CN102163001A true CN102163001A (zh) 2011-08-24
CN102163001B CN102163001B (zh) 2013-09-11

Family

ID=44262511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100423708A Active CN102163001B (zh) 2010-02-19 2011-02-18 控制光刻设备的方法和设备

Country Status (8)

Country Link
US (1) US9310698B2 (zh)
EP (1) EP2392970A3 (zh)
JP (1) JP5178855B2 (zh)
KR (1) KR101208462B1 (zh)
CN (1) CN102163001B (zh)
IL (1) IL210774A (zh)
SG (1) SG173957A1 (zh)
TW (1) TWI427434B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223781A (zh) * 2014-06-26 2016-01-06 无锡华润上华科技有限公司 一种步进式光刻机对位监控方法
CN111146104A (zh) * 2019-11-29 2020-05-12 上海集成电路研发中心有限公司 一种关键尺寸误差分析方法
CN112602007A (zh) * 2018-08-24 2021-04-02 Asml荷兰有限公司 匹配光瞳确定
CN114341741A (zh) * 2019-09-04 2022-04-12 Asml荷兰有限公司 用于光刻过程性能确定的方法以及设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053588A1 (en) * 2008-08-29 2010-03-04 Nikon Corporation Substrate Stage movement patterns for high throughput While Imaging a Reticle to a pair of Imaging Locations
IL210832A (en) * 2010-02-19 2016-11-30 Asml Netherlands Bv Lithographic facility and method of manufacturing facility
NL2009196A (en) * 2011-08-25 2013-02-27 Asml Netherlands Bv Position measurement system, lithographic apparatus and device manufacturing method.
US9543223B2 (en) 2013-01-25 2017-01-10 Qoniac Gmbh Method and apparatus for fabricating wafer by calculating process correction parameters
JP2013175500A (ja) 2012-02-23 2013-09-05 Toshiba Corp 露光装置、及び露光方法
NL2010988A (en) * 2012-07-05 2014-01-07 Asml Netherlands Bv Metrology method and apparatus, lithographic system, device manufacturing method and substrate.
CN103794451B (zh) * 2012-10-31 2016-03-16 中芯国际集成电路制造(上海)有限公司 监测扫描电子显微镜的电子束状态的方法和装置
NL2011683A (en) 2012-12-13 2014-06-16 Asml Netherlands Bv Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product.
KR101493013B1 (ko) * 2013-06-14 2015-02-13 에이피시스템 주식회사 빔 패터닝 방향 및 패터닝 위치 보정 방법
WO2016086138A1 (en) * 2014-11-25 2016-06-02 Stream Mosaic, Inc. Improved process control techniques for semiconductor manufacturing processes
DE102015206448B4 (de) * 2015-04-10 2018-06-21 Carl Zeiss Smt Gmbh Steuerungsvorrichtung zur Steuerung mindestens eines Manipulators eines Projektionsobjektives, Justieranlage und Verfahren zum Steuern mindestens eines Manipulators
JP6540430B2 (ja) 2015-09-28 2019-07-10 東京エレクトロン株式会社 基板処理方法及び基板処理装置
KR102390720B1 (ko) * 2015-10-08 2022-04-26 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치의 제어 방법 및 디바이스의 제조 방법, 리소그래피 장치를 위한 제어 시스템 및 리소그래피 장치
EP3403142B1 (en) 2016-01-11 2022-11-09 KLA-Tencor Corporation Metrology overlay target and method
CN109891324B (zh) 2016-10-26 2021-05-25 Asml荷兰有限公司 用于光刻过程的优化的方法
WO2018153711A1 (en) 2017-02-22 2018-08-30 Asml Netherlands B.V. Computational metrology
KR102432667B1 (ko) 2017-05-15 2022-08-17 삼성전자주식회사 오버레이 보정방법 및 제어 시스템
EP3495888A1 (en) * 2017-12-06 2019-06-12 ASML Netherlands B.V. Method for controlling a lithographic apparatus and associated apparatuses
KR102517966B1 (ko) * 2017-12-19 2023-04-03 에이에스엠엘 네델란즈 비.브이. 컴퓨테이션 기법 기반 정정 및 제어
JP7022589B2 (ja) 2018-01-05 2022-02-18 東京エレクトロン株式会社 基板処理装置、基板処理方法及びコンピュータ記憶媒体
EP3531207A1 (en) * 2018-02-27 2019-08-28 ASML Netherlands B.V. Alignment mark positioning in a lithographic process
US20220163895A1 (en) 2019-03-21 2022-05-26 ASML Netherlands B,V. Method for Controlling a Lithographic System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221364A (zh) * 2006-12-01 2008-07-16 Asml荷兰有限公司 工艺、设备以及器件
CN101231472A (zh) * 2007-01-22 2008-07-30 Asml荷兰有限公司 测量方法、检验设备和光刻设备
US20090213351A1 (en) * 2008-02-26 2009-08-27 Asml Netherlands B.V. Lithographic Method to Apply a Pattern to a Substrate and Lithographic Apparatus
US20090231569A1 (en) * 2008-03-14 2009-09-17 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
WO2010006935A2 (en) * 2008-07-14 2010-01-21 Asml Netherlands B.V. Alignment system, lithographic system and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117255A (en) * 1990-09-19 1992-05-26 Nikon Corporation Projection exposure apparatus
JP3064372B2 (ja) 1990-09-27 2000-07-12 株式会社ニコン 投影露光装置、投影露光方法および回路製造方法
US6753948B2 (en) * 1993-04-27 2004-06-22 Nikon Corporation Scanning exposure method and apparatus
US6238851B1 (en) * 1995-05-29 2001-05-29 Nikon Corporation Exposure method
EP1246014A1 (en) * 2001-03-30 2002-10-02 ASML Netherlands B.V. Lithographic apparatus
US6573986B2 (en) * 2000-12-08 2003-06-03 Litel Instruments Method and apparatus for self-referenced projection lens distortion mapping
US7046376B2 (en) * 2002-07-05 2006-05-16 Therma-Wave, Inc. Overlay targets with isolated, critical-dimension features and apparatus to measure overlay
TW594434B (en) * 2003-04-30 2004-06-21 Nanya Technology Corp Exposure system and method
US7671979B2 (en) * 2004-04-28 2010-03-02 Litel Instruments Apparatus and process for determination of dynamic lens field curvature
US7403264B2 (en) * 2004-07-08 2008-07-22 Asml Netherlands B.V. Lithographic projection apparatus and a device manufacturing method using such lithographic projection apparatus
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7239368B2 (en) * 2004-11-29 2007-07-03 Asml Netherlands B.V. Using unflatness information of the substrate table or mask table for decreasing overlay
JP5194800B2 (ja) 2006-01-26 2013-05-08 株式会社ニコン 重ね合わせ管理方法及び装置、処理装置、測定装置及び露光装置、デバイス製造システム及びデバイス製造方法、並びにプログラム及び情報記録媒体
JP2009529785A (ja) * 2006-03-09 2009-08-20 ウルトラテック インク 基板の曲率および応力マッピングデータに基づくリソグラフィ位置ずれの判定方法
US8260449B2 (en) * 2008-11-06 2012-09-04 Micron Technology, Inc. Photolithography systems and associated methods of overlay error correction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221364A (zh) * 2006-12-01 2008-07-16 Asml荷兰有限公司 工艺、设备以及器件
CN101231472A (zh) * 2007-01-22 2008-07-30 Asml荷兰有限公司 测量方法、检验设备和光刻设备
US20090213351A1 (en) * 2008-02-26 2009-08-27 Asml Netherlands B.V. Lithographic Method to Apply a Pattern to a Substrate and Lithographic Apparatus
US20090231569A1 (en) * 2008-03-14 2009-09-17 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
WO2010006935A2 (en) * 2008-07-14 2010-01-21 Asml Netherlands B.V. Alignment system, lithographic system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223781A (zh) * 2014-06-26 2016-01-06 无锡华润上华科技有限公司 一种步进式光刻机对位监控方法
CN112602007A (zh) * 2018-08-24 2021-04-02 Asml荷兰有限公司 匹配光瞳确定
US11460782B2 (en) 2018-08-24 2022-10-04 Asml Netherlands B.V. Matching pupil determination
CN112602007B (zh) * 2018-08-24 2024-02-23 Asml荷兰有限公司 匹配光瞳确定
CN114341741A (zh) * 2019-09-04 2022-04-12 Asml荷兰有限公司 用于光刻过程性能确定的方法以及设备
CN111146104A (zh) * 2019-11-29 2020-05-12 上海集成电路研发中心有限公司 一种关键尺寸误差分析方法
CN111146104B (zh) * 2019-11-29 2023-09-05 上海集成电路研发中心有限公司 一种关键尺寸误差分析方法

Also Published As

Publication number Publication date
CN102163001B (zh) 2013-09-11
EP2392970A2 (en) 2011-12-07
IL210774A0 (en) 2011-06-30
US9310698B2 (en) 2016-04-12
KR20110095833A (ko) 2011-08-25
SG173957A1 (en) 2011-09-29
US20110205510A1 (en) 2011-08-25
JP2011171732A (ja) 2011-09-01
JP5178855B2 (ja) 2013-04-10
KR101208462B1 (ko) 2012-12-05
TW201142534A (en) 2011-12-01
TWI427434B (zh) 2014-02-21
EP2392970A3 (en) 2017-08-23
IL210774A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
CN102163001B (zh) 控制光刻设备的方法和设备
CN102754035B (zh) 光刻设备和器件制造方法
CN102171618B (zh) 使用二维目标的光刻聚焦和剂量测量
CN103003754B (zh) 用于确定重叠误差的方法和设备
CN101957567B (zh) 多头对准系统中的对准头的位置校准
CN102460310B (zh) 重叠测量的方法、光刻设备、检查设备、处理设备和光刻处理单元
CN101819384B (zh) 检验设备、光刻设备、光刻处理单元以及检验方法
CN102163000B (zh) 光刻设备和器件制造方法
CN102576188B (zh) 用于确定衬底上的对象的近似结构的方法、检验设备以及衬底
CN102422226B (zh) 确定重叠误差的方法
CN102422227B (zh) 用于光刻技术的检查方法
CN101236359B (zh) 检查方法和设备、光刻设备和光刻处理单元
JP4563923B2 (ja) 位置合わせ方式最適化方法
CN102687073B (zh) 检验方法和设备
JP5112408B2 (ja) リソグラフィ装置及び基板非平坦性を補償する方法
US8908148B2 (en) Calibration method and inspection apparatus
CN104834186A (zh) 检验方法和设备、光刻设备、光刻处理单元和器件制造方法
CN103782238A (zh) 确定聚焦位置修正的方法、光刻处理元和器件制造方法
CN102203676B (zh) 散射仪和光刻设备
JP2007013192A (ja) 測定方法及び較正基板
CN105452963A (zh) 用于评价结构的所感兴趣的参数的值的重构品质的方法和检验设备以及计算机程序产品
JP4792285B2 (ja) モデル・パラメータを使用して自動プロセス補正を行うための方法及びシステム、並びにこのような方法及びシステムを使用したリソグラフィ機器
CN102763040A (zh) 光刻设备、器件制造方法和相关的数据处理设备以及计算机程序产品
CN102163002A (zh) 光刻设备和器件制造方法
CN102472979A (zh) 用于光刻的检验方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant