CN102148605A - 具有有效去耦合的射频放大器 - Google Patents
具有有效去耦合的射频放大器 Download PDFInfo
- Publication number
- CN102148605A CN102148605A CN2010106004582A CN201010600458A CN102148605A CN 102148605 A CN102148605 A CN 102148605A CN 2010106004582 A CN2010106004582 A CN 2010106004582A CN 201010600458 A CN201010600458 A CN 201010600458A CN 102148605 A CN102148605 A CN 102148605A
- Authority
- CN
- China
- Prior art keywords
- frequency
- radio
- capacitor
- circuit
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/66—High-frequency adaptations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/642—Capacitive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/82—Electrodes with an enlarged surface, e.g. formed by texturisation
- H01L28/90—Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
- H01L28/92—Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by patterning layers, e.g. by etching conductive layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6605—High-frequency electrical connections
- H01L2223/6611—Wire connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6644—Packaging aspects of high-frequency amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6644—Packaging aspects of high-frequency amplifiers
- H01L2223/6655—Matching arrangements, e.g. arrangement of inductive and capacitive components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45139—Silver (Ag) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48153—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
- H01L2224/48195—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49175—Parallel arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
- H01L2924/30111—Impedance matching
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
- Amplifiers (AREA)
Abstract
本发明涉及一种具有有效去耦合的射频放大器。实现了用于射频放大器的多种电路、方法和器件。根据一个这样的实现方式,在SMD封装中实现了射频放大器电路。电路对具有基带部分的射频信号以及频率间隔大于基带带宽的多个载波信号进行放大。电路包括射频晶体管,与具有寄生输出电容的电路输出相连接。源极-漏极端子电连接至电路输出。内部分路电感器提供对寄生输出电容的补偿。高密度电容器连接在内部分路电感器和电路地之间。高密度电容器所具有的端子的表面区域可以至少是对应平面表面的表面积的十倍。
Description
技术领域
本发明总体涉及射频电路,更具体地涉及射频放大器的去耦合
背景技术
电信包括在用于通信的距离内发送信号。为了满足数据带宽的逐渐增长的需求,一些电信协议涉及基带频率与更高频率/射频(RF)之间的转换。例如,高频载波信号由基带信号进行调制以用于发送。对于接收,将调制后的载波信号解调回到基带信号。因此,在发送期间,将基带信号移位至高得多的(RF)频率。
RF发送中使用的基站包括工作在RF信号速度处的功率放大器。这些放大器工作在高RF频率处,并优选地在放大期间维持信号的保真度。基于可用频谱的固有限制来对电信进行限制。相应地,新兴的无线通信协议实现用于增大通信吞吐量的新技术。不幸的是,这些新技术可能推到了当前技术的极限。基带(视频)带宽已增大至满足不断增长的吞吐量需求。此外,无线通信协议使用承载数据的多载波频率。因此,基站将同时工作在多载波频率上。发生了RF发送的方面可导致不利的基带级干扰的问题。
发明内容
本发明在多个实现方式和应用中例证,以下概括该多个实现方式和应用中的一些。
根据本发明的示例实施例,利用具有栅极端子和漏极端子的射频晶体管,实现被限于小封装大小的射频放大器电路。具有寄生输出电容的电路输出通过接合线连接至源极-漏极端子。内部分路(shunt)电感电路提供对寄生输出电容的补偿。内部分路电感电路还在低于大约80MHz的所有频率处提供了小于大约0.5Ohm的有效电阻。该内 部分路电感电路是使用将第一端子连接至电路地的高密度电容器以及连接在所述高密度电容器的源极-漏极端子和第二端子之间的内部分路电感来实现的。
根据本发明的另一实施例,实现了一种用于创建具有高密度电容器和射频晶体管的射频放大器电路的方法。所述高密度电容器是通过以下操作来形成的:通过对高掺杂度(如n++或p++)的Si或GaN衬底形成图样和进行蚀刻,形成直径大约0.8μm至1.5μm、深大约20μm至25μm、具有大约2μm至3μm的孔距的孔的集合,来形成电容器的第一板。通过氧化蚀刻后的Si衬底、使氮化硅沉积在氧化后的Si衬底上、并在沉积后的氮化硅上生成氧化硅薄膜,形成Si衬底的前侧的氧化物、氮化物、氧化物层;通过使多晶硅沉积在氧化硅薄膜上并使电极沉积在沉积后的多晶硅上,形成电容器的第二板。使用具有电感的电连接将电极连接至射频晶体管,所述电连接和高密度电容器具有足以提供对射频晶体管的寄生输出电容的补偿的电感和电容。
根据本发明的一个实施例,在表面贴装器件(SMD)封装中实现射频放大器电路。电路对具有基带部分的射频信号以及频率间隔大于基带带宽的多个载波信号进行放大。电路包括射频晶体管与具有寄生输出电容的电路输出相连接。源极-漏极端子电连接至电路输出。内部分路电感器提供对寄生输出电容的补偿。高密度电容器连接在内部分路电感器和电路地之间。高密度电容器所具有的端子的表面区域具有至少是对应平面表面的表面积的十倍的(三维)表面积。
以上发明内容并不意在描述本公开的每个实施例或每个实现方式。以下附图说明和具体实施方式更具体地示出了各个实施例。
附图说明
结合附图,考虑到本发明各个实施例的以下具体实施方式,可以更完整地理解本发明,在附图中:
图1A示出了根据本发明实施例的包括低频滤波器电路在内的RF功率晶体管;
图1B示出了根据本发明实施例的包括提供低频滤波的输出补偿 电路在内的RF功率晶体管;
图2示出了根据本发明实施例的开放RF晶体管封装的自顶向下视图;
图3A示出了根据本发明实施例的具有三维(3D)孔的衬底;
图3B示出了根据本发明实施例在衬底上对介电层的至少一部分的形成;
图3C示出了根据本发明实施例在衬底上对介电层的至少一部分的形成;
图3D示出了根据本发明实施例在衬底上对介电层的至少一部分的形成;
图3E示出了根据本发明实施例对导电层的形成;
图3F示出了根据本发明实施例对导电层或顶部电极层的形成;
图3G示出了根据本发明实施例对两个导电层的形成图样;
图3H示出了根据本发明实施例对器件一部分的封装;
图3I示出了根据本发明实施例对保护层的至少一部分的移除;
图3J示出了根据本发明实施例对器件的薄化;
图3K示出了根据本发明实施例对背侧接触层的形成;
图3L示出了根据本发明实施例对多个电容性器件的晶片的切块;
图4A示出了根据本发明实施例的、RF放大器电路的实验建模结果相对于100pF inshin电容器的漏极上的阻抗的变化;
图4B示出了根据本发明实施例的、RF放大器电路的实验建模结果相对于大(15nF)inshin电容器的漏极的阻抗的变化;
图5A示出了根据本发明实施例的、在晶体管的内部漏极上看到的建模阻抗;
图5B示出了根据本发明实施例的在电路优化(例如,通过将导线添加至封装来减小阻抗)之后的建模结果;
图6A示出了根据本发明实施例的非线性放大器的2个音调谱(tone spectrum);以及
图6B示出了根据本发明实施例的、线性/失真作为音调间隔(tonespacing)的函数以及相对于inshin电容器的电容的变化。
本发明服从各种修改和备选形式,而其细节已作为示例在附图中示出并将被详细描述。然而,应当理解,并不意在将本发明限于所描述的具体实施例。相反,意欲涵盖落入包括由所附权利要求限定的方面在内的本发明范围之内的所有修改、等同替换和备选方案。
具体实施方式
相信本发明适用于针对射频(RF)放大器使用的多种不同类型的过程、器件和配置。尽管本发明不必限于此,但是可以通过对使用该上下文的示例进行讨论来理解本发明的各个方面。
本发明的实施例涉及一种具有导致不期望信号特性的寄生电容的RF放大器。例如,寄生输出电容可以使放大器的有效增益根据所放大的信号的频率而变化。本发明的方面涉及对寄生电容进行补偿的补偿电路。在特定的实现方式中,补偿电路还对其他不期望信号分量进行补偿。
RF放大器对由数字信号进行调制的高频载波(如多至若干GHz)进行放大。特定实现方式涉及使用多载波频率(例如具有正交频分复用(OFDM))来发送数据。相应地,放大器可以用于对包含多载波频率在内的信号进行放大。
如果对具有不同频率的两个(或更多个)信号进行放大,则可能存在不期望的结果。例如,当对两个信号进行放大时,信号之间的差异可以使所放大的信号的峰值幅度根据等于第一频率减去第二频率的频率而变化。由于由功率消耗的显著差异(例如高的峰均比(PAR))引起的热差异,峰值幅度的显著改变可以导致放大器的非线性响应性。这有时被称作“记忆效应”。本发明的方面尤其有益于减轻这种不利的效应。具体地,实现了RF功率放大器器件,提供低频功率牵引变化的去耦合电路。具体实现方式允许在单个表面贴装器件(SMD)封装内实现这种器件。
射频(RF)晶体管(如高频功率晶体管)广泛地用于提供放大。这些器件典型地受到寄生输出电容Cout的影响,这限制了其工作带宽、其功率效率以及其功率增益。本发明的方面涉及使用补偿元件、补偿 电感或内部分路电感,有时称作inshin。在一个实现方式中,补偿元件典型地通过去耦合电容器而附着在RF器件的输出和地之间。这样,在工作频率处向并联谐振提供了寄生输出电容Cout。这提供了器件的具有较低虚部的增大的输出阻抗,这有助于在所需频带处更好地将器件输出与负载相匹配。
对于使用输出补偿电路来优化RF功率器件的另外的细节,可以参照PCT公开No.WO 02/058149,Power Transistor With InternallyCombined Low-Pass And Band-Pass Matching Stages,其全部内容并入于此并描述了包括获得对晶体管的双内部后匹配的两个电容器在内的输出补偿级。这种补偿电路可以获益于输出补偿级之间的互感耦合,以及获益于晶体管的输出电极和输出导线之间的减小的接合线,从而提供改进的输出补偿。
接合线的长度得到等效的寄生电感值。该值受物理约束的限制,这是由于接合线必须具有足以将晶体管管芯的输出与输出导线相连的长度。该寄生电感对器件的若干工作方面(如工作带宽、功率效率、可靠性、可获得的增益以及最大功率等)有负面影响。相应地,可以实现输出补偿电路以改进RF性能,例如在RF频率处改进功率增益和功率效率。补偿电路特别被配置为控制/减小接合线的长度,从而得到更好匹配的电路,产生更好的功率效率。对于这种电路的另外的细节,可以参照PCT公开No.WO/2006/097893,Method And System ForOutput Matching Of Rf Transistors,其全部内容以参考的形式并入于此。
在对多于一个载波进行放大的基站功率放大器中,载波可以相距相对较远(如50MHz或更多)。本发明的方面涉及对漏极电源电压上产生的低频调制的补偿。随着基带(视频)带宽增大,视频去耦合应当保持同步,以满足不断增长的吞吐量需求。具体地,高密度电容器用于使低频(低频去耦合)短路。然而,这受到大晶体管和小封装尺寸的竞争期望的阻挠。一般来说,随着晶体管的功率升高,对更高电容的需要也增加。这是由于提供视频去耦合的有效低阻抗的期望所致。例如,一些应用需要Zlf=0.4Ohm/100W Pout的有效低频阻抗。本发 明的方面尤其有益于提供这种有效低频阻抗,甚至对于200+W的晶体管也是如此。此外,各个实现方式向该电容去耦合提供小(如SMD)封装器件。这尤其可以有益于控制电感,例如由于连接至外部电容器的长接合线引起的电感。
具体实施例涉及SMD封装内的横向扩散金属氧化物半导体晶体管(LDMOST)。本发明的方面认识到:平行板电容器不提供这种器件的足够电容密度。例如,封装约束可以将电容限于大约100pF;然而,100pF电容可以称作在低频区中具有不期望阻抗峰值的并联谐振。相应地,在LDMOS晶体管电路中提供了高密度电容器。
在特定实现方式中,LDMOS功率晶体管包括封装在一起的一个或多个活动管芯(die)、电容器和接合线。接合线和电容器提供匹配电路,以改进晶体管的阻抗电平。提供了至少20nF的电容器以用于低频滤波。该电容器具有小于200μm的物理厚度和大约5mm2的电容器面积,以便适合LDMOS(SMD)封装。
本发明的特定实现方式涉及具有限于大约5mm2和/或小于大约200μm物理厚度的高密度电容器的RF晶体管(如横向扩散金属氧化物半导体晶体管(LDMOST))器件。在一个实现方式中,高密度电容器提供15nF(3nF/mm2)的电容。在另一实现方式中,高密度电容器提供20nF(如大约4nF/mm2)的电容。在另一实现方式中,高密度电容器提供25nF(如大约5nF/mm2)的电容。然而,本发明不必限于此。
本发明的实施例涉及具有与RF放大器应用相关联的工作特性(如电压和温度)的可靠性和寿命需求的RF晶体管。例如,一个特性是工作DC电源电压。对于特定LDMOS晶体管,工作DC电源电压可以是在漏极大约30V。另一工作特性是去耦合电容器的工作温度,部分地基于可达到150℃的晶体管操作温度而被估计为大于100-125℃。另一特性是典型寿命内的故障率。例如,给定了寿命期望为10年,那么小于0.1%的器件应当以50%的置信区间发生故障。这可以在所期望的工作特性(如125℃,30V)处计算得到。
本发明的实施例的特定方面涉及使用三维(3D)表面区域电极。电极的(3D)表面积分量尤其有益于在对横向面积的约束内增大电极 的表面积,从而增大电容性密度。特定实现方式包括蚀刻进形成电极的衬底的孔。其他实现方式也是可能的并在这里更详细地讨论。
本发明的实施例涉及3D表面积的特定设计。这些设计包括用于实现大(如15nF-25nF)电容的孔距大小、孔大小和不同焊盘台(padlanding)。例如,0.8μm的孔大小、1.8μm的孔距和22μm的孔深度用于实现大于5nF/mm2的电容密度。
本发明的方面认识到:平板电容器提供足以满足30V/125℃/10年规范的200nm氧化物薄膜厚度;然而,已经认识到,在使用200nm厚的热氧化物时,在3D结构中不满足电容密度需求。为了实现足够大的电容密度,可以减小薄膜厚度或者应当扩大介电常数。然而,如果介电薄膜厚度被选择为太薄,则所期望的击穿电压将太低。相应地,本发明的方面利用并入了比氧化硅具有更高k值的介电材料(即SiN)的电介质堆叠。例如,215nm厚的氧氮氧(ONO)堆叠示出了大约120V-130V的击穿电压。对于30V的恒定工作电压,120V-130V的击穿电压可以提供各个寿命需求的足够安全余量。
此外,补偿电路的物理位置可能例如对于获得低电感值来说尤其重要。例如,接合长度的减小(从而电感的减小)可以导致RF器件的有效带宽更宽。更小的接合线长度还可以导致功率耗散更小,因此效率更高。由此,本发明的实施例涉及获得连接至inshin电容器的接合线的较短长度,从而在低频处提供低感应。
物理距离,例如额外导线横向的物理距离或者在测试电路上inshin电容器与去耦合电容器的距离,起到大得多的作用。
现在转至附图,图1A示出了根据本发明实施例的包括低频滤波器电路在内的RF功率晶体管。接合线102将外部封装输入与内部组件/管芯相连接。图1A示出了接合线102连接至RF晶体管104的基极的实现方式。接合线110将晶体管104的漏极与外部封装输出120相连接。接合线106将晶体管104的漏极与高密度补偿电容器108相连接。接合线具有由图1A的等效电路示出的电感性组件。
器件特性包括可例如由于多载波放大而引起的对低频分量的不期望易感性。例如,器件和电路特性可以创建不期望的频率分量。提 供了inshin补偿组件106,以对这些频率分量进行补偿。尽管如此,晶体管的漏极上的寄生电容可能对于特定应用来说是尤其有问题的,由于在给电路供电的电压源上可以看到低频变化。相应地,LC电路106-108被设计为通过提供足够大小的电容器108来对这种低频变化进行补偿。在一些实现方式中,电容器108被设计为在大约5mm2的面积和200μm的厚度内提供大于15nF的电容。尺寸(如大小和厚度)不必限于此。在特定实现方式中,电容器108具有15nF与25nF之间的电容,但电容值不必限于此。
图1B示出了根据本发明实施例的包括提供低频滤波的输出补偿电路在内的RF功率晶体管。与图1A一致,RF功率晶体管包括接合线102,接合线102将外部封装输入与内部组件/管芯相连接。在这种情况下,接合线102连接至输出补偿电容器116。接合线112连接至另一补偿电容器118,并从那里,接合线114连接至RF晶体管104的基极。接合线110将晶体管104的漏极与外部封装输出120相连接。接合线106将晶体管104的漏极与高密度补偿电容器108相连接。
另一实现方式将各个管芯中的一个或多个并入单个管芯中。在这种情况下,在没有接合线的情况下,可以在管芯上实现组件之间的连接。例如,可以在与RF功率晶体管相同的管芯上实现高密度电容器。这尤其可以有益于增大电容器的可用面积,从而允许更高的电容值。
图2示出了根据本发明实施例的开放RF晶体管封装的自顶向下的视图。在特定实现方式中,将RF晶体管封装实现为SMD封装。合适的SMD封装包括但不必限于小轮廓的晶体管(SOT)封装,如SOT502和SOT539。
管芯204、206、208通过接合线10而连接。每个单独的管芯提供RF功率晶体管、高密度电容器、补偿电路或可能期望的其他电路方面的功能。如图2所示,封装大小对可用于高密度电容器的面积加以限制。在所示的特定示例中,可用面积被限制于大约5mmx1.4mm或7mm2。
图3A-3L示出了根据本发明实施例的与用于生成高密度电容器的各个处理步骤相对应的器件。图3A示出了具有3D孔304的衬底302。尽管未对形成的具体方式进行限制,但是衬底302的示例实现方式是高掺 杂度(n++或p++)的Si或GaN晶片。3D孔大大增加了衬底302的表面积。例如,结合以下非限制性参数,可以实现平表面的表面积的大约10-25倍的表面积。可以利用孔膜(pore mask)(例如,40分钟蚀刻时间,~20μm-40μm深:蚀刻速率是0.922μm/分钟,假定无蚀刻加载效应)。特定示例产生直径在0.8-1.5μm之间且具有2μm与3μm之间的孔距的孔。另一示例产生直径在0.5μm至1.5μm之间、大约10μm至35μm深且具有大约1μm至3μm的孔距的孔。其他实施例涉及重复具有类似尺寸的3D结构。例如,可以实现直径在0.5μm至1.5μm之间、大约10μm至35μm深/高且具有大约1μm至3μm的孔距的柱序列。
其他实施例提供了用于提供增大的表面积的附加方法。例如,不是对孔进行蚀刻并将衬底的大部分保持完整无缺,而是可以通过对衬底的大部分进行蚀刻并将柱保持,来构造柱。其他示例结构包括蚀刻在硅表面中的沟槽或蜂窝结构。还可以实现不同结构的组合。在每种情况下,表面积可以增大十倍或更多倍,从而显著增大电极的电容性电势。
图3B示出了根据本发明实施例在衬底上对介电层的至少一部分的形成。生成了绝缘层306,以提供末端电容器的介电层的至少一部分。在特定实现方式中,使用热氧化来产生绝缘层306。可以根据所期望的设计约束来设置氧化层的厚度。在特定的非限制性示例中,氧化层的目标深度大约是100nm。该氧化层也可以在沟槽内(或作为其他三维结构的一部分)产生。
图3C示出了根据本发明实施例在衬底上对介电层的至少一部分的形成。在特定的实现方式中,产生层308,以形成ONO堆叠的一部分。例如,使用LPCVD SiN沉积物来生成层308。可以根据所期望的设计约束来设置氮化物层的厚度。在特定的非限制性示例中,氮化物层的目标厚度大约是100nm。氮化物层也可以沉积在孔内(或沉积在其他三维结构上)。
尽管图3未具体示出,但是与ONO堆叠不同的电介质也是可能的。例如,氧化物、氮化物(ON)或氧氮化物(NO)堆叠是可能的。可以基于器件的工作参数(如击穿电压和温度以及所期望的电容)来确 定电介质的特性。这些因素一起确定了适于特定应用的介电材料和设计。
图3D示出了根据本发明实施例在衬底上对介电层的至少一部分的形成。在特定实现方式中,产生层310,以形成ONO堆叠的一部分。例如,使用LPCVD TEOS沉积物来生成层310。可以根据所期望的设计约束来设置层310的厚度。在特定的非限制性示例中,目标厚度大约是15nm。
图3E示出了根据本发明实施例对导电层的形成。在特定实现方式中,层312是可通过沉积物产生多晶硅层。所期望的电阻率、厚度和其他参数是可调整的。在一个示例实现方式中,将层312实现为n型磷掺杂多晶硅层。这允许大约1050μΩcm的电阻率。在特定的非限制性示例中,厚度大约是735nm。在特定实现方式中,该厚度被选择为足以完全填满孔(或其他三维结构)。
图3F示出了根据本发明实施例对导电层或顶部电极层的形成。电极层314可以用作例如使用接合线或其他电连接而连接至外部电路的接触层。可以使用各种导电材料,包括诸如铝、铜、银、金及其组合之类的金属。在特定实现方式中,电极层314由AlCuSi(0.04%)沉积物形成。在特定的非限制性示例中,电极层的厚度大约是1.5μm。
图3G示出了根据本发明实施例对两个导电层的形成图样。区域316示出了对电极层314的形成图样,而没有对导电层312的形成图样。区域318示出了对两个导电层312、314的形成图样。可以实现这种形成图样,以如所期望那样形成多种不同图案和结构。
图3H示出了根据本发明实施例对器件一部分的封装。在期望时,可以在器件上形成保护层320。可以例如使用LPCVD TEOS或PECVDSiN沉积物来实现该封装。
图3I示出了根据本发明实施例对保护层的至少一部分的移除。可以选择性地移除保护层320的部分322。这些开口可以用于提供对电容性器件的接触。
图3J示出了根据本发明实施例对器件的薄化。可以从衬底302移除器件的一部分324,达到器件的所期望的总体厚度。例如,可以 将器件薄化至200μm。可以实现器件的这种晶片薄化以满足设计约束,并且这种晶片薄化可以提供所增加的提供减小的串联电阻的优点。
图3K示出了根据本发明实施例对背侧接触层的形成。接触层326可以被形成为用作例如使用接合线或其他电连接而连接至外部电路的接触层。例如,接触层236是可以通过(例如使用共晶金)对衬底302进行金属化来形成的。在特定实现方式中,可以有利地在电容器膜中限定小的线或多个点,而没有任何孔。然后,可以在这些无孔区域上放置台焊盘(landing pad)。这尤其可以有益于向台焊盘区域提供机械强度。
图3L示出了根据本发明实施例对多个电容性器件的晶片的切块。切块可以被设置为所期望的最终大小,其可以被选择为与所期望的RF功率晶体管和封装兼容。例如,对于SMD封装,尺寸可以大约是5.6mmx1.4mm。然后,可以在诸如LDMOS功率放大器器件之类的RF功率晶体管中使用所产生的高密度电容器。
图4A和4B示出了根据本发明实施例的、RF放大器电路的实验建模结果。所建模的RF放大器电路包括LDMOS功率晶体管,该LDMOS功率晶体管具有包括高密度电容器在内的inshin补偿电路。所建模的器件包括三个LDMOS活动管芯。每个管芯的有效阻抗被建模为Z1、Z2和Z3,并在所有管芯上相对一致。然而,中央管芯(Z2)上的阻抗高于两个靠外的管芯(Z1、Z3)。这是由于导致中央管芯上的阻抗略微更高的分布效应。器件的总阻抗是通过在封装内使用附加导线来减小的。
图4A示出了低值100pF inshin电容器的漏极上的阻抗。图4B示出了具有大(15nF)inshin电容器的漏极的阻抗。使用了相对简单的集总元件模型来对电子电路进行仿真,并相信该集总元件模型准确地描述了电路的行为/一般趋势。这两幅曲线图示出了并联谐振在低频区中导致了不利的阻抗峰值。使用100pF电容的电路的有效阻抗在15MHz处升至0.4Ohm有效阻抗以上。图4A和4B示出了更大电容器的添加减小了阻抗峰值,但还可以导致频谱上的总体阻抗更高。
相应地,本发明的方面认识到:更大的电容(如+15nF)不一定 在适中的频率处产生所期望的阻抗减小。特定实施例以对在器件内使用的接合线的数目和/或长度进行控制的形式使用阻抗匹配。
图5A示出了根据本发明实施例的、在晶体管的内部漏极上看到的建模阻抗。图5A示出了对明显更大的inshin电容器的使用将谐振移位至更低频率,以及电容器在移位后的谐振处提供明显较低的阻抗。例如,与值大于15nF的inshin电容器相结合的合适电路配置可以提供超过200MHz的视频/基带带宽。
对100pF电容器的建模在大约150MHz阻抗处产生了高峰值。该阻抗超过大约15MHz处的0.8Ohm界限,并在大于15MHz的值处迅速增大。相信,这是由于inshin电容器与偏置线路的电感的并联谐振,偏置线路使电容器对低频进行短路。建模示出了对稍微更大的电容器(200pF或300pF)的使用使并联谐振下移,从而导致更差的视频带宽性能。示出了导致较差RF性能的更小inshin电容器。
图5B示出了根据本发明实施例的在电路优化(例如,通过将导线添加至封装来减小阻抗)之后的建模结果。图5B示出了在晶体管的内部漏极上看到的建模阻抗。该优化是可以通过例如将导线/接合线添加至封装以减小阻抗来实现的。额外的接合线还允许小的去耦合电容器的上界从15MHz移动至30MHz。此外,可以通过将“inshin”电容器的电容增大至15nF或更大,将去耦合从30MHz改进至300MHz。
图5A和5B的仿真是使用2.5D仿真器(Agilent的momentum)来实现的。接合线和高密度电容器是利用2.5D仿真器来实现的,以考虑分布效应。所产生的图示出了LDMOS晶体管的内部漏极上的阻抗,并且,仿真包括电容器以及RF的其他部分(如供电线)的所测量的s-参数。
图6A示出了非线性放大器的2音调谱。差频(F2-F1)表示在未被电容器有效短路的情况下可在LDMOS晶体管的漏极上出现的频率。特定音调间隔的3阶互调分量(IMD3)的电平对确定视频带宽性能来说是重要的。
图6B示出了根据本发明实施例的、线性/失真作为音调间隔的函数以及相对于inshin电容器的电容的变化。相对于载波电平以dB表示3阶互调失真(IMD3)的线性。图6B示出了从1至250MHz扫描2个载波 的间隔的结果。功率被保持在75W平均值,并且,绘出了IMD3上部和下部信道。线602描述了具有低电容inshin电容器的放大器的IMD行为。线604描述了具有高密度inshin电容器的相同放大器的行为。
如果IMD升至特定电平以上,则可能严重阻碍放大器的有用性。例如,数字预纠错例程可能对于抵偿所产生的非线性来说不再有效。线602示出了在变化的音调间隔上的谱非对称性。线604示出了低音和高音之间的相对较小的差异,这示出了良好的谱对称性。一般来说,对于与线602相对应的器件,标准去耦合将在60-70MHz处停止。
在图6B中,完全移除了栅极去耦合,这与0.5Ohm阻尼电阻器同漏极去耦合电容器的串联相结合产生非常平的谱。
对不同氧化物/氮化物电介质堆叠的电容密度和击穿电压进行了建模,以达到100nm热氧化物、100nm LPCVD氮化硅和15nm LPCVD氧化物的堆叠。其他实施例涉及与使用柱作为三维结构以提供3nF/mm2的电容密度相结合,将ONO层薄化为70/70/15并将蚀刻深度减小为10μm。
尽管以上以及在所附权利要求中描述了本发明,但是本领域技术人员应当理解,在不脱离本发明的精神和范围的前提下,可以对本发明进行许多改变。
Claims (15)
1.一种射频放大器电路,被限制于表面贴装器件封装大小,并被设计为对包括基带部分在内的射频信号以及多个载波信号进行放大,所述载波信号所具有的频率间隔大于射频信号的基带部分的带宽,所述射频放大器电路包括:
射频晶体管,具有栅极端子和漏极端子;
电路输出,具有寄生输出电容;
电连接,在源极-漏极端子和电路输出之间;
内部分路电感器,提供对寄生输出电容的补偿;以及
高密度电容器,提供足以在频率间隔附近的频率处提供低有效阻抗的电容,并连接在内部分路电感器和电路地之间,所述高密度电容器包括轮廓包含三维结构的端子,所述端子的表面区域是该相同轮廓的平面表面的大约至少十倍。
2.根据权利要求1所述的电路,其中,所述射频晶体管和所述高密度电容器位于公共衬底上。
3.一种射频放大器电路,被限制于封装大小,所述射频放大器电路包括:
射频晶体管,具有栅极端子和漏极端子;
电路输出,具有寄生输出电容;
接合线,连接在源极-漏极端子和电路输出之间;以及
内部分路电感电路,提供对寄生输出电容的补偿并在低于大约80MHz的所有频率处提供小于大约0.5Ohm的有效阻抗,所述内部分路电感电路包括:
高密度电容器,具有与电路地相连接的第一端子;以及
内部分路电感,连接在源极-漏极端子和所述高密度电容器的第二端子之间。
4.根据权利要求3所述的射频放大器电路,其中,所述高密度电容器具有至少15nF的电容和至少3nF/mm2的电容密度中的至少一个。
5.根据权利要求3所述的射频放大器电路,其中,所述高密度电容器包括三维表面区域电极。
6.根据权利要求5所述的射频放大器电路,其中,所述三维表面区域电极包括以下结构:所述结构包括蚀刻在表面中的孔、从硅表面延伸的柱、沟槽以及蜂窝结构中的一个或多个。
7.根据权利要求3所述的射频放大器电路,其中,所述高密度电容器包括电介质堆叠,所述电介质堆叠是氧化物/氮化物/氧化物(ONO)堆叠、氧化物/氮化物堆叠(ON)以及氧氮化物(NO)堆叠中的一个。
8.根据权利要求3所述的射频放大器电路,其中,晶体管是横向扩散金属氧化物半导体晶体管。
9.一种用于创建具有高密度电容器和射频晶体管的射频放大器电路的方法,所述方法包括:
通过以下操作来形成所述高密度电容器:
通过对高掺杂度的Si衬底形成图样和进行蚀刻,形成直径大约0.5μm至1.5μm、深大约10μm、具有大约2μm至3μm的间距的集合重复结构,来形成电容器的第一板;
通过氧化蚀刻后的Si衬底、使氮化硅沉积在氧化后的Si衬底上、以及在沉积后的氮化硅上生成氧化硅薄膜,形成Si衬底的前侧的氧化物、氮化物、氧化物层;
通过使多晶硅沉积在氧化硅薄膜上,形成电容器的第二板;
以及
使电极沉积在沉积后的多晶硅上;以及
使用具有电感的电连接将电极连接至射频晶体管,所述电连接和高密度电容器具有足以提供对射频晶体管的寄生输出电容的补偿的电感和电容。
10.根据权利要求9所述的方法,还包括以下步骤:将Si衬底薄化至达到所期望的厚度,所期望的厚度是高密度电容器的所期望的厚度以及Si衬底的所期望的电阻中的至少一个的因素。
11.根据权利要求10所述的方法,其中,所期望的厚度小于大约200μm。
12.根据权利要求9所述的方法,其中,所述电连接是接合线。
13.根据权利要求9所述的方法,还包括以下步骤:执行对Si衬底的背侧的金属化。
14.根据权利要求9所述的方法,还包括以下步骤:将Si衬底切块为具有小于10mm2的横截面积的电容器。
15.根据权利要求9所述的方法,其中,形成高密度电容器的步骤是在对射频晶体管来说公共的衬底上实现的。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/641,817 | 2009-12-18 | ||
US12/641,817 US7986184B2 (en) | 2009-12-18 | 2009-12-18 | Radio frequency amplifier with effective decoupling |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102148605A true CN102148605A (zh) | 2011-08-10 |
Family
ID=44150182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010106004582A Pending CN102148605A (zh) | 2009-12-18 | 2010-12-17 | 具有有效去耦合的射频放大器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7986184B2 (zh) |
EP (1) | EP2357667A3 (zh) |
CN (1) | CN102148605A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070419A (zh) * | 2015-10-21 | 2017-08-18 | 飞思卡尔半导体公司 | 用于rf放大器器件的输出阻抗匹配电路及其制造方法 |
CN109804558A (zh) * | 2016-08-09 | 2019-05-24 | 高通股份有限公司 | 提供旁路寄生阻抗的匹配电路的系统和方法 |
CN110034736A (zh) * | 2017-12-12 | 2019-07-19 | 安普林荷兰有限公司 | 封装式射频功率放大器 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722981A1 (en) * | 2012-10-16 | 2014-04-23 | Nxp B.V. | Amplifier circuits |
EP2722880B1 (en) * | 2012-10-16 | 2018-02-28 | Ampleon Netherlands B.V. | Packaged RF amplifier circuit |
US8680690B1 (en) * | 2012-12-07 | 2014-03-25 | Nxp B.V. | Bond wire arrangement for efficient signal transmission |
EP2802075B1 (en) | 2013-05-07 | 2017-02-15 | Ampleon Netherlands B.V. | Dual-band semiconductor RF amplifier device |
US9806159B2 (en) | 2015-10-08 | 2017-10-31 | Macom Technology Solutions Holdings, Inc. | Tuned semiconductor amplifier |
US20170302245A1 (en) | 2016-04-15 | 2017-10-19 | Macom Technology Solutions Holdings, Inc. | Ultra-broad bandwidth matching technique |
US11158575B2 (en) | 2018-06-05 | 2021-10-26 | Macom Technology Solutions Holdings, Inc. | Parasitic capacitance reduction in GaN-on-silicon devices |
US11004748B2 (en) | 2019-06-05 | 2021-05-11 | Globalfoundries U.S. Inc. | Semiconductor devices with wide gate-to-gate spacing |
US11043566B2 (en) | 2019-10-10 | 2021-06-22 | Globalfoundries U.S. Inc. | Semiconductor structures in a wide gate pitch region of semiconductor devices |
NL2027145B1 (en) * | 2020-12-17 | 2022-07-11 | Ampleon Netherlands Bv | Power amplifier device and semiconductor die |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003065569A2 (en) * | 2002-02-01 | 2003-08-07 | Koninklijke Philips Electronics N.V. | Output circuit for a semiconductor amplifier element |
WO2007054870A1 (en) * | 2005-11-08 | 2007-05-18 | Nxp B.V. | Trench capacitor device suitable for decoupling applications in high-frequency operation |
CN101317270A (zh) * | 2005-09-30 | 2008-12-03 | 德克萨斯仪器股份有限公司 | 位于保护性层顶部上的高密度高q值电容器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352991A (en) * | 1993-08-12 | 1994-10-04 | Motorola, Inc. | Power amplifier assembly |
JP4319407B2 (ja) | 2001-01-18 | 2009-08-26 | エヌエックスピー ビー ヴィ | 内部結合されたローパス及びバンドパス整合段を具備するパワートランジスタ |
JP2005311852A (ja) * | 2004-04-23 | 2005-11-04 | Toshiba Corp | 高周波増幅装置 |
JP2008533899A (ja) | 2005-03-18 | 2008-08-21 | エヌエックスピー ビー ヴィ | Rfトランジスタの出力マッチングの方法およびシステム |
EP2013943B1 (en) * | 2006-04-26 | 2020-03-25 | Ampleon Netherlands B.V. | A high power integrated rf amplifier |
-
2009
- 2009-12-18 US US12/641,817 patent/US7986184B2/en active Active
-
2010
- 2010-12-16 EP EP10195305A patent/EP2357667A3/en not_active Withdrawn
- 2010-12-17 CN CN2010106004582A patent/CN102148605A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003065569A2 (en) * | 2002-02-01 | 2003-08-07 | Koninklijke Philips Electronics N.V. | Output circuit for a semiconductor amplifier element |
CN101317270A (zh) * | 2005-09-30 | 2008-12-03 | 德克萨斯仪器股份有限公司 | 位于保护性层顶部上的高密度高q值电容器 |
WO2007054870A1 (en) * | 2005-11-08 | 2007-05-18 | Nxp B.V. | Trench capacitor device suitable for decoupling applications in high-frequency operation |
Non-Patent Citations (1)
Title |
---|
F.ROOZEBOOM等: "High-Density,Low-Loss MOS Capacitors for Integrated RF Decoupling", 《PROCEEDINGS 34TH INT.SYMP. ON MICROELECTRONICS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070419A (zh) * | 2015-10-21 | 2017-08-18 | 飞思卡尔半导体公司 | 用于rf放大器器件的输出阻抗匹配电路及其制造方法 |
CN107070419B (zh) * | 2015-10-21 | 2022-02-25 | 恩智浦美国有限公司 | 用于rf放大器器件的输出阻抗匹配电路及其制造方法 |
CN109804558A (zh) * | 2016-08-09 | 2019-05-24 | 高通股份有限公司 | 提供旁路寄生阻抗的匹配电路的系统和方法 |
CN110034736A (zh) * | 2017-12-12 | 2019-07-19 | 安普林荷兰有限公司 | 封装式射频功率放大器 |
CN110034736B (zh) * | 2017-12-12 | 2023-07-04 | 安普林荷兰有限公司 | 封装式射频功率放大器 |
Also Published As
Publication number | Publication date |
---|---|
EP2357667A2 (en) | 2011-08-17 |
EP2357667A3 (en) | 2012-01-04 |
US20110148529A1 (en) | 2011-06-23 |
US7986184B2 (en) | 2011-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102148605A (zh) | 具有有效去耦合的射频放大器 | |
US9589927B2 (en) | Packaged RF amplifier devices with grounded isolation structures and methods of manufacture thereof | |
US10141899B2 (en) | Broadband radio frequency power amplifiers, and methods of manufacture thereof | |
JP5054019B2 (ja) | 高周波数動作においてアプリケーションを分離するのに適したトレンチキャパシタ装置 | |
US10432152B2 (en) | RF amplifier output circuit device with integrated current path, and methods of manufacture thereof | |
CN102480272B (zh) | 射频放大器 | |
CN110504923A (zh) | 晶体管装置和具有谐波终止电路的放大器和其制造方法 | |
US20160087586A1 (en) | Packaged rf amplifier devices and methods of manufacture thereof | |
US20160173039A1 (en) | Amplifiers with a short phase path, packaged rf devices for use therein, and methods of manufacture thereof | |
CN110504922A (zh) | 宽带功率晶体管装置和放大器及其制造方法 | |
CN106656069A (zh) | 一种应用于gsm射频功率放大器的多频输出匹配网络 | |
US9979360B1 (en) | Multi baseband termination components for RF power amplifier with enhanced video bandwidth | |
EP2722880B1 (en) | Packaged RF amplifier circuit | |
CN109818584A (zh) | 用于功率放大器的宽带输入匹配和视频带宽电路 | |
US9041465B2 (en) | Amplifier circuits | |
US20220085772A1 (en) | Power amplifiers and unmatched power amplifier devices with low baseband impedance terminations | |
US20110221033A1 (en) | High power semiconductor device for wireless applications and method of forming a high power semiconductor device | |
CN107644852A (zh) | 用于rf功率放大器封装件的集成无源器件 | |
CN109273837A (zh) | 一种实现天线与电路嵌套连接的结构 | |
CN110034736A (zh) | 封装式射频功率放大器 | |
CN103715991A (zh) | 微cmos功率放大器 | |
Chen et al. | An integrated wideband power amplifier for cognitive radio | |
EP3849078A2 (en) | Multiple-stage power amplifiers and devices with low-voltage driver stages | |
EP2393112B1 (en) | Inductive circuit arrangement | |
CN103022018B (zh) | 电流调谐的集成磁膜微电感的制作方法和电感调谐方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110810 |