CN102130285B - 发光二极管及其制造方法 - Google Patents

发光二极管及其制造方法 Download PDF

Info

Publication number
CN102130285B
CN102130285B CN2010105309916A CN201010530991A CN102130285B CN 102130285 B CN102130285 B CN 102130285B CN 2010105309916 A CN2010105309916 A CN 2010105309916A CN 201010530991 A CN201010530991 A CN 201010530991A CN 102130285 B CN102130285 B CN 102130285B
Authority
CN
China
Prior art keywords
substrate
light
layer
epitaxial loayer
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105309916A
Other languages
English (en)
Other versions
CN102130285A (zh
Inventor
张汝京
肖德元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Xianyao Display Technology Co ltd
Original Assignee
Enraytek Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enraytek Optoelectronics Co Ltd filed Critical Enraytek Optoelectronics Co Ltd
Priority to CN2010105309916A priority Critical patent/CN102130285B/zh
Priority to PCT/CN2010/080493 priority patent/WO2011143918A1/zh
Priority to US13/059,631 priority patent/US20130214245A1/en
Priority to EP10809127A priority patent/EP2408025A4/en
Publication of CN102130285A publication Critical patent/CN102130285A/zh
Application granted granted Critical
Publication of CN102130285B publication Critical patent/CN102130285B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Abstract

本发明公开了一种发光二极管及其制造方法,所述发光二极管包括:衬底;依次位于所述衬底上的外延层、有源层和帽层;其中,所述衬底在远离外延层的表面上具有多个微透镜结构,所述微透镜结构表面具有多个凸起。自有源层发出的光经所述微透镜结构表面或凸起表面出射时,其入射角总是小于全反射临界角,从而不会发生全反射,确保大部分的光可从该微透镜结构表面或凸起表面透射出去,提高了发光二极管的外量子效率,可避免发光二极管内部温度的升高,提高了发光二极管的性能。

Description

发光二极管及其制造方法
技术领域
本发明涉及半导体发光领域,特别是涉及一种发光二极管及其制造方法。
背景技术
发光二极管(LED,Light Emitting Diode)由于具有寿命长、耗能低等优点,应用于各种领域,尤其随着其照明性能指标日益大幅提高,LED在照明领域常用作发光装置。其中,以氮化镓(GaN)为代表的III-V族化合物半导体由于具有带隙宽、发光效率高、电子饱和漂移速度高、化学性质稳定等特点,在高亮度蓝光发光二极管、蓝光激光器等光电子器件领域有着巨大的应用潜力,引起了人们的广泛关注。
然而,目前半导体发光二极管存在着发光效率低的问题。对于普通的未经封装的发光二极管,其出光效率一般只有百分之几,大量的能量聚集在器件内部不能出射,既造成能量浪费,又影响器件的使用寿命。因此,提高半导体发光二极管的出光效率至关重要。
基于上述的应用需求,许多种提高发光二极管出光效率的方法被应用到器件结构中,例如表面粗糙化法,金属反射镜结构等。
在申请号为200510066898.3的中国专利中公开了一种全角度反射镜结构GaN基发光二极管及其制作方法。参考图1,所述发光二极管包括:蓝宝石衬底1、生长在蓝宝石衬底1上的全角度反射镜4、以及制作在全角度反射镜4上的GaN LED芯片13。所述GaN LED芯片13包括:衬底5、N型GaN层6、有源区量子阱层7、P型GaN层8、P型电极9、P型焊盘10、N型电极11、N型焊盘12;其中,所述全角度反射镜4生长在蓝宝石衬底1上,其是由高折射率层3和低折射率层2堆叠排列成的,高折射率层3与衬底5接触,低折射率层2和蓝宝石衬底1接触,高折射率层的折射率nH>低折射率层的折射率nL>蓝宝石材料的折射率n,且满足
Figure BSA00000331535200021
其中,n、nH.nL为折射率。该专利通过在发光二极管下表面形成全角度反射镜结构,可以将GaN材料所发光在全角度范围内以高反射率向上反射,来提高发光二极管的出光效率。然而,该发光二极管制造方法需要在衬底上形成多层由高折射率层与低折射率层堆叠而成的薄膜结构,制作工艺非常复杂,不利于推广应用。
发明内容
本发明的目的在于提供一种发光二极管,以解决现有的发光二极管出光效率低的问题。
本发明的另一目的在于提供一种制作工艺简单的发光二极管制造方法,以提高发光二极管的出光效率。
为解决上述技术问题,本发明提供一种发光二极管,所述发光二极管包括:衬底;依次位于所述衬底上的外延层、有源层和帽层;其中,所述衬底在远离外延层的表面上具有多个微透镜结构,所述微透镜结构表面以及衬底远离外延层的表面具有多个凸起。
进一步的,所述衬底为蓝宝石衬底、碳化硅衬底或氮化镓衬底。
进一步的,所述发光二极管还包括位于衬底和外延层之间的缓冲层以及位于所述帽层上的透明导电层。
进一步的,所述发光二极管还包括第一电极、第二电极和贯穿所述透明导电层、帽层和有源层的开口,其中,所述第一电极位于所述透明导电层上,用于连接透明导电层和电源正极;所述第二电极位于所述开口内,用于连接外延层和电源负极。
进一步的,所述发光二极管还包括位于所述透明导电层上的钝化层,所述钝化层覆盖所述第一电极和第二电极。
进一步的,所述外延层的材料为N型掺杂的氮化镓;所述有源层包括多量子阱有源层,所述多量子阱有源层的材料为铟氮化镓;所述帽层的材料为P型掺杂的氮化镓。
相应的,本发明还提供一种发光二极管的制造方法,包括:提供衬底;在所述衬底上依次形成外延层、有源层和帽层;在所述衬底远离外延层的表面上形成多个微透镜结构,并在衬底远离外延层的表面以及微透镜结构表面形成多个凸起。
进一步的,在所述发光二极管的制造方法中,形成多个微透镜结构和多个凸起的步骤包括:在衬底远离外延层的表面上形成多个圆柱形光刻胶台;对圆柱形光刻胶台进行烘烤,使所述圆柱形光刻胶台成为球冠状光刻胶;执行第一次感应耦合等离子体刻蚀工艺,直至所述球冠状光刻胶被完全刻蚀掉,以在衬底远离外延层的表面上形成多个微透镜结构;在衬底远离外延层的表面以及微透镜结构表面形成多个Al2O3颗粒;执行第二次感应耦合等离子体刻蚀工艺,直至所述Al2O3颗粒被完全刻蚀掉,以在衬底远离外延层的表面以及微透镜结构表面形成多个凸起。
进一步的,在所述发光二极管的制造方法中,在第一次感应耦合等离子体刻蚀工艺中,刻蚀气体为三氯化硼、氦气和氩气的混合气体,腔室压力为50mTorr~2Torr,底板功率为200W~300W,线圈功率为300W~500W。
进一步的,在所述发光二极管的制造方法中,在第二次感应耦合等离子体刻蚀工艺中,刻蚀气体为三氯化硼、氦气和氩气的混合气体,腔室压力为50mTorr~2Torr,底板功率为200W~300W,线圈功率为300W~500W。
进一步的,在所述发光二极管的制造方法中,在温度为120℃~250℃的范围内,对圆柱形光刻胶台进行烘烤,以使圆柱形光刻胶台成为球冠状光刻胶。
进一步的,在所述发光二极管的制造方法中,,所述外延层的材料为N型掺杂的氮化镓;所述有源层包括多量子阱有源层,所述多量子阱有源层的材料为铟氮化镓;所述帽层的材料为P型掺杂的氮化镓。
进一步的,在所述发光二极管的制造方法中,在形成所述外延层之前,还包括:在所述衬底上形成缓冲层。
进一步的,在所述发光二极管的制造方法中,在形成所述帽层之后,还包括:在所述帽层上形成透明导电层。
进一步的,在所述发光二极管的制造方法中,在形成所述透明导电层之后,还包括:在所述透明导电层上形成第一电极;形成贯穿所述透明导电层、帽层和有源层的开口;在所述开口内形成第二电极。
进一步的,在所述发光二极管的制造方法中,在所述开口内形成第二电极之后,还包括:在所述透明导电层上形成钝化层,所述钝化层覆盖所述第一电极和第二电极;减薄所述衬底。
由于采用了以上技术方案,与现有技术相比,本发明具有以下优点:
所述发光二极管的衬底在远离外延层的表面上具有多个微透镜结构,并且微透镜结构表面以及衬底远离外延层的表面具有多个凸起,自有源层发出的光经所述微透镜结构表面或凸起表面出射时,其入射角总是小于全反射临界角,从而不会发生全反射,确保大部分的光可从该微透镜结构表面或凸起表面透射出去,从而提高了发光二极管的外量子效率,提高了发光二极管的出光效率,避免发光二极管内部温度的升高,提高了发光二极管的性能。
附图说明
图1为现有的发光二极管的示意图;
图2为本发明一实施例的发光二极管的示意图;
图3为本发明一实施例的发光二极管制造方法的流程示意图;
图4A~4K为本发明一实施例的发光二极管制造方法的剖面示意图;
图5为本发明一实施例的圆柱形光刻胶台的俯视图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
本发明的核心思想在于,提供一种发光二极管及其制造方法,所述发光二极管的衬底在远离外延层的表面上具有多个微透镜结构,并且微透镜结构表面以及衬底远离外延层的表面具有多个凸起,自有源层发出的光经所述微透镜结构表面或凸起表面出射时,其入射角总是小于全反射临界角,从而不会发生全反射,确保大部分的光可从该微透镜结构表面或凸起表面透射出去,从而提高了发光二极管的外量子效率,提高了发光二极管的出光效率,避免发光二极管内部温度的升高,提高了发光二极管的性能。
请参考图2,其为本发明一实施例的发光二极管的示意图。所述发光二极管为以蓝宝石(sapphire)为衬底的发光二极管,所述发光二极管为氮化镓基的蓝光二极管。如图2所示,所述发光二极管包括:衬底200,依次位于所述衬底200上的外延层220、有源层230、帽层240,其中,所述衬底200在远离外延层220的表面上具有多个微透镜结构201,所述微透镜结构201表面以及衬底200远离外延层220的表面具有多个凸起202。自有源层230发出的光经所述微透镜结构201表面或所述凸起202表面出射时,其入射角总是小于全反射临界角,从而不会发生全反射,确保大部分的光可从该微透镜结构201表面或凸起202表面透射出去,从而提高了发光二极管的外量子效率,避免发光二极管内部温度的升高,提高了发光二极管的性能。
在本实施例中,所述衬底200选为蓝宝石衬底,然而应当认识到,所述衬底200还可以是碳化硅衬底或氮化镓衬底。
进一步的,所述发光二极管还包括缓冲层210,所述缓冲层210位于衬底200和外延层220之间(即衬底200靠近外延层220的表面与缓冲层210相接触),所述缓冲层210可进一步改善衬底200与氮化镓材料之间的晶格常数失配的问题,缓冲层210一般采用低温条件下生长的氮化镓薄膜。
所述外延层220、有源层230和帽层240依次位于衬底200上,所述外延层220、有源层230和帽层240构成发光二极管的管芯;其中,外延层220的材料为N型掺杂的氮化镓(n-GaN);所述有源层230包括多量子阱有源层,所述多量子阱有源层的材料为铟氮化镓(InGaN),用于发出波长为470nm的蓝光;所述帽层240的材料为P型掺杂的氮化镓(p-GaN)。由于所述外延层220与帽层240的掺杂类型相反,N型掺杂的氮化镓通过外部电压驱动使电子漂移,P型掺杂的氮化镓通过外部电压驱动使空穴漂移,所述空穴和电子在多量子阱有源层(也称为活性层)中相互重新结合,从而反射光。
进一步的,所述发光二极管还包括透明导电层(TCL)250,所述透明导电层250位于所述帽层240上。由于P型掺杂的氮化镓的电导率比较小,因此在帽层240表面沉积一层金属的电流扩散层,有助于提高电导率。其中,所述透明导电层250的材料例如是Ni/Au材料。
此外,由于衬底200不导电,为了将发光二极管的管芯连接到电源正负极,所述发光二极管还包括第一电极260、第二电极270、以及贯穿所述透明导电层250、帽层240和有源层230的开口,其中,所述第一电极260位于所述透明导电层250上,用于连接透明导电层250和电源正极;所述第二电极270位于所述开口内,用于连接外延层220和电源负极。
所述发光二极管用于发光时,将第一电极260连接至电源正极、第二电极270连接至电源负极,发光二极管管芯通过第一电极260与电源正极相连,通过第二电极270与电源负极相连,发光二极管管芯中的有源层230在电流作用下发光,所述微透镜结构201确保大部分的光可从该微透镜结构201表面透射出去,从而提高了发光二极管的外量子效率,并避免发光二极管内部温度的升高,进而提高了发光二极管的性能。
进一步的,所述发光二极管还包括位于所述透明导电层250上的钝化层280,所述钝化层280覆盖所述第一电极260、第二电极270、透明导电层250,并填充到所述开口内,所述钝化层280用于保护发光二极管的管芯不受损伤。
相应的,本发明还提供一种发光二极管的制造方法,具体请参考图3,其为本发明一实施例的发光二极管制造方法的流程示意图,所述发光二极管的制造方法包括以下步骤:
S30,提供衬底;
S31,在所述衬底上依次形成外延层、有源层和帽层;
S32,在所述衬底远离外延层的表面上形成多个微透镜结构,并在所述微透镜结构表面以及衬底远离外延层的表面形成多个凸起。
下面将结合剖面示意图对本发明的发光二极管的制造方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
参考图4A,首先,提供衬底400,所述衬底400是由Al2O3形成的,在本实施例中,所述衬底400用以形成氮化镓基的蓝光二极管。
参考图4B,为了改善衬底400与氮化镓材料之间的晶格常数失配的问题,接下来,在衬底400上形成缓冲层410。
继续参考图4B,在形成缓冲层410之后,在所述缓冲层410上依次形成外延层420、有源层430、帽层440,所述外延层420、有源层430和帽层440构成发光二极管的管芯。所述外延层420的材料为N型掺杂的氮化镓;所述有源层430包括多量子阱有源层,所述多量子阱有源层的材料为铟氮化镓;所述帽层440的材料为P型掺杂的氮化镓。
再次参考图4B,在形成帽层440之后,在帽层440上形成透明导电层450,所述透明导电层450有助于提高电导率,所述透明导电层450的材料可采用Ni/Au材料。可利用常规的金属有机化学气相沉积(MOCVD)工艺形成缓冲层410、外延层420、有源层430和帽层440,可利用物理气相沉积(PVD)工艺形成透明导电层450。
参考图4C,随后,在所述透明导电层450上形成第一电极460,用于连接透明导电层450和电源正极;并利用光刻和刻蚀的方法,形成贯穿所述透明导电层450、帽层440和有源层430的开口,再在所述开口内形成第二电极470,用于连接外延层420和电源负极。当然,在本发明其它实施例中,所述开口的深度也可延伸至外延层,即所述开口也可贯穿部分厚度的外延层420。
参考图4D,接着,在所述透明导电层450上形成钝化层480,所述钝化层480覆盖所述透明导电层450、第一电极460、第二电极470,所述钝化层480用于保护所述发光二极管的管芯不受损害。
参考图4E,然后,减薄所述衬底400。可利用背面减薄(backside grinding)或激光剥离(laser liftoff processing,LTO)的方式减薄衬底400。在本实施例中,可将衬底400的厚度减薄至10~100μm。
参考图4F,接下来,将减薄后的衬底400翻转过来,使所述衬底400远离外延层420的一面(未与缓冲层410相接触的一面)朝上,再通过涂胶、曝光和显影工艺,在衬底400上形成多个圆柱形光刻胶台490。结合图5所示,圆柱形光刻胶台490俯视(平行于衬底400表面方向)为圆形。可选的,所述圆柱形光刻胶台490的厚度h1是0.1μm~5μm,直径D是1μm~10μm,间距0.1μm~1μm。可以理解的是,本领域技术人员可根据实际要获得的微透镜结构的尺寸相应的调整圆柱形光刻胶台的尺寸。
参考图4G,随后,对所述圆柱形光刻胶台490进行烘烤,使所述圆柱形光刻胶台490成为球冠状光刻胶491。在本实施例中,在温度为120℃~250℃的范围内,对圆柱形光刻胶台490进行烘烤,所述圆柱形光刻胶台490在高于光刻胶的玻璃软化温度下,由于表面张力的作用成为球冠状光刻胶491。当然,在本发明其它实施例中,也可在其它温度下烘烤圆柱形光刻胶台490。
参考图4H,其后,以所述球冠状光刻胶491为掩膜,执行第一次感应耦合等离子体刻蚀(Inductive Coupled Plasma,ICP)工艺,直至所述球冠状光刻胶491被完全刻蚀掉,以在衬底400远离外延层420的表面上形成多个微透镜结构401。其中,所述微透镜结构401的高度h2例如是3μm~5μm,当然,所述微透镜结构401的高度还可根据器件的要求做相应的调整。
可选的,在第一次感应耦合等离子体刻蚀工艺中,所采用的刻蚀气体可以是三氯化硼(BCl3)、氦气(He)和氩气(Ar)的混合气体,其中,三氯化硼的流量例如是20~1000sccm,氦气的流量例如是20~500sccm,氩气的流量例如是20~500sccm;腔室压力为50mTorr~2Torr,底板功率(plate power)为200W~300W,线圈功率为300W~500W。
参考图4I,随后,在所述衬底400远离外延层420的表面以及微透镜结构401表面形成多个Al2O3颗粒403。
其中,所述Al2O3颗粒的直径可以为100nm~5μm。当然,在本发明其它实施例中,还可根据需形成的凸起的尺寸,相应的调整所述Al2O3颗粒的尺寸。在本实施例中,可利用电子喷淋设备(E-shower)将Al2O3颗粒403喷射到衬底400远离外延层420的表面以及微透镜结构401表面,利用静电即可将Al2O3颗粒403吸附在所述衬底400上。然而应当认识到,本发明并不局限于此,还可在衬底远离外延层420的表面以及微透镜结构401表面形成其它可作为掩膜的物质,例如聚苯乙烯纳米球。
参考图4J,随后,执行第二次感应耦合等离子体刻蚀工艺,同时刻蚀所述衬底400和Al2O3颗粒403,直至Al2O3颗粒403被完全刻蚀掉,即可在衬底远离外延层的表面以及微透镜结构401表面形成多个凸起402。
可选的,在第二次感应耦合等离子体刻蚀工艺中,刻蚀气体与第一次感应耦合等离子体刻蚀工艺相同,且保持腔室压力不变,同时,底板功率和线圈功率也保持不变。例如,刻蚀气体为三氯化硼、氦气和氩气的混合气体,腔室压力为50mTorr~2Torr,底板功率为200W~300W,线圈功率为300W~500W。所述第二次感应耦合等离子体刻蚀工艺的刻蚀时间可根据Al2O3颗粒403的尺寸来确定,例如在10秒至200秒之间。
需要说明的是,上述描述并不用于限定本发明,本领域技术人员可根据刻蚀机台的实际情况,相应的调整刻蚀气体以及各项工艺参数,并相应的调整刻蚀选择比,以达到在衬底上形成微透镜结构的目的。
参考图4K,形成微透镜结构401和凸起402之后,可利用传统的回刻蚀(etchback)工艺去除部分厚度的钝化层,并利用传统的切割(dicing)及封装(bumpingpackaging)工艺对所述发光二极管进行封装,即可形成LED封装件。本发明并不涉及封装工艺的改进,在此不予详细描述,但是本领域技术人员应是知晓的。
需要说明的是,上述实施例以蓝色发光二极管为例,但是本发明并不限制于此,上述实施例还可以是红色发光二极管、黄色发光二极管,本领域技术人员可以根据上述实施例,对本发明进行修改、替换和变形。
综上所述,本发明提供了一种发光二极管及其制造方法,所述发光二极管的衬底在远离外延层的表面上具有多个微透镜结构,并且所述微透镜结构表面以及衬底远离外延层的表面具有多个凸起,自有源层发出的光经所述微透镜结构表面或所述凸起表面出射时,其入射角总是小于全反射临界角,从而不会发生全反射,确保大部分的光可从该微透镜结构表面或凸起表面透射出去,从而提高了发光二极管的外量子效率,提高了发光二极管的出光效率,避免发光二极管内部温度的升高,提高了发光二极管的性能;此外,与现有技术相比,本发明的发光二极管制造方法工艺简单,制作成本较低。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

1.一种发光二极管,包括:
衬底;
依次位于所述衬底上的外延层、有源层和帽层;
其中,所述衬底在远离外延层的表面上具有多个微透镜结构,所述微透镜结构表面以及衬底远离外延层的表面具有多个凸起。
2.如权利要求1所述的发光二极管,其特征在于,所述衬底为蓝宝石衬底、碳化硅衬底或氮化镓衬底。
3.如权利要求1所述的发光二极管,其特征在于,所述发光二极管还包括:
位于所述衬底和外延层之间的缓冲层;以及
位于所述帽层上的透明导电层。
4.如权利要求3所述的发光二极管,其特征在于,所述发光二极管还包括第一电极、第二电极和贯穿所述透明导电层、帽层和有源层的开口,其中,所述第一电极位于所述透明导电层上,用于连接透明导电层和电源正极;所述第二电极位于所述开口内,用于连接外延层和电源负极。
5.如权利要求4所述的发光二极管,其特征在于,所述发光二极管还包括位于所述透明导电层上的钝化层,所述钝化层覆盖所述第一电极和第二电极。
6.如权利要求1所述的发光二极管,其特征在于,所述外延层的材料为N型掺杂的氮化镓;所述有源层包括多量子阱有源层,所述多量子阱有源层的材料为铟氮化镓;所述帽层的材料为P型掺杂的氮化镓。
7.一种如权利要求1所述的发光二极管的制造方法,其特征在于,包括:
提供衬底;
在所述衬底上依次形成外延层、有源层和帽层;
在所述衬底远离外延层的表面上形成多个微透镜结构,并在衬底远离外延层的表面以及微透镜结构表面形成多个凸起。
8.如权利要求7所述的制造方法,其特征在于,形成多个微透镜结构和多个凸起的步骤包括:
在衬底远离外延层的表面上形成多个圆柱形光刻胶台;
对圆柱形光刻胶台进行烘烤,使所述圆柱形光刻胶台成为球冠状光刻胶;
执行第一次感应耦合等离子体刻蚀工艺,直至所述球冠状光刻胶被完全刻蚀掉,以在衬底远离外延层的表面上形成多个微透镜结构;
在衬底远离外延层的表面以及微透镜结构表面形成多个Al2O3颗粒;
执行第二次感应耦合等离子体刻蚀工艺,直至所述Al2O3颗粒被完全刻蚀掉,以在衬底远离外延层的表面以及微透镜结构表面形成多个凸起。
9.如权利要求8所述的制造方法,其特征在于,在第一次感应耦合等离子体刻蚀工艺中,刻蚀气体为三氯化硼、氦气和氩气的混合气体,腔室压力为50mTorr~2Torr,底板功率为200W~300W,线圈功率为300W~500W。
10.如权利要求9所述的制造方法,其特征在于,在第二次感应耦合等离子体刻蚀工艺中,刻蚀气体为三氯化硼、氦气和氩气的混合气体,腔室压力为50mTorr~2Torr,底板功率为200W~300W,线圈功率为300W~500W。
11.如权利要求10所述的制造方法,其特征在于,在温度为120℃~250℃的范围内,对圆柱形光刻胶台进行烘烤,以使圆柱形光刻胶台成为球冠状光刻胶。
12.如权利要求7或11所述的制造方法,其特征在于,所述外延层的材料为N型掺杂的氮化镓;所述有源层包括多量子阱有源层,所述多量子阱有源层的材料为铟氮化镓;所述帽层的材料为P型掺杂的氮化镓。
13.如权利要求7或11所述的制造方法,其特征在于,在形成所述外延层之前,还包括:在所述衬底上形成缓冲层。
14.如权利要求7或11所述的制造方法,其特征在于,在形成所述帽层之后,还包括:在所述帽层上形成透明导电层。
15.如权利要求14所述的制造方法,其特征在于,在形成所述透明导电层之后,还包括:
在所述透明导电层上形成第一电极;
形成贯穿所述透明导电层、帽层和有源层的开口;
在所述开口内形成第二电极。
16.如权利要求15所述的制造方法,其特征在于,在所述开口内形成第二电极之后,还包括:
在所述透明导电层上形成钝化层,所述钝化层覆盖所述第一电极和第二电极;
减薄所述衬底。
CN2010105309916A 2010-11-03 2010-11-03 发光二极管及其制造方法 Expired - Fee Related CN102130285B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010105309916A CN102130285B (zh) 2010-11-03 2010-11-03 发光二极管及其制造方法
PCT/CN2010/080493 WO2011143918A1 (zh) 2010-11-03 2010-12-30 发光二极管及其制造方法
US13/059,631 US20130214245A1 (en) 2010-11-03 2010-12-30 Light emitting diode and fabrication method thereof
EP10809127A EP2408025A4 (en) 2010-11-03 2010-12-30 LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105309916A CN102130285B (zh) 2010-11-03 2010-11-03 发光二极管及其制造方法

Publications (2)

Publication Number Publication Date
CN102130285A CN102130285A (zh) 2011-07-20
CN102130285B true CN102130285B (zh) 2012-12-26

Family

ID=44268251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105309916A Expired - Fee Related CN102130285B (zh) 2010-11-03 2010-11-03 发光二极管及其制造方法

Country Status (4)

Country Link
US (1) US20130214245A1 (zh)
EP (1) EP2408025A4 (zh)
CN (1) CN102130285B (zh)
WO (1) WO2011143918A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130252B (zh) * 2010-11-03 2013-02-27 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
KR20130035658A (ko) * 2011-09-30 2013-04-09 서울옵토디바이스주식회사 발광 다이오드 소자용 기판 제조 방법
KR101969334B1 (ko) * 2011-11-16 2019-04-17 엘지이노텍 주식회사 발광 소자 및 이를 구비한 발광 장치
KR101895297B1 (ko) * 2011-12-12 2018-09-05 엘지이노텍 주식회사 발광 소자 및 이를 구비한 발광 장치
CN103208570A (zh) * 2013-03-14 2013-07-17 映瑞光电科技(上海)有限公司 一种倒装led芯片及其制造方法
WO2015016150A1 (ja) * 2013-07-30 2015-02-05 独立行政法人情報通信研究機構 半導体発光素子およびその製造方法
CN104377274B (zh) * 2013-08-12 2017-05-24 展晶科技(深圳)有限公司 发光二极管及其制造方法
JP2015050256A (ja) * 2013-08-30 2015-03-16 株式会社東芝 窒化物半導体発光装置
CN105023983A (zh) * 2014-04-24 2015-11-04 展晶科技(深圳)有限公司 覆晶式半导体发光元件及其制造方法
KR101681242B1 (ko) * 2015-01-19 2016-11-30 광주과학기술원 발광다이오드의 제조방법 및 이에 의해 제조된 발광다이오드
EP3323145A1 (en) * 2015-07-14 2018-05-23 Goertek Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-led
JP6871706B2 (ja) * 2016-09-30 2021-05-12 日機装株式会社 半導体発光素子の製造方法
CN106876547B (zh) * 2017-01-26 2019-05-03 厦门市三安光电科技有限公司 薄膜型发光二极管及其制作方法
CN107706290A (zh) * 2017-10-10 2018-02-16 青岛杰生电气有限公司 一种用于倒装芯片的紫外发光二极管及衬底刻蚀方法
US11757074B2 (en) 2020-06-12 2023-09-12 Apple Inc. Light-emitting diode display pixels with microlens stacks over light-emitting diodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200705709A (en) * 2005-01-11 2007-02-01 Semileds Corp Method of making a vertical light emitting diode
CN101536196A (zh) * 2006-08-16 2009-09-16 霆激技术有限公司 发光二极管的外部光效率的改进

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469484B2 (ja) * 1998-12-24 2003-11-25 株式会社東芝 半導体発光素子およびその製造方法
WO2002041406A1 (en) * 2000-11-16 2002-05-23 Emcore Corporation Microelectronic package having improved light extraction
US6818532B2 (en) * 2002-04-09 2004-11-16 Oriol, Inc. Method of etching substrates
US7601553B2 (en) * 2003-07-18 2009-10-13 Epivalley Co., Ltd. Method of manufacturing a gallium nitride semiconductor light emitting device
US7341880B2 (en) * 2003-09-17 2008-03-11 Luminus Devices, Inc. Light emitting device processes
US7344903B2 (en) * 2003-09-17 2008-03-18 Luminus Devices, Inc. Light emitting device processes
KR100854986B1 (ko) * 2004-06-11 2008-08-28 쇼와 덴코 가부시키가이샤 화합물 반도체 소자 웨이퍼의 제조방법
TWI433343B (zh) * 2004-06-22 2014-04-01 Verticle Inc 具有改良光輸出的垂直構造半導體裝置
US20060204865A1 (en) * 2005-03-08 2006-09-14 Luminus Devices, Inc. Patterned light-emitting devices
CN100379043C (zh) 2005-04-30 2008-04-02 中国科学院半导体研究所 全角度反射镜结构GaN基发光二极管及制作方法
KR100610639B1 (ko) * 2005-07-22 2006-08-09 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
TWI371871B (en) * 2006-12-29 2012-09-01 Ind Tech Res Inst A led chip with micro lens
US7910488B2 (en) * 2007-07-12 2011-03-22 Applied Materials, Inc. Alternative method for advanced CMOS logic gate etch applications
JP5251038B2 (ja) * 2007-08-23 2013-07-31 豊田合成株式会社 発光装置
US7977695B2 (en) * 2007-09-21 2011-07-12 Lg Innotek Co., Ltd. Semiconductor light emitting device and method for manufacturing the same
WO2009063954A1 (ja) * 2007-11-16 2009-05-22 Ulvac, Inc. 基板処理方法及びこの方法によって処理された基板
JP5428358B2 (ja) * 2009-01-30 2014-02-26 ソニー株式会社 光学素子パッケージの製造方法
TWI394873B (zh) * 2009-04-27 2013-05-01 Aurotek Corp 具有週期結構之藍寶石基板之製造方法
KR100976819B1 (ko) * 2010-02-10 2010-08-20 (주)더리즈 반도체 기판 및 이를 이용한 발광소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200705709A (en) * 2005-01-11 2007-02-01 Semileds Corp Method of making a vertical light emitting diode
CN101536196A (zh) * 2006-08-16 2009-09-16 霆激技术有限公司 发光二极管的外部光效率的改进

Also Published As

Publication number Publication date
US20130214245A1 (en) 2013-08-22
WO2011143918A1 (zh) 2011-11-24
CN102130285A (zh) 2011-07-20
EP2408025A1 (en) 2012-01-18
EP2408025A4 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
CN102130285B (zh) 发光二极管及其制造方法
EP2156478B1 (en) Semiconductor light emitting device and method of manufacturing the same
CN101017869B (zh) 氮化物基半导体发光器件及其制造方法
CN102024898B (zh) 发光二极管及其制造方法
US9093596B2 (en) Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same
US8704227B2 (en) Light emitting diode and fabrication method thereof
KR20080081934A (ko) 반도체 발광 소자 및 그 제법
CN102064245A (zh) 发光二极管制造方法
CN102130245A (zh) 发光二极管及其制造方法
US9306122B2 (en) Light emitting diode and a manufacturing method thereof, a light emitting device
JP2011060966A (ja) 発光装置
CN102130252B (zh) 发光二极管及其制造方法
US20130087763A1 (en) Light emitting diode and method of manufacturing the same
CN102064253A (zh) 发光二极管及其制造方法
US20150004725A1 (en) Methods for manufacturing light emitting diode and light emitting device
CN102130224A (zh) 发光二极管及其制造方法
CN102136532B (zh) 发光二极管及其制造方法
KR20120005662A (ko) 발광 소자
KR100663910B1 (ko) 발광 소자 및 이의 제조 방법
CN104064641A (zh) 通孔垂直型led的制作方法
JP2013522871A (ja) 透明ledウエハモジュール及びその製造方法
KR101048921B1 (ko) 발광소자 및 그의 제조방법
CN102163662A (zh) 发光二极管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190813

Address after: 201300 Hongyin Road 1889, Pudong New District, Shanghai

Patentee after: SHANGHAI XIANYAO DISPLAY TECHNOLOGY Co.,Ltd.

Address before: Room 101, Building 5, 200 Newton Road, Pudong New Area, Shanghai, 201203

Patentee before: ENRAYTEK OPTOELECTRONICS Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

CF01 Termination of patent right due to non-payment of annual fee