CN102118170A - D/a转换器电路及其电压供给控制方法 - Google Patents

D/a转换器电路及其电压供给控制方法 Download PDF

Info

Publication number
CN102118170A
CN102118170A CN2010106035646A CN201010603564A CN102118170A CN 102118170 A CN102118170 A CN 102118170A CN 2010106035646 A CN2010106035646 A CN 2010106035646A CN 201010603564 A CN201010603564 A CN 201010603564A CN 102118170 A CN102118170 A CN 102118170A
Authority
CN
China
Prior art keywords
voltage
terminal
converter
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010106035646A
Other languages
English (en)
Inventor
松田觉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of CN102118170A publication Critical patent/CN102118170A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/661Improving the reconstruction of the analogue output signal beyond the resolution of the digital input signal, e.g. by interpolation, by curve-fitting, by smoothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明涉及D/A转换器电路及其电压供给控制方法。DAC包括DAC单元,其根据输入数字信号选择多个选择电压中的一个,并且输出所选择的选择电压作为模拟信号;第一电源电压端子,在DAC单元的通电时通过此第一电源电压端子将第一电源电压提供到组成DAC单元的晶体管的第一端子;以及电压供给控制单元,其检测第一电源电压和被用于生成选择电压的第二电压之间的电势差,当电势差大于预定值时将与第一电源电压相对应的电压输出到组成DAC单元的晶体管的第二端子,并且当电势差小于预定值时将与第二电压相对应的电压输出到组成DAC单元的晶体管的第二端子。

Description

D/A转换器电路及其电压供给控制方法
通过引用并入
本申请基于并且要求2009年12月22日提交的日本专利申请No.2009-290360的优先权,其内容在此通过引用整体并入。
技术领域
本发明涉及D/A转换器电路及其电压供给控制方法。
背景技术
近年来,大的平板显示装置的开发已经日益活跃。在大的平板显示器当中,因为较低的功率消耗和其它的优点,因此LCD(液晶显示器)引起关注。LCD被装备有驱动以矩阵布置在显示器上的像素的LCD驱动器IC(集成电路)。
图12示出现有技术中的LCD驱动器IC1的构造。如图12中所示,LCD驱动器IC1包括逻辑电路10、电平移位器20、D/A转换器(DAC)电路30、以及输出级缓冲器40。
逻辑电路10生成数字灰阶信号,数字灰阶信号中的每一个由n(在下文中,假定n=6)位组成并且被用于确定每个像素的灰阶信号。注意的是,数字灰阶信号具有CMOS信号电平,例如,大约4V的电压。
电平移位器20将通过逻辑电路10生成的数字灰阶信号的电平位移位到大约10V的高电势。
DAC电路30将从电平移位器20输出的数字灰阶信号转换为模拟灰阶信号。DAC电路30选择提供的选择电压VP1至VP64中的一个和选择电压VN1至VN64中的一个并且将所选择的电压输出到输出级缓冲器40以生成模拟灰阶信号。
输出级缓冲器40执行用于从DAC电路30提供的模拟灰阶信号的电流缓冲,并且将缓冲的电流输出到显示像素。
图13示出DAC电路30的构造。如图13中所示,DAC电路30包括PchDAC31、NchDAC 32、以及梯形电阻器单元33。注意在LSD中,需要以特定间隔反转像素电极和其对向电极之间施加的电压的极性以防止液晶材料的劣化。被提供以执行施加给像素电极的电压的此极性反转的极性开关SW51和SW52分别被连接在DAC电路30的输入侧和输出侧。
梯形电阻器单元33分别接收来自于外部端子TVP1、TVP64、TVN1以及TVN64的电压VP1、VP64、VN1以及VN64,并且生成选择电压VP1至VP64和选择电压VN1至VN64(稍后进行描述)。注意存在关系“VP1>VP64”和“VN1<VN64”。
PchDAC 31接收来自于电平移位器20的数字灰阶信号,根据数字灰阶信号选择选择电压VP1至VP64中的一个,并且输出所选择的选择电压作为输出选择电压VPout。NchDAC 32接收来自于电平移位器20的数字灰阶信号,根据数字灰阶信号选择选择电压VN1至VN64中的一个,并且输出所选择的选择电压作为输出选择电压VNout。
图14示出DAC电路30的输出模拟灰阶信号和输入数字灰阶信号之间的关系的图。注意,图14示出其中面板是常白并且输入数字信号具有六位的示例中的关系。如图14中所示,当在正极性输出状态中数字灰阶信号D[5:0]是[000000]时,例如,PchDAC 31选择并且输出选择电压VP1。此外,当数字灰阶信号D[5:0]是[000001]时,PchDAC 31选择并且输出选择电压VP2。PchDAC 31以类似的方式对之后的数字灰阶信号进行操作。最后,当数字灰阶信号D[5:0]是[111111]时,PchDAC31选择并且输出选择电压VP64。在负极性输出状态中,通过NchDAC32执行类似的数字模拟转换。
图15示出PchDAC 31和梯形电阻器单元33的详细构造。注意,对于梯形电阻器单元33,仅示出与PchDAC 31相对应的构造的一部分。
如图15中所示,梯形电阻器单元33包括电阻元件R1至R63。均在电阻元件R1至R63中的一个与它的相邻电阻元件之间的各结点处,梯形电阻器单元33生成分别从外部端子TVP1和TVP64施加的电压VP1和VP64之间的中间电压VP2至VP63。此外,梯形电阻器单元33将这些电压作为选择电压VP1至VP64输出到PchDAC 31。
PchDAC 31包括开关电路SW1_1至SW1_32、SW2_1至SW2_16、SW3_1至SW3_8、SW4_1至SW4_4、SW5_1、SW5_2、以及SW6_1。例如,开关电路SW1_1接收选择电压VP1和VP2并且根据6位数字灰阶信号的LSB(最低有效位),即,D[0]的值输出接收到的选择电压VP1和VP2中的一个。类似地,开关电路SW1_2至SW1_32中的每一个接收选择电压VP3至VP64当中其对应的两个选择电压,并且根据数字灰阶信号D[0]的值输出接收到的选择电压中的一个。
接下来,例如,开关电路SW2_1接收开关电路SW1_1和SW1_2的输出电压并且根据数字灰阶信号D[1]的值输出接收到电压中的一个。类似地,开关电路SW2_2至SW2_16中的每一个接收开关电路SW1_3至SW1_32的输出电压当中其对应的两个输出电压,并且根据数字灰阶信号D[1]的值输出接收到的电压中的一个。
接下来,例如,开关电路SW3_1接收开关电路SW2_1和SW2_2的输出电压并且根据数字灰阶信号D[2]的值输出接收到的电压中的一个。类似地,开关电路SW3_2至SW3_8中的每一个接收开关电路SW2_3至SW2_16的输出电压当中其对应的两个输出电压,并且根据数字灰阶信号D[2]的值输出接收到的电压中的一个。
接下来,例如,开关电路SW4_1接收开关电路SW3_1和SW3_2的输出电压并且根据数字灰阶信号D[3]的值输出接收到的电压中的一个。类似地,开关电路SW4_2至SW4_4中的每一个接收开关电路SW3_3至SW3_8的输出电压当中其对应的两个输出电压,并且根据数字灰阶信号D[3]的值输出接收到的电压中的一个。
接下来,例如,开关电路SW5_1接收开关电路SW4_1和SW4_2的输出电压并且根据数字灰阶信号D[4]的值输出接收到的电压中的一个。类似地,开关电路SW5_2接收开关电路SW4_3和SW4_4的输出电压,并且根据数字灰阶信号D[4]的值输出接收到的电压中的一个。
最后,开关电路SW6_1接收开关电路SW5_1和SW5_2的输出电压并且根据6位数字灰阶信号的MSB(最高有效位),即D[5]的值输出接收到的电压中的一个作为输出选择电压VPout。
图16示出开关电路SW1_1的构造。其它的开关电路SW1_2至SW1_32、SW2_1至SW2_16、SW3_1至SW3_8、SW4_1至SW4_4、SW5_1、SW5_2以及SW6_1中的每一个具有与开关电路SW1_1的构造相类似的构造,并且因此省略它们的解释。如图16中所示,开关电路SW1_1包括PMOS晶体管MPH和MPL,以及逆变器电路IVL。注意,为了方便起见,图16中所示的示例被绘制为好像每个开关电路包括逆变器。然而,实际上,通常在DAC外部生成信号D[5:0]和其反转信号,并且将生成的信号提供到各开关。也可以采用这样的构造。
选择电压VP1被输入到PMOS晶体管MPH的漏极和源极中的任意一个,并且源极和漏极中的另一个被连接到结点A。此外,数字灰阶信号D[0]被输入到PMOS晶体管MPH的栅极。
选择电压VP2被输入到PMOS晶体管MPL的源极和漏极中的任意一个,并且源极和漏极中的另一个被连接到结点A。此外,通过逆变器IVL获得的数字灰阶信号D[0]的反转信号/D[0]被输入到PMOS晶体管MPL的栅极。
PMOS晶体管MPH和MPL的背栅都被连接到电源电压端子VDD2。
注意,除了背栅的电压之外,NchDAC 32具有与PchDAC 31的构造基本上类似的构造。此外,与NchDAC 32相对应的梯形电阻器单元33的部分也具有与PchDAC 31的构造基本上相类似的构造。
图17示出在通电时执行的LCD驱动器IC1的序列的示意图。注意的是,被提供到图12中所示的LCD驱动器IC1的电压包括能够在低压下进行操作的逻辑电路10使用的大约4V的电源电压VDD1,和实际上用于驱动液晶面板的像素的10V或者更高的高压驱动器电源的电源电压VDD2。此外,还包括被用于将想要的电压提供到DAC电路30的上述外部电压。在图13中所示的示例中,电压VP1、VP64、VN1以及VN64对应于外部电压。
如图17中所示,首先,在时间t1,在逻辑电路10中使用的大约4V的电源电压VDD1上升。然后,在时间t2,逻辑电路10开始操作并且从而输出输出信号SGNL。此外,在时间t3,用于高压驱动器电源的电源电压VDD2上升。然后,在时间t4,是从外部端子提供的电压的电压VP1、VP64、VN1以及VN64上升。
如上所述,在LCD驱动器IC1的DAC电路30(特别地,R-DAC方案)中,在DAC电路30的每个组件上施加外部提供的电源电压VDD1和VDD2、通过划分IC内部的外部提供的外部电压获得的电压,或者通过类似的方式获得的电压。
注意的是,在用于点反转驱动的源驱动器IC的情况下,存在正极性输出和负极性输出。当上述LCD驱动器IC1被用作用于点反转驱动的源驱动器时,正极性侧DAC电路(图13的PchDAC 31)和负极性侧DAC电路(图13的NchDAC 32)中的每一个仅需要具有等于电源电压VDD2的一半的耐受电压,如参考图14在上面所解释地。即,背栅和源极之间、背栅和漏极之间、以及背栅和组成PchDAC 31的每个开关电路的PMOS晶体管的栅极之间的耐受电压仅需要大约是电源电压VDD2的一半。这样的低耐受电压晶体管要求小的晶体管面积。因此,能够在DAC电路30中实现与等于电源电压VDD2的一半的耐受电压相对应的芯片收缩。
注意,日本未经审查的专利申请公开No.8-179270(专利文献1)公开下述技术,该技术防止在源极驱动器等等中在通电时出现故障。此外,日本未经审查的专利申请公开No.8-264792(专利文献2)公开下述技术,该技术防止在用于液晶驱动的电源的通电时当以不正确的顺序执行通电时会出现的组件的毁坏。
发明内容
本发明人已经发现下述问题。如上所述,在用于点反转驱动的LCD驱动器IC1中,与等于电源电压VDD2的一半的耐受电压相对应的芯片收缩是可能的。然而,如图17中所示,例如,由于在时间t5从外部端子提供的电压VP1和VP64没有充分地上升,所以与电源电压VDD2的电势差会超过电源电压VDD2的一半。在此情况下,电势差超过背栅和源极之间、背栅和漏极之间、以及背栅和组成正极性侧DAC电路(图13的PchDAC 31)中的每一个开关电路的PMOS晶体管的栅极之间的耐受电压。如上所述,可能的是,在通电时,高于耐受电压的电压瞬时施加在正极性侧DAC电路(图13的PchDAC 31)的组件上。因此,不能减少组件耐受电压的裕量,因此对芯片收缩强加限制。
此外,作为避免如上所述的高于耐受电压的电压被瞬时施加给的正极性侧DAC电路的组件状态的对策,需要在生成通过外部端子提供的电压VP1和VP64的电源中添加控制通电顺序的附加控制电路。然而,此对策要求在通过外部端子提供电压的电源中添加附加控制电路,因此引起诸如设计成本的增加和电路尺寸的增加的缺点。结果,会抵消通过执行芯片收缩获得的优点。
此外,专利文献1还公开用于在通电之后的一定时段内使到灰阶电压电路本身的输入信号进入高阻抗状态的方法。然而,在专利文献1中公开的此电路中,需要添加用于使输入信号进入高阻挡状态的组成开关的晶体管以及具有等于VDD2的耐受电压的它的控制电路。因此,不能够减少芯片的布局尺寸。
同时,专利文献2公开了一种半导体器件(驱动器),该半导体器件(驱动器)在其中包括开关元件,该开关元件根据某一顺序进行操作使得电源电压被按顺序提供到半导体器件;以及电路,该电路控顺序操作。然而,此电路还要求使用能够耐受VDD2的晶体管,不仅用于在电路内部生成电源顺序的组成开关等等的附加晶体管,而且用于电路中的其它组件。因此,不能够减少芯片的布局尺寸。
本发明的第一示例性方面是用于被提供在显示装置中的驱动电路的D/A转换器电路,包括:D/A转换器单元,该D/A转换器单元根据输入数字灰阶信号选择多个选择电压中的一个,并且输出所选择的选择电压作为模拟灰阶信号;第一电源电压端子,在D/A转换器单元的通电时通过此第一电源电压端子将第一电源电压提供到组成D/A转换器单元的晶体管的第一端子;以及电压供给控制单元,该电压供给控制单元检测第一电源电压和被用于生成选择电压的第二电压之间的电势差,当电势差大于预定值时将与第一电源电压相对应的电压输出到组成D/A转换器单元的晶体管的第二端子,并且当电势差小于预定值时将与第二电压相对应的电压输出到组成D/A转换器单元的晶体管的第二端子。
在根据本发明的示例性方面的D/A转换器电路中,在组成D/A转换器单元的晶体管的第一和第二端子之间的电压不会增加到预定值或者高于预定值。因此,能够将组成D/A转换器单元的晶体管的第一和第二端子之间的耐受电压设置为等于或者小于预定值的值。
根据本发明的示例性方面的D/A转换器能够将组成电路的晶体管组件的耐受电压控制为等于或者小于预定值的值,因此能够减少组件尺寸并且因此实现芯片收缩。
附图说明
结合附图,根据某些示例性实施例的以下描述,以上和其它示例性方面、优点和特征将更加明显,其中:
图1是根据本发明的第一示例性实施例的DAC电路的构造的示例;
图2是根据本发明的第一示例性实施例的电压供给控制电路的示例;
图3是用于解释根据本发明的第一示例性实施例的电压供给控制电路的操作的时序图;
图4示出根据本发明的第一示例性实施例的梯形电阻器单元和PchDAC的详细构造;
图5是示出在通电时执行的根据本发明的第一示例性实施例的LCD驱动器IC的顺序的示意图;
图6是根据本发明的第一示例性实施例的电压供给控制电路的另一示例;
图7是根据本发明的第二示例性实施例的电压供给控制电路的示例;
图8是用于解释根据本发明的第二示例性实施例的电压供给控制电路的操作的时序图;
图9是示出在通电时执行的根据本发明的第二示例性实施例的LCD驱动器IC的顺序的时序图;
图10是示出根据本发明的第二示例性实施例的电压供给控制电路的另一示例;
图11示出根据本发明的另一示例性实施例的梯形电阻器单元和PchDAC的详细构造;
图12是典型的LCD驱动器IC的框图;
图13是现有技术的DAC电路的构造的示例;
图14是示出典型的DAC电路的输出模拟灰阶信号和输入数字灰阶信号之间的关系的图;
图15示出典型的PchDAC的构造;
图16示出被提供在典型的PchDAC中的开关电路的构造;以及
图17是示出在通电时执行的现有技术中的LCD驱动器IC的顺序的示意图。
具体实施方式
[第一示例性实施例]
在下文中参考附图详细地解释应用本发明的第一特定示例性实施例。在该第一示例性实施例中,本发明被应用于液晶显示装置的LCD驱动器IC的DAC电路100。注意,根据第一示例性实施例的包括DAC电路的LCD驱动器IC的构造与图12中所示的LCD驱动器IC1的构造相类似,不同之处在于DAC电路30被替换为DAC电路100,并且因此省略了它的说明。
图1示出根据该第一示例性实施例的DAC电路100的构造。与图13中所示的DAC电路30类似地,在该第一示例性实施例中,极性开关SW51和SW52分别被连接到DAC电路100的输入侧和输出侧。如图1中所示,DAC电路100包括PchDAC 31、NchDAC 32、梯形电阻器单元33、以及电压供给控制单元110。假定通过PchDAC 31和NchDAC 32为数字灰阶信号选择的选择电压与图14中所示的图具有类似的关系。
电压供给控制单元110包括电压供给控制电路111和112。电压供给控制电路111接收从外部端子TVP1提供的电压和从电源电压端子VDD2提供的电源电压VDD2。然后,它将输出电压Vout1(稍后进行解释)输出到梯形电阻器单元33。电压供给控制电路112接收从外部端子TVP64提供的电压和从电源电压端子VDD2提供的电源电压VDD2。然后,它将输出电压Vout2(稍后进行解释)输出到梯形电阻器单元33。
图2示出电压供给控制电路111的构造。如图2中所示,电压供给控制电路111包括比较检测器CMP111和CMP112、控制电路CNT113、输出放大器AMP114、开关电路SW115、输入端子IN116、以及输出端子OUT117。
输入端子IN116接收从外部端子TVP1提供的电压。注意的是,在此输入端子IN116处出现的电势被表示为“输入电压Vin1”。
输出放大器AMP114将与结点B处的电势电平相对应的电压输出到输出端子OUT117。输出放大器AMP114被形成为电压跟随器电路。注意,在此输出端子OUT117处出现的电势被表示为“输出电压Vout1”。
比较检测器CMP111监测电源电压VDD2和输出电压Vout1,并且检测它们之间的电势差。然后,它将检测结果输出到控制电路CNT113。
比较检测器CMP112监测输入电压Vin1和输出电压Vout1,并且检测它们之间的电势差。然后,它将检测结果输出到控制电路CNT113。
开关电路SW115被连接在结点B和输入端子IN116之间。然后,根据通过控制电路CNT113输出的开关控制信号S2控制开关电路SW115的导通/截止状态。例如,当处于高电平的开关控制信号S2被输入到开关电路SW115时,它变成导通状态并且将结点B电气地连接到输入端子IN116。此外,当处于低电平的开关控制信号S2被输入到开关电路SW115时,它变成截止状态并且将结点B从输入端子IN116电气地断开。
控制电路CNT113根据比较检测器CMP111和CMP112的检测结果将电压控制信号S1输出到结点B,并且还将开关控制信号S2输出到开关电路SW115。更具体地,控制电路CNT113根据比较检测器CMP111的检测结果将具有基本上等于电源电压VDD2的电势电平的电压控制信号S1输出到结点B,使得电源电压VDD2和输出电压Vout1之间的电势差被保持不变得更宽。此外,基于比较检测器CMP112的检测结果,当在输入电压Vin1,即从外部端子TVP1提供的电压和输出电压Vout1之间的电势差变成预定值(例如,大约0.2V)时,控制电路CNT113执行控制以使开关控制信号S2上升到高电平。注意,在这里假定在开关控制信号S2上升到高电平时停止电压控制信号S1的输出。
图3示出用于解释电压供给控制电路111的操作的时序图。如图3中所示,首先,在时间t11,电源电压VDD2被导通并且电源电压VDD2的电势逐渐上升。这时,控制电路CNT113根据比较检测器CMP111的检测结果升高电压控制信号S1的电势电平使得电源电压VDD2和输出电压Vout1之间的电势差被保持不变得更宽。结果,输出放大器AMP114输出基本上等于电源电压VDD2的电压作为输出电压Vout1。
同时,比较检测器CMP112检测到从外部端子TVP1没有提供电压或者被提供的电压的电势低。控制电路CNT113基于此检测结果将开关控制信号S2保持在低电平,并且开关电路SW115将结点B从输入端子IN116电气地断开。
接下来,在时间t12,从外部端子TVP1提供的电压被导通并且输入电压Vin1的电势逐渐上升。此外,在时间t13,比较检测器CMP112检测到输入电压Vin1和输出电压Vout1之间的电势差变成预定值。控制电路CNT113基于此检测结果将开关控制信号S2上升到高电平,并且开关电路SW115将结点B电气地连接到输入端子IN116。结果,输入电压Vin1,即从外部端子TVP1提供的电压的电势被输入到输出放大器AMP114。因此,输出放大器AMP114输出基本上与从外部端子TVP1提供的电压相等的电压作为输出电压Vout1。
注意的是,电压供给控制电路112的构造与电压供给控制电路111的构造类似。然而,从外部端子TVP64提供的电压被输入到电压供给控制电路112的输入端子IN116。在接下来的说明中,必要时将从外部端子TVP64提供的电压称为“输入电压Vin2”(Vin2<Vin1)。此外,假定输出电压Vout2(Vout2≤Vout1)被输出到电压供给控制电路112的输出端子OUT117。
图4示出PchDAC 31和梯形电阻器单元33的详细构造。注意,PchDAC 31和梯形电阻器单元33的构造与参考图15在上面描述的构造类似,并且因此在这里省略它们的解释。图4中所示的构造与图15中所示的构造的不同之处在于被连接到图15中的梯形电阻器单元33的外部端子TVP1和TVP64被替换为图4中的电压供给控制电路111和112。由于此修改,从梯形电阻器单元33输出到PchDAC 31的选择电压VP2至VP63被生成作为输出电压Vout1和Vout2之间的中间电势。
图5是示出在通电时执行的根据第一示例性实施例的LCD驱动器IC的顺序的示意图。如图5中所示,首先,在时间t1,逻辑电路10使用的大约4V的电源电压VDD1上升。然后,在时间t2,逻辑电路10开始操作并且从而输出输出信号SGNL。接下来,在时间t11,用于高压驱动器电源的电源电压VDD2上升。这时,如参考图4在上面所解释的,来自于电压供给控制电路111、112的输出电压Vout1、Vout2上升以跟随电源电压VDD2的上升。然后,在时间t12,输入电压Vin1、Vin2,即从外部端子TVP1、TVP64提供的电压的电势上升。在时间t13,输入电压Vin1、Vin2和输出电压Vout1、Vout2之间的电势差变成预定值,并且因此开关电路SW115变成导通状态。结果,输出电压Vout1和Vout2分别变成基本上与从外部端子TVP1和TVP64提供的电压相等的电压。结果,从梯形电阻器单元33提供到PchDAC 31的选择电压VP1至VP64的电势也上升以跟随电源电压VDD2的上升。
在图13中所示的现有技术的DAC电路30中,即使当电源电压VDD2已经上升时,来自于外部端子的电压VP1、VP64在此时间点没有充分地上升。因此,如图17中所示,与电源电压VDD2的电势差VR会超过电源电压VDD2的一半。在这样的情况下,从梯形电阻器单元33提供到PchDAC 31的选择电压VP1至VP64的电势也超过电源电压VDD2的一半。因此,可能的是,它们超过背栅和源极之间、背栅和漏极之间、以及组成PchDAC 31的每个开关电路的PMOS晶体管的栅极和背栅之间的耐受电压。
与此相反,在根据本发明的第一示例性实施例的DAC电路100中,即使当来自于外部端子的电压VP1、VP64没有充分地上升时,来自于电压供给控制电路111、112的输出电压Vou1、Vout2上升以跟随电源电压VDD2的上升,如图3和图5中所示。结果,从梯形电阻器单元33提供到PchDAC 31的选择电压VP1至VP64的电势也上升以跟随电源电压VDD2的上升。因此,能够解决在现有技术中的DAC电路30中出现的问题,即,电势差超过背栅和源极之间、背栅和漏极之间、以及背栅和组成PchDAC 31的每个开关电路的PMOS晶体管的栅极之间的耐受电压的问题。
此外,因为此问题被解决,所以不需要考虑组成PchDAC 31的每个开关电路的PMOS晶体管的组件耐受裕量,从而使得能够实现与等于电源电压VDD2的一半的耐受电压相对应的芯片收缩。此外,因为能够在任意时序导通从外部端子TVP1和TVP64提供的电压,所以不需要添加控制生成通过外部端子提供的电压VP1和VP64的电源中的通电顺序的任何附加控制电路,从而消除诸如设计成本的增加和电路尺寸的增加的缺点。
此外,对于电压供给控制电路111和112的唯一要求是升高输出电压Vout1和Vout2以跟随电源电压VDD2的升高。因此,例如,也可以采用图6中所示的构造。如图6中所示,电压供给控制电路111包括比较检测器CMP111和CMP112、控制电路CNT113、开关电路SW115和SW118、输入端子IN116、以及输出端子OUT117。
在图6中所示的电压供给控制电路111中,当电源电压VDD2升高时,开关电路SW118根据比较检测器CMP111的检测结果通过控制信号S1变成导通状态使得电源电压VDD2和输出电压Vout1之间的电势差被保持不变得更宽。此外,基于比较检测器CMP112的检测结果,当输入电压Vin1,从外部端子TVP1提供的电压与输出电压Vout1之间的电势差变成预定值时,通过开关控制信号S2使得开关电路SW115变成导通状态。注意的是,在通过开关控制信号S2导通开关电路SW115时通过电压控制信号S1截止开关电路SW118。注意的是,电源控制电路112具有与电压供给控制电路111的构造类似的构造。
[第二示例性实施例]
在下文中参考附图详细地描述应用本发明的第二特定示例性实施例。与第一示例性实施例类似地,在第二示例性实施例中本发明被应用于液晶显示装置的LCD驱动器IC的DAC电路100。第二示例性实施例与第一示例性实施例的不同之处在于电压供给控制电路111和112的构造。因此,将重点放在该不同之处来解释第二示例性实施例。通过第一示例性实施例已经解释其余的共同的构造,并且因此省略它的解释。
图7示出根据第二示例性实施例的电压供给控制电路111的构造。如图7中所示,电压供给控制电路111包括比较检测器CMP111和CMP112、控制电路CNT113、输出放大器AMP114、开关电路SW115、输入端子IN116、以及输出端子OUT117。然而,第二示例性实施例在下述要点方面不同于第一示例性实施例。
比较检测器CMP111监测等于电源电压VDD2的一半的电压(在下文中被称为“基准电压1/2VDD2”)和输出电压Vout1,并且检测它们之间的电势差。然后,它将检测结果输出到控制电路CNT 113。注意,通过使用两个串联连接的电阻器分压电源电压VDD2可以生成基准电压1/2VDD2。此外,基准电压不限于等于电源电压VDD2的一半的电压。即,基准电压可以是等于或者高于1/2VDD2的任何电压。
比较检测器CMP112监测输入电压Vin1和基准电压1/2VDD2,并且检测它们之间的电势差。然后,它将检测结果输出到控制电路CNT113。
控制电路CNT113根据比较检测器CMP111和CMP112的检测结果将电压控制信号S1输出到结点B,并且还将开关控制信号S2输出到开关电路SW115。更加具体地,控制电路CNT113根据比较检测器CMP111的检测结果将具有基本上等于基准电压1/2VDD2的电势电平的电压控制信号S1输出到结点B使得基准电压1/2VDD2和输出电压Vout1之间的电势差被保持不变得更大。然后,当基于比较检测器CMP112的比较结果,输入电压Vin1变得等于或者高于基准电压1/2VDD2时,控制电路CNT113将开关控制信号S2上升到高电平并且因此使开关电路SW115进入导通状态。注意,在这里假定在当开关控制信号S2上升到高电平时停止电压控制信号S1的输出。其它的构造与第一示例性实施例的构造相类似。
图8示出用于解释电压供给控制电路111的操作的时序图。如图8中所示,首先,在时间t21导通电源电压VDD2并且电源电压VDD2的电势逐渐上升。此外,是电源电压VDD2的一半的基准电压1/2VDD2同时上升。这时,控制电路CNT113根据比较检测器CMP111的检测结果升高电压控制信号S1的电势电平使得基准电压1/2VDD2和输出电压Vout1之间的电势差被保持不更宽。结果,输出放大器AMP114输出基本上等于基准电压1/2VDD2的电压作为输出电压Vout1。
同时,比较检测器CMP112检测到从外部端子TVP1没有提供电压或者被提供的电压的电势低。控制电路CNT113基于此检测结果将开关控制信号S2保持为低电平,并且开关电路SW115将结点B从输入端子IN116电气地断开。
接下来,在时间t22,导通从外部端子TVP1提供的电压并且输入电压Vin1的电势逐渐地上升。此外,在时间t13,比较检测器CMP112检测到输入电压Vin1变得等于或者高于基准电压1/2VDD2。控制电路CNT113基于此检测结果将开关控制信号S2升高到高电平,并且开关电路SW115将结点B电气地连接到输入端子IN116。结果,输入电压Vin1,即从外部端子TVP1提供的电压的电势被输入到输出放大器AMP114。因此,输出放大器AMP114输出基本上与从外部端子TVP1提供的电压相等的电压作为输出电压Vout1。
注意,电压供给控制电路112的构造与电压供给控制电路111的构造类似。然而,从外部端子TVP64提供的电压被输入到电压供给控制电路112的输入端子IN116。
图9是示出在通电时执行的根据第二示例性实施例的LCD驱动器IC的顺序的示意图。如图9中所示,首先,在时间t1,逻辑电路10使用的大约4V的电源电压VDD1上升。然后,在时间t2,逻辑电路10开始操作并且因此输出输出信号SGNL。接下来,在时间t21,用于高压驱动器电源的电源电压VDD2上升。这时,如参考图8在上面所解释的,来自于电压供给控制电路111、112的输出电压Vout1、Vout2跟随电源电压VDD2的上升并且输出电源电压VDD2的一半电压。
然后,在时间t22,输入电压Vin1、Vin2,即从外部端子TVP1、TVP64提供的电压的电势上升。在时间t23,输入电压Vin1、Vin2的电势变得等于或者高于电源电压VDD2的一半电压,并且因此开关电路SW115变成导通状态。结果,输出电压Vout1和Vout2分别变成基本上与从外部端子TVP1和TVP64提供的电压相等的电压。结果,从梯形电阻器单元33提供到PchDAC 31的选择电压VP1至VP64的电势也上升以跟随电源电压VDD2的上升。
如上所述,在根据本发明的第二示例性实施例的DAC电路100中,因为电压供给控制电路111和112具有像图8中所示的构造,因此在来自于外部端子的电压VP1、VP64还没有充分地上升的时段期间输出电源电压VDD2的一半电压以跟随电源电压VDD2的上升。然后,当来自于外部端子的电压VP1、VP64变得等于或者高于电源电压VDD2的一半电压时,输出基本上等于电压VP1、VP64的电势。
结果,与第一示例性实施例类似地,即使当来自于外部端子的电压VP1、VP64没有充分地上升时,也能够防止电势差超过背栅和源极之间、背栅和漏极之间、以及背栅和组成PchDAC 31的每个开关电路的PMOS晶体管的栅极之间的耐受电压。
此外,对于电压供给控制电路111和112的唯一要求是将输出电压Vout1和Vout2调节为电源电压VDD2的一半电压以跟随电源电压VDD2的上升。因此,例如,也可以采用图10中所示的构造。如图10中所示,电压供给控制电路111包括比较检测器CMP112、控制电路CNT113、开关电路SW115和SW118、输入端子IN116、以及输出端子OUT117。
在图10中所示的电压供给控制电路111中,当电源电压VDD2上升并且因此基准电压1/2VDD2上升时,监测输出电压Vout1的比较检测器CMP112执行比较以确定输出电压Vout1是否等于或者高于基准电压1/2VDD2并且将确定结果输出到控制电路CNT113。当输出电压Vout1等于或者低于基准电压1/2VDD2时,控制电路CNT113使开关电路SW118进入导通状态并且使开关电路SW115进入截止状态。然后,基于比较检测器CMP112的检测结果,当输入电压Vin1,即从外部端子TVP1提供的电压变成等于或者高于基准电压1/2VDD2时,控制电路CNT113使开关电路SW118进入截止状态并且使开关电路SW115进入导通状态。
即使通过像这样的构造,在来自于外部端子的电压VP1、VP64没有充分地上升的时段期间电压供给控制电路111输出电源电压VDD2的一半电压以跟随电源电压VDD2的上升。然后,当来自于外部端子的电压VP1、VP64变得等于或者高于电源电压VDD2的一半电压时,电压供给控制电路111输出基本上等于电压VP1、VP64的电势。
注意,本发明不限于上述示例性实施例,并且在不脱离本发明的精神和范围的情况下能够进行各种修改。例如,电压供给控制单元210可以被连接在梯形电阻器单元33和PchDAC 31之间,如图11中所示。电压供给控制单元210包括与通过PchDAC 31提供的电压VP1至VP64的数目相同的数目的电压供给控制电路,并且电压供给控制电路中的每一个具有与电压供给控制电路111的构造类似的构造。即使通过像这样的构造,尽管电路尺寸可能增加,但是也能够解决电势差超过背栅和源极之间、背栅和漏极之间、以及背栅和组成PchDAC 31的每个开关电路的PMOS晶体管的栅极之间的耐受电压的问题。
此外,尽管在第一和第二示例性实施例中通过利用梯形电阻器单元33分压从两个外部端子TVP1和TVP64提供的电压来生成选择电压,但是外部端子的数目不限于两个。即,可以通过利用从三个或者更多外部端子提供的电压生成选择电压。
虽然已经按照若干示例性实施例描述了本发明,但是本领域的技术人员将理解本发明能够在所附的权利要求的精神和范围内以各种修改进行实践,并且本发明并不限于上述的示例。
此外,权利要求的范围不受到上述示例性实施例的限制。
此外,注意的是,申请人意在涵盖所有权利要求要素的等同形式,即使在后期的审查过程中对权利要求进行过修改亦是如此。
本领域的技术人员能够根据需要组合第一和第二示例性实施例。

Claims (13)

1.一种D/A转换器电路,该D/A转换器电路用于在显示装置中所提供的驱动电路,该D/A转换器电路包括:
D/A转换器单元,所述D/A转换器单元根据输入数字灰阶信号选择多个选择电压中的一个,并且输出所选择的选择电压作为模拟灰阶信号;
第一电源电压端子,在所述D/A转换器单元的通电时,经由该第一电源电压端子将第一电源电压提供到构成所述D/A转换器单元的晶体管的第一端子;以及
电压供给控制单元,所述电压供给控制单元检测在被用于生成所述选择电压的第二电压和所述第一电源电压之间的电势差,当所述电势差大于预定值时,将与所述第一电源电压相对应的电压输出到构成所述D/A转换器单元的晶体管的第二端子,并且当所述电势差小于所述预定值时,将与所述第二电压相对应的电压输出到构成所述D/A转换器单元的晶体管的第二端子。
2.根据权利要求1所述的D/A转换器电路,其中,
所述电压供给控制单元包括开关电路,
当所述电势差大于所述预定值时,所述电压供给控制单元使所述开关电路进入断开状态并且输出与所述第一电源电压相对应的电压,并且
当所述电势差小于所述预定值时,所述电压供给控制单元使所述开关电路进入导通状态并且输出与所述第二电压相对应的电压。
3.根据权利要求2所述的D/A转换器电路,其中,
所述电压供给控制单元包括控制电路和放大器,所述放大器根据输入电压来输出电压,
所述开关电路被连接在所述放大器的输入和经由其提供所述第二电压的端子之间,并且
当所述电势差大于所述预定值时,所述控制电路使所述开关电路进入断开状态,并且当所述电势差小于所述预定值时,所述控制电路使所述开关电路进入导通状态。
4.根据权利要求1所述的D/A转换器电路,进一步包括梯形电阻器单元,所述梯形电阻器单元生成与所述第二电压相对应的多个选择电压。
5.根据权利要求1所述的D/A转换器电路,其中,
所述预定值是小于所述第一电源电压的一半的值。
6.根据权利要求1所述的D/A转换器电路,其中,
构成所述D/A转换器单元的晶体管是PMOS晶体管。
7.根据权利要求6所述的D/A转换器电路,其中,
所述晶体管的第一端子是背栅电压供给端子。
8.根据权利要求6所述的D/A转换器电路,其中,
所述晶体管的第二端子是漏极端子或者源极端子。
9.根据权利要求1所述的D/A转换器电路,其中,
从所述D/A转换器电路的外部端子提供所述第二电压。
10.根据权利要求1所述的D/A转换器电路,其中,
所述显示装置是液晶显示装置,并且所述驱动器电路是用于点反转驱动的源极驱动器。
11.一种用于在显示装置中所提供的驱动电路的D/A转换器电路的电压供给控制方法,所述电压供给控制方法包括:
当D/A转换器单元通电时,将与第一电源电压相对应的电压提供到构成所述D/A转换器单元的晶体管的第一端子,所述D/A转换器被构造为根据输入数字灰阶信号来选择多个选择电压中的一个并且输出所选择的选择电压作为模拟灰阶信号;以及,
当在被用于生成所述选择电压的第二电压和所述第一电源电压之间的电势差大于预定值时,将所述第一电源电压输出到构成所述D/A转换器单元的所述晶体管的第二端子,而当所述电势差小于所述预定值时,将与所述第二电压相对应的电压输出到构成所述D/A转换器单元的所述晶体管的第二端子。
12.根据权利要求11所述的用于D/A转换器电路的电压供给控制方法,其中,
所述预定值是小于所述第一电源电压的一半的值。
13.根据权利要求11所述的用于D/A转换器电路的电压供给控制方法,其中,
所述晶体管是PMOS晶体管并且所述第一端子是背栅电压供给端子,以及
所述晶体管的第二端子是漏极端子或者源极端子。
CN2010106035646A 2009-12-22 2010-12-22 D/a转换器电路及其电压供给控制方法 Pending CN102118170A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009290360A JP2011135150A (ja) 2009-12-22 2009-12-22 D/aコンバータ回路及びその電圧供給制御方法
JP2009-290360 2009-12-22

Publications (1)

Publication Number Publication Date
CN102118170A true CN102118170A (zh) 2011-07-06

Family

ID=44150430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010106035646A Pending CN102118170A (zh) 2009-12-22 2010-12-22 D/a转换器电路及其电压供给控制方法

Country Status (3)

Country Link
US (1) US20110148945A1 (zh)
JP (1) JP2011135150A (zh)
CN (1) CN102118170A (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937853B2 (ja) * 2012-03-09 2016-06-22 ローム株式会社 ガンマ補正電圧発生回路およびそれを備える電子機器
US9710006B2 (en) * 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9614542B2 (en) * 2014-12-17 2017-04-04 Stmicroelectronics, Inc. DAC with sub-DACs and related methods
US11047904B2 (en) * 2019-03-05 2021-06-29 Nxp Usa, Inc. Low power mode testing in an integrated circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275166B2 (ja) * 2006-11-02 2009-06-10 Necエレクトロニクス株式会社 データドライバ及び表示装置
JP4401378B2 (ja) * 2006-11-02 2010-01-20 Necエレクトロニクス株式会社 デジタルアナログ変換回路とデータドライバ及びそれを用いた表示装置

Also Published As

Publication number Publication date
US20110148945A1 (en) 2011-06-23
JP2011135150A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
US6191779B1 (en) Liquid crystal display device, device for controlling drive of liquid crystal display device and D/A converting semiconductor device
US7298196B2 (en) Level shifter circuit with stress test function
KR100509985B1 (ko) 레벨시프터 회로 및 그것을 구비한 표시장치
KR100296003B1 (ko) 매트릭스형표시장치의구동용전압생성회로
US8456455B2 (en) Display driving device and display apparatus
WO2013098899A1 (ja) シフトレジスタ
KR101809290B1 (ko) 레벨 시프터, 인버터 회로 및 시프트 레지스터
CN104766586A (zh) 移位寄存器单元、其驱动方法、栅极驱动电路及显示装置
CN101290743B (zh) 具有伽马校正的有源式矩阵有机发光二极管的驱动电路
JP2007011346A (ja) 表示装置及び表示装置用駆動装置
CN102118170A (zh) D/a转换器电路及其电压供给控制方法
CN101997537A (zh) 电平移位输出电路和使用其的等离子体显示设备
US8379009B2 (en) Booster power supply circuit that boosts input voltage
US20070200816A1 (en) Decoder circuit having level shifting function and liquid crystal drive device using decoder circuit
CN101847361A (zh) 显示装置驱动电路
CN101222225A (zh) 电平移位电路
US20120013386A1 (en) Level shifter
CN110120196B (zh) 电平转换控制电路与阵列基板驱动电路
US7843151B2 (en) Backlight control circuit with micro controller feeding operating state of load circuit back to pulse width modulation integrated circuit
CN109584763B (zh) 驱动电路和显示面板
CN102545903B (zh) 一种数模转换开关电路
CN113643644B (zh) 电流控制电路、显示面板驱动装置及显示装置
CN113744690B (zh) 电平转换电路、显示驱动电路及硅基有机发光显示装置
US20080252354A1 (en) Output circuit
CN213152036U (zh) 电平移位电路以及集成电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110706