JP2008533899A - Rfトランジスタの出力マッチングの方法およびシステム - Google Patents

Rfトランジスタの出力マッチングの方法およびシステム Download PDF

Info

Publication number
JP2008533899A
JP2008533899A JP2008501473A JP2008501473A JP2008533899A JP 2008533899 A JP2008533899 A JP 2008533899A JP 2008501473 A JP2008501473 A JP 2008501473A JP 2008501473 A JP2008501473 A JP 2008501473A JP 2008533899 A JP2008533899 A JP 2008533899A
Authority
JP
Japan
Prior art keywords
output
transistor
compensation circuit
coupling line
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008501473A
Other languages
English (en)
Inventor
イゴール、ブレドノフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of JP2008533899A publication Critical patent/JP2008533899A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • H01L2224/48011Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1905Shape
    • H01L2924/19051Impedance matching structure [e.g. balun]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

第1の主電極と、出力電極として機能する第2の主電極と、制御電極とを有する高周波パワートランジスタ(102)と、トランジスタ(102)の寄生出力キャパシタンスを補償するための出力補償回路(104)とを備える高周波パワーデバイス(100)が記載されている。出力補償回路は、トランジスタの出力電極と高周波パワーデバイスの出力リードの間で、より短い結合線が得られるように、トランジスタに相対して物理的に配置されている。出力補償回路(104)は、よって、高周波パワーデバイス(100)の入力リード(108)とトランジスタ(102)の間に物理的に位置している。結合線Lcompによって、出力補償回路(104)からトランジスタ(102)の出力電極まで導入されるインダクタンスを、フィードバック信号として使用することができる。結合線Lcompとプリマッチング回路(106)に接続された結合線との間の相互誘導結合の選択は、高周波パワーデバイスの特性をさらに最適化することを可能にする。

Description

本発明は、無線周波数(RF)デバイスならびにその製造および動作方法の分野に関する。より具体的には、本発明は、例えばRFトランジスタ用などの出力補償回路を備えるRFデバイスに関する。
無線周波数(RF)トランジスタ、例えば中波または高周波パワートランジスタは、広く使用されている。これらのデバイスは、一般的に、寄生出力キャパシタンスCoutの悪影響を受け、この寄生出力キャパシタンスCoutは、デバイスの動作帯域幅、電力効率および電力利得を制限する。後者の問題は、一般的には、補償素子を加えることで解決され、補償素子は、多くの場合、補償インダクタンスまたはINSHINと呼ばれる内部シャントインダクタンス(Internal Shunt Inductance)である。補償素子は、一般的には、デカップリングキャパシタを介して、RFデバイスの出力と、グランドとの間に取り付けられる。このようにして、動作周波数での、寄生出力キャパシタンスCoutとの並列共振が提供され、低い虚部を有するデバイスの増加した出力インピーダンスを生成することを可能にし、これは、要求される周波数帯域での負荷に対する、デバイス出力のより良いマッチングを助ける。このような出力補償回路のための典型的な設計が、図1に表されており、RFトランジスタ12、例えばRFパワートランジスタと、出力補償回路14と、プリマッチング回路16とを備えるRFデバイス10を示している。RFデバイス10は、また、入力リード18と、出力リード20とを備える。構成部品間の様々な相互接続が、結合線22によってもたらされている。出力補償回路を使用するRFパワーデバイスの最適化が、例えば、国際特許出願第02/058149号に述べられており、2つのキャパシタを備えることによって、トランジスタの2重の内部ポストマッチング(post-matching)を得ることを可能にする出力補償ステージが述べられている。その利点は、出力補償ステージと、トランジスタの出力電極および出力リードの間の結合線との間の相互誘導結合の機会が減少し、より良い出力補償が提供されることである。
しかし、上述の従来技術システムにおいては、結合線の長さが著しく長く、また、トランジスタダイの出力を出力リードに接続する結合線の等価寄生インダクタンス値は、特定の値より下に減少させることができない。この寄生インダクタンスは、例えば動作帯域幅、電力効率、信頼性、得られる利得および最大電力などの、デバイスのいくつかの動作の側面に対して、否定的な影響を有する。
本発明の目的は、RF周波数において改善された電力利得および電力効率などの、改善されたRF性能を有する、出力補償回路を有する電子RFデバイスを提供することである。さらなる目的は、このような電子RFデバイスを製造する方法を提供することである。
上述の目的は、本発明に係る方法およびデバイスによって達成される。
本発明は、電子RFデバイスに関し、電子RFデバイスは、入力リードおよび出力リードと、トランジスタと、トランジスタの寄生出力キャパシタンスCoutを補償するための出力補償回路と、を備え、出力補償回路は、入力リードとトランジスタの間に物理的に位置している。電子RFデバイスは、RF電力を生成してもよい。「物理的に位置する」とは、「配置されていること」を意味する。「出力補償回路は、入力リードとトランジスタの間に物理的に位置する」とは、「出力補償回路のデカップリングキャパシタが、トランジスタの出力電極よりも電子RFの入力リードの方の近くに、すなわち、トランジスタの出力電極からよりも入力リードからの方が短い距離で、配置されていること」を意味してもよい。出力補償回路の物理的位置を、入力リードとトランジスタの間にすることは、トランジスタの出力電極を電子RFデバイスの出力リードに接続する結合線の長さの大幅な短縮を可能にする。これらの結合線の長さの短縮は、より良い帯域幅、すなわち例えばより広い帯域幅を、RFデバイスを用いて得ることを可能にする。これらの結合線の長さを短縮することは、また、熱電力消失の改善を可能にし、よって、結果としてより信頼性の高いデバイスをもたらす。さらに、トランジスタとデバイスの出力リードとの間に物理的に位置する出力補償回路を有する従来技術デバイスと比べて高い電力効率が得られるということは、詳細設計上の利点である。
トランジスタは、第1の主電極と、出力電極である第2の主電極と、制御電極と、を備えてもよく、出力電極は、結合線Loutputにより出力リードに接続されている。単極性トランジスタの場合、第1の主電極は、ソース電極であってもよく、第2の主電極は、ドレイン電極であってもよく、制御電極は、ゲート電極であってもよい。トランジスタは、横方向拡散金属酸化物半導体トランジスタ(laterally diffused metal-oxide semiconductor transistor)であってもよい。すなわち、制御電極は、横方向拡散金属酸化物半導体トランジスタのゲート電極であってもよい。トランジスタのより良い電力スケーリング対制御電極幅、例えばゲート電極幅W、およびより高い出力電極効率が得られることは、提案された出力補償回路構成を備えるRFデバイス、例えばRFパワーデバイスの利点である。RFデバイスが、例えばLDMOSトランジスタなどの標準的な構成部品に基づくことができることは、利点である。
出力補償回路およびトランジスタは、単一のダイ上に位置していてもよい。RFデバイス(例えばRFパワーデバイス)を、パッケージ内でデバイスに必要とされるスペースが小さい、コンパクトなシステム設計で提供できることは、利点である。また、単一ダイ上で加工が行えるため、デバイスをより簡単に製造できることも、利点である。必要とされる基板サイズも、減少させることができ、結果として、より低コストとなる。
出力補償回路は、キャパシタCcompを備えてもよく、キャパシタCcompは、結合線Lcompによってトランジスタの出力電極に接続されている。例えばINSHIN回路などの、標準的な出力補償回路を使用できることは、RFデバイスの利点である。標準的な構成部品の使用は、より低い製造コストを可能にする。
結合線Lcompによって決定されるインダクタンスが、フィードバック信号のソースとして使用されてもよい。このようなフィードバック信号は、RFデバイスの動作の質を最適化するために、有利に使用することができる。
電子デバイスは、結合線Lpre matchによって制御電極に接続されたプリマッチング回路をさらに備えてもよい。プリマッチング回路を設けることができることは、RFデバイスの利点であり、改善された入力インピーダンス範囲、例えば拡張インピーダンス範囲を得ることを可能にする。
結合線Lcompと結合線Lpre matchの間の相互インダクタンス結合が、フィードバック機構の一部として使用されてもよい。プリマッチング回路は、結合線Lpmiによって相互接続された複数の構成部品を備えてもよく、結合線Lcompと結合線Lpmiのうちの1つとの間の相互インダクタンス結合が、フィードバック機構の一部として使用されてもよい。フィードバック機構を設けることができることは、改善された信号処理をもたらすことができ、有利である。さらに、様々なフィードバック機構を設けることができることは、信号処理の選択可能な特定の特性の最適化を可能にし、有利である。
電子デバイスは、追加の変圧回路をさらに備えてもよい。RFデバイスのコンパクトな設計により、追加の変圧回路を設けることが可能となり、これは、改善された信号処理を得ることを可能にする。
本発明は、また、電子RFデバイスを製造する方法に関し、方法は、基板を供給するステップと、電子RFデバイスの入力リードおよび出力リードと、RFトランジスタと、出力補償回路とを供給するステップと、出力補償回路とRFトランジスタの出力電極の間、およびRFトランジスタの出力電極と出力リードとの間に、結合線を設けるステップと、を備え、RFトランジスタと出力補償回路とを供給するステップは、出力補償回路を、入力リードとRFトランジスタとの間に物理的に配置するステップを備える。出力補償回路は、入力リードとRFトランジスタダイの間に物理的に配置されてもよい。RFトランジスタは、RFパワートランジスタであってもよい。RFパワートランジスタは、例えば金属酸化物半導体電界効果トランジスタ(MOSFET)、横方向拡散金属酸化物半導体トランジスタ(LDMOST)、バイポーラ接合トランジスタ(BJT)、接合電界効果トランジスタ(JFET)またはヘテロ接合バイポーラトランジスタ(HBT)など、どのような種類であってもよい。電子RFデバイスは、RF電力を生成してもよい。標準的な構成部品を使用できることは、この製造方法の利点である。また、標準的な半導体処理技術を使用できることは、この方法の利点である。
方法は、RFトランジスタの制御電極に接続されたプリマッチング回路を設けるステップと、結合線Lcompとプリマッチング回路に接続されている結合線との間の相互誘導結合の度合いを選択するステップと、をさらに備えてもよい。この製造方法が、例えば最適化されるべき信号処理のパラメータの関数として、RFデバイスで使用される最適なフィードバック機構の容易な選択を可能にすることは、利点である。
本発明の特定の好適な態様は、添付の独立および従属請求項において定義される。従属請求項の特徴は、単に請求項において明らかに定義されている通りのみでなく、独立請求項の特徴および他の従属請求項の特徴と適切に組み合わせてもよい。
この分野におけるデバイスの不断の改善、変化および発展があるものの、本概念は、従来の実施からの離脱を含み、ほぼ新しく新規な改善を表すものと信じられ、より効率的で、安定性があり信頼できるこの種のデバイスの提供を、結果としてもたらす。本発明の教示は、改善されたRF、例えば中波または高周波デバイス、例えばRFパワーデバイスなどの設計を可能にする。
発明を実施するための形態
本発明のこれらおよび他の特性、特徴および利点は、本発明の原理を例として示す添付の図面と関連して、以下の詳細な説明から明らかとなるであろう。この説明は、本発明の範囲を限定することなく、単なる例のために提供される。以下に引用される参照図は、添付の図面を指すものである。
本発明は、特定の実施形態に関連して、かつ特定の図面に関連して説明されるが、本発明はこれらに限定されず、特許請求の範囲によってのみ限定される。請求項内のどの参照符号も、範囲を限定するものと解釈されるべきでない。説明される図面は、単なる概略であり、非限定である。図面において、いくつかの要素の大きさは、例示を目的として強調されている場合もあり、正しい寸法では描かれていない。本明細書および特許請求の範囲において、用語“備える”が使用されている箇所では、これは、他の要素またはステップを除外しない。単数の名詞を指す際に、例えば“1つの(aまたはan)”“その(the)”などの不定または定冠詞が使用されている箇所においては、他に特に明記されていない限り、これはその名詞の複数形も含む。
さらに、本明細書および特許請求の範囲における第1、第2、第3などの用語は、類似する要素を区別するために使用されており、必ずしも連続または時系列の順番を説明しているわけではない。そのように使用される用語は、適切な状況下では相互に交換可能であること、およびここに説明される本発明の実施形態は、ここで説明または例示される以外の順序で動作することも可能であることを、理解すべきである。
さらに、本明細書および特許請求の範囲における上部、下部、上に、下になどの用語は、説明を目的として使用され、必ずしも相対的な位置を説明するものではない。そのように使用される用語は、適切な状況下では相互に交換可能であること、およびここに説明される本発明の実施形態は、ここで説明または例示される以外の向きで動作することも可能であることを、理解すべきである。“物理的位置”について明確な参照が行われる場合、これらの用語は、相対的な位置を説明するために意図的に使用されており、参照される構成部品の相対的な位置は、よって、変更することはできない。
本発明の実施形態においては、無線周波数デバイスは、異なる電子構成部品が基板上に設けられているものとして説明される。用語“基板”は、使用が可能な、あるいはその上に、デバイス、回路またはエピタキシャル層を形成することが可能な、下に位置するどのような材料を含んでもよい。或いは、この“基板”は、例えばドープシリコン、ガリウムヒ素(GaAs)、ガリウムヒ素リン(GaAsP)、インジウムリン(InP)、ゲルマニウム(Ge)、またはシリコンゲルマニウム(SiGe)基板などの、半導体基板を含んでもよい。“基板”は、半導体基板部分に加えて、例えば、SiOまたはSi層などの絶縁層を含んでもよい。従って、用語“基板”は、シリコンオンガラス、シリコンオンサファイア基板も含む。用語“基板”は、よって、概ね、当該の層または部分の下にある層のための要素を定義するために用いられる。また、“基板”は、その上に層が形成される、例えばガラスまたは金属層などの他の任意の基材であってもよい。
第1の実施形態において、本発明は、無線周波数(RF)、増幅信号を生成するための無線周波数デバイスなどの半導体デバイスに関する。このような半導体デバイスは、RFパワーデバイスであってもよい。無線周波数は、典型的には、9kHzから400GHzの間の周波数として定義される。デバイスは、よって、9kHzから400GHzの周波数範囲で動作することができ、例えば、中波範囲、高周波範囲、極超短波範囲、極々超短波範囲などで動作することができる。電磁スペクトルのRF領域のより詳細な説明は、例えば、カー(Carr)による“RF回路設計の秘訣(Secrets of RF Circuit Design)”(マグローヒル社(McGraw-Hill Companies, Inc)、2001年)の1〜2頁に見出すことができる。デバイスは、ワイヤレス電気通信で使用されるように、例えば、1.8GHzより高い周波数、例えば18GHzで有利に使用してもよい。無線周波数デバイスは、典型的には、例えば無線およびテレビジョン放送システム用ならびに移動体通信システム用の電力増幅器などの、様々な用途で使用される。他の用途は、基地送信局(BTS)、衛星地上局、携帯電話またはコードレス電話、アビオニクスで使用される送信機、レーダーなどを含む。本発明に係るRFデバイス、例えばRFパワーデバイスは、高い効率および広い帯域幅が必要とされる用途において、非常に有用である。本発明に係るRFデバイス、例えばRFパワーデバイスは、高い効率および広い帯域幅が必要とされる用途向けに、非常に有用である。本実施形態に係るRFパワーデバイスの一例が、図2に示されている。RFデバイス100、例えばRFパワーデバイスは、RFトランジスタ102、例えばRFパワートランジスタと、出力補償回路104とを構成部品として備える。多くの場合、RFデバイス100は、任意のプリマッチング回路106を備えてもよいが、本発明はこれに限定されない。RFトランジスタ102および出力補償回路104および任意のプリマッチング回路106は、全て、例えばトランジスタ、パッケージング、ヒートシンクまたは基板の金属フランジの表面に、平面的に配置される。
RFデバイス100は、さらに、デバイスの入力および出力を形成する、入力リード108と、出力リード110とを備え、これらからは、例えばパッケージングされたデバイスを、例えばボールグリッド(ball grid)、タブ(tab)などの、これまたは他の任意の手段によって、外部から接続可能である。典型的には基板上に設けられる、RFトランジスタ102は、寄生出力キャパシタンスCoutの被害を受ける、任意の種類の平面内のRFトランジスタとすることができる。RFトランジスタは、RFパワートランジスタであってもよい。RFトランジスタ102、例えばRFパワートランジスタは、例えば横方向拡散金属酸化物半導体トランジスタ(LDMOST:lateral diffused metal-oxide semiconductor transistor)などの、例えば電界効果トランジスタ(FET)であってもよいが、例えば金属酸化物半導体トランジスタ(MOS)、擬似格子整合高電子移動度トランジスタ(PHEMT:pseudomorphic high-electron-mobility transistor)、バイポーラ接合トランジスタ(BJT)またはヘテロ接合バイポーラトランジスタ(HBT)などの他の種類のトランジスタであってもよい。RFトランジスタ102は、典型的には、第1および第2の主電極と、制御電極と(図2では不図示)を備え、ここで、これらの主電極のうち、さらに第2の主電極と呼ばれる1つは、出力電極として機能する。RFトランジスタおよびその製造の方法は、当業者によく知られている。単極性トランジスタの場合、第1の主電極は、ソース電極としてもよく、第2の主電極は、ドレイン電極としてもよく、制御電極は、ゲート電極としてもよい。RFトランジスタ102の出力電極は、結合線Loutputを使用したRFデバイス100の出力リードに接続されている。多くの場合に当てはまるように、プリマッチング回路106がある場合、典型的には、入力信号は、結合線Linputによって接続されている入力リードを通して、プリマッチング回路106に供給され、プリマッチング回路106は、典型的には低域通過L−C−Lフィルタ構成であってもよい。信号は、さらに、プリマッチング回路106とRFトランジスタ102の制御電極、例えばゲート電極との間の結合線Lpre−matchを通して、RFトランジスタ102、例えばRFパワートランジスタに伝達される。あるいは、入力リードを、RFトランジスタ102の制御電極に直接接続してもよい。RFトランジスタ102の寄生出力キャパシタンスCout(図2では不図示)を補償するために設けられる、出力補償回路104は、RFトランジスタ102の出力信号の寄生出力キャパシタンスCoutを補償するための任意の構成部品を備えてもよい。このような出力補償回路104は、INSHIN回路、すなわち内部シャントインダクタンス(Internal Shunt Inductance)として実施してもよい。出力補償回路104、例えばINSHIN回路は、デカップリングキャパシタCcompを通して接地される補償インダクタンスLcompを備える。出力補償回路104は、RFトランジスタの出力電極とグランドの間に接続され、ここで、出力補償回路104の補償インダクタンスLcompは、RFトランジスタの出力電極に接続される結合線として設けてもよい。あるいは、追加のインダクタンスを設けてもよい。デカップリングキャパシタCcompは、典型的には、RFトランジスタ102、例えばRFパワートランジスタの動作周波数での、寄生出力キャパシタンスCout(図2では不図示)との並列共振を提供するように選択される。本発明の態様によると、出力補償回路104、例えばINSHIN回路のデカップリングキャパシタCcompは、RFトランジスタの制御電極、または単極性トランジスタの場合には、RFトランジスタのゲート電極としても呼ばれる、RFトランジスタ102の入力側に、物理的に配置され、RFトランジスタの第2の主電極または出力電極とも呼ばれ、例えば単極性トランジスタの場合のドレイン電極である、RFトランジスタの出力側には配置されない。デカップリングキャパシタCcompは、よって、RFトランジスタ102よりも、デバイスの入力リード108の近くに配置され、すなわち、RFトランジスタ102よりも、デバイスの出力リード110の近くには配置されない。換言すると、出力補償回路104のデカップリングキャパシタCcompは、RFトランジスタ102の第2の主電極よりも、第1の主電極および制御電極に対して、物理的に近く位置する。出力補償回路104のデカップリングキャパシタCcompは、よって、RFデバイス100の入力リード108と、RFトランジスタ102、例えばRFトランジスタ102の第1の主電極との間に、物理的に位置する。換言すると、出力補償回路102のインダクタンスLcompは、一端がRFトランジスタ102の出力リードすなわちドレインに接続され、他端がデカップリングキャパシタを通してグランドに接続され、デカップリングキャパシタは、RFトランジスタ102の入力側において、トランジスタの制御電極、例えばゲート電極と、RFデバイス100の入力リード108との間に位置している。RFトランジスタ102は、よって、出力補償回路104のデカップリングキャパシタCcompよりも、RFデバイス100の出力リード110に近く配置されている。このようにすると、出力補償回路104と、RFトランジスタ102の出力電極すなわち第2の主電極との間の結合線Lcompは、RFトランジスタ102の最大部分の上を延び、よって、典型的には、従来技術デバイスに比べて、RFトランジスタ102を基準として、他の方向に向けて延びている。後者は、図3に示されている。
上述したように、プリマッチング回路106を、任意で設けてもよい。このようなプリマッチング回路106は、典型的には、結合線Linputを用いて、RFデバイス100の入力リードに接続されており、RFトランジスタ、例えばRFパワートランジスタの制御電極、例えばゲート電極に接続されている。プリマッチング回路106は、さらに、結合線Lpm1,Lpm2,...等により互いに接続された1つ、2つまたはそれ以上の構成部品で構成されてもよい。
異なる構成部品のために特定の物理的位置を選択することにより、RFトランジスタ102の出力電極を、出力補償回路を備えた従来技術システムの結合線よりも著しく短い結合線Loutputを用いて、RFデバイス100の出力リード110に接続することができる。後者は、典型的には、トランジスタの高さに相対するリードの高さに依存する。典型的には、特定の設計ルールによると、トランジスタと、出力補償回路、より詳しくは出力補償回路のデカップリングキャパシタとの間、および出力補償回路、より詳しくはそのデカップリングキャパシタCcompと、出力リード110との間の間隔は、少なくとも0.4mmである必要がある。よって、例えば、出力補償回路の典型的なキャパシタ幅、例えば0.8mmのINSHINキャパシタ幅を考慮に入れると、トランジスタダイ102と出力リード110の間の従来技術デバイスの全体的な距離は、少なくとも1.6mm(=0.4mm+0.8mm+0.4mm)であり、一方で、本発明の実施形態に係るデバイスでは、この距離は、0.4mmまで、4倍減少させることができる。
短い結合線Loutputを使用する可能性は、顕著な利点を有する。それは、所定の周波数用のRFデバイスにおいて高い電力効率を得ることを可能にする。それは、システムにより得られる潜在的な動作周波数帯域幅を改善する。後者の改善は、また、出力での減少された寄生インダクタンスによって得られる。さらに、出力結合線、例えばドレイン結合線の約3倍低い値により、ベースバンドデカップリングのより広い帯域幅が得られる。例えばマルチキャリアW−CDMAのベースバンド送信用に必要とされる典型的な帯域幅は、およそ60MHzであり、これは、本発明の実施形態に係るRFデバイス100によって改善される。後者は、また、図8から図11に示されるシミュレーション結果に見ることができ、これらはさらに、以下により詳細に説明される。さらに、RFデバイス100に関して、より高い信頼性が得られ、それは、より短い出力結合線Loutputは、ワイヤのより良い電力消失およびより低い温度を提供し、結果としてより安定したデバイスをもたらすからである。より短い結合線Loutputの他の効果は、より低い電力消失およびより低い電力ロスによる、改善された電力効率である。これは、さらに、トランジスタ出力と、出力リード110の間に位置する、より短い戻りRF電流パスによっても支持され、それは、後者はより低い損失を提供するためである。デバイス100の設計は、パッケージ内の領域、特にトランジスタダイの前部、および異なる構成部品の物理的位置のより効率的な使用によって、よりコンパクトにすることができる。パッケージング内で必要とされるスペースは、よって、減少されるか、または、非常に低い入力インピーダンスの被害を受ける、例えばLDMOSTデバイスの場合などでは、より多くのインピーダンス変換ステップを導入するために使用するか、または他の目的で使用することができる。また、出力補償回路104の結合線Lcompと、RFトランジスタの出力電極とRFデバイス100の出力リード110の間の結合線Loutputとの間で、より低い磁気結合があることも、利点である。
図4および図5は、本発明の第1の実施形態の代わりの設計を示している。RFデバイス200,250、例えばRFパワーデバイスは、図2に示されるRFデバイス100と同じ構成部品を備えるが、これらのデバイス200,250の構成部品は、異なる物理的位置を有する。図2のRFデバイス100においては、出力補償回路104の結合線Lcompと、プリマッチング回路の2つの構成部品の間の結合線Lpm1との間で、弱い相互インダクタンス結合が得られるのに対して、図4のRFデバイス200は、出力補償回路104の結合線Lcompと、プリマッチング回路106をトランジスタ102と接続する結合線Lpre matchingとの間で、弱い相互インダクタンス結合が得られるような設計を有する。図5に示されるRFデバイス250は、結合線Lcompと、プリマッチング回路106をトランジスタ102に接続する結合線Lpre matchingとの間で、強い相互インダクタンス結合が提供されるような設計を提供する。上のデバイスは、単に例として示されており、本発明はそれらに限定されないことに留意すべきである。トランジスタの出力電極とデバイスの出力リードの間で、短い結合線Loutputを提供する、異なる構成部品のための他の設計も、本適用の範囲内である。異なる設計からは、出力補償回路104の結合線とプリマッチング回路の結合線の間で、異なる種類の相互インダクタンス結合が得られることが分かる。
第2の実施形態において、本発明は、先の実施形態で説明されたように、電子デバイス、特にRFデバイス、例えばRFパワーデバイスに関し、このデバイスも、RFトランジスタ102と、出力補償回路104と、任意で、プリマッチング回路106とを構成部品として備えており、少なくともトランジスタ102と出力補償回路104が、同一のダイに設けられている。好適な実施形態においては、プリマッチング回路106も、トランジスタと同じダイに設けられている。後者は図6に示されており、図6は、単一のダイ310を備えるRFデバイス300、例えばRFパワーデバイスを示しており、ダイ310の上には、RFトランジスタ102と、出力補償回路104と、任意のプリマッチング回路106とが配置されている。後者は、コンパクトな設計を可能にし、これは、パッケージング内でより少ないスペースを必要とし、かつ、より小さなデバイスの製造を可能にするため、有利である。標準的な構成部品を、これらのデバイス内で使用してもよい。
第3の実施形態において、本発明は、デバイス、特に先の実施形態のいずれかに係るRFデバイス、例えばRFパワーデバイスに関し、ここで、本発明に係るRFデバイスの特定の設計に基づくフィードバック機構が使用される。増幅器の全てのパラメータは、利用可能なフィードバック機構に強く依存することが知られており、フィードバック機構は、デバイスダイの内部に常に存在するが、デバイスダイの外部にも導入可能である。フィードバック機構は、典型的には、異なるやり方で、例えば正のフィードバック機構、負のフィードバック機構、直列および並列のフィードバックとして導入可能である。パワーデバイスに対するフィードバック機構の影響は、デバイスの内部信号位相転送特性および動作モード、すなわちデバイスがクラスA、クラスABまたはクラスCとして動作するか、に依存する。例えば、ABクラス動作の場合、デバイスは、可変の振幅依存振幅歪み(AM−AM)、可変の振幅依存位相歪み(AM−PM)および、多くの用途において望まれない、可変の入力インピーダンスを常に示す。負のフィードバックの導入は、次いで、一般的に、デバイスのパラメータの直線性および安定性を、電力の関数および周波数の関数として改善する。従来技術デバイスでは、RFパワーデバイスのための、例えば外部フィードバック機構などのフィードバック機構の導入は、典型的には、これらのデバイスの特定の設計および他の技術的制約により制限される。本発明に係るデバイスでは、出力補償回路のインダクタンスと、入力プリマッチング回路で利用可能なインダクタンスの間の相互誘導結合に基づき、異なる種類のフィードバック機構を導入することができる。この信号は、相互誘導結合を通した、プリマッチング回路106の結合線すなわちLpre matchまたはLpm1,Lpm2,...のうちの1つのインダクタンスに対する、任意の位相極性で印加でき、このようにして、フィードバック信号が供給される。フィードバック信号は、よって、出力補償回路104の結合線と、プリマッチング回路106の結合線のうちの1つとの間の相互誘導結合を通して得られる。異なる種類の相互誘導結合を、既に図2、図4および図5に例示したように、本発明の実施形態の特定の設計に応じて得ることができ、これらの図は、結合線LcompとLpm1の間の弱い相互誘導結合、結合線LcompとLpre matchの間の弱い相互誘導結合および結合線LcompとLpre matchの間の強い相互誘導結合を、それぞれ示している。使用されるフィードバック機構の種類および適用ポイントの選択は、典型的には、動作の周波数に依存し、このことに関して、RFトランジスタパラメータは、改善を必要とする。このような選択は、典型的には、電力の関数としての大きな信号利得および位相特性、すなわち振幅依存振幅歪み(AM−AM)および振幅依存位相歪み(AM−PM)や、周波数の関数としての大きな信号利得および位相特性などの、RFトランジスタパラメータの評価に基づく。このような評価は、例えば、RFデバイスの設計の間に行われてもよく、例えばSPICE、Advanced Design Simulations(ADS)、Microwave Office(AWR)などの典型的なソフトウェアパッケージを使用する、例えばRFデバイスの動作のシミュレーションに基づいてもよい。本発明に係るRFデバイスの設計によって、負および正の性質の、広範囲のフィードバックを提供することができ、これは、デバイスの出力と入力の間のフィードバックにより、パワートランジスタ性能を改善する機会を提供する。
例として、表1に、LDMOSトランジスタデバイスのための入力マッチングの性能が表されている。この構造は、入力ゲート抵抗Rを有するRFトランジスタと、ゲート−ソースキャパシタンスCg−sと、出力補償回路と、結合線Lpre−matchを有するプリマッチング回路と、プリマッチキャパシタCと、第2の結合線Linputとで構成され、ここで、Lpre matchおよびLinputには、RF電流角度が存在する。設計に応じて、出力補償回路、例えばINSHIN回路の結合線は、異なる電流振幅および角度を有するLpre match、Lpm1またはLinputの結合線に対して強い相互誘導結合を持つようなやり方で配置でき、異なる電流振幅および角度は、一方で、正または負ループのフィードバックを供給するデバイス性能に対して異なる効果を生じる。プリマッチングパラメータに対するデバイスの異なる構成部品の物理値の効果は、表1に示されている。フィードバックの符号は、パワーデバイスの前方送信利得および逆送信利得、使用される技術および設計のような、多くの要因に依存し、ワイヤ間の結合の強度に影響を及ぼす。
Figure 2008533899
適当な選択は、例えば、振幅依存位相歪みを直線化させることを可能にし、さらに、入力インピーダンスに影響させること、例えば使用されるデバイス技術に応じて増加または減少させることを可能にする。後者は、図8から図11に示されるように、本発明に係る相互誘導結合の異なる種類を有する、2GHzでのLDMOSTデバイスのための、いくつかの例示的なシミュレーション結果によって示され、これらはさらに、以下により詳細に述べられる。
第4の実施形態において、本発明は、パワーデバイス、特に先の実施形態のいずれかに係るRFデバイスに関し、このRFデバイスでは、第1のプリマッチングまたは第1の出力補償回路とは異なる、追加の変圧回路を設けることができる。後者は、本発明に係るRFデバイスのコンパクトな設計により、行うことができ、それは、このコンパクトな設計が自由なスペースを提供するためである。追加のプリマッチング回路は、デバイスの動作帯域幅を改善することを提供する。図7aにおいて、例として、RFトランジスタ102の出力側に追加の変圧回路402を有する、RFデバイス400が示されている。追加の変圧回路402は、従来のやり方で設計可能な、出力補償回路104とは異なる回路、例えばローパスL−C−Lインピーダンス変圧器、であることに留意すべきである。トランジスタ102の出力電極は、結合線Loutput1を通して、追加の変圧回路402と接続され、追加の変圧回路402は、結合線Loutput2を通して、出力リード110に接続される。代わりに、または追加として、追加の増幅手段を設けてもよい。図7bにおいて、例えばSOT502Aなどの、単一の標準ディスクリートデバイスパッケージに配置されている、2ステージ増幅デバイス420の例が、示されている。よって、新たに提案された補償回路104を用いて、2ステージ電力増幅デバイス420を、同一の標準ディスクリートデバイスパッケージに、1ステージパワーデバイスのために使用されるように、配置することができ、よって、全体的な利得を増加させる。デバイス420は、先の実施形態に述べられたもの以外の、標準的な構成部品の他に、電子ドライバ構成部品422、例えばドライバトランジスタと、例えばプリマッチング回路424,426などの、2ステージ増幅デバイス用の他の標準的な構成部品とを備える。
例として、本発明のいくつかの利点をさらに例示するために、デバイスとトランジスタの入力リードの間に物理的に位置する、2.14HGzでの出力補償キャパシタを有する40W LDMOSTパワーデバイスに関して、シミュレーションおよび測定結果が示されている。示された測定およびシミュレーション結果を得るために使用されたパワーデバイスは、クラスABの増幅器である。それでも、当業者には、本発明がこれに限定されないこと、および上の実施形態で述べたように配置された、代わりに配置された出力補償回路を、異なるクラスの増幅器において有利に使用することができることが、明らかである。本発明は、例えば、クラスA、クラスC、クラスF、ドハーティ増幅器等の増幅器で使用することができる。シミュレーションおよび測定結果は、本発明をこれらに限定することなく、例示として提供されることが、明らかである。
第1の例において、異なる構成部品と出力補償回路とを含み得る、プリマッチング回路を有する40W横方向2重拡散金属酸化物半導体トランジスタ(LDMOST:lateral double-diffused metal-oxide-semiconductor transistor)に関して、シミュレーション結果が得られ、ここで、出力補償キャパシタは、上述の実施形態に従い、デバイスの入力リードとトランジスタの間に、物理的に位置している。例えば、Agilent Technologyから入手可能なCADソフトウェア、Advanced design Systemを使用して、異なる度合いの相互インダクタンス結合を有するRFデバイスがシミュレートされている。非直線のHarmonic Balanceシミュレーション結果は、出力補償回路のワイヤと、プリマッチ回路のワイヤの間の、相互誘導結合の効果を示すことを可能にする。図8a、図9a、図10aおよび図11aでは、出力補償回路の結合線Lcompとプリマッチング回路の結合線の間に、相互誘導結合が存在しない、すなわち誘導結合定数K=0であるデバイス向けに、シミュレーション結果が提供されている。図8b、図9b、図10bおよび図11bでは、相互誘導結合K=0.5を有するデバイス向けのシミュレーション結果が示されており、図8c、図9c、図10cおよび図11cでは、結合線Lpreーmatchと出力補償回路の結合線Lcompの小部分の間に存在する、相互誘導結合K=−0.5を有するデバイス向けのシミュレーション結果が示されている。図8aから図8cのグラフは、dBで表される利得の電力依存性を示しており、図9aから図9cは、入力インピーダンス450の実部および入力インピーダンス452の虚部の電力依存性を示しており、図10aから図10bは、搬送波レベルに相対してdBで表された、相互変調歪みの第3オーダーの電力依存性を示している。これにより使用される電力品質は、ワット(Watt)すなわちWpepで表された、ピークエンベロープ電力である。さらに、図11aから図11bは、大きな信号利得を、出力電力の関数として示している。これらのグラフから、プリマッチング回路と出力補償回路の結合線の間の、RFデバイスの異なるパラメータに対する相互誘導結合の効果を、見ることができる。結果が
示されている周波数での動作向けに、特定の度合いの相互誘導結合を選択することによって、電力利得を増加できることが分かる。よって、結果として生じる結合線の間の結合の効果は、回路の設計、動作周波数および使用されるRFデバイスに強く依存することに留意すべきである。図9aから図9cに示される、ピークエンベロープ電力負荷Wpepの関数としての入力インピーダンスの比較は、例えば、入力インピーダンスの実部を、相互結合定数K=0.5に対して、2.2Ωから13Ωに増加できること、および入力インピーダンスの実部を、相互結合定数K=−0.5に対して2.2Ωから0.6Ωに減少できることを示す。図11aから図11cに示される、ピークエンベロープ電力負荷の関数としての大きな信号の比較は、相互結合定数K=0.5に対して、振幅変調および位相変調(AM/PM)特性に対する直線化の効果が生じることを示す。後者は、例えば結合定数K=0.5を有する相互誘導結合を実施することによって、電力の関数としてのAM/PM特性の安定性と、入力インピーダンスとの両方を増加できることを示す。相互変調歪みに関連する、利得および直線性に対する異なる相互結合定数の異なる効果は、図8aから図8cおよび図10aから図10cそれぞれの比較から見ることができる。これらの結果は、例えば電力利得、入力インピーダンス、ならびに振幅変調および位相変調特性などの、RFデバイスの異なるパラメータを、適切な誘導結合係数を選択し、フィードバック信号印加のポイントLpm1またはLpreーmatchを選択することによって、所望のやり方で変更できる、例えば改善できることを示している。
第2の例として、図12aの断面図および図12bの平面図に概略的に示されるように、RFデバイス((4×29)mm)に関する測定結果が得られた。結果は、単なる例示として提供されており、本発明は示されたRFデバイスの設計に限定されないことに留意すべきである。RFデバイス500は、単一のダイ310上に集積化されたRFトランジスタ102と、プリマッチング回路106と、出力補償回路104とを備える。プリマッチ回路106は、一方の側で、結合線Linput、本例では8本のワイヤによって、RFデバイス500の入力リード108に接続され、他方の側で、RFトランジスタ102の制御電極に接続されている。RFトランジスタ102の第2の主電極すなわち出力電極は、結合線Loutput、本例では28本のワイヤにより、RFデバイス500の出力リード110に接続されている。RFトランジスタ102の出力電極は、さらに、結合線Lcomp、本例では12本のワイヤを用いて、出力補償回路に接続されている。結合線LinputおよびLoutputのループ高さは、最も近いリードの上部に相対して測定され、最大で0.050mmである。結合線LinputおよびLoutputは、最大で0.2mm重複するように、それぞれのリードに接続されている。結合線Lcompのループ高さは、ダイに相対して測定され、最大で0.80mm±0.05mmである。使用されるワイヤの平均厚さは、38μmである。測定結果を得るために使用されたRFデバイスの特定の設計のさらなる詳細は、図12bに示されている。
テスト結果は、上述したような本発明に係る設計を有し、デバイスAとして示される例示的なデバイス500、出力補償回路を持たず、デバイスBとして示される基準デバイス、およびRFトランジスタの出力電極において物理的に位置する出力補償回路を有し、デバイスCとして示される、例えばフィリップスセミコンダクターズ(Philips Semiconductors)から市販されているような、BLF4G20−130型のRFデバイスに関して示されている。図13、図14および図15は、ゲート幅W=77mm、120mmおよび180mmをそれぞれ有する3つの異なるサイズのデバイスA,B,Cに関する、2GHzの周波数での、ドレイン効率、利得圧縮−1dBでの最大出力電力、および異なる2トーンの第3オーダーの相互変調レベル、すなわちIMD3=−30dBcおよびIMD4=−40dBcでの電力出力を示している。図13では、1dB圧縮利得に関する結果が示されており、図14では、搬送波レベルに相対する−30dBの2トーンの相互変調歪みIMD3に関する結果が示されており、図15では、搬送波レベルに相対する−40dBの相互変調歪みIMD4に関する結果が示されている。グラフでは、左のy軸に示されワット(Watt)で表された出力電力に対して、mmで表された制御電極幅(四角で示されている)が、Dで示された理想の電力スケーリングラインを基準として示されている。この理想の電力スケーリングラインは、W=77mmのゲート幅を有するLDMOSTデバイスの測定に基づいており、よって、最も小さいものであり、最も信頼性の高い基準性能を提供しており、このことは、デバイスの最大出力電力能力は、理想的にはデバイスのサイズまたはゲート幅Wに比例すべきであり、デバイスの効率は、デバイスのサイズまたはゲート幅Wに対して一定のままとなるべきである、という意味を持つ。さらに、グラフは、右のy軸に示されパーセントで表された、デバイスA,B,Cの効率(丸で示されている)を示している。図13において、1dBの圧縮利得に対して、本発明に係るデバイスAは、従来技術タイプの出力補償回路設計を有するデバイスCよりも著しく良好な出力対制御電極幅の挙動を有することが見られ、これは、制御電極幅の関数として理想の直線形電力スケーリングを適用できることを仮定している。同一の仮定を使用し、デバイスAに関して得られた出力電力対ゲート幅の挙動も、さらに、図14および図15で見られるように、相互変調歪みのケースにおいて良好である。デバイスの効率は、−1dB圧縮利得および相互変調歪みの両方に関して、本発明の実施形態に係るデバイスAに対する、規則正しい、著しく良好な効率を示している。従来技術出力補償回路設計を有するデバイスCと比べて6%を超える、−1dB圧縮利得での相対的な出力電極効率の改善、および、図13に示される、−1dBの圧縮での完璧な出力電力スケーリングが見られる。さらに、これらの図からは、トランジスタ出力での結合線の寄生インダクタンスが、2倍を超えて減少されていることも見られる。
本発明を具現化するRFデバイスの目的を達成するための他の装置が、当業者に明らかとなるであろう。
第2の態様の第1の実施形態において、本発明は、電子デバイス、特に、少なくとも、本発明の第1の態様の実施形態のいずれかに係るRFトランジスタと、出力補償回路とを備えるRF増幅用の電子デバイスを製造する方法に関する。このように製造する方法は、RFデバイスの製造を可能にし、ここで、出力補償回路は、トランジスタの第2の主電極よりも、トランジスタの第1の主電極および制御電極に対して、物理的に近く位置しており、第2の主電極は、トランジスタの出力電極として動作している。後者は、本発明の第1の態様で説明されるような利点を有するデバイス、例えば、改善された効率を有し、より広い周波数範囲で動作可能なデバイスを得ることを可能にする。
本発明に係るRFデバイスを製造する方法600の異なるステップが、図16のフロー図に示されている。第1のステップ602において、基板が設けられている。基板の種類は、上述したように、様々であってもよい。第2のステップ604では、RFデバイス内にある異なる構成部品が、導入される。後者は、RFトランジスタと出力補償回路の導入を備える。任意に、例えばプリマッチング回路や追加の変圧回路などの他の構成部品を、設けてもよい。これらの構成部品のより詳細な説明は、本発明の第1の態様の実施形態において提供されている。このような構成部品は、良く知られた設計のものであり、このような構成部品を製造するための方法は、当業者に知られている。典型的には、これらの構成部品は、従来の半導体処理技術を用いて、単一の基板上に設けてもよい。あるいは、異なる基板、例えば異なる種類の基板で作られた個別ピースを、用いてもよい。後者は、標準的な組み立て技術を用いて結合することができる。他の基板、例えば安価なSi基板を、次いで、ステージ間のマッチング構造として使用することができる。
異なる構成部品の物理的位置は、出力補償回路が、出力電極、ドレイン電極に対して配置されるよりも、制御電極、例えばゲート電極の近くに位置するようになっている。異なる構成部品を設けることは、よって、構成部品の特定のアーキテクチャ設計に従って行われ、これは、高い出力電力、高い効率および広い動作周波数帯域幅を有するデバイスを得ることを可能にする。さらなるステップ606において、結合線が設けられ、いくつかの特定の構成部品が相互接続される。トランジスタ出力電極は、結合線Loutputを介して、電子デバイスの出力リードに接続される。トランジスタ出力電極は、さらに、結合線LCompにより、出力補償回路に接続されている。出力補償回路の、トランジスタの出力電極に対して反対側の物理的位置によって、結合線Lcompは、トランジスタの大部分、すなわちほぼ全体の上を延びる。例えばプリマッチング回路を、すなわち結合線Linputを介して入力リードに相互接続し、プリマッチング回路を、すなわち結合線Lpre matchを介してトランジスタの制御電極と相互接続する他の結合線も、設けられている。任意のステップ608において、デバイスは、従来のパッケージング材料を使用し、従来のパッケージング技術を使用してパッケージされ、これにより、入力リードおよび出力リードを通して接続可能なパッケージングされたデバイスが得られる。
本発明のこの態様の第2の実施形態において、出力補償回路の結合線Lcompと、プリマッチング回路に接続された結合線の間の相互誘導結合に関する情報を得る追加のステップ610が行われ、得られた情報を用いて、異なる構成部品の特定のアーキテクチャ設計が選択され、結合線が設けられる。特定の相互誘導結合係数を選択することは、RFデバイスの特定のパラメータを最適化することを可能にする。このような情報は、本発明に係る高周波デバイスの動作のシミュレーションに基づいて、検討中のRFデバイスのパラメータの評価を可能にする良く知られたシミュレーションソフトウェアを使用して得ることができる。出力補償回路とプリマッチング回路の間の特定の結合は、RFデバイスの動作のさらなる最適化のためのフィードバックシステムとして使用してもよい。
本発明に係るデバイスに関して、好適な実施形態、特定の構造および構成ならびに材料を、ここに述べてきたが、形態および詳細における様々な変更または修正を、本発明の範囲および要旨から逸脱することなく行うことができることを、理解すべきである。
図1―従来技術は、従来技術から知られるように、トランジスタの出力電極の近くに物理的に位置する出力補償回路を備える、RFデバイスの等価電気回路を示す概略断面描写および対応するシンボル回路図である。 図2は、本発明の第1の実施形態に係る、トランジスタの入力側に物理的に位置する出力補償回路を備えるRFデバイスの、第1の代わりの設計の等価電気回路を示す概略断面描写および対応するシンボル回路図である。 図3は、本発明の第1の実施形態に係る、トランジスタの入力側に物理的に位置する出力補償回路を備えるRFデバイスの第2の代わりの設計の概略描写である。 図4および図5は、本発明の第1の実施形態に係る、トランジスタの入力側に物理的に位置する出力補償回路を備えるRFデバイスの第3および第4の代わりの設計の等価電気回路を示す概略断面描写および対応するシンボル回路図を示している。 図4および図5は、本発明の第1の実施形態に係る、トランジスタの入力側に物理的に位置する出力補償回路を備えるRFデバイスの第3および第4の代わりの設計の等価電気回路を示す概略断面描写および対応するシンボル回路図を示している。 図6は、本発明の第2の実施形態に係る、全ての構成部品が単一のダイ上に集積化されている、RFデバイスの等価電気回路を示す概略断面描写および対応するシンボル回路図を示している。 図7aは、本発明の第4の実施形態に係る、出力において追加の変圧回路を備えるRFデバイスの等価電気回路を示す概略断面描写および対応するシンボル回路図を示している。 図7bは、本発明の第4の実施形態に係る、単一の標準ディスクリートデバイスパッケージに配置された、2ステージ増幅デバイスの例の概略図を示している。 図8aは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、出力電力の関数として得られた利得に関するシミュレートされた結果を示している。 図8bは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、出力電力の関数として得られた利得に関するシミュレートされた結果を示している。 図8cは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、出力電力の関数として得られた利得に関するシミュレートされた結果を示している。 図9aは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、電力負荷の関数として得られた入力インピーダンスに関するシミュレートされた結果を示している。 図9bは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、電力負荷の関数として得られた入力インピーダンスに関するシミュレートされた結果を示している。 図9cは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、電力負荷の関数として得られた入力インピーダンスに関するシミュレートされた結果を示している。 図10aは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、出力電力の関数として得られた第3オーダーの相互変調歪みに関するシミュレートされた結果を示している。 図10bは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、出力電力の関数として得られた第3オーダーの相互変調歪みに関するシミュレートされた結果を示している。 図10cは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、出力電力の関数として得られた第3オーダーの相互変調歪みに関するシミュレートされた結果を示している。 図11aは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、電力負荷の関数として得られた大きな信号に関するシミュレートされた結果を示している。 図11bは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、電力負荷の関数として得られた大きな信号に関するシミュレートされた結果を示している。 図11cは、本発明の第1および第3の実施形態に係るRFデバイスにおけるプリマッチング回路と出力補償回路の間に異なる度合いの相互誘導結合を有する、40W LDMOSTモデルにおいて、電力負荷の関数として得られた大きな信号に関するシミュレートされた結果を示している。 図12aは、本発明の第2の実施形態に係る、プリマッチング回路とトランジスタの間に物理的に位置する出力補償回路を備えるRFデバイスの断面図および上面図をそれぞれ示している。 図12bは、本発明の第2の実施形態に係る、プリマッチング回路とトランジスタの間に物理的に位置する出力補償回路を備えるRFデバイスの断面図および上面図をそれぞれ示している。 図13、図14および図15は、従来技術RFパワーデバイスに関する、測定されたデバイス出力電力および電力効率と比較された、図12bに係る無線周波数パワーデバイスに関する、測定されたデバイス出力電力および電力効率を、電力利得の1dB圧縮(図13)、−30dBcの相互変調歪みIMD3(図14)および−40dBcの相互変調歪みIMD3(図15)に対応して示している。プロットにおける直線は、P_1dBの理想的なスケーリングのケース(図13)および理想的なPout(図14,図15)を示している。 図13、図14および図15は、従来技術RFパワーデバイスに関する、測定されたデバイス出力電力および電力効率と比較された、図12bに係る無線周波数パワーデバイスに関する、測定されたデバイス出力電力および電力効率を、電力利得の1dB圧縮(図13)、−30dBcの相互変調歪みIMD3(図14)および−40dBcの相互変調歪みIMD3(図15)に対応して示している。プロットにおける直線は、P_1dBの理想的なスケーリングのケース(図13)および理想的なPout(図14,図15)を示している。 図13、図14および図15は、従来技術RFパワーデバイスに関する、測定されたデバイス出力電力および電力効率と比較された、図12bに係る無線周波数パワーデバイスに関する、測定されたデバイス出力電力および電力効率を、電力利得の1dB圧縮(図13)、−30dBcの相互変調歪みIMD3(図14)および−40dBcの相互変調歪みIMD3(図15)に対応して示している。プロットにおける直線は、P_1dBの理想的なスケーリングのケース(図13)および理想的なPout(図14,図15)を示している。 図16は、無線周波数トランジスタよりも、出力リードから離れて物理的に位置する出力補償回路を有する高周波デバイスを製造する方法のフロー図を示している。
異なる図面において、同一の参照符号は、同一または類似する要素を示している。

Claims (11)

  1. 入力リードおよび出力リードと、トランジスタと、前記トランジスタの寄生出力キャパシタンスCoutを補償するための出力補償回路と、を備え、
    前記出力補償回路は、前記入力リードと前記トランジスタの間に物理的に位置している、
    ことを特徴とする電子RFデバイス。
  2. 前記トランジスタは、第1の主電極と、出力電極である第2の主電極と、制御電極と、を備え、
    前記制御電極は、横方向拡散金属酸化物半導体(lateral diffused metal-oxide semiconductor)のゲート電極であり、
    前記出力電極は、結合線Loutputにより前記出力リードに接続されている、
    ことを特徴とする請求項1に記載の電子RFデバイス。
  3. 前記出力補償回路および前記トランジスタは、単一のダイ上に位置している、ことを特徴とする請求項1に記載の電子RFデバイス。
  4. 前記出力補償回路は、キャパシタCcompを備え、前記キャパシタCcompは、結合線Lcompによって前記トランジスタの前記出力電極に接続されている、ことを特徴とする請求項2に記載の電子RFデバイス。
  5. 前記結合線Lcompによって決定されるインダクタンスが、フィードバック信号として使用される、ことを特徴とする請求項4に記載の電子RFデバイス。
  6. 前記電子RFデバイスは、結合線Lpre matchによって前記制御電極に接続されたプリマッチング回路をさらに備える、ことを特徴とする請求項2に記載の電子RFデバイス。
  7. 前記結合線Lcompと前記結合線Lpre matchの間の相互インダクタンス結合が、フィードバック機構の一部として使用されている、ことを特徴とする請求項6に記載の電子RFデバイス。
  8. 前記プリマッチング回路は、結合線Lpmiによって相互接続された複数の構成部品を備え、
    前記結合線Lcompと前記結合線Lpmiのうちの1つとの間の相互インダクタンス結合が、フィードバック機構の一部として使用されている、ことを特徴とする請求項6に記載の電子RFデバイス。
  9. 前記RF電子デバイスは、追加の変圧回路をさらに備える、ことを特徴とする請求項6に記載の電子RFデバイス。
  10. 電子RFデバイスを製造する方法であって、
    基板を供給するステップと、
    前記電子RFデバイスの入力リードおよび出力リードと、RFトランジスタと、出力補償回路とを供給するステップと、
    前記出力補償回路と前記RFトランジスタの出力電極の間、および前記RFトランジスタの前記出力電極と前記出力リードとの間に、結合線を設けるステップと、を備え、
    RFトランジスタと出力補償回路とを供給するステップは、前記出力補償回路を、前記入力リードと前記RFトランジスタとの間に物理的に配置するステップを備える、
    ことを特徴とする方法。
  11. 前記RFトランジスタの制御電極に接続されたプリマッチング回路を設けるステップと、
    前記結合線Lcompと前記プリマッチング回路に接続されている結合線との間の相互誘導結合の度合いを選択するステップと、をさらに備える、ことを特徴とする請求項10に係る製造方法。
JP2008501473A 2005-03-18 2006-03-14 Rfトランジスタの出力マッチングの方法およびシステム Withdrawn JP2008533899A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05102130 2005-03-18
PCT/IB2006/050791 WO2006097893A2 (en) 2005-03-18 2006-03-14 Method and system for output matching of rf transistors

Publications (1)

Publication Number Publication Date
JP2008533899A true JP2008533899A (ja) 2008-08-21

Family

ID=36992111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501473A Withdrawn JP2008533899A (ja) 2005-03-18 2006-03-14 Rfトランジスタの出力マッチングの方法およびシステム

Country Status (7)

Country Link
US (1) US20080246547A1 (ja)
EP (1) EP1864328A2 (ja)
JP (1) JP2008533899A (ja)
KR (1) KR20070116115A (ja)
CN (1) CN101176205A (ja)
TW (1) TW200703881A (ja)
WO (1) WO2006097893A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288846A (zh) * 2011-06-15 2011-12-21 博威科技(深圳)有限公司 一种射频功率管的测试方法
US8217496B2 (en) 2010-05-14 2012-07-10 Mitsubishi Electric Corporation Internal matching transistor
JP2014512152A (ja) * 2011-04-20 2014-05-19 フリースケール セミコンダクター インコーポレイテッド 増幅器及び関連する集積回路
KR20180049007A (ko) 2015-11-05 2018-05-10 가부시키가이샤 신가와 반도체 장치 및 그 제조 방법
JPWO2019202631A1 (ja) * 2018-04-16 2020-12-17 三菱電機株式会社 高周波電力増幅器

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719112B2 (en) * 2006-08-07 2010-05-18 University Of Central Florida Research Foundation, Inc. On-chip magnetic components
EP2095011A1 (en) * 2006-12-04 2009-09-02 Cree Led Lighting Solutions, Inc. Lighting assembly and lighting method
KR100878708B1 (ko) 2007-09-04 2009-01-14 알.에프 에이치아이씨 주식회사 고출력 반도체 소자 패키지 및 방법
WO2009128035A1 (en) * 2008-04-15 2009-10-22 Nxp B.V. High frequency field-effect transistor
US9041470B2 (en) 2008-04-22 2015-05-26 Freescale Semiconductor, Inc. Wireless communication unit and semiconductor device having a power amplifier therefor
WO2010125431A1 (en) * 2009-04-30 2010-11-04 Freescale Semiconductor, Inc. Wireless communication device and semiconductor package device having a power amplifier therefor
EP2600525A3 (en) * 2009-04-30 2014-04-09 Freescale Semiconductor, Inc. Wireless communication device and semiconductor package device having a power amplifier therefor
US7986184B2 (en) 2009-12-18 2011-07-26 Nxp B.V. Radio frequency amplifier with effective decoupling
DE102010009984A1 (de) * 2009-12-28 2011-06-30 Rohde & Schwarz GmbH & Co. KG, 81671 Verstärkerbaustein mit einem Kompensationselement
US20110193212A1 (en) * 2010-02-08 2011-08-11 Qualcomm Incorporated Systems and Methods Providing Arrangements of Vias
US8659359B2 (en) 2010-04-22 2014-02-25 Freescale Semiconductor, Inc. RF power transistor circuit
JP2014514879A (ja) * 2011-05-02 2014-06-19 アールエフアクシス インコーポレイテッド 共存フィルタを有する電力増幅器
US9281283B2 (en) * 2012-09-12 2016-03-08 Freescale Semiconductor, Inc. Semiconductor devices with impedance matching-circuits
KR20140069701A (ko) * 2012-11-29 2014-06-10 한국전자통신연구원 능동 소자의 대신호 모델 구성 방법
US9337183B2 (en) * 2013-11-01 2016-05-10 Infineon Technologies Ag Transformer input matched transistor
DE102013226989A1 (de) * 2013-12-20 2015-07-09 Rohde & Schwarz Gmbh & Co. Kg Halbleiter-Bauteil mit Chip für den Hochfrequenzbereich
US9438184B2 (en) 2014-06-27 2016-09-06 Freescale Semiconductor, Inc. Integrated passive device assemblies for RF amplifiers, and methods of manufacture thereof
US9893025B2 (en) * 2014-10-01 2018-02-13 Analog Devices Global High isolation wideband switch
US9589916B2 (en) 2015-02-10 2017-03-07 Infineon Technologies Ag Inductively coupled transformer with tunable impedance match network
US10432152B2 (en) 2015-05-22 2019-10-01 Nxp Usa, Inc. RF amplifier output circuit device with integrated current path, and methods of manufacture thereof
JP6569417B2 (ja) * 2015-09-16 2019-09-04 三菱電機株式会社 増幅器
US9571044B1 (en) 2015-10-21 2017-02-14 Nxp Usa, Inc. RF power transistors with impedance matching circuits, and methods of manufacture thereof
US9692363B2 (en) 2015-10-21 2017-06-27 Nxp Usa, Inc. RF power transistors with video bandwidth circuits, and methods of manufacture thereof
CN107070419B (zh) 2015-10-21 2022-02-25 恩智浦美国有限公司 用于rf放大器器件的输出阻抗匹配电路及其制造方法
WO2018003111A1 (ja) * 2016-07-01 2018-01-04 三菱電機株式会社 増幅器
DE102018106560A1 (de) * 2017-10-17 2019-04-18 Infineon Technologies Ag Drucksensorbauelemente und Verfahren zum Herstellen von Drucksensorbauelementen
CN113196475A (zh) 2018-12-11 2021-07-30 阿莫善斯有限公司 半导体封装元件、射频晶体管用基底基板及其制造方法
KR20200071381A (ko) 2018-12-11 2020-06-19 주식회사 아모센스 Rf 트랜지스터용 베이스 기판
KR20200071401A (ko) 2018-12-11 2020-06-19 주식회사 아모센스 반도체 패키지 부품
NL2023348B1 (en) * 2019-06-19 2021-01-27 Ampleon Netherlands Bv Amplifier having improved stability
US11700027B2 (en) 2020-05-05 2023-07-11 Mobix Labs, Inc. Multi-mode WiFi bluetooth RF front-ends
US11621322B2 (en) * 2020-07-30 2023-04-04 Wolfspeed, Inc. Die-to-die isolation structures for packaged transistor devices
NL2027145B1 (en) * 2020-12-17 2022-07-11 Ampleon Netherlands Bv Power amplifier device and semiconductor die
NL2028527B1 (en) * 2021-06-24 2023-01-02 Ampleon Netherlands Bv Doherty power amplifier
NL2030764B1 (en) * 2022-01-28 2023-08-08 Ampleon Netherlands Bv Compact Doherty amplifier having improved video bandwidth
NL2031290B1 (en) * 2022-03-15 2023-09-27 Ampleon Netherlands Bv Rf power amplifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969752A (en) * 1973-12-03 1976-07-13 Power Hybrids, Inc. Hybrid transistor
US4107728A (en) * 1977-01-07 1978-08-15 Varian Associates, Inc. Package for push-pull semiconductor devices
US6586309B1 (en) * 2000-04-24 2003-07-01 Chartered Semiconductor Manufacturing Ltd. High performance RF inductors and transformers using bonding technique
AU2002224368A1 (en) * 2000-10-10 2002-04-22 California Institute Of Technology Distributed circular geometry power amplifier architecture
EP1472734A2 (en) * 2002-01-24 2004-11-03 Koninklijke Philips Electronics N.V. Rf amplifier
US20040150489A1 (en) * 2003-02-05 2004-08-05 Sirenza Microdevices, Inc On-carrier impedance transform network
WO2006006119A1 (en) * 2004-07-08 2006-01-19 Koninklijke Philips Electronics N.V. Integrated doherty type amplifier arrangement with integrated feedback

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217496B2 (en) 2010-05-14 2012-07-10 Mitsubishi Electric Corporation Internal matching transistor
JP2014512152A (ja) * 2011-04-20 2014-05-19 フリースケール セミコンダクター インコーポレイテッド 増幅器及び関連する集積回路
US9419566B2 (en) 2011-04-20 2016-08-16 Freescale Semiconductor, Inc. Amplifiers and related integrated circuits
US9941845B2 (en) 2011-04-20 2018-04-10 Nxp Usa, Inc. Amplifiers and related integrated circuits
CN102288846A (zh) * 2011-06-15 2011-12-21 博威科技(深圳)有限公司 一种射频功率管的测试方法
CN102288846B (zh) * 2011-06-15 2013-09-04 博威科技(深圳)有限公司 一种射频功率管的测试方法
KR20180049007A (ko) 2015-11-05 2018-05-10 가부시키가이샤 신가와 반도체 장치 및 그 제조 방법
JPWO2017078109A1 (ja) * 2015-11-05 2018-08-30 株式会社新川 半導体装置およびその製造方法
US10566307B2 (en) 2015-11-05 2020-02-18 Shinkawa Ltd. Manufacturing method of semiconductor device
JPWO2019202631A1 (ja) * 2018-04-16 2020-12-17 三菱電機株式会社 高周波電力増幅器

Also Published As

Publication number Publication date
CN101176205A (zh) 2008-05-07
US20080246547A1 (en) 2008-10-09
EP1864328A2 (en) 2007-12-12
WO2006097893A2 (en) 2006-09-21
KR20070116115A (ko) 2007-12-06
TW200703881A (en) 2007-01-16
WO2006097893A3 (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2008533899A (ja) Rfトランジスタの出力マッチングの方法およびシステム
Rostomyan et al. 28 GHz Doherty power amplifier in CMOS SOI with 28% back-off PAE
Kang et al. A highly linear and efficient differential CMOS power amplifier with harmonic control
US7511575B2 (en) High-frequency power amplifier
Ellinger 60-GHz SOI CMOS traveling-wave amplifier with NF below 3.8 dB from 0.1 to 40 GHz
KR102666474B1 (ko) 주파수 선택성 임피던스 정합 네트워크를 갖춘 rf 전력 증폭기
WO2006016299A1 (en) Integrated f-class amplifier with output parasitic capacitance compensation
US11050395B2 (en) Radio frequency (RF) amplifier
US11050388B2 (en) Compact three-way Doherty amplifier module
Gruner et al. Analysis, design, and evaluation of LDMOS FETs for RF power applications up to 6 GHz
EP4113831A1 (en) Multiple-stage doherty power amplifiers implemented with multiple semiconductor technologies
JP2012182557A (ja) C級増幅器
US20230336125A1 (en) Combiner Circuit for Doherty Power Amplifier and Related Method of Operation for Achieving Enhanced Radio Frequency and Video Bandwidth
Rautschke et al. Octave bandwidth S-and C-band GaN-HEMT power amplifiers for future 5G communication
François et al. A fully integrated CMOS power amplifier for LTE-applications using clover shaped DAT
Yu et al. A 30MHz-3GHz 1W stacked-FET GaAs MMIC power amplifier
US20240171132A1 (en) Power amplifier devices with in-package matching circuits that provide pseudo inverse class f operation
US11979117B2 (en) High frequency semiconductor amplifier
Ge et al. A 1.8–3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC
Conlon et al. GaN wide band power integrated circuits
Tsai et al. A novel SiGe BiCMOS variable-gain active predistorter using current steering topologies
Berretta et al. CDMA2000 PCS/Cell SiGe HBT load insensitive power amplifiers
Bloom Power Amplifier Circuit
Gadige Improvement of Philips MOS model 9 radio frequency performance with circuit level parasitic compensation.
Yu Dual-band Doherty power amplifier with the improvement of reactance compensation technique for LTE frequency operations/Yu Li Ming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091112