CN102112821A - 用于整栋住宅或建筑物的集成能量系统 - Google Patents

用于整栋住宅或建筑物的集成能量系统 Download PDF

Info

Publication number
CN102112821A
CN102112821A CN2009801289995A CN200980128999A CN102112821A CN 102112821 A CN102112821 A CN 102112821A CN 2009801289995 A CN2009801289995 A CN 2009801289995A CN 200980128999 A CN200980128999 A CN 200980128999A CN 102112821 A CN102112821 A CN 102112821A
Authority
CN
China
Prior art keywords
fluid
temperature
thermoelectric generator
electric power
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801289995A
Other languages
English (en)
Inventor
菲利普·C·瓦茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102112821A publication Critical patent/CN102112821A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种用于住宅或其它建筑物的集成能量系统利用用于能量存储的加热贮存器。贮存器主要通过一个或多个太阳能收集器来加热。系统还包括环境耦合的管道回路,通过该环境耦合管道回路来循环冷却流体,以便从所述冷却流体向环境排热。然后在集成集合的系统中使用来自贮存器和冷却流体的热能,该系统提供空间加热、空间冷却以及发电。通过利用贮存器和冷却流体之间的温差的热电发电机来产生电力。系统可以包括用于家用热水的加热和存储,并且可以将过剩的电力用于制氢。可以提供备用的加热和电力系统。

Description

用于整栋住宅或建筑物的集成能量系统
本申请要求2008年6月10日申请的名称为“Combined Heat and Power and Hydrogen Generation for Whole Home or Building with Ground Heat Exchanger Using Thermoelectric Seebeck Modules”的美国临时申请61/060,377的优先权,该申请的整体内容为了所有目的通过引用结合于此。名称为“Combination outdoor portable heating pad and electricity generator”的临时美国专利申请60/306,274为了所有目的也通过引用结合于此。
背景技术
典型的住宅或其它建筑物包括几个能量系统。例如,建筑物可能连接到电力网,并且接收在遥远的发电厂产生的电力。可以向建筑物供应天然气,用于空间加热和水加热。许多的这些传统能量系统都依靠不可再生的且日益昂贵的化石燃料。
已提议了替代的能量系统。然而,先前的替代能量系统已逐渐演化。进而,许多替代电力系统依赖光电池来从阳光中产生电力,并且将得到的电能存储在电池中。虽然光电系统的日常运行成本低,但是这些系统通常具有高的安装成本,并且电池具有有限的寿命,需要昂贵的定期更换。因为通过避免对来自电池的大于20%的存储能量进行放电来优化电池的寿命,所以电池系统通常还尺寸过大。
发明内容
在一个实施例中,用于建筑物的集成能量系统包括:至少一个热能贮存器;至少一个太阳能收集器,其向所述贮存器供热;以及至少一个环境耦合管道回路,通过所述环境耦合管道回路来循环冷却流体,以便从所述冷却流体向环境排热。该系统进一步包括:热电发电机,其从所述热能贮存器和所述冷却流体之间的温差中产生电力;以及至少一个循环加热单元,通过所述循环加热单元来管道输送加热的流体,向所述建筑物中的至少一个空间提供空间加热,加热的所述流体从所述热能贮存器中取得其热量。该系统还可以包括:至少一个循环冷却回路,通过所述循环冷却回路来管道输送所述冷却流体中的至少一些,向所述建筑物中的至少一个空间提供空间冷却。在一些实施例中,该系统进一步包括:备用加热器,其向所述热能贮存器供热,补充所述太阳能收集器。该备用加热器可以从化石燃料取得热量。
在一些实施例中,该系统包括:热水罐,其指定供家用热水使用。该系统可以进一步包括:备用家用热水器,当可用能量不足时,所述备用家用热水器向指定供家用热水使用的水供热。该备用家用热水器可以包括至少一个立即响应(on-demand)加热器。该备用家用热水器可以从化石燃料取得热量。
在一些实施例中,该系统进一步包括建筑物内的直流电力网。在一些实施例中,该系统包括:逆变器,其将来自所述热电发电机的直流电力转换成交流电力。
在一些实施例中,所述热电发电机包括多个发电排(bank),并且所述集成能量系统进一步包括:热电发电机控制器;以及矩阵开关,其在所述热电发电机控制器的控制之下,配置对所述发电排的相互连接。
在一些实施例中,该系统进一步包括:负载控制器,其部分地基于由其它负载所消耗的电力量来至少临时地防止至少一个负载的运行。在一些实施例中,该系统包括到电力网的备用连接,该备用连接向所述建筑物提供电力,以补充所述热电发电机。
在一些实施例中,该系统包括氢气发生器,其由来自所述热电发电机的电力供电。该系统还可以包括备用家用热水器,其中,所述备用家用热水器从由所述氢气发生器产生的氢气中取得热量。
在一些实施例中,所述热能贮存器包括热水罐。热能贮存器中的介质可以由太阳能收集器直接加热。热能贮存器中的介质可以通过运送由太阳能收集器加热的第二介质的热交换器来加热。
在一些实施例中,通过所述至少一个循环加热单元循环的加热流体通过热交换器从热能贮存器中取得其热量。所述至少一个环境耦合管道回路可以包括深接地耦合管道回路。所述至少一个环境耦合管道回路可以包括浅接地耦合管道回路。所述至少一个环境耦合管道回路可以包括空气耦合管道回路。
在另一个实施例中,一种操作建筑物中的能量系统的方法包括:使用太阳能收集器加热热能贮存器。通过循环加热回路循环从热能贮存器中取得其热量的加热流体,向建筑物中的至少一个空间提供空间加热。通过环境耦合管道回路循环冷却流体,以便从冷却流体向环境排热,并且通过经受贮存器和冷却流体之间温差的热电发电机产生电力。
在一些实施例中,该方法进一步包括:通过循环冷却回路循环所述冷却流体中的至少一些,向所述建筑物中的至少一个空间提供空间冷却。该方法可以包括:使用由所述热电发电机产生的电能来产生氢气。在一些实施例中,该方法包括:与从所述热能贮存器分开地存储指定供家用热水使用的水。在一些实施例中,该方法进一步包括:用来自所述热能贮存器的热量来加热指定供家用热水使用的水。在一些实施例中,该方法包括:使用热电发电机控制器,动态配置对所述热电发电机内的热电模块的相互连接。在一些实施例中,该方法包括:部分地基于由其它负载所消耗的电力量来临时地防止至少一个电力负载的运行。在一些实施例中,通过环境耦合管道回路循环冷却流体包括:通过接地耦合管道回路来循环冷却流体。
在一个实施例中,一种用于根据负载的需要来自动配置热电发电系统的设备包括:热电发电机,其在经受温差时产生电力;以及至少一个可配置部件,其影响由所述热电发电机产生的电力的至少一个方面。监视器感测由热电发电机产生的电力的至少一个方面,并且提供表征由热电发电机产生的电力的至少一个信号。控制器配置成接收所述至少一个信号,并且根据通过所述热电发电机向其供电的负载的需要,基于所述至少一个信号来配置所述至少一个可配置部件。该控制器可以包括微处理器和存储器,所述存储器保持可由所述微处理器执行的指令,以接收所述至少一个信号,并且根据通过所述热电发电机向其供电的负载的需要,基于所述至少一个信号来配置所述至少一个可配置部件。
温差可以通过加热流体的供应和相对冷的散热器来提供,并且所述至少一个可配置部件可以包括阀门,该阀门在所述控制器的控制之下调整加热流体的流速。温差可以通过加热流体的供应和相对冷的散热器来提供,并且所述至少一个可配置部件可以包括阀门,该阀门在所述控制器的控制之下调整加热流体的温度。温差可以通过相对热的源和相对冷的流体的供应来提供,并且所述至少一个可配置部件可以包括阀门,该阀门在所述控制器的控制之下调整相对冷的流体的流速。温差可以通过相对热的源和相对冷的流体的供应来提供,并且所述至少一个可配置部件可以包括阀门,该阀门在所述控制器的控制之下调整相对冷的流体的温度。
温差可以通过由太阳能收集器加热的流体的供应来提供,并且所述至少一个可配置部件可以包括太阳能收集器调整机构,该太阳能收集器调整机构调整太阳能收集器的能力以传热给加热流体。太阳能收集器可以是平板太阳能收集器,并且太阳能收集器调整机构可以调整平板太阳能收集器之上的阴影的位置。太阳能收集器可以是集中式太阳能收集器,并且太阳能收集器调整机构可以调整集中式太阳能收集器的瞄准或聚焦。
控制器可以进一步配置成产生第二信号,所述第二信号指示由热电发电机产生的电力的状态。第二信号可以指示热电发电机正在产生的电力的量。第二信号可以指示热电发电机不能根据负载的需要而产生电力。
热电发电机可以包括至少两个发电排,每个发电排包括至少一个热电模块,每个发电排产生由所述热电发电机产生的电力的一部分。所述至少一个可配置部件可以包括矩阵开关,该矩阵开关在所述控制器的控制之下配置发电排的相互连接。配置发电排的相互连接可以包括断开至少一个发电排。配置发电排的相互连接可以包括将至少一个发电排与至少一个其它发电排串联地放置。配置发电排的相互连接可以包括将至少一个发电排与至少一个其它发电排并联地放置。配置发电排的相互连接可以包括串联连接和并联连接组合地放置发电排。配置发电排的相互连接可以包括配置发电排的相互连接以维持热电发电机的期望输出电压。
每个发电排可以包括至少两个热电模块,每个热电模块产生由它的各个发电排产生的电力的一部分。所述至少一个可配置部件可以包括矩阵开关,该矩阵开关在所述控制器的控制之下配置发电排之内的模块的相互连接。在一些实施例中,热电发电机包括至少两个发电排,其中每个发电排产生由所述热电发电机产生的电力的一部分;每个发电排包括至少两个热电模块,其中每个热电模块产生由它的各个发电排产生的电力的一部分;每个发电排包括模块级别的矩阵开关,该矩阵开关在所述控制器的控制之下配置它的各个发电排之内的模块的相互连接;并且该设备进一步包括发电排级别的矩阵开关,该矩阵开关在所述控制器的控制之下配置发电排的相互连接。
在另一个实施例中,一种用于根据负载的需要来自动配置热电发电系统的方法包括:通过控制器接收至少一个信号,所述至少一个信号表征在经受温差时产生电力的热电发电机所产生的电力;以及通过所述控制器接收通过所述热电发电机向其供电的负载的需要的指示。该方法进一步包括:基于表征由所述热电发电机产生的电力的所述至少一个信号,并且基于通过所述热电发电机向其供电的负载的需要的所述指示,通过所述控制器配置至少一个可配置部件,所述至少一个可配置部件影响由所述热电发电机产生的电力的至少一个方面。
温差可以通过加热的流体和相对冷的散热器来提供,并且配置所述至少一个可配置部件可以包括调整阀门,该阀门调整加热流体的流速。温差可以通过加热的流体和相对冷的散热器来提供,并且配置所述至少一个可配置部件进一步可以包括调整阀门,该阀门调整加热流体的温度。温差可以通过加热流体的供应和相对冷的散热器来提供,其中加热流体的供应通过太阳能收集器来加热,并且配置所述至少一个可配置部件可以包括调整太阳能收集器的能力以传热给加热流体。
热电发电机可以包括至少两个发电排,每个发电排包括至少一个热电模块,每个发电排产生由所述热电发电机产生的电力的一部分,并且配置所述至少一个可配置部件可以进一步包括控制矩阵开关以配置发电排的相互连接。热电发电机可以包括至少两个热电模块,每个模块产生由所述热电发电机产生的电力的一部分,并且配置所述至少一个可配置部件可以进一步包括控制矩阵开关以配置热电模块的相互连接。热电发电机可以包括至少两个发电排,每个发电排包括至少两个热电模块,其中每个发电排产生由所述热电发电机产生的电力的一部分,其中每个热电模块产生由它的各个发电排产生的电力的一部分,并且配置所述至少一个可配置部件可以进一步包括控制模块级别的矩阵开关以配置所述热电模块中的至少两个的相互连接,并且控制发电排级别的矩阵开关以配置发电排的相互连接。
在另一个实施例中,一种用于将加热流体的贮存器中存储的热能转换成电能的方法包括:将加热的流体从所述贮存器传递到热电发电机的热侧;以及冷却所述热电发电机的冷侧。热电发电机包括多个热电模块。该方法进一步包括:监视由所述热电发电机产生的输出电压;以及随着加热的流体的温度波动,重新配置所述热电模块的相互连接,以将所述输出电压维持在期望的范围之内。
该方法还可以包括使用太阳能收集器来加热所述加热的流体。多个热电模块可以分组成发电排,并且重新配置所述热电模块的相互连接以将所述输出电压维持在期望的范围之内可以包括重新配置发电排的相互连接。
在另一个实施例中,一种用于将电力特性维持在预定范围之内的系统包括:监视器,其测量由热电发电机向负载供应的电力的特性;以及控制器,其接收来自所述监视器的信号。该信号传达了电力特性的测量结果,并且控制器还包括针对电力特性的预定期望范围的规范。该系统还包括具有多个输入接头的矩阵开关,输入终端接纳来自热电发电机之内的多个热电模块的接头,并且所述矩阵开关进一步包括一组输出终端,通过该组输出终端将由所述热电发电机产生的电力传递到负载。所述控制器配置成将电力特性的测量结果与预定范围相比较,并且重新配置所述输入终端和所述输出终端之间的相互连接,以将电力特性保持在预定范围之内。预定特性可以是电压。所述控制器进一步可以包括微处理器,该微处理器执行计算机可读介质上存储的指令。
在一个实施例中,一种用于根据温差产生电力的热电发电机包括多个热电模块。每个热电模块具有第一侧和第二侧,并且每个热电模块当在它的各自第一侧和第二侧之间经受温差时产生电力。热电发电机还包括由第一流体向其供热的多个第一热敏元件和由第二流体从其去热的多个第二热敏元件。第一和第二热敏元件排列成交替的第一和第二热敏元件的堆叠,该堆叠在每个相邻成对的第一和第二热敏元件之间具有多个热电模块中之一。每个热电模块在其第一侧与第一热敏元件中之一相接触,并且在其第二侧与第二热敏元件中之一相接触,使得没有任何热敏元件的面接触多于一个的热电模块。第一和第二热敏元件中的每一个可以是由导热材料制成的块,并且每个块可以进一步包括通过块的通道,各自的流体流过所述通道。导热材料可以是铝。每个块可以是普通矩形,并且每个通道可以一般在对角线上横穿其各自的块。每个通道可以在每个末端包括导入部,每个导入部为普通圆柱形并且具有比通道的中部大的尺度。第一和第二热敏元件可以是机械可互换的。
在一些实施例中,热电发电机进一步包括夹具,该夹具对热电模块与第一和第二热敏元件的堆叠保持加压。在一些实施例中,热电发电机包括:第一流体入口歧管,其向第一热敏元件分配第一流体;以及第一流体出口歧管,其从第一热敏元件收集第一流体。在一些实施例中,热电发电机进一步包括:第二流体入口歧管,其向第二热敏元件分配第二流体;以及第二流体出口歧管,其从第二热敏元件收集第二流体。在一些实施例中,热电发电机包括:第一流体入口歧管,其向第一热敏元件分配第一流体;第一流体出口歧管,其从第一热敏元件收集第一流体;第二流体入口歧管,其向第二热敏元件分配第二流体;以及第二流体出口歧管,其从第二热敏元件收集第二流体。第一流体入口歧管和第二流体出口歧管可以在热电模块与第一和第二热敏元件的堆叠的一侧彼此相邻地放置。
在一些实施例中,热电发电机进一步包括一个或多个柔性管,管中的至少一个将歧管中的每一个与它的各自第一或第二热敏元件中的每一个相连接。柔性管中的至少一个可以压配合到它的各自歧管和热敏元件中。第一流体可以是水。第二流体可以是水。
在另一个实施例中,一种制作用于根据温差产生电力的热电发电机的方法包括:提供多个热电模块,每个热电模块具有第一侧和第二侧,并且每个热电模块当在它的各自第一侧和第二侧之间经受温差时产生电力。该方法进一步包括:提供配置成从第一流体接收热的多个第一热敏元件,并且提供配置成通过第二流体进行冷却的多个第二热敏元件。第一和第二热敏元件排列成交替的第一和第二热敏元件的堆叠,该堆叠在每个相邻成对的第一和第二热敏元件之间具有热电模块中之一。每个热电模块在其第一侧与第一热敏元件中之一相接触,并且在其第二侧与第二热敏元件中之一相接触,使得没有任何热敏元件的面接触多于一个的热电模块。在一些实施例中,该方法进一步包括提供第一流体入口歧管,其配置成接收第一流体并向多个第一热敏元件分配第一流体。该方法可以进一步包括提供第二流体入口歧管,其配置成接收第二流体并向多个第二热敏元件分配第二流体。该方法可以进一步包括提供第一流体出口歧管,其配置成从多个第一热敏元件接收第一流体并将第一流体从热电发电机运走。该方法可以进一步包括提供第二流体出口歧管,其配置成从多个第二热敏元件接收第二流体并将第二流体从热电发电机运走。该方法可以进一步包括将每个热敏元件连接到流体入口歧管并连接到流体出口歧管。该方法可以进一步包括夹住第一热敏元件、第二热敏元件和热电模块的堆叠,以便该堆叠保持加压。
附图说明
图1示出了根据第一实施例的用于建筑物的集成能量系统。
图2更加详细地示出了根据另一个实施例的图1的系统的一部分。
图3示出了热电模块的操作的示意图。
图4图示了根据本发明实施例的系统。
图5图示了根据另一个实施例的系统。
图6图示了可配置部件的实施例。
图7图示了使用用于加热向热电发电机供应的流体的太阳能的实施例。
图8图示了其中对热电发电机的输出进行电气调整的实施例。
图9图示了热电发电机中的发电排的示例相互连接。
图10图示了热电发电机中的发电排的另一个示例相互连接。
图11图示了热电发电机中的发电排的另一个示例相互连接。
图12图示了矩阵开关的操作。
图13示出了配置成以图9中示意性示出的布置来放置发电排的图12的矩阵开关。
图14示出了配置成以图10中示意性示出的布置来放置发电排的图12的矩阵开关。
图15示出了配置成以图11中示意性示出的布置来放置发电排的图12的矩阵开关。
图16图示了根据另一个实施例的系统,其包括模块级别的矩阵开关和发电排级别的矩阵开关两者。
图17图示了根据本发明实施例的方法的流程图。
图18示出了用于向单个热电模块供应温差的一个示例布置。
图19示出了在单个热的热敏元件和单个冷的热敏元件之间放置两个不同高度的热电模块的一种可能后果。
图20图示了根据本发明的示例实施例的热电发电机。
图21示出了根据另一个实施例的热电发电机的示意图。
图22示出了图21的热电发电机的斜视图。
图23示出了根据实施例的热敏元件的斜视图。
图24以横截面的方式示出了图23的热敏元件。
图25图示了根据另一个实施例的热敏元件。
图26A和26B图示了根据实施例的在柔性管和热敏元件之间进行连接的方法。
图27A-27D图示了根据本发明实施例的制造歧管的几种方式。
图28图示了根据另一个示例实施例的热电发电机。
图29图示了根据还有另一个示例实施例的热电发电机。
图30图示了热电发电机在系统中的使用,其中,使用太阳能来加热一种流体,并且使用接地耦合的管道回路来冷却另一种流体。
具体实施方式
用于住宅或其它建筑物的集成能量系统利用用于能量存储的加热贮存器。贮存器主要通过一个或多个太阳能收集器来加热。系统还包括至少一个环境耦合的管道回路,通过该环境耦合管道回路来循环冷却流体,以便从所述冷却流体向环境排热。然后在集成集合的系统中使用来自贮存器和冷却流体的热能,该系统提供空间加热、空间冷却以及发电。通过利用贮存器和冷却流体之间的温差的热电发电机来产生电力。系统可以包括用于家用热水的加热和存储,并且可以将过剩的电力用于制氢。可以提供备用的加热和电力系统。
随后的描述仅提供了(一个或多个)优选示例实施例,而不打算限制本公开的范围、适用性或配置。更确切地,(一个或多个)优选示例实施例的随后描述将会向本领域技术人员提供用于实施优选示例实施例的使能描述。要理解的是,可以在元件的功能和布置方面进行各种改变,而不背离如所附权利要求所述的精神和范围。
在以下描述中给出了特定细节以提供对实施例的透彻理解。然而,本领域技术人员将会理解的是,可以在不使用这些特定细节的情况下来实践实施例。例如,可以用框图来示出电路,以便不用不必要的细节使实施例模糊。在其它实例中,可以在没有不必要的细节的情况下示出众所周知的电路、过程、算法、结构和技术,以避免使实施例模糊。
还要注意的是,可以将实施例描述为过程,该过程被描绘为程序框图、流程图、数据流程图、结构图或框图。尽管流程图可以将操作描述为顺序过程,但是许多的操作可以并行或同时执行。另外,可以重新安排操作的顺序。过程在它的操作完成时结束,但是可以具有未包括在附图中的另外步骤。过程可以对应于方法、函数、工序、子例程、子程序等。当过程对应于函数时,它的结束对应于该函数返回到调用函数或主函数。
术语“机器可读介质”包括但不限于便携式或固定的存储装置、光学存储装置、无线信道以及能够存储、包含或运载(一个或多个)指令和/或数据的各种其它介质。代码段或机器可执行指令可以表示工序、函数、子程序、程序、例程、子例程、模块、软件包、类或者指令、数据结构或程序语句的任何组合。通过传递和/或接收信息、数据、自变量、参数或存储内容,可以将代码段耦合到另一个代码段或硬件电路。经由包括存储器共享、消息传递、令牌传递、网络传输等的任何适当手段,可以传递、转发或传输信息、自变量、参数、数据等。
进而,实施例可以通过硬件、软件、固件、中间件、微代码、硬件描述语言或其任意组合来实现。当用软件、固件、中间件或微代码来实现时,用于执行必要任务的程序代码或代码段可以存储在机器可读介质中。(一个或多个)处理器可以执行必要的任务。
先前的替代能量系统已逐渐演化。例如,在典型的“太阳能”住宅中,通过具有电池存储的光电池来提供发电,同时通过对水的直接太阳能加热来提供家用热水。在通过燃烧天然气、丙烷、木材或别的燃料来提供补充备用的情况下,可以通过无源太阳能设计技术来增强空间加热。可以提供也可以不提供空间冷却。这个用于建立能量管理的逐步方法是复杂的,并且涉及许多不同的技术。通过光致电压进行的发电需要与用于水加热的太阳能收集器相比不同的太阳能收集器,并且需要昂贵的电池,该电池需要定期更换。电池通常尺寸过大,以便通过避免深度放电来使它们的可用寿命最大化。
本发明的实施例开拓了通过集成建筑物中的各种能量系统而成为可能的效率。单个太阳能收集器(或收集器阵列)对热能贮存器进行加热。热能贮存器可以是简单的热水罐,其依靠升高的水温存储热能。在其它实施例中,热能贮存器可以包括别的介质,例如共晶或相变介质如芒硝,其存储主要是盐在固相和液相之间的变化中的能量。
热能贮存器在系统中用于多种目的。热能可以直接用于空间和家用水加热。使用温度升高的贮存器作为由热电发电机利用的温差的“热”侧,通过热电发电机来提供发电。通过冷却流体提供温差的另一个“冷”侧,该冷却流体优选地是水,其通过环境耦合的管道回路进行循环,该管道回路经由它与大地或大气的热接触来冷却流体。冷却流体也可以用于循环空间冷却。
这种系统的优点对于本领域设计人员而言将会是明显的。能量存储通过单个贮存器来提供,该贮存器可以像水罐一样简单。针对能量存储不需要苛刻或危险的化学品,并且不需要昂贵的电池更换。通过单个太阳能收集器或收集器阵列来供能给空间加热、家用水加热和发电。空间冷却是发电的副产品。与传统的用于替换能量系统的逐步方法相比,这样的系统更加简单、较少昂贵并且更加灵活。
图1示出了根据第一实施例的用于建筑物109的集成能量系统100。在示例系统100中,使用来自太阳104的能量,太阳能收集器101加热管103中的流体。在这个例子中,太阳能收集器101是集中式太阳能收集器如抛物线槽,其将太阳辐射集中在管103上,并且在电机102的控制之下跟踪太阳的移动。本领域技术人员将会认识到的是,可以使用其它种类的太阳能收集器,包括平板收集器或热管收集器。取决于系统的设计容量,可以使用一个收集器或收集器阵列。目前,可能需要许多平方米的收集器面积来在系统100中提供足够的发电容量,但可以预料的是,热电材料的效率方面的未来改进会显著减少需要的收集器面积。
管103中的流体被加热并通过泵(未示出)进行循环,将热能运送到热能贮存器105。管103中的工作流体可以是水、天然或合成的油或者别的种类的流体。贮存器105包含存储介质。介质简单地可以是水。如果来自贮存器105的水也通过管103循环,那么水就直接通过太阳能收集器101加热。代替地,贮存器105中的介质可以被间接加热,例如通过热交换器加热。例如,如果管103中的工作流体是油而贮存器105中的存储介质是水,则水可以通过热交换器从油取得热量。如果贮存器105中的存储介质是水,则估计1000加仑的贮存器将会足以用于典型的居住应用。优选地,使管103中的流体进行循环的泵只有在必要时才运行,以维持贮存器105的温度。例如,在夜里当从太阳能收集器101没有有效的流体加热可用时,泵可以被关闭。
贮存器105中的存储介质可以是别的种类的介质。在一些实施例中,贮存器105中的介质可以是相变介质如芒硝,其依靠从固体到液体的相变来有效地存储热能。可以使用包括其它相变介质的其它介质。
贮存器105为系统提供了简单、可靠且无需维护的能量存储。存储介质不需要如同电池的情况那样被改变或保养。
来自贮存器105的热能可以直接或间接用于建筑物中的各种加热需要。例如,如果贮存器105中的介质是水,则可以从贮存器105汲取水供家用热水使用。在这种情况下,需要时可以用额外的补给水来补充贮存器105,以代替被抽出用掉的水。在本公开中,“家用热水”指的是用于洗涤、洗澡、烹调或其它处理等的加热的水,无论系统100是安装在住宅、商用还是工业用建筑物中。家用水通常在使用后被丢弃到生活污水管道。“补给水”是来自外部水源如市政供水设施、当地水井或其它来源的水。
优选地,尤其是在贮存器105中使用除了水之外的介质的情况下,家用热水可以通过使用热交换器而从贮存器105加热,并且可选地可以存储在分开的罐106中。以独立温度控制的方式进行的分开存储可能是有利的,因为出于安全性和实用性的原因,应当在窄的温度范围之内存储家用水。贮存器105中的介质可以在系统100的运行期间经历大的温度波动,并且可以达到对于供家用热水使用而言不安全的温度。
可以使用类似的布置用于供空间加热使用的水。来自贮存器105的水可以被循环到循环加热回路107,该循环加热回路107可以包括护壁板、底层地板、帷幔或其它管道和装置器,它们主要通过对流、辐射或两者向建筑物中的空间供热。代替地,通过循环加热回路107循环的流体可以通过热交换器从贮存器105得到它的热量。可选地,可以为用于循环加热的水或其它流体提供分开的存储罐108,以启用分开的温度控制。在一些实施例中,用于循环加热的流体可以是除了纯水之外的流体,例如是水和防冻剂的混合物。
可选地,可以向系统中的加热贮存器中的一个或多个提供备用加热,所述加热贮存器中的一个或多个包括贮存器105以及任何另外的存储罐如罐106和107中的任何一个、任意组合或全部。备用加热可以采用燃烧化石燃料的锅炉或其它种类的加热器的形式,或者可以是别的种类的加热器。在没有足够的阳光来维持贮存器105的足够温度的延长期期间,或者在临时客人增加了对建筑物109的能量需求的时间期间,可能需要备用加热。
如果向贮存器105供应备用加热,那么单个备用加热器可能就足够了。代替地,可以针对家用热水罐106和空间加热存储罐108(如果它们存在的话)提供分开的备用加热单元。在还有另一个吸引人的选择方案中,用于家用热水的备用加热可以是“立即响应”式热水器,它只在使用时才加热水,而不是将热水罐维持在规定的温度。立即响应热水器可以放置中心位置,并且供家用热水使用的热水遍及建筑物,或者多个立即响应热水器可以放置在使用热水的多个地点,比如每个浴室和厨房中放置一个。
在系统100的另一个方面中,水或别的流体被泵(未示出)循环通过环境耦合的管道回路如深接地耦合管道回路110。深接地耦合管道回路110依靠它与大地的热接触来冷却这种“冷却流体”。热从冷却流体向大地排出,从而将冷却流体维持在相对冷的温度。在足够的深度处,通常在地表以下大约五英尺(1.6米)或更多的深度处,在美国的许多地方大地维持相对恒定的温度,例如大约54-57℉(12-14℃)。代替地或者另外,如下面更加详细地描述的那样,可以使用其它环境耦合管道回路如浅接地耦合管道回路122或空气耦合管道回路123。可选地,提供用于冷却流体中的一些的存储罐111。冷却流体也可以用于多种目的。在一种用途中,冷却流体中的一些在需要时被循环通过循环冷却回路112,该循环冷却回路112可以包括护壁板、底层地板、帷幔或其它管道和装置器,它们主要通过对流、辐射或两者从建筑物中的空间中去热。估计100英尺长的槽中盘绕的1000英尺的管路可以提供一吨(12,000BTU/hr,或者3.516kW)的冷却容量。可以使用垂直冷却井来节省空间,但是有略微较高的安装成本。优选地,使冷却流体循环的泵只有在需要时才运行,以在向循环冷却回路112供应的流体中维持相对冷的温度,并且用于如下所述的发电。典型地,流体在任何一个时刻只会被循环通过循环冷却回路112和循环加热回路107中的一个。
通过热电发电机113来提供发电。使用通过许多材料展示的热电效应,热电发电机从温差中产生电力。典型的热电发电机包括排列成热电偶的许多热电元件。每个热电元件可以是导体或半导体元件,例如是成片的n型和p型半导体材料。元件在热电模块中电串联连接并且热并联连接。模块产生直流(DC)电压,该直流电压是使用的材料的性质、温差、发电机运行的绝对温度、模块的尺寸和其它因素的函数。下面给出关于热电发电机的更多信息。热电发电机可以具有200,000小时的寿命期限,使得它适合于长期使用而不用昂贵的更换。
在系统100中,贮存器105和循环通过环境耦合管道回路的冷却流体之间的温差被利用来发电。从贮存器105汲取或者被贮存器105加热的流体可以被循环到热电发电机113的“热”侧,同时冷却流体被循环到热电发电机113的“冷”侧。在一些实施例中,对于住宅用途而言,热电发电机113在经受110℉(61℃)的温差时产生大约1kW。这个功率量足以供应大多数的保守管理的家庭的电力需要。通过向贮存器105添加额外容量并向热电发电机113添加额外热电模块,可以在需要时按比例扩大系统。
虽然深接地耦合管道回路110是可以用于对冷却流体进行冷却的环境耦合管道回路的一个例子,但是系统还可以通过使用其它种类的环境耦合回路来进一步优化。例如,可以提供浅接地耦合回路122。浅接地耦合管道回路122例如可以放置在地表的大约1.5英尺(0.5m)之内。在冬天期间,地表附近的土壤温度可以显著冷于地表以下几英尺维持的相对恒定的温度。在一些地方,地面在冬天期间甚至可能冷冻到几英尺的深度。在当地表温度较冷时的时间期间,如果冷却流体被循环通过浅接地耦合管道回路122而不是深接地耦合管道回路110,则可以增加热电发电机113所经历的温差,并因此还可以增加热电发电机113所产生的电力量。类似地,代替地或者另外,可以提供空气耦合管道回路123。在极冷天气的时间期间,暴露于大气的空气耦合管道回路123可能经历甚至比浅接地耦合管道回路122更冷的温度,并且因此可以将冷却流体冷却到甚至更冷的温度,以便通过使冷却流体循环通过空气耦合管道回路123而甚至进一步增加热电发电机113所产生的电力量。
当任何的环境耦合管道回路有望经历零度以下的温度时,被循环通过该回路的冷却流体优选地不是纯水,而可以是与防冻剂混合的水,或者是其它种类的流体。不一定所有的环境耦合管道回路都存在或者运送同样的冷却流体,只要冷却流体可以有效地从热电发电机113去热。典型地,冷却流体可以一次只被循环通过一个环境耦合管道回路。在一个场景中,基于每个环境耦合管道回路所经历的温度,系统控制器在任何特定时间选择哪一个环境耦合管道回路来使用。
因为热电发电机产生DC,所以系统100可以包括尽可能多的能以DC功率运行的器具和其它电气设备。例如,照明设备114可以基于发光二极管(LED),用于来自DC功率的非常有效的光产生。以DC功率运行的许多其它器具都是可用的,并且可以预料的是,可用的DC供电的器具数目在未来将会成长。对于可以利用DC功率的那些负载而言,系统100优选地包括遍及建筑物109的DC电源总线。
在这期间,一些负载可能仍然最好利用交流(AC)功率,例如电冰箱115。系统100因此可以包括一个或多个逆变器116,该逆变器116将热电发电机113的DC输出转换成AC功率。在一些实施例中,可以使用多个小的逆变器来替换单个大容量的逆变器,以便在逆变器故障的情况下,容量减少的系统仍然可以运行,直到发生故障的逆变器被修好或被更换为止。
采用到电力网如公用事业的接头117的形式,还可以向系统100的电气部分提供备用。代替地,为了紧急使用,或者在电力使用增加的时间期间,例如当招待客人时,可以在接头116处连接本地汽油动力的发电机或其它发电机。
如从上面的讨论中明显的那样,系统100提供了许多有用的优点,包括使用存储在贮存器105中的能量用于多种目的,包括既加热又发电。因为能量存储在贮存器105中,所以即使在晚上,或者在当很少或没有太阳辐射可用时的恶劣天气期间,加热、冷却和发电也可以继续。
图1还示出了根据其它实施例的系统100的其它可选特征。当电力从热电发电机113可用时,热电发电机113可以向氢气发生器118供电,该氢气发生器118借助于电解或别的过程例如从补给水中生成氢气。在一个操作模式下,可以在建筑物109的电力需求低的夜间将电力递送到氢气发生器。来自氢气发生器118的氢气可以被供应到氢气动力车119,或者可以被存储用于其它用途,例如在需要备用加热时加热家用热水。这样一来,氢气发生器118和相关的存储就可以提供在当贮存器105处在其热容量处并且剩余的电力从热电发电机113可用时的时间期间利用的额外能量存储。
因为热电发电机113具有有限的功率输出能力,所以对建筑物109的电力需求进行管理可能是有帮助的。在一些实施例中,可以提供负载控制器120,该负载控制器120管理某些器具的运行。负载控制器120例如可以是计算机化的设备,其监视各种器具以及其它负载的运行,并且控制它们对电力的可用性。效果可能是某些负载考虑到其它负载的时间转移,以便在需要时使电力可用,但是器具的总体运行仍然令人满意。在负载控制器120的操作的一个简单例子中,当微波炉121处于运行中时,阻止电冰箱115运行。微波炉是用户通常想要短时间立刻使用的器具。电冰箱间歇地运行,并且住宅中的人常常甚至不知道电冰箱是否是在运转。电冰箱的运行的短期延迟对其性能具有可忽略的影响。延迟电冰箱115的运行直到微波炉121完成为止防止了同时产生电力需求,同时对任一器具具有很少或者没有察觉到的影响。潜在地,这种布置减少了建筑物109的峰值电力需求。可以预想许多其它的器具定时、延迟或联锁策略。例如,可以在电灶处于运行中的同时阻止干衣机的运行,或者可以减少照明设备的强度以释放用于干衣机运行的电力容量。许多其它例子也是可能的。在其它实施例中,某些器具可以被限制到只在一天的某些时间期间运行。例如,干衣机可能只被允许在上午10点和下午3点之间运行,这时最大的太阳辐射通常可用。
图2更加详细地示出了根据另一个实施例的系统100的一部分。随着从贮存器105汲取热能,无论是用于加热还是用于发电,跨越热电发电机113的温差都下降,因而由热电发电机113产生的电压也下降。某些负载可能具有它们必须在其间运行的特定电压范围。例如,逆变器116可能需要它的输入电压处在某个范围之内,或者DC器具可能在被供应以规定电压范围之内例如48伏中的36伏附近的电力时运行最有效。在图2的实施例中,热电发电机113包括热电元件的多个发电排201。每个发电排产生从热电发电机113可用的电力的一部分,并且在引线209的集合中之一上输出其电力。矩阵开关206动态配置发电排的相互连接,以在主输出引线210处维持某种电力特性。例如,当充分的温差可用时,矩阵开关可以并联配置发电排,但是当温差下降使得每个发电排仅产生它在充分的功率下产生的电压的一小部分时,矩阵开关206可以串联连接发电排,以便将输出电压维持在需要的电平之内。矩阵开关206在需要时还可以串联和并联组合地将发电排相互连接。
监视器202感测在主输出引线210处产生的电力的特征,并且将信号203发送到控制器204,该控制器204然后发信号205给矩阵开关206以改变其相互连接。监视器202可以使用感测接头207来测量在引线210处产生的电压,可以使用电流探针208来测量供应的电流,或者可以测量某些其它特性,据此做出关于发电排的相互连接的决定。
以这种方式,几乎所有的存储在贮存器105中的能量都可以被提取用于发电。(尽管随着贮存器105的温度下降,可用的电力量可能下降。)通过比较,电池可以被限制到仅供应它们存储的能量的20%。下面给出关于矩阵开关206的操作的更多细节。
热电发电机的自动配置
热电模块是利用了许多材料展示的热电效应的装置。图3示出了热电模块300的操作的示意图。诸如模块300之类的热电模块具有如下性质:当电流例如在终端301处穿过模块时,模块的一个侧面302被冷却,而另一个侧面303则被加热。在某些消耗装置如水冷却器等中以这种方式使用热电模块。
热电效应是可逆的,使得当热电模块的两侧被保持在不同的温度时,模块可以产生电力。例如,在图3中,代替将电流驱动通过终端301以加热和冷却模块侧面302和303,可以将模块侧面302和303保持在温差下,并且跨越终端301将会产生电压。当用于产生电力时,可以将热电模块称为热电发电机(TEG)。模块所产生的电压以及从模块可用的电力量取决于两个侧面302和303之间的温差、用于构造模块的材料、模块运行的绝对温度、模块的尺寸以及其它因素。
可用电力的这种可变性使得难以使用热电发电来利用可变的温差或梯度,尤其是对针对如下负载的电源而言更是如此,所述负载对于它接收的电力的特征具有特定需求。
热电模块300只是可由本发明的实施例使用的热电装置的一个例子。模块300由若干热电元件304组成,每个热电元件304是一定长度的具有良好热电性质的导体或半导体材料。例如,元件可以是成片的n型和p型半导体材料,在图3中用“N”和“P”标记。热电元件304排列成热电偶,每个热电偶包括一个“N”元件和一个“P”元件。每个热电偶中的元件的末端通过导体305中之一在模块300的热侧303电连接,并且进一步通过可选的头部306热连接到热源。不同的热电偶通过导体307在模块300的冷侧302串联连接,并且还在模块300的冷侧303热连接到“冷”源或头部308。每个热电偶产生相对小的电压,并且出现在引线301的电压是串联连接的热电偶的累积电压。虽然对于热电元件304而言使用n型和p型半导体材料来制造许多热电模块,但是将会理解的是,本发明不限于此。许多其它种类的已知材料和仍在开发的材料展示了热电效应,并且可以用在实施例中。类似地,可以预想元件的其它布置。
优选地,本发明的实施例中使用的热电模块被优化用于发电。研究表明,当热电元件的长度“L”非常短——例如大约0.5毫米时,可用的总功率被最大化。然而,热电模块的转换效率(可用热能实际上转换成电能的部分)随着长度L增加而增加。例如,与长度为0.5毫米的热电元件相比,长度为5.0毫米的热电元件可能更有效数倍。针对具体应用的最佳长度(提供每期望电能单位最低成本)会是热电模块和相关硬件的成本、向热电发电机供应的热能的成本以及热电发电机的预期寿命的函数。在优化热电模块性能中涉及的因素的更完全的讨论可以在以下论文中找到:D.M.Rowe and Gao Min,Evaluation of thermoelectric modules for power generation,Journal of Power Sources 73(1998)193-198。
图4图示了根据本发明实施例的系统400。热电发电机(TEG)401在经受温差时产生电力。在图4中,通过被管道输送到TEG 401的相对侧的加热流体402和相对冷的流体403来提供温差。为了本公开的目的起见,热电发电机是在经受温差时产生电力的装置。热电发电机可以(但并非需要)包括许多热电模块如热电模块300,而热电模块又可以包括排列成热电偶的许多热电元件。
可以理解的是,温差可以通过任何的许多、许多不同的介质和设备来提供。例如,特别地为了发电的目的,加热流体402例如可以通过使用传统的化石燃料、太阳能或者通过一些其它手段对水进行加热来产生。代替地,加热流体402可以是工业过程的副产品、来自诸如洗车业或洗衣房之类的设施的废水、自然发生的温泉水或者别的种类的流体。
温差的“热”侧可以通过除了流体之外的别的介质提供,例如从建筑物空气调节系统排放的空气、来自引擎的排气、诸如车辆排气管之类的任何部件的表面、烘箱外部、鼓风炉环境或者其它适当的热源。
类似地,相对冷的流体403可以特别地为了发电的目的而获得,或者可以是某个其它过程的副产品。例如,冷流体203可以是水,水被循环通过地下管道,以将水冷却到地面的温度——在美国的许多地方典型地为大约54-57℉(12-14℃)。或者流体403可以是任何自然发生的相对冷的流体,例如从河流转用的水。温差的“冷”侧可以通过除了流体之外的介质和材料提供,例如环境空气、金属物体或某种其它适当的“冷”源。
几乎任何的温差都可以被利用来发电,并且术语“热”、“加热”和“冷”等应被理解为相对术语。例如,温差的“热”侧和“冷”侧两者都可能被人的感官感触为热,但是这个差仍然可以被TEG所利用。类似地,温差的“热”侧和“冷”侧两者都可能被人的感官认为是冷的。
返回到图4,TEG 401产生电力,该电力在引线404上输出,并被直接或间接供应到负载405。负载405在图4中以虚线示出,以强调它不被认为是本发明的一部分,除非特别声明。负载405可能对它接收的电力有特定需求以便正常运行。例如,负载405可以包括配置成向地区供应交变电流的逆变器,并且逆变器可能只在供应以36和48伏之间的DC电压时才正常运行。或者负载可以包括基于微处理器的系统,该系统为了无差错运行需要最小量的电力。
监视器406感测由TEG 401产生的电力的至少一个方面。例如,探针引线407可以接进引线404中,以使得监视器406能够测量由TEG 401正在输出的电压。电流探针408可以使监视器406能够测量由TEG 401正在输出的电流。其它的测量也是可能的,并且可以测量或得到电力的其它方面。例如,监视器406可以将输出电压和电流相乘,以测量由TEG 401正在提供的电力量。
监视器406提供至少一个信号409,该信号409表征了由TEG 401正在产生的电力。虽然信号在图4中被表示为线,但是可以理解的是,信号可以是模拟信号、数字信号、以模拟或数字形式承载的数字值或者别的种类的信号。
信号409被供应到控制器410。控制器410优选地是包括处理器、存储器和输入/输出能力的基于微处理器的装置,但还可以是别的种类的控制器。控制器410被供应以负载405对电力需求的描述。例如,对需求的指示可以存储在控制器410中包括的存储器中。控制器410优选地包括存储在存储器或别的种类的机器可读介质中的程序指令。程序指令在由处理器执行时使得控制器能够执行它的功能。控制器410配置成接收信号409,并且根据负载405的需求基于信号409配置至少一个可配置部件。例如,控制器410可以认识到由TEG 401正在产生的电压处在对于负载405而言的最优值以上或以下,并且可以采取行动,以通过配置系统中别的部件来调整电压。
可配置部件的一个例子是图4所示的阀门411。在这个例子中,阀门411放置在将加热流体402运送到TEG 401的“热”侧的流动线路412中。阀门411可由控制器410控制。
在一个示例场景中,控制器410可以认识到由TEG 401正在供应的电压处在负载405可以接受的最大电压以上或几乎以上,并且可以指示阀门关闭,从而减少加热流体向TEG 401的流动。许多其它的控制场景也是可能的。例如,控制器410可以认识到由TEG 401正在产生的电压处在负载405需要的最小电压以下或几乎以下,并且可以使阀门411打开,从而增加加热流体向TEG 401的流动。类似地,阀门可以插入到将相对冷的流体运送到TEG 401的“冷”侧的流动线路413中,并且控制器410可以根据信号409和负载405的需求来调节相对冷的流体的流动。在另一个场景中,控制器410可以认识到负载405被切断而没有汲取任何电流,控制器410于是可以控制阀门411完全切断加热流体的流动,以便不耗尽加热流体的贮存器。
在一些实施例中,控制器410产生第二输出信号414,其指示由TEG 401正在产生的电力的状态。虽然第二信号414在图4中被示出为指向负载405,但是第二信号414可以被指向任何其它适当的位置。第二信号414例如可以指示由TEG 401正在产生的电力量,或者可以是如下指示:系统不再能够根据负载405的需求来产生电力。第二信号414可以是模拟信号、数字信号、无线信号,可以在导线或线缆之上传输,可以在显示器上展示,或者可以以任何其它适当的方式传达。
在另一个场景中,控制器410可以调节或者加热流体402或者相对冷的流体403或者两者的温度。图5图示了系统500,该系统500是如下实施例,在该实施例中,控制器410使用混合阀501来调节加热流体402的温度,该混合阀501可变地将冷流体混合到加热流体402中以控制加热流体402的温度。例如,如果控制器410认识到由TEG 401正在输出的电压超过或几乎超过负载405的电压需求,则控制器410可以调整阀门501以使加热流体402的温度下降,以便减少TEG 401所经历的温差,从而减少由TEG 401产生的电压。类似地,如果控制器410认识到由TEG 401正在产生的电压处在负载405所需的最小值以下或几乎以下,则控制器410可以通过阀门501减少冷流体与加热流体402相混合的量,或者可以停止全部混合,以便增加TEG 401所经历的温差,从而增加由TEG 401产生的电压。本领域技术人员将会认识到,也可以将温流体混合到相对冷的流体403中,并且可以进行调整以调整由TEG 401产生的电压。
许多其它种类的可配置部件也是可能的。例如,如果空气用于向TEG 401提供温差,则可配置部件可以包括对TEG 401的“冷”侧进行冷却的风扇,并且风扇可以接通或断开,或者通过控制器410来调整速度。可配置部件可以调整TEG 401的“热”侧、或者TEG 401的“冷”侧或者两者的介质。
图6图示了包括别的种类的可配置部件的系统600。在图6的系统中,从由电机602旋转的集中式太阳能收集器601供应加热流体402。例如,太阳能收集器601可以具有抛物线形状,其在收集器601适当地瞄准太阳604时将进来的太阳辐射集中在管603上。来自管603的流体可以被循环到TEG 401,提供由TEG 401利用的温差的“热”侧,以产生电力。在这个实施例中,由控制器410调整的可配置部件可以是如电机602控制的收集器601的旋转角。例如,如果控制器410认识到由TEG 401正在产生的电压处在对于负载405可接受的最大电压以上或几乎以上,则控制器410可以向电机602发送信号以使收集器601的瞄准散焦或者对其进行调整,以便收集器601不再直接指向太阳604。在这种情况下,较少的热会被供应到加热流体402,减少了TEG 401所经历的温差,并且减少了由TEG 401产生的电压。相反地,当控制器410认识到由TEG 401产生的电压处在负载405所需的最小值以下或几乎以下并且收集器601没有瞄准太阳604时,控制器410可以再一次控制电机602以使收集器601瞄准太阳,增加向流体402的供热量,增加TEG 401所经历的温差,并且增加由TEG 401产生的电压。太阳604的位置可以通过传感器来跟踪,为了图示简化起见,在图6中没有示出该传感器。本领域技术人员将会认识到,电机602可以是任何适当种类的电机,包括步进电机、DC伺服电机和AC伺服电机或其它种类的电机。为了清楚起见,从图6中省去了用于驱动电机602的控制电子器件。
图6还示出了用于向TEG 401提供相对冷的流体603的一个具体实施例。在图6中,管613与地下回路605连接。众所周知,地下足够深处的温度常年保持相对恒定。例如在美国的一些地方,地下温度可以是大约54-57℉(12-14℃)。在从TEG 401的“冷”侧吸热之后,可以通过泵(未示出)使水循环通过回路605,从而通过将它吸收的热传递到地下来使水冷却。以这种方式,可以以很少的成本将TEG的“冷”侧维持在足够冷的温度。虽然回路605在图6中被示出为单个直截面,但是许多其它配置也是可能的。例如,回路605可以在相对深的井中呈基本上垂直的取向,或者回路605可以包括一系列放置在槽中的盘管。
本领域技术人员将会认识到,对于使用太阳能来加热向TEG 401提供的加热流体的系统而言,可以进行其它种类的调整。例如,代替集中式收集器,可以使用平板式太阳能收集器,并且控制器410可以控制阴影,该阴影可以被移动以阻止太阳辐射到达平板式收集器,或者允许太阳辐射到达收集器。
图7图示了使用太阳能来加热向TEG 401供应的流体的另一个实施例。这个实施例类似于图6所示的实施例,但是包括例如用于盛水的存储罐701。循环通过收集器601的流体加热罐701中的水或其它流体,罐701中的水或其它流体然后被循环到TEG 401,以提供用于TEG 401的温差的“热”侧。由收集器601和TEG 401使用的流体可以但并非需要是相同的。例如,能耐高温的油可以被循环通过收集器601,使用热交换器将它的热传递到罐701中的水。类似地,罐701可以使用除了水之外的别的流体。许多组合都是可能的。
对于存储可以用于稍后由TEG 401产生电力的热而言,图7的实施例具有有价值的优点。例如,罐701中的水可以在白天期间被加热,并且加热的水可以在晚上被循环到TEG以产生电力。优选地,罐701是隔热的,以便它会延期保温。
虽然上面描述的控制实施例包括了调整可用于TEG的的温差或热能的量的可配置部件,但是可以使用其它种类的可配置部件。代替或者除了对供应给TEG的温差或热能进行的调整之外,还可以使用电气技术和部件来配置TEG的输出。结合诸如系统700之类的包括热液存储的系统,对系统的电气侧的控制可能尤其有利。
图8图示了另一个实施例800,其中TEG 801的输出被电气调整。虽然图4所示的TEG 401被表示为单块,但是TEG 801示出了另外的内部结构。TEG 801由多个发电排802组成。每个发电排802包括至少一个热电模块,并且产生由TEG 801产生的电力的至少一部分。虽然发电排802在图8中被示出为堆叠在一起,但这不是必需的。优选地,每个发电排802乃至每个发电排802之内的每个模块都暴露于TEG 801所经历的充分温差。为了清楚起见,从图8中省去了流体的内部管道输送或其它路由。
来自模块802的引线803被单独路由到矩阵开关804,下面将会更加详细地描述矩阵开关804。虽然矩阵开关804在图8中被示出为与TEG 801分离,但是这两个部件可以集成到单个单元中。矩阵开关804可由控制器410控制,并且可以动态地重新配置模块804的相互连接,以调整由TEG801正在递送的电力的特征。可以理解的是,示出为从控制器410传递到矩阵开关804的控制信号805事实上可以包括几个分开的信号,包括寻址线和命令线。代替地,控制信号805可以是向矩阵开关804传输的消息,该矩阵开关804可以有它自己的内部智能,用于解释控制信号并执行必要的操作。
例如,每个发电排802可能在经受50℃的温差时名义上以24伏产生电力,而负载405则可能需要以30和50伏之间的电压来供应电力。当温差处在或略微低于50度时,发电排的有效相互连接会是串联放置成对的发电排,然后并联放置串联的集合,以便从矩阵开关804输出的电压近似两倍于单独发电排所产生的电压,或者名义上为48伏。在图9中示意性示出了这种布置。代替地,可以并联地放置成对的发电排,并且集合被串联地放置,同样导致名义上的48伏。
如果温差下降,例如如果在罐701未被重新加热时系统以这种配置延期运行,则由每个发电排产生的电压会从名义上的24伏下降,并且供应给负载405的电压会下降。当由每个发电排产生的电压达到16伏时,供应给负载的电压会只有32伏(两倍于16)。如果由每个发电排产生的电压下降到15伏以下,则到负载的电压会下降到30伏以下——负载405所需的最小值以下。
在这点上,重新配置发电排的相互连接将会是有利的,例如并联放置两个发电排,并且将这一对与两个其它发电排串联放置,以便所得到的输出电压名义上是通过每个单独模块产生的电压的三倍。在图10中示意性示出了这种配置。这种配置将输出电压带回到可用范围之内。作为温差下降的不可避免的结果,电力的总量可能下降。
如果温差进一步下降,例如下降到每个发电排产生小于10伏的这一点,那么甚至三倍的单独发电排的电压都会落在负载405所需的范围之外。在这点上,将全部四个发电排串联放置会是有利的,以便输出电压是单独发电排的电压的四倍,或者更加精确地,是由四个单独发电排产生的电压之和。为了易于说明起见,在大多数的这个讨论中假定发电排彼此等同地执行。这个假定对于说明系统的名义操作而言足够准确,但在实践中,在发电排当中的性能方面可能存在变化,使得系统的输出电压可能不是任何一个发电排的电压的恰好整数倍。可以理解的是,权利要求囊括了这样的现实世界操作。在图11中示意性示出了串联的全部四个发电排的布置。
通过发电排的相互连接的恰当配置,可以实现如下输出电压,该输出电压是由单独发电排产生的电压的名义上的任何整数倍,一直到发电排的数目。使用如图8所示的四个发电排,供应给负载405的电压可以是由单独发电排产生的电压的1、2、3或4倍。如果使用12个发电排,那么供应给负载的电压可以是由单独发电排产生的电压的名义上的1、2、3、……11或12倍。使用更多数目的发电排允许对总输出电压的更精细控制,并且使更窄范围之内的控制成为可能。
在控制器410的控制之下,使用矩阵开关804可以完成发电排相互连接的重新配置。图12示出了矩阵开关804的更加详细的示意图。在其一般形式中,矩阵开关804包括两组导线,它们可以形成网格图案。为了易于引用起见,这些将会被称为水平导线1201和垂直导线1202,然而这些术语仅指的是附图中的表示,并不是将本发明限制到呈严格水平和垂直取向的导线。导线不需要形成均匀的网格图案。这种开关有时也被称为“纵横开关”。矩阵开关804还包括可寻址开关1203(只标记了其中的几个),可寻址开关1203可以进行或打断交叉成对的导线1201、1202之间的连接。如果矩阵开关中的每一个交叉点都提供有可寻址开关,那么任何水平导线1201都可以连接到任何或全部的垂直导线1202,并且反之亦然。可寻址开关可以是任何种类的适当开关或继电器,包括机电式继电器、固态装置或其它种类的开关。可寻址开关不需要全都相同。
使用来自控制器410的地址线1204和控制线1206来操作可寻址开关1203。在图12中没有示出解码逻辑1205和部件相互连接的细节,如本领域技术人员将会认识到的那样,许多不同的布置都是适当的,只要控制器410可以关闭或开启可寻址开关1203以重新配置矩阵开关804中的连接。可寻址开关1203可以是单独可寻址的,以便控制器410可以改变任何一个开关的状态而不影响其它开关,或者可寻址开关1203可以是以组为单位可寻址的,诸如成对或以其它组合可寻址。在一些实施例中,不是水平和垂直导线之间的所有交叉点都具有相关的可寻址开关。在这个例子中,矩阵开关804针对每个发电排具有两个垂直导线1202,并且具有五个水平导线1201,这足以针对四个发电排802进行必要的连接。六个地址线1204使得40个开关1203中的任何一个的单独选择成为可能。控制线1206提供所选开关是要开启还是要关闭的指示,并且提供选通或触发信号以使所选操作发生。控制器410可以配置成以与发电排802的特性以及负载需求相适合的顺序执行开关配置。例如,控制器410可以避免使任何发电排802的终端短路,并且可以以“打断之前进行”或“进行之前打断”的顺序执行切换操作,以避免对负载405的电力供应中断,以保护发电排802免受破坏,或者为了其它原因。可以在系统装配之前对发电排802进行表征,并且控制器410可以配置成优选地选择具有类似特性的发电排用于并联连接。
图13示出了配置成按照图9中示意性示出的布置来放置发电排802的矩阵开关804。(为了清楚起见,省去了开关804的解码逻辑。)亦即,发电排1301和1302串联连接以形成集合1305,发电排1303和1304串联连接以形成第二集合1306,并且集合1305和1306并联连接,以便跨越终端1307的输出电压是由单个发电排产生的电压的两倍。
图14示出了配置成按照图10中示意性示出的布置来放置发电排802的矩阵开关804。亦即,发电排1301和1302并联连接以形成集合1401,该集合1401然后与发电排1303和1304串联连接,以便跨越终端1307的输出电压是由单个发电排产生的电压的名义上的三倍。在另一种可能的配置中,发电排中的任何三个可以串联连接,并且第四个发电排留下断开,以便跨越终端1307的输出电压是由单个发电排产生的电压的名义上的三倍。
图15示出了配置成全部串联放置发电排1301、1302、1303和1304的矩阵开关804,以便跨越终端1307的输出电压是由四个发电排产生的电压的名义上之和,或者是由单个发电排产生的电压的四倍。
用这种方式,发电排的相互连接可以被动态地重新配置以调整TEG 801的输出电压,以满足负载405的需要。优选地,按照避免对发电排802可能造成破坏的顺序来执行重新配置。例如,某些连接可能在进行其它连接之前被打断,诸如以避免在任何时刻将单个发电排的两个终端连接在一起。本领域技术人员将会认识到,可以构造大得多的矩阵开关,其与这些例子中示出的四个发电排相比可以重新配置数目多得多的发电排。用这种方式,可以适应单独发电排的发电能力的很大变化,同时根据负载的需求产生输出电力。
虽然为了易于说明和概念化起见,矩阵开关804被描绘为布局呈矩形矩阵,并且针对任何水平导线1201和垂直导线1202之间的每一个交叉点都具有开关1203(总共40个开关1203),但是这些不是必需的。在图13-15所示的示例配置中,只有12个开关1203曾改变状态。在描绘的其它28个开关当中,25个从来不关闭并且可以被省略,三个保持关闭并且可以用永久的电连接来替换。本领域技术人员将会认识到,希望用最少可能的部件来构造系统,以便使系统的成本最小化。还可以理解的是,矩阵开关804不需要被实施为单个集成装置,并且不需要物理地类似于矩阵,而是可以包括一起或者分开地位于系统中任何适当位置的逻辑和开关部件。
在诸如图7所示的系统700之类的具有热存储的系统中,重新配置模块之间的相互连接的能力可能特别有用。在没有太阳的延长期期间,罐701中的流体的温度可能下降,直到TEG所经历的温差只有几度。通过重新配置TEG中的模块的相互连接,可以在罐701中的范围非常广的温度之上提取可用电力(以量下降的方式),并且几乎所有的存储的热能都可以被利用。这与电池中存储的电能形成对照。虽然电池可以存储相当可观的能量,但是一些种类的电池不能充分放电而不危及电池寿命,所以不是所有的它们存储的能量都可以可靠地利用。
在其它实施例中,发电排802中的一个或多个可以由多个热电模块(TEM)组成。例如,发电排802中的每一个可以包括12个TEM,每个名义上产生2伏。当全部12个TEM串联连接时,发电排于是名义上产生24伏。每个发电排可以进一步包括模块级别的矩阵开关,其使得发电排之内的模块的相互连接的重新配置成为可能。在这种情况下,矩阵开关804可以被称为“发电排级别”的矩阵开关,因为它重新配置发电排彼此之间的相互连接。在这个例子中,在发电排中使用12个模块,发电排可以配置成产生由模块产生的电压的任何倍数,一直到模块电压的12倍。
图16图示了系统1600,其中两个发电排802中的每一个包括12个TEM 300。每个发电排802包括模块级别的矩阵开关1601,该模块级别的矩阵开关1601在控制器410的控制之下,重新配置其各自发电排之内的TEM 300的相互连接。发电排级别的矩阵开关804可以重新配置发电排802的相互连接。可以与如图12所示的发电排级别的矩阵开关804类似地构造模块级别的矩阵开关1601。跟以前一样,监视器406可以测量由系统正在产生的电力的一个或多个特性,并且可以向控制器410提供表征正在产生的电力的信号409。基于电力特性和负载405的需求,控制器410可以重新配置任一或两个发电排802之内的TEM 300的相互连接,或者可以重新配置发电排802的相互连接,或者可以以任何组合重新配置模块300和发电排802的连接。在代替的实施例中,系统可以监视由每个发电排单独地正在产生的电力的特征,加之以或者代替监视正在递送给负载405的电力,并且控制器410可以将这些不同或另外的测量结果结合到它的决策中,以重新配置TEM 300、发电排802或这两者的连接。
图17图示了根据本发明实施例的方法的流程图1700。在步骤1701中,接收表征由热电发电机产生的电力的信号。在步骤1702中,接收负载的需求的指示。在步骤1703中,配置至少一个可配置部件,该可配置部件影响了由热电发电机产生的电力的至少一个方面。
热电发电机实施例
通常商业上可用的大约34×31毫米的热电模块在经受大约100℃的温差时可以以大约2.8伏产生大约1.5瓦的电力。虽然这个电力量对于某些小的负载而言是足够的,但是与典型住宅的电力需求相比仍然是小的。对于实际的发电而言,可能有必要对若干热电模块的输出进行组合。优选地,模块可以共享相同的热源和冷源,并且相互电连接,使得它们的组合电力输出可用于使用。
优选地,如上所述,本发明的实施例中使用的热电模块被优化用于发电。
为了最大电力输出,有利的是,尽可能有效地向每个热电模块的热侧供热,并且尽可能有效地从冷侧去热。图18示出了用于单个热电模块1800的一个示例布置。在图18中,热电模块1800被夹在热源1801和散热器1802之间。例如,热源1801可以是导热块,通过该导热块循环相对热的流体1803,并且散热器1802可以是通过其循环相对冷的流体1804的传导块。热源201和散热器202可以是分别通过其循环相对热和冷的水的铝块。本领域技术人员将会认识到,在相对的意义上使用术语“热”、“冷”、“加热”和“冷却”。热流体1803可能对于正常人的感官而言不显得热,并且冷流体1804可能不显得冷。“热”和“冷”指的是热流体比冷流体温度高,而不是人一定会感觉流体“热”或“冷”。类似地,可以通过除了简单的块之外的结构来提供热源和散热器。为了本公开的目的,向热电模块供热或者从热电模块去热的元件会被称为“热敏元件”。
图18所示的组件也可能经受例如由未示出的夹紧装置供应的挤压力F。挤压力有助于确保热源1801和散热器1802与热电模块1800进行良好热接触,使界面处的热阻最小化。
如果多于一个的热电模块的输出要被组合,则优选的是,流体和电连接的复杂性被最小化,并且每个热电模块与热源和散热器进行良好的热接触。由于任何制造过程中固有的尺度的可变性,针对全部热电模块实现良好热接触可能是复杂的。例如,不是所有的热电模块都可以具有相同的高度。图19示出了在单个热的热敏元件1903和单个冷的热敏元件1904之间放置两个高度不同的热电模块1901、1902的一种可能后果。(热电模块1901和1902之间高度的不同在图19中被稍微夸大。)如容易看出的那样,可能无法实现与所有的热电模块1901和1902的表面的平坦接触,并且热电模块1901和1902与热敏元件1903和1904之间的热传递可能受损。可能形成诸如缝隙1905之类的缝隙,最终导致系统的不良发电性能。增加挤压力F可以通过使部件弯曲或一致来改善系统部件之间的接触,但是过多的力可能导致对不同部件的损坏。
在2004年4月13日申请的名称为“Same Plane Multiple Thermoelectric Mounting System”的共同待审的美国专利申请10/823,353中描述了针对这个问题的一种方法,该申请的整体内容为了所有目的通过引用结合于此。该申请描述了一种布置,在所述布置中,热敏元件中的至少一些是可配置的,以适应系统部件中的公差变化,使得多个热电模块的有效耦合成为可能。
图20图示了根据实施例的热电发电机2000。为了本公开的目的,“热电发电机”是一个或多个热电模块和使用热电效应产生电力的其它部件的布置。每个热电模块可以由排列成热电偶的多个热电元件组成。
示例热电发电机2000包括多个热电模块2001。每个热电模块2001当在它的两侧之间经受温差时产生电力。热电发电机2000还包括通过第一流体2003向其供热的多个第一热敏元件2002以及通过第二流体2005从其去热的多个第二热敏元件2004。第一和第二热敏元件2002和2004排列成使第一和第二热敏元件交替的堆叠,其中热电模块2001夹在每个相邻成对的第一热敏元件2002和第二热敏元件2004之间。虽然以三个第一热敏元件2002和两个第二热敏元件2004的方式在附图中只示出了四个热电模块2001,但是本领域技术人员将会认识到,可以使用更多或更少的热电模块。
除了堆叠末端的第一热敏元件之外,每个第一热敏元件2002然后都与热电模块2001中的两个相接触,在各个第一热敏元件2002的两个相对面中的每一个处各一个。类似地,每个第二热敏元件2004都与热电模块2001中的两个相接触,在各个第二热敏元件2004的两个相对面中的每一个处各一个。然而,没有任何热敏元件的面与多于一个的热电模块2001相接触。用这种方式,对热敏元件2002、2004进行了有效利用,但却容许部件中的制造偏差。热电模块2001中的高度变化并不损害系统性能,因为热敏元件2002、2004的每个面只需要平坦地符合一个热电模块2001的一侧。热电模块2001和热敏元件2002、2004免于在装配期间在平移度和旋转度方面保持符合以实现一致性。
热敏元件2002、2004可以由导热材料如金属制成。铝由于其高导热性和耐腐蚀性而成为优选的材料。下面将更加详细地描述示例热敏元件。
通过第一流体入口歧管2006将第一流体2003分配到第一热敏元件2002。第一流体2003例如可以是为了从热电发电机2000产生电力的目的而被加热的水、来自工业过程或来自某个其它源的废热水。第一流体2003可以其它种类的流体,例如是天然或合成的油或者任何其它种类的适当流体。为了本公开的目的,术语“流体”旨在被概括地解释,并且包括液体如水、油或其它液体,而且包括气体如空气、蒸汽和其它气体。第一流体2003优选地穿过第一热敏元件2002中的每一个中的通道(用通道2007来示例)。在穿过第一热敏元件2002之后,第一流体2003被第一流体出口歧管2008收集,以从热电发电机2000运走。流体2003可以返回到加热系统,或者简单地从系统排出。
类似地,通过第二流体入口歧管2009将第二流体2005分配到第二热敏元件2004。第二流体2005温度与第一流体2003不同,并且可以与第一流体2003种类相同,或者可以是不同种类的流体。例如,第一和第二流体2003和2005两者都可以是水,或者一种可以是水,而另一种则是一种油。任何适当的组合都可以。优选地,第二流体2005穿过第二热敏元件2004中的通道(用通道2010来示例)。在穿过第二热敏元件2004之后,第二流体2005被第二流体出口歧管2011收集,以被运走。第二流体2005可以再循环,或者从系统排出。
最终结果是,依靠处于第一热敏元件2002中之一和第二热敏元件2004中之一之间,热电模块2001中的每一个都暴露于温差。流过每个热电模块2001的热能被转换成电能,并且跨越每组电引线2012产生电压。在一些实施例中,引线2012可以相互连接,使得热电发电机2000在单组引线上产生单个电压。例如,热电模块2001可以串联连接,以便热电发电机2000产生如下电压,该电压是由单独热电模块2001产生的电压之和。
虽然上面描述了部件的具体布置,但是本领域技术人员将会认识到,在权利要求的范围之内,变化是可能的。例如,热电发电机2000已被描述为具有“热”第一热敏元件2002和“冷”第二热敏元件2004。这种关系可以颠倒,以便末端热敏元件是“冷的”。类似地,热电发电机2000被示出为使第一流体2003和第二流体2005彼此相反地流过热敏元件2002、2004。亦即,如图20所示,第一流体2003从右向左地流过第一热敏元件2002,而第二流体2005则从左向右地流过第二热敏元件2004。在一些实施例中,流体可以在相同的方向上流动,或者以平行流动的方式流动。许多其它的变化也是可能的。例如,第一和第二热敏元件2002、2004中的通道2007、2010可以彼此垂直地取向,或者以某种其它取向的方式取向。下面更加详细地描述一种优选布置。
图21示出了根据另一个实施例的热电发电机2100的示意图。虽然热电模块2001和热敏元件2002、2004的堆叠取向使得良好热接触成为可能而不管不同部件尺度的变化,但这些变化还是可能影响组件的其它方面。例如,如图21所示,通过热敏元件2002、2004的通道的间隔可能发生变化。这些距离中的两个在图21中标记为D1和D2。如果热电模块2001不是全都具有相同的高度,或者如果在热敏元件2002、2004中存在制造变化,则D1和D2可能不同,并且诸如第一流体入口歧管2006之类的歧管中形成的端口可能不与通道对准。因为在没有广泛测量和拣选单独部件的情况下间隔不可预测,所以优先的是同样适应这些变化。在图21中,热敏元件2002、2004通过柔性管2101连接到歧管2006、2008、2009、2011。(不是所有的柔性管都在图21中进行了标记。)柔性管2101例如可以由橡胶或塑料管制成,该橡胶或塑料管易于一致以适应热敏元件2002、2004中的通道和歧管2006、2008、2009、2011中的开口之间的小偏移。
图22示出了图21的热电发电机的斜视图。热电模块2001在图22中不可见,代之以示出它们的电引线2012,所述电引线2012从相邻成对的第一热敏元件2002和第二热敏元件2004之间伸出。第一流体2003进入第一流体入口歧管2006,流过柔性管2101中的一些,通过第一热敏元件2002,通过更多的柔性管2101进入第一流体出口歧管2008,并离开系统。类似地,第二流体2005进入第二流体入口歧管2009,流过柔性管2101中的一些,通过第二热敏元件2002,通过更多的柔性管2101进入第二流体出口歧管2011,并离开系统。为了图示清楚起见,柔性管2101在图22中被示出为具有明显的长度,其中不同的歧管与热敏元件保持一定距离。实际上,优选的是使柔性管很短,以便减少可用热能可能从中丧失的表面积。在一个示例实施例中,歧管2006、2008、2009、2011由一英寸(25.4mm)的方管制成,并且柔性管2101中的每一个只有大约1/4英寸(6.35mm)暴露在它的各自歧管和热敏元件之间。
在一个实施例中,流体一般对角地流过它们各自的热敏元件。如图22中示出的那样,通道2007一般从一个角向对面的角横穿顶上的第一热敏元件2002。这种布置确保了第一流体2003在热电模块的中心附近传热给第一热敏元件2002,并且还在流体2003和热敏元件2002中的每一个之间提供了相对大的接触表面。其余的第一热敏元件2002优选地以相同取向布置。第二热敏元件2004可以倒转,以便它们的内部通道(图22中未示出)也一般对角地横穿第二热敏元件2004,并且与第一热敏元件2002的通道交叉。第一和第二热敏元件2002、2004可以在机械上相同,并且通过简单地将第二热敏元件2004相对于第一热敏元件2002上端朝下地倒转来实现十字交叉的流体流动。下面将给出关于热敏元件的更多细节。
图22还图示了夹具,该夹具使热电模块与第一和第二热敏元件的堆叠保持压紧。在示出的示例实施例中,上顶板2201和下底板2202通过杆2203连在一起,杆2203通过螺丝钉2204拧紧。许多其它的夹紧布置也是可能的。例如,杆2203可以是螺杆,并且在每个末端的螺母可以将板2201和2202拉在一起。在另一个实施例中,一个或多个弹簧可以附着在板2201和2202之间。对于保持模块压紧而言,许多其它机制都是可能的。
图23示出了根据实施例的第一热敏元件2002中之一的斜视图。热电模块2001(在图23中被简化)被示出为它可以相对于元件2002安置。开口2301在一个面上可见,通向通过元件2002的通道2007。通道2007一般对角地通向元件2007的相对面上的互补开口。一段柔性管2101被示出为从元件2002的相对侧的开口中伸出。图24以横截面的方式示出了第一热敏元件2002,并且更加清楚地图示了元件2002的内部结构。开口2301可以是包括导入部的阶梯孔,该导入部具有比通道的中部更大的直径,以提供肩部2401,当诸如柔性管2101之类的管插入到开口2301中时,管可以紧靠该肩部2401。肩部2401因此可以辅助热电发电机2000的正确装配。通道2007整个穿过元件2002,到达元件2002另一侧的类似阶梯开口2402。例如通过从开口2301和2402钻出或镗出交迭的孔,可以形成通道2007。
通过通道2007实现的对元件2002的一般对角横贯使得等同的机械部分能够用于第一热敏元件2002和第二热敏元件2004。换言之,第一和第二热敏元件2002、2004机械可互换。第一热敏元件2002和第二热敏元件2004简单地相对于彼此倒转,以便它们的各自通道交叉。当如图23所示安置热电模块2001时,对角通道一般跨越热电模块2001的最长尺度横贯热敏元件。
许多其它的布置也是可能的。例如,通过热敏元件的通道可以正交于热敏元件的侧面。图25以部分分解的斜视图的方式图示了这种布置。在图25中,第一热敏元件2501包括面2503中的开口2502,其通向以一般正交于面2503的方式横贯热敏元件2501的通道2504。尽管未在图25中示出,开口2502和其它类似的开口可以是阶梯开口。通道2504通向热敏元件2501的相对面上的互补开口2505。一段柔性管2101被示出为从互补开口2505中伸出。第二热敏元件2506可以与第一热敏元件2501机械可互换,但是被倒转或旋转,以便它的通道2507垂直于第一热敏元件2501中的通道2504。热电模块2001夹在第一和第二热敏元件2501和2506之间。这些部件可以是使第一和第二热敏元件901、906交替的更大堆叠的一部分,其中热电模块401处在每个相邻成对的热敏元件901、906之间。在这个实施例中,歧管可以在热敏元件2501、2506的堆叠的每一侧放置一个,而不是如图22那样成对地放置在堆叠的两侧。在图25中示出了两个歧管2509、2510。热电模块可以放置得与热敏元件对准,因为热电模块2001在图25中被示出为与热敏元件2506对准。代替地,热电模块可以用通过图25中的假想热电模块2508示出的布置而相对于热敏元件旋转。这种布置将热电模块安置成使得如果希望的话,则通道2504、2507一般对角地横贯热电模块。
在其它实施例中,可以以任何数目的方式进行部件之间的各种连接。在图24中图示了将柔性管2101连接到热敏元件2002、2004的一种方法。再次参考图24,优选地,开口2301和2402与管2101被定好尺寸,使得将一段管2101插入到开口中之一会导致安全的压配合。在一些实施例中,穿过热敏元件2002、2004的流体不需要处在高压下,所以轻压配合可能就足以防止流体从接头泄漏。类似的压配合可以用于将成段的管2101连接到歧管如歧管2006、2008、2009和2011。其中柔性管2101压入到用于歧管和热敏元件的相对刚性的材料中的这种压配合可以很好地适应压力波动,因为柔性管2101中的较高压力趋向于改善管和管插入到其中的插孔之间的密封。优选地,柔性管2101被制造得尽可能短,同时仍然适应公差变化,以便通过使从较热流体丧失到周围环境的热或者进入到较冷流体中的热增量最小化来帮助使热电发电机2000的效率最大化。例如,当1/2英寸(12.7mm)的塑料或橡胶管用于柔性管2101时,小至1/4英寸(6.35mm)或更少的管可以暴露在每个各自的歧管和热敏元件之间。
图26A和26B图示了在柔性管2101和用热敏元件2601表示的热敏元件之间进行连接的另一种方法。在这个实施例中,热敏元件2601包括基本上刚性的伸出管2602,在该伸出管2602之上,一段柔性管2101可以被夹住或装配。例如,管2602可以是金属或塑料管,其压配合到热敏元件2601中的阶梯开口中,或者拧到热敏元件2601中的螺纹孔中。管2602可以在其外表面上包括锯齿或螺脊2603,用于夹紧且密封到管2101。如果管2602和热敏元件2601都由金属制成,则它们可以由相同的金属制成,以便减少系统中腐蚀的可能性。代替地,管2602可以由聚合物如尼龙、聚氯乙烯、乙缩醛或别的适当聚合物制成。在图26A中,管2101被示出为悬空用于连接到管2602。在图26B中,管2101已被装配到管2602,并且可选的夹具2604被附上以帮助确保安全且无泄漏的配合。示例夹具2604通过压接而被附上,但是许多其它种类的夹具也是可能的,包括弹簧夹、借助于螺丝钉或螺栓夹紧的夹具或者其它种类的夹具。
类似种类的接头可以用于将柔性管2101连接到流体入口和出口歧管如歧管2006、2008、2009和2011。亦即,管2101可以被按压、拧或插入到歧管中的开口中,可以使用或不使用夹具而装配在从歧管伸出的管之上,或者可以以任何其它适当的方式进行连接。可以使用连接类型的组合。例如,到热敏元件的连接可以具有一种类型,而到歧管的连接则可以具有另一种类型。连接类型也可以在到热敏元件的连接之内、在到歧管的连接之内或者在这两者之内进行混合。
图27A-27D图示了根据本发明实施例的制造诸如歧管2006、2008、2009、2011之类的歧管的几种方式。在图27A的实施例中,歧管2701包括圆管段2702,该圆管段2702被焊接或铜焊到方管2703中。圆管2702例如便于容纳管或软管2704,所述管或软管2704在操作时将流体供应到歧管2701或者从歧管2701接收流体。软管或管2704可以压配合、夹紧或连接到圆管2702。优选地,圆管2702和方管2703由相同的金属制成,以便在系统中可以减少腐蚀的风险。方管2703还包括侧孔2705,用于容纳通向它们各自热敏元件的柔性管2101。侧孔2705的数目将会取决于歧管2701是其一部分的具体热电发电机中的热敏元件堆叠中的热敏元件数目,并且取决于歧管是否用于第一或第二流体。歧管2701的远端2706可以被塞住、盖住、压接或密封。
图27B示出了根据另一个实施例的歧管2707。在这个实施例中,歧管2707由具有圆部2708和方部2709的单根管形成。例如通过型锻过程可以形成圆部2708和方部2709之间的过渡部2710。方部2709可以包括侧孔2711,并且可以在其远端2712进行密封。
图27C示出了根据另一个实施例的歧管2713。歧管2713被示出为以与歧管2701相同的方式一般制造,其中圆管2714被焊接或铜焊到方管2715中,但是歧管2713同样可以以任何其它的适当方式制造。歧管2713包括用于容纳柔性管2101的侧管2716。侧管2716例如可以焊接或铜焊到方部2715,可以被按压或拧到方部2715中的孔中,或者可以以某种其它的适当方式附上。代替地,歧管2713可以由聚合物如尼龙、聚氯乙烯、乙缩醛或别的适当聚合物模制。圆管2714、侧管2716或两者都可以包括锯齿或螺脊,以便于软管2704、柔性管2101或两者的安全连接。
图27D示出了根据还有另一个实施例的歧管2717。歧管2717由单个圆管2718制成,具有用于容纳软管2704的开口端2719和密封端2720。侧孔2721在需要时以任何适当的方式容纳柔性管2101。
虽然已描述了几个示例歧管,但是可以理解的是,这些只是例子,并且在权利要求的范围之内可以预想使用不同组合的特征和制造技术的其它布置。
图28图示了根据另一个示例实施例的热电发电机2800。在示例热电发电机2800中,存在第一和第二热敏元件2002、2004以及每个堆叠中的每个垂直相邻成对的第一和第二热敏元件之间的热电元件2001的两个堆叠2801、2802。(热电元件2001在图28中仅通过它们的引线2012而可见。)水平相邻成对的第一热敏元件2002通过管2101耦合,并且水平相邻成对的第二热敏元件2004同样被耦合。优选地,管2101非常短,以避免向周围环境的辐射或其它热损失。与图22所示的发电机相比,第一流体入口歧管2006和第二流体出口歧管2011的相对位置被互换。第一流体2003因此流入到第一流体入口歧管2006中,连续地流过第一热敏元件2002,并且从第一流体出口歧管2008流出。在通过第一热敏元件2002的并行路径中的每一个中,流体连续地流过两个第一热敏元件2002。第二流体2005遵循类似的路径通过第二热敏元件2004。穿过第一和第二热敏元件2002、2004的一个集合可能只将第一和第二流体2003、2005之间的温差减少很小的量,所以穿过第一和第二热敏元件2002、2004的另一个集合仍然可以从夹在第二个集合之间的热电模块中产生可用的电力。
发电机2800的配置下的热电发电机可能尤其适合于不对加热或冷却的流体进行再循环的系统。与没有串联连接的热敏元件的发电机相比,发电机2800可以从流体2003、2005穿过它的单次传递中产生更多电能,尽管发电机2800的效率可能略微下降。是否使用串联连接的热敏元件可以是基于许多因素的经济决策,诸如热电模块2001的成本,流体在穿过热电发电机之后是否进行再循环用于重新加热,以及其它因素。本领域技术人员将会认识到,可以使用任何实际数目的串联连接的列的热敏元件,并且所述列可以包含任何实际数目的热电元件2001,从少至一个一直向上。热电模块2001可以以任何适当的配置电连接,包括串联、并联或串联和并联连接的组合。
虽然如图22和28所示的热电发电机对几个热电模块2001的电力输出进行了组合,但是这种发电机仍然只可以产生少数几瓦的可用电力。根据由美国的能源信息管理局发布的统计数字,平均美国家庭每年可能使用超过10,600千瓦小时的电能。这换算成平均全年大约1,200瓦(W)的持续电力消耗。即使实施显著的保护措施,也希望供家庭使用的热电发电机能够产生几百瓦的电力。
图29示出了根据另一个实施例的热电发电机2900。在热电发电机2900中,进一步连接了如图22和28所示的几个发电机。为了讨论图29的目的,如图22和28所示的发电机会被称为“发电排”。每个发电排向几个热电元件2001提供温差。热电发电机2900进一步连接几个发电排,以进一步增加产生的电力量。发电排在以剖视图示出的机架2901上安装成阵列。不同歧管的入口和出口管因此以阵列的方式展现在机架2901后面。
经由大歧管2902、2903、2904、2905将流体提供到发电排歧管或者从发电排歧管接收流体。大歧管2902-2905例如可以由2英寸(50.8mm)的方管制成,其中圆软管连接管形成、焊接或铜焊在末端上。下端被压接、盖上、焊接封闭或者密封。
在图29的例子中,大歧管2902供应加热流体给每个发电排的加热流体入口歧管,而大歧管2903则供应冷流体给每个发电排的各个冷流体入口歧管。大歧管2904和2905分别接收流体已穿过发电排之后的加热流体和冷流体。在图29中仅通过箭头来示出不同的流体流动。没有示出管道或管,以便不使相互连接模糊。本领域技术人员将会认识到,管、软管或管道将会用于进行实际的连接,并且大歧管2902-2905会优选地安置得接近于发电排,以便使可用热能的损失最小化。使用图29的机架布置,可以热连接包括许多热电模块的许多发电排。不同热电模块的引线2012可以方便地相互电连接,以便系统可伸缩以产生大的电力量。(在附图中没有示出相互电连接。)
图29的发电排被配置用于“并行”流动热交换,其中全部入口都在发电排的下侧,并且全部出口都在发电排的上侧。在这个布置中,通过热敏元件的全部流体流动都(对角地)向上,并且空气在热敏元件中的滞留可以被最小化或被避免。滞留在热敏元件中的空气可能减少各自流体和热敏元件之间热传递的效率,并最终减少从热电发电机得到的电力。
诸如热电发电机2100、2800或2900之类的热电发电机可能特别适合于在低成本的热流体和冷流体来源可用时使用。例如,图30图示了热电发电机2100在系统3000中的使用,其中,使用太阳能加热一种流体,并且使用接地耦合管道回路冷却另一种流体。
在系统3000中,太阳能收集器3001将来自太阳3004的进入能量集中到管3003上,管3003运送流体如水或油。太阳能收集器3001可以由电机3002或其它执行器驱动,以在白天期间跟随太阳,用于优化能量收集。本领域技术人员将会认识到,除了集中槽式收集器3001之外,可以使用其它种类的太阳能收集器。管3003中的流体加热贮存器3005。优选地,贮存器3005被填充以水,水具有良好的热存储特性并且便宜,尽管可以使用其它介质。来自贮存器3005的流体可以被直接循环通过管3003,或者可以被间接加热,比如通过热交换器间接加热,该热交换器从管3003中的流体提取热,并将它传递到贮存器3005中的流体。优选地,贮存器3005中的流体被循环通过热电发电机2100,提供热电发电机2100从中产生电力的温差的“热”侧。
虽然热电发电机2100在图30中被描绘为简单的块,但是将会认识到它可以包括图21所示的部件,包括多个热电模块、热敏元件、歧管和柔性管。
在系统3000中,通过使用接地耦合管道回路3006冷却的流体(优选地为水)来提供温差的冷侧。这样的回路利用了如下事实:在足够深度处,地下土壤温度常年保持相对恒定。例如,在美国的某些地方,地下温度可以为大约54-57℉(12-14℃)。足够长的接地耦合回路会向大地排出热电发电机2100中在发电期间冷流体所收集的热,对流体进行冷却,以便它可以再一次提供由热电发电机2100利用的温差的冷侧。热流体和冷流体两者以及管3003中的流体可以通过未在图30中示出的泵来进行循环。
电力因此产生并在热电发电机2100的引线3007处可用。热电发电机2100之内的多个热电模块可以串联连接、并联连接或者以串联和并联连接组合的方式连接,以提供具有适当电压、电流或其它特性的电力。系统的一个或多个部件可以是可配置的,以调整可用电力的量或特征。例如,可以提供矩阵开关,该矩阵开关配置热电发电机2100中包括的热电模块或者这样的模块的发电排的相互电连接。在上面描述了包括矩阵开关的这种可配置部件。
为了清楚和理解的目的现在已详细地描述了本发明。然而,将会意识到的是,在所附权利要求的范围之内可以实施某些改变和修改。

Claims (88)

1.一种用于建筑物的集成能量系统,所述系统包括:
至少一个热能贮存器;
至少一个太阳能收集器,其向所述贮存器供热;
至少一个环境耦合管道回路,通过所述环境耦合管道回路来循环冷却流体,以便从所述冷却流体向环境排热;
热电发电机,其从所述热能贮存器和所述冷却流体之间的温差中产生电力;以及
至少一个循环加热单元,通过所述循环加热单元来管道输送加热的流体,向所述建筑物中的至少一个空间提供空间加热,加热的所述流体从所述热能贮存器中取得其热量。
2.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
至少一个循环冷却回路,通过所述循环冷却回路来管道输送所述冷却流体中的至少一些,向所述建筑物中的至少一个空间提供空间冷却。
3.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
备用加热器,其向所述热能贮存器供热,补充所述太阳能收集器。
4.如权利要求3所述的用于建筑物的集成能量系统,其中,所述备用加热器从化石燃料取得热量。
5.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
热水罐,其指定供家用热水使用。
6.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
备用家用热水器,当可用能量不足时,所述备用家用热水器向指定供家用热水使用的热水供热。
7.如权利要求6所述的用于建筑物的集成能量系统,其中,所述备用家用热水器包括至少一个立即响应加热器。
8.如权利要求6所述的用于建筑物的集成能量系统,其中,所述备用家用热水器从化石燃料取得热量。
9.如权利要求1所述的用于建筑物的集成能量系统,进一步包括所述建筑物内的直流电力网。
10.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
逆变器,其将来自所述热电发电机的直流电力转换成交流电力。
11.如权利要求1所述的用于建筑物的集成能量系统,其中,所述热电发电机包括多个发电排,所述集成能量系统进一步包括:
热电发电机控制器;以及
矩阵开关,其在所述热电发电机控制器的控制之下,配置对所述发电排的相互连接。
12.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
负载控制器,其部分地基于由其它负载所消耗的电力量来至少临时地防止至少一个负载的运行。
13.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
负载控制器,其迫使至少一个器具仅在某个预定时间间隔期间运行。
14.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
到电力网的备用连接,所述备用连接向所述建筑物提供电力,以补充所述热电发电机。
15.如权利要求1所述的用于建筑物的集成能量系统,进一步包括:
氢气发生器,其由来自所述热电发电机的电力供电。
16.如权利要求15所述的用于建筑物的集成能量系统,进一步包括备用家用热水器,并且其中,所述备用家用热水器从由所述氢气发生器产生的氢气中取得热量。
17.如权利要求1所述的用于建筑物的集成能量系统,其中,所述热能贮存器包括热水罐。
18.如权利要求1所述的用于建筑物的集成能量系统,其中,所述热能贮存器中的介质由所述太阳能收集器直接加热。
19.如权利要求1所述的用于建筑物的集成能量系统,其中,所述热能贮存器中的介质通过运送由所述太阳能收集器加热的第二介质的热交换器来加热。
20.如权利要求1所述的用于建筑物的集成能量系统,其中,通过所述至少一个循环加热单元循环的加热流体通过热交换器从所述热能贮存器中取得其热量。
21.如权利要求1所述的用于建筑物的集成能量系统,其中,所述至少一个环境耦合管道回路包括深接地耦合管道回路。
22.如权利要求1所述的用于建筑物的集成能量系统,其中,所述至少一个环境耦合管道回路包括浅接地耦合管道回路。
23.如权利要求1所述的用于建筑物的集成能量系统,其中,所述至少一个环境耦合管道回路包括空气耦合管道回路。
24.一种操作建筑物中的能量系统的方法,所述方法包括:
使用太阳能收集器加热热能贮存器;
通过循环加热回路循环加热流体,向所述建筑物中的至少一个空间提供空间加热,所述加热流体从所述热能贮存器中取得其热量;
通过环境耦合管道回路循环冷却流体,以便从所述冷却流体向环境排热;以及
在经受贮存器和所述冷却流体之间的温差的热电发电机中产生电力。
25.如权利要求24所述的操作建筑物中的能量系统的方法,进一步包括:
通过循环冷却回路循环所述冷却流体中的至少一些,向所述建筑物中的至少一个空间提供空间冷却。
26.如权利要求24所述的操作建筑物中的能量系统的方法,进一步包括:
使用由所述热电发电机产生的电能来产生氢气。
27.如权利要求24所述的操作建筑物中的能量系统的方法,进一步包括:
与从所述热能贮存器分开地存储指定供家用热水使用的水。
28.如权利要求27所述的操作建筑物中的能量系统的方法,进一步包括:
用来自所述热能贮存器的热量来加热指定供家用热水使用的水。
29.如权利要求24所述的操作建筑物中的能量系统的方法,进一步包括:
使用热电发电机控制器,动态配置对所述热电发电机内的热电模块的相互连接。
30.如权利要求24所述的操作建筑物中的能量系统的方法,进一步包括:
部分地基于由其它负载所消耗的电力量来临时地防止至少一个电力负载的运行。
31.如权利要求24所述的操作建筑物中的能量系统的方法,其中,通过环境耦合管道回路循环冷却流体包括:
通过接地耦合管道回路来循环所述冷却流体。
32.一种用于根据负载的需要来自动配置热电发电系统的设备,所述设备包括:
热电发电机,其在经受温差时产生电力;
至少一个可配置部件,其影响由所述热电发电机产生的电力的至少一个方面;
监视器,其感测由所述热电发电机产生的电力的至少一个方面,并且提供表征由所述热电发电机产生的电力的至少一个信号;以及
控制器,其配置成接收所述至少一个信号,并且根据通过所述热电发电机向其供电的负载的需要,基于所述至少一个信号来配置所述至少一个可配置部件。
33.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述控制器包括:
微处理器;以及
存储器,所述存储器保持可由所述微处理器执行的指令,以接收所述至少一个信号,并且根据通过所述热电发电机向其供电的负载的需要,基于所述至少一个信号来配置所述至少一个可配置部件。
34.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述温差通过加热流体的供应和相对冷的散热器来提供,并且其中所述至少一个可配置部件进一步包括阀门,该阀门在所述控制器的控制之下调整所述加热流体的流速。
35.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述温差通过加热流体的供应和相对冷的散热器来提供,并且其中所述至少一个可配置部件进一步包括阀门,该阀门在所述控制器的控制之下调整所述加热流体的温度。
36.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述温差通过相对热的源和相对冷的流体的供应来提供,并且其中所述至少一个可配置部件进一步包括阀门,该阀门在所述控制器的控制之下调整相对冷的流体的流速。
37.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述温差通过相对热的源和相对冷的流体的供应来提供,并且其中所述至少一个可配置部件进一步包括阀门,该阀门在所述控制器的控制之下调整相对冷的流体的温度。
38.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中所述温差通过加热流体的供应和相对冷的散热器来提供,并且其中所述加热流体的供应通过太阳能收集器来加热,并且其中所述至少一个可配置部件进一步包括太阳能收集器调整机构,该太阳能收集器调整机构调整所述太阳能收集器的能力以传热给所述加热流体。
39.如权利要求38所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述太阳能收集器是平板太阳能收集器,并且其中所述太阳能收集器调整机构调整所述平板太阳能收集器之上的阴影的位置。
40.如权利要求38所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述太阳能收集器是集中式太阳能收集器,并且其中所述太阳能收集器调整机构调整所述集中式太阳能收集器的瞄准或聚焦。
41.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述控制器进一步配置成产生第二信号,所述第二信号指示由所述热电发电机产生的电力的状态。
42.如权利要求41所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述第二信号指示所述热电发电机正在产生的电力的量。
43.如权利要求41所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述第二信号指示所述热电发电机不能根据负载的需要而产生电力。
44.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述热电发电机包括至少两个发电排,每个发电排包括至少一个热电模块,并且其中每个发电排产生由所述热电发电机产生的电力的一部分。
45.如权利要求44所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述至少一个可配置部件包括矩阵开关,该矩阵开关在所述控制器的控制之下配置所述发电排的相互连接。
46.如权利要求45所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,配置所述发电排的相互连接包括断开至少一个发电排。
47.如权利要求45所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,配置所述发电排的相互连接包括将至少一个发电排与至少一个其它发电排串联地放置。
48.如权利要求45所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,配置所述发电排的相互连接包括将至少一个发电排与至少一个其它发电排并联地放置。
49.如权利要求45所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,配置所述发电排的相互连接包括串联连接和并联连接组合地放置发电排。
50.如权利要求45所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,配置所述发电排的相互连接包括配置所述发电排的相互连接以维持所述热电发电机的期望输出电压。
51.如权利要求44所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,每个发电排包括至少两个热电模块,并且其中每个热电模块产生由它的各个发电排产生的电力的一部分。
52.如权利要求51所述的用于根据负载的需要来自动配置热电发电系统的设备,其中,所述至少一个可配置部件包括矩阵开关,该矩阵开关在所述控制器的控制之下配置发电排之内的模块的相互连接。
53.如权利要求32所述的用于根据负载的需要来自动配置热电发电系统的设备,其中:
所述热电发电机包括至少两个发电排,其中每个发电排产生由所述热电发电机产生的电力的一部分;
每个发电排包括至少两个热电模块,其中每个热电模块产生由它的各个发电排产生的电力的一部分;
每个发电排包括模块级别的矩阵开关,该模块级别的矩阵开关在所述控制器的控制之下配置它的各个发电排之内的模块的相互连接;并且
所述设备进一步包括发电排级别的矩阵开关,该发电排级别的矩阵开关在所述控制器的控制之下配置所述发电排的相互连接。
54.一种用于根据负载的需要来自动配置热电发电系统的方法,所述方法包括:
通过控制器接收至少一个信号,所述至少一个信号表征在经受温差时产生电力的热电发电机所产生的电力;
通过所述控制器接收通过所述热电发电机向其供电的负载的需要的指示;以及
基于表征由所述热电发电机产生的电力的所述至少一个信号,并且基于通过所述热电发电机向其供电的负载的需要的所述指示,通过所述控制器配置至少一个可配置部件,所述至少一个可配置部件影响由所述热电发电机产生的电力的至少一个方面。
55.如权利要求54所述的用于根据负载的需要来自动配置热电发电系统的方法,其中,所述温差通过加热流体和相对冷的散热器来提供,并且其中配置所述至少一个可配置部件进一步包括调整阀门,该阀门调整所述加热流体的流速。
56.如权利要求54所述的用于根据负载的需要来自动配置热电发电系统的方法,其中,所述温差通过加热流体和相对冷的散热器来提供,并且其中配置所述至少一个可配置部件进一步包括调整阀门,该阀门调整所述加热流体的温度。
57.如权利要求54所述的用于根据负载的需要来自动配置热电发电系统的方法,其中,所述温差通过加热流体的供应和相对冷的散热器来提供,并且其中所述加热流体的供应通过太阳能收集器来加热,并且其中配置所述至少一个可配置部件进一步包括调整所述太阳能收集器的能力以传热给所述加热流体。
58.如权利要求54所述的用于根据负载的需要来自动配置热电发电系统的方法,其中,所述热电发电机包括至少两个发电排,每个发电排包括至少一个热电模块,其中每个发电排产生由所述热电发电机产生的电力的一部分,并且其中配置所述至少一个可配置部件进一步包括控制矩阵开关以配置所述发电排的相互连接。
59.如权利要求54所述的用于根据负载的需要来自动配置热电发电系统的方法,其中,所述热电发电机包括至少两个热电模块,其中每个模块产生由所述热电发电机产生的电力的一部分,并且其中配置所述至少一个可配置部件进一步包括控制矩阵开关以配置所述热电模块的相互连接。
60.如权利要求54所述的用于根据负载的需要来自动配置热电发电系统的方法,其中,所述热电发电机包括至少两个发电排,每个发电排包括至少两个热电模块,其中每个发电排产生由所述热电发电机产生的电力的一部分,其中每个热电模块产生由它的各个发电排产生的电力的一部分,并且其中配置所述至少一个可配置部件进一步包括控制模块级别的矩阵开关以配置所述热电模块中的至少两个的相互连接,并且进一步包括控制发电排级别的矩阵开关以配置所述发电排的相互连接。
61.一种用于将加热流体的贮存器中存储的热能转换成电能的方法,所述方法包括:
将加热流体从所述贮存器传递到热电发电机的热侧,所述热电发电机包括多个热电模块;
冷却所述热电发电机的冷侧;
监视由所述热电发电机产生的输出电压;以及
随着所述加热流体的温度波动,重新配置所述热电模块的相互连接,以将所述输出电压维持在期望的范围之内。
62.如权利要求61所述的用于将加热流体的贮存器中存储的热能转换成电能的方法,进一步包括使用太阳能收集器来加热所述加热流体。
63.如权利要求61所述的用于将加热流体的贮存器中存储的热能转换成电能的方法,其中,所述多个热电模块被分组成发电排,并且其中重新配置所述热电模块的相互连接以将所述输出电压维持在期望的范围之内包括重新配置所述发电排的相互连接。
64.一种用于将电力特性维持在预定范围之内的系统,所述系统包括:
监视器,其测量由热电发电机向负载供应的电力的特性;
控制器,其接收来自所述监视器的信号,所述信号传达了电力特性的测量结果,所述控制器还包括针对所述电力特性的预定期望范围的规范;以及
具有多个输入接头的矩阵开关,输入终端接纳来自所述热电发电机之内的多个热电模块的接头,并且所述矩阵开关进一步包括一组输出终端,通过该组输出终端将由所述热电发电机产生的电力传递到负载,
其中,所述控制器配置成将电力特性的测量结果与预定范围相比较,并且重新配置所述输入终端和所述输出终端之间的相互连接,以将电力特性保持在预定范围之内。
65.如权利要求64所述的用于将电力特性维持在预定范围之内的系统,其中,所述预定特性是电压。
66.如权利要求64所述的用于将电力特性维持在预定范围之内的系统,其中,所述控制器进一步包括微处理器,该微处理器执行计算机可读介质上存储的指令。
67.一种用于根据温差产生电力的热电发电机,所述热电发电机包括:
多个热电模块,每个热电模块具有第一侧和第二侧,并且每个热电模块当在它的各自第一侧和第二侧之间经受温差时产生电力;
由第一流体向其供热的多个第一热敏元件;以及
由第二流体从其去热的多个第二热敏元件,
其中,所述第一热敏元件和所述第二热敏元件排列成交替的第一热敏元件和第二热敏元件的堆叠,该堆叠在每个相邻成对的第一热敏元件和第二热敏元件之间具有所述多个热电模块中之一,每个热电模块在其第一侧与所述第一热敏元件中之一相接触,并且在其第二侧与所述第二热敏元件中之一相接触,使得没有任何热敏元件的面接触多于一个的热电模块。
68.如权利要求67所述的用于根据温差产生电力的热电发电机,其中,所述第一热敏元件和所述第二热敏元件中的每一个是由导热材料制成的块,每个块进一步包括通过所述块的通道,各自的流体流过所述通道。
69.如权利要求68所述的用于根据温差产生电力的热电发电机,其中,所述导热材料是铝。
70.如权利要求68所述的用于根据温差产生电力的热电发电机,其中,每个块是普通矩形,并且其中每个通道一般在对角线上横穿其各自的块。
71.如权利要求68所述的用于根据温差产生电力的热电发电机,其中,每个通道在所述通道的每个末端包括导入部,每个导入部为普通圆柱形并且具有比所述通道的中部大的尺度。
72.如权利要求67所述的用于根据温差产生电力的热电发电机,其中,所述第一热敏元件和所述第二热敏元件是机械可互换的。
73.如权利要求67所述的用于根据温差产生电力的热电发电机,进一步包括:
夹具,其对热电模块与第一热敏元件和第二热敏元件的堆叠保持加压。
74.如权利要求67所述的用于根据温差产生电力的热电发电机,进一步包括:
第一流体入口歧管,其向所述第一热敏元件分配所述第一流体;以及
第一流体出口歧管,其从所述第一热敏元件收集所述第一流体。
75.如权利要求67所述的用于根据温差产生电力的热电发电机,进一步包括:
第二流体入口歧管,其向所述第二热敏元件分配所述第二流体;以及
第二流体出口歧管,其从所述第二热敏元件收集所述第二流体。
76.如权利要求67所述的用于根据温差产生电力的热电发电机,进一步包括:
第一流体入口歧管,其向所述第一热敏元件分配所述第一流体;
第一流体出口歧管,其从所述第一热敏元件收集所述第一流体;
第二流体入口歧管,其向所述第二热敏元件分配所述第二流体;以及
第二流体出口歧管,其从所述第二热敏元件收集所述第二流体。
77.如权利要求76所述的用于根据温差产生电力的热电发电机,其中,所述第一流体入口歧管和所述第二流体出口歧管在热电模块与第一热敏元件和第二热敏元件的堆叠的一侧彼此相邻地放置。
78.如权利要求76所述的用于根据温差产生电力的热电发电机,进一步包括:
一个或多个柔性管,所述管中的至少一个将所述歧管中的每一个与它的各自第一热敏元件或第二热敏元件中的每一个相连接。
79.如权利要求78所述的用于根据温差产生电力的热电发电机,其中,所述柔性管中的至少一个被压配合到它的各自歧管和热敏元件中。
80.如权利要求67所述的用于根据温差产生电力的热电发电机,其中,所述第一流体是水。
81.如权利要求67所述的用于根据温差产生电力的热电发电机,其中,所述第二流体是水。
82.一种制作用于根据温差产生电力的热电发电机的方法,所述方法包括:
提供多个热电模块,每个热电模块具有第一侧和第二侧,并且每个热电模块当在它的各自第一侧和第二侧之间经受温差时产生电力;
提供配置成从第一流体接收热的多个第一热敏元件;
提供配置成通过第二流体进行冷却的多个第二热敏元件;
将所述第一热敏元件和所述第二热敏元件排列成交替的第一热敏元件和第二热敏元件的堆叠,该堆叠在每个相邻成对的第一热敏元件和第二热敏元件之间具有所述热电模块中之一,每个热电模块在其第一侧与所述第一热敏元件中之一相接触,并且在其第二侧与所述第二热敏元件中之一相接触,使得没有任何热敏元件的面接触多于一个的热电模块。
83.如权利要求82所述的制作用于根据温差产生电力的热电发电机的方法,所述方法进一步包括:
提供第一流体入口歧管,其配置成接收所述第一流体并向所述多个第一热敏元件分配所述第一流体。
84.如权利要求82所述的制作用于根据温差产生电力的热电发电机的方法,所述方法进一步包括:
提供第二流体入口歧管,其配置成接收所述第二流体并向所述多个第二热敏元件分配所述第二流体。
85.如权利要求82所述的制作用于根据温差产生电力的热电发电机的方法,所述方法进一步包括:
提供第一流体出口歧管,其配置成从所述多个第一热敏元件接收所述第一流体并将所述第一流体从所述热电发电机运走。
86.如权利要求82所述的制作用于根据温差产生电力的热电发电机的方法,所述方法进一步包括:
提供第二流体出口歧管,其配置成从所述多个第二热敏元件接收所述第二流体并将所述第二流体从所述热电发电机运走。
87.如权利要求82所述的制作用于根据温差产生电力的热电发电机的方法,所述方法进一步包括:
将每个热敏元件连接到流体入口歧管并连接到流体出口歧管。
88.如权利要求82所述的制作用于根据温差产生电力的热电发电机的方法,所述方法进一步包括:
夹住第一热敏元件、第二热敏元件和热电模块的所述堆叠,以便该堆叠保持加压。
CN2009801289995A 2008-06-10 2009-06-10 用于整栋住宅或建筑物的集成能量系统 Pending CN102112821A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6037708P 2008-06-10 2008-06-10
US61/060,377 2008-06-10
PCT/US2009/046860 WO2009152218A1 (en) 2008-06-10 2009-06-10 Integrated energy system for whole home or building

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012103758892A Division CN102881816A (zh) 2008-06-10 2009-06-10 热电发电机

Publications (1)

Publication Number Publication Date
CN102112821A true CN102112821A (zh) 2011-06-29

Family

ID=41399177

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009801289995A Pending CN102112821A (zh) 2008-06-10 2009-06-10 用于整栋住宅或建筑物的集成能量系统
CN2012103758892A Pending CN102881816A (zh) 2008-06-10 2009-06-10 热电发电机

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2012103758892A Pending CN102881816A (zh) 2008-06-10 2009-06-10 热电发电机

Country Status (5)

Country Link
US (3) US8614390B2 (zh)
EP (2) EP2397790A3 (zh)
CN (2) CN102112821A (zh)
BR (2) BRPI0923671A2 (zh)
WO (1) WO2009152218A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739115A (zh) * 2012-06-11 2012-10-17 华北电力大学 一种利用建筑物内外环境温差的发电系统
CN103607139A (zh) * 2013-12-05 2014-02-26 华北电力大学 浪涌和太阳能联合发电系统
WO2016074319A1 (zh) * 2014-11-10 2016-05-19 江苏创兰太阳能空调有限公司 一种太阳能中央空调
CN108266791A (zh) * 2016-12-30 2018-07-10 百吉瑞(天津)新能源有限公司 一种熔盐储能和电锅炉互补供暖系统
CN110794887A (zh) * 2019-10-09 2020-02-14 江苏奥畋工程科技有限公司 一种用于低温冷链运输的环境温度控制装置

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032801A2 (en) 2005-06-28 2007-03-22 Bsst Llc Thermoelectric power generator for variable thermal power source
GB2457051B (en) * 2008-01-31 2012-08-08 Faith Louise Ltd Heating system
CA2722355A1 (en) * 2008-04-24 2009-10-29 Vkr Holding A/S A device for obtaining heat
CN102105757A (zh) 2008-06-03 2011-06-22 Bsst有限责任公司 热电热泵
TW201005239A (en) * 2008-07-29 2010-02-01 Han-Chieh Chiu Solar energy collection and storing sysetm
EP2159496A1 (en) * 2008-08-29 2010-03-03 Vito NV Controller for energy supply systems
DE102009058550A1 (de) * 2009-07-21 2011-01-27 Emcon Technologies Germany (Augsburg) Gmbh Thermoelektrisches Modul, Baugruppe mit Modul, thermoelektrische Generatoreinheit und Abgasleitungsvorrichtung mit Generatoreinheit
US20110017200A1 (en) * 2009-07-23 2011-01-27 Arthur Louis Zwern Integrated off-grid thermal appliance
WO2011011795A2 (en) 2009-07-24 2011-01-27 Bsst Llc Thermoelectric-based power generation systems and methods
US8746232B2 (en) * 2009-08-07 2014-06-10 Honda Motor Co., Ltd. Hot water supply system
US20110108018A1 (en) * 2009-11-09 2011-05-12 Heinsohn Richard G Solar based energy conversion apparatus
US8560140B2 (en) * 2009-12-21 2013-10-15 Bsh Home Appliances Corporation Home appliance and method for operating a home appliance
EP2362456A1 (en) * 2010-02-25 2011-08-31 Koninklijke Philips Electronics N.V. Thermo-electric generator system
US20130199591A1 (en) * 2010-03-30 2013-08-08 Tata Steel Uk Limited Arrangement for Generating Electricity with Thermoplastic Generators and Solar Energy Collector Means
JP2013128333A (ja) * 2010-03-31 2013-06-27 Tokyo Institute Of Technology 蒸気発生装置及びこれを用いたエネルギ供給システム
US20110253126A1 (en) * 2010-04-15 2011-10-20 Huiming Yin Net Zero Energy Building System
TWI375512B (en) * 2010-04-23 2012-11-01 Univ Nat Pingtung Sci & Tech Environment-controlled apparatus for cultivating plants
US20120090333A1 (en) * 2010-05-24 2012-04-19 Dellamorte Jr John O Method and apparatus for an electrically cooled pitcher
CN102947961B (zh) 2010-06-18 2016-06-01 英派尔科技开发有限公司 电热效应材料和热二极管
US8769967B2 (en) 2010-09-03 2014-07-08 Empire Technology Development Llc Electrocaloric heat transfer
US8421403B2 (en) * 2010-10-05 2013-04-16 Linde Aktiengesellschaft Thermoelectric power generating exhaust system
TWI443882B (zh) * 2010-11-15 2014-07-01 Ind Tech Res Inst 熱電轉換組件及其製造方法
DE102010061247B4 (de) * 2010-12-15 2018-02-15 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines in einem Abgasstrang eines Kraftfahrzeugs einsetzbaren thermoelektrischen Generators
US20120199171A1 (en) * 2011-02-07 2012-08-09 Watts Thermoelectric, Llc Thermoelectric generation utilizing nanofluid
JP5640800B2 (ja) * 2011-02-21 2014-12-17 ソニー株式会社 無線電力供給装置及び無線電力供給方法
WO2012144995A1 (en) * 2011-04-20 2012-10-26 Empire Technology Development Llc Heterogeneous electrocaloric effect heat transfer device
EP2528124A1 (en) * 2011-05-23 2012-11-28 Holdingselskabet TEG af 2011 ApS A power generator
RS53561B1 (en) * 2011-06-03 2015-02-27 Dušan Švenda HEAT-ABSORPTION ELECTRICITY GENERATOR
WO2012170443A2 (en) 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems
US9105538B2 (en) * 2011-06-14 2015-08-11 Moon J. Kim Dynamically configurable photovoltaic cell array
FR2977373B1 (fr) * 2011-06-30 2013-12-20 Valeo Systemes Thermiques Procede de fabrication d'un dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et dispositif thermo electrique obtenu par un tel procede
JP2013032872A (ja) * 2011-08-01 2013-02-14 Sharp Corp 加熱調理器
WO2013025843A1 (en) 2011-08-15 2013-02-21 Incube Labs, Llc System and method for thermoelectric energy generation
US10003000B2 (en) * 2011-08-15 2018-06-19 Incube Labs, Llc System for thermoelectric energy generation
US20140048111A1 (en) * 2012-08-17 2014-02-20 Thomas G. Hinsperger Method and system for producing an electric current from a temperature differential
DE102011111954B4 (de) * 2011-08-30 2016-02-18 Faurecia Emissions Control Technologies, Germany Gmbh Vorrichtung zur Abgaswärmenutzung, Abgasmodul mit einer solchen Vorrichtung sowie Verfahren zur Herstellung der Vorrichtung
CN103827601B (zh) 2011-09-21 2016-08-17 英派尔科技开发有限公司 异质电热效应热传递
US9310109B2 (en) 2011-09-21 2016-04-12 Empire Technology Development Llc Electrocaloric effect heat transfer device dimensional stress control
WO2013043167A1 (en) 2011-09-21 2013-03-28 Empire Technology Development Llc Electrocaloric effect heat transfer device dimensional stress control
CN102393079A (zh) * 2011-09-28 2012-03-28 区煜广 一种综合利用太阳能和空气能的集成供能系统
JP5765176B2 (ja) * 2011-10-03 2015-08-19 富士通株式会社 熱発電デバイス
US8890340B2 (en) 2011-11-04 2014-11-18 Kohler, Inc. Fan configuration for an engine driven generator
US8544425B2 (en) 2011-11-04 2013-10-01 Kohler Co. Engine driven generator that is cooled by a first electrical fan and a second electrical fan
CN102589195A (zh) * 2012-03-19 2012-07-18 黄如瑾 太空能地源能结合的供热制冷系统
US20130276849A1 (en) * 2012-04-19 2013-10-24 Gentherm, Incorporated Teg-powered cooling circuit for thermoelectric generator
WO2014014448A1 (en) 2012-07-17 2014-01-23 Empire Technology Development Llc Multistage thermal flow device and thermal energy transfer
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9323299B2 (en) 2012-08-27 2016-04-26 Green Light Industries, Inc. Multiple power source unit
US9318192B2 (en) 2012-09-18 2016-04-19 Empire Technology Development Llc Phase change memory thermal management with electrocaloric effect materials
US10910962B2 (en) * 2012-10-19 2021-02-02 University Of Southern California Pervasive power generation system
US20140164797A1 (en) * 2012-12-10 2014-06-12 Jeffrey G. Marx Portable electrical device charging system and method using thermal energy
KR101421953B1 (ko) * 2012-12-27 2014-07-22 현대자동차주식회사 자동차용 적층형 열전발전장치
KR102253247B1 (ko) 2013-01-30 2021-05-17 젠썸 인코포레이티드 열전-기반 열 관리 시스템
CA2903307C (en) 2013-03-15 2019-12-03 Oy Halton Group Ltd. Water spray fume cleansing with demand-based operation
US9534817B2 (en) * 2013-03-29 2017-01-03 General Electric Company Conduction based magneto caloric heat pump
JP6078412B2 (ja) * 2013-04-17 2017-02-08 日立化成株式会社 熱電変換式発電装置
US20150243870A1 (en) * 2013-04-23 2015-08-27 Hi-Z Technology, Inc. Compact high power density thermoelectric generator
CN103197719B (zh) * 2013-04-24 2015-10-14 北京鸿雁荣昌电子技术开发有限公司 一种半导体温差热电发电方法及装置
US20140360556A1 (en) * 2013-06-10 2014-12-11 SunEdison Energy India Private Limited Methods and systems for temperature regulation of roof mounted and solar tracker mounted photovoltaic modules
CN103337992B (zh) * 2013-06-26 2016-03-02 国家电网公司 太阳能发电装置
CN103453658A (zh) * 2013-09-16 2013-12-18 太仓苏晟电气技术科技有限公司 一种节能太阳能热水器
DE102013222130A1 (de) * 2013-10-30 2015-04-30 MAHLE Behr GmbH & Co. KG Wärmeübertrager
US9899589B2 (en) * 2014-02-05 2018-02-20 Panasonic Corporation Thermal power generation unit and thermoelectric power generation system
DE102015201323A1 (de) * 2015-01-27 2016-07-28 Siemens Aktiengesellschaft Verfahren zur Energieerzeugung in einem Gebäude und Gebäude
DK201500285A1 (en) * 2015-05-13 2016-11-28 Peltpower Aps A heat exchanger system for recovering electric power from a heated fluid
US10290793B2 (en) 2015-05-28 2019-05-14 Nike, Inc. Athletic activity monitoring device with energy capture
CN107921304B (zh) 2015-05-28 2019-09-17 耐克创新有限合伙公司 能够捕获能量的体育运动监测设备
EP3696867A1 (en) 2015-05-28 2020-08-19 NIKE Innovate C.V. Athletic activity monitoring device with energy capture
WO2016191590A1 (en) 2015-05-28 2016-12-01 Nike, Inc. Athletic activity monitoring device with energy capture
WO2016191580A1 (en) 2015-05-28 2016-12-01 Nike, Inc. Athletic activity monitoring device with energy capture
EP4407860A2 (en) 2015-05-28 2024-07-31 Nike Innovate C.V. Athletic activity monitoring device with energy capture
US9947852B2 (en) 2015-05-28 2018-04-17 Nike, Inc. Athletic activity monitoring device with energy capture
US10263168B2 (en) 2015-05-28 2019-04-16 Nike, Inc. Athletic activity monitoring device with energy capture
CN107690726A (zh) 2015-06-10 2018-02-13 金瑟姆股份有限公司 具有集成冷板组件的车辆电池热电装置及其组装方法
DE112016002611T5 (de) * 2015-06-10 2018-03-01 Gentherm Inc. Für eine Fahrzeugbatterie bestimmte thermoelektrische Vorrichtung mit integrierter Kühlplattenbaugruppe
DE102015224712A1 (de) * 2015-12-09 2017-06-14 Mahle International Gmbh Thermoelektrische Vorrichtung, insbesondere thermoelektrischer Generator
KR102420085B1 (ko) * 2016-02-23 2022-07-13 주식회사 엘지생활건강 열교환기 및 이를 구비하는 매트 장치
CN107313842A (zh) * 2016-04-26 2017-11-03 彭斯干 零能耗海洋工程发动机尾气海水洗涤净化方法及装置
WO2018090065A1 (en) * 2016-11-14 2018-05-17 University Of South Africa Thermal energy to electrical energy extraction system
US10816220B2 (en) * 2017-02-06 2020-10-27 Mike Montauk Gonzalez Advance hybrid roof, advanced cool roof, advanced solar roof, ready roof
US10164429B1 (en) * 2017-09-15 2018-12-25 Cloyd J. Combs Electrical power plant
US10636725B2 (en) * 2017-12-19 2020-04-28 Veoneer Us Inc. Electrical module cooling through waste heat recovery
US10219788B2 (en) * 2017-12-23 2019-03-05 Faraj Tabeie String phantom with four independent parameters for evaluation of doppler ultrasonography instruments
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
WO2020167306A1 (en) * 2019-02-14 2020-08-20 Xinova, LLC Mobile vehicle driven building electric power supplementation
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11043624B2 (en) 2019-04-23 2021-06-22 Imam Abdulrahman Bin Faisal University System, device, and method for generating energy using a thermoelectric generator
US11856856B2 (en) * 2019-09-30 2023-12-26 Advanced Semiconductor Engineering, Inc. Thermal conduction unit, electronic module and heat dissipating device
TWI749411B (zh) * 2019-11-28 2021-12-11 董尚威 流體溫控裝置
WO2021257467A1 (en) 2020-06-15 2021-12-23 DTP Thermoelectrics LLC Thermoelectric systems employing distributed transport properties to increase cooling and heating performance
CN113217311B (zh) * 2021-04-25 2022-08-05 华北电力大学 一种基于昼夜温差的光热发电系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197342A (en) * 1961-09-26 1965-07-27 Jr Alton Bayne Neild Arrangement of thermoelectric elements for improved generator efficiency
US4099381A (en) * 1977-07-07 1978-07-11 Rappoport Marc D Geothermal and solar integrated energy transport and conversion system
US4290273A (en) * 1980-02-13 1981-09-22 Milton Meckler Peltier effect absorption chiller-heat pump system
US6028263A (en) * 1997-05-14 2000-02-22 Nissan Motor Co., Ltd. Thermoelectric power generating apparatus and method for driving same
US20080041054A1 (en) * 2004-09-07 2008-02-21 Philippe Montesinos Production of Hydrogen Using Low-Energy Solar Energy
CN101213679A (zh) * 2005-06-28 2008-07-02 Bsst有限责任公司 用于可变热功率源的热电发电机

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1539330A1 (de) * 1966-12-06 1969-11-06 Siemens Ag Thermoelektrische Anordnung
US3430692A (en) * 1967-06-16 1969-03-04 John Karmazin Return bend construction for heat exchangers
US3899359A (en) * 1970-07-08 1975-08-12 John Z O Stachurski Thermoelectric generator
US4852547A (en) * 1973-09-18 1989-08-01 Thomason Harry E Heat storage
US4004728A (en) * 1974-04-18 1977-01-25 Gerber Products Company Machine fillable envelope
US4007728A (en) * 1975-01-06 1977-02-15 Peter Guba Solar collector
US3991937A (en) * 1975-11-12 1976-11-16 Volkmar Heilemann Solar-heated unit
US4000851A (en) * 1975-11-12 1977-01-04 Volkmar Heilemann Solar-heated dwelling
US4068474A (en) * 1976-08-30 1978-01-17 Boris Dimitroff Apparatus and process for steam generation by solar energy
FR2452796A1 (fr) * 1979-03-26 1980-10-24 Cepem Dispositif thermoelectrique de transfert de chaleur avec circuit de liquide
US4335707A (en) * 1980-10-31 1982-06-22 Lindenbauer Leo K Solar energy collector and energy storage cell
US4442826A (en) * 1980-11-04 1984-04-17 Pleasants Frank M Prefabricated panel for building construction and method of manufacturing
US4401100A (en) * 1981-05-04 1983-08-30 Slater Harold E Water heating system
US4577435A (en) * 1981-08-17 1986-03-25 Springer Edward A Micro-climate temperature control apparatus
US4475538A (en) * 1983-11-30 1984-10-09 United Stirling Ab Window for solar receiver for a solar-powered hot gas engine
US4586334A (en) * 1985-01-23 1986-05-06 Nilsson Sr Jack E Solar energy power generation system
US4734139A (en) * 1986-01-21 1988-03-29 Omnimax Energy Corp. Thermoelectric generator
US4802929A (en) * 1986-12-19 1989-02-07 Fairchild Industries, Inc. Compliant thermoelectric converter
US4881372A (en) * 1988-02-29 1989-11-21 Aisin Seiki Kabushiki Kaisha Stirling engine
US4829771A (en) * 1988-03-24 1989-05-16 Koslow Technologies Corporation Thermoelectric cooling device
US5404723A (en) * 1991-03-12 1995-04-11 Solar Reactor Technologies, Inc. Fluid absorption receiver for solar radiation to power a Stirling cycle engine
WO1994012833A1 (en) * 1992-11-27 1994-06-09 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
EP0907972A4 (en) * 1996-05-10 2001-02-28 Tryport International Gmbh IMPROVED THERMOELECTRIC UNIT WITH ELECTRICAL INPUT / OUTPUT DEVICE
JP3292128B2 (ja) * 1998-02-27 2002-06-17 ダイキン工業株式会社 プレート型熱交換器
JP2000205044A (ja) * 1999-01-19 2000-07-25 Shigeaki Kimura コ―ジェネレ―ション装置
US6244264B1 (en) * 1999-06-09 2001-06-12 Solar Enterprises, International, Llc Non-imaging optical illumination system
US20040068991A1 (en) * 1999-10-07 2004-04-15 Ben Banney Heat exchanger for an electronic heat pump
US6313393B1 (en) * 1999-10-21 2001-11-06 Battelle Memorial Institute Heat transfer and electric-power-generating component containing a thermoelectric device
US6487859B2 (en) * 2000-08-03 2002-12-03 Midwest Research Institute Dish/stirling hybrid-receiver
GB0021393D0 (en) * 2000-08-31 2000-10-18 Imi Cornelius Uk Ltd Thermoelectric module
US6453678B1 (en) * 2000-09-05 2002-09-24 Kabin Komfort Inc Direct current mini air conditioning system
US6806415B2 (en) * 2000-11-10 2004-10-19 Canon Kabushiki Kaisha Method for controlling a solar power generation system having a cooling mechanism
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US6759586B2 (en) * 2001-03-26 2004-07-06 Kabushiki Kaisha Toshiba Thermoelectric module and heat exchanger
US20040025516A1 (en) * 2002-08-09 2004-02-12 John Van Winkle Double closed loop thermoelectric heat exchanger
US6735946B1 (en) * 2002-12-20 2004-05-18 The Boeing Company Direct illumination free piston stirling engine solar cavity
US7100369B2 (en) 2003-05-06 2006-09-05 Denso Corporation Thermoelectric generating device
US6979911B2 (en) * 2003-05-08 2005-12-27 United Technologies Corporation Method and apparatus for solar power conversion
US6966157B1 (en) * 2003-08-01 2005-11-22 Kiyoshi Sandow Standing seam skylight
US7284709B2 (en) * 2003-11-07 2007-10-23 Climate Energy, Llc System and method for hydronic space heating with electrical power generation
US7040544B2 (en) * 2003-11-07 2006-05-09 Climate Energy, Llc System and method for warm air space heating with electrical power generation
US20050184167A1 (en) * 2004-02-24 2005-08-25 Stanley Bach Heating, ventilating, and air-conditioning system utilizing a pressurized liquid and a fluid-turbine generator
JP4133873B2 (ja) * 2004-03-04 2008-08-13 株式会社デンソー 熱電発電装置
DE102004012026B3 (de) * 2004-03-11 2005-11-17 Hüttinger Elektronik GmbH & Co. KG Anordnung zum Kühlen
JP4023472B2 (ja) * 2004-05-26 2007-12-19 株式会社デンソー 熱電発電装置
JP4479408B2 (ja) * 2004-08-04 2010-06-09 株式会社デンソー 熱電発電装置
US20090126772A1 (en) * 2004-10-27 2009-05-21 Hino Motors Ltd Thermoelectric generating device
JP2006177265A (ja) * 2004-12-22 2006-07-06 Denso Corp 熱電発電装置
US7178337B2 (en) * 2004-12-23 2007-02-20 Tassilo Pflanz Power plant system for utilizing the heat energy of geothermal reservoirs
WO2007087343A2 (en) * 2006-01-25 2007-08-02 Intematix Corporation Solar modules with tracking and concentrating features
US7915516B2 (en) * 2006-05-10 2011-03-29 The Boeing Company Thermoelectric power generator with built-in temperature adjustment
WO2008013946A2 (en) * 2006-07-28 2008-01-31 Bsst Llc High capacity thermoelectric temperature control systems
US20080168775A1 (en) 2007-01-11 2008-07-17 Nextreme Thermal Solutions, Inc. Temperature Control Including Integrated Thermoelectric Temperature Sensing and Related Methods and Systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197342A (en) * 1961-09-26 1965-07-27 Jr Alton Bayne Neild Arrangement of thermoelectric elements for improved generator efficiency
US4099381A (en) * 1977-07-07 1978-07-11 Rappoport Marc D Geothermal and solar integrated energy transport and conversion system
US4290273A (en) * 1980-02-13 1981-09-22 Milton Meckler Peltier effect absorption chiller-heat pump system
US6028263A (en) * 1997-05-14 2000-02-22 Nissan Motor Co., Ltd. Thermoelectric power generating apparatus and method for driving same
US20080041054A1 (en) * 2004-09-07 2008-02-21 Philippe Montesinos Production of Hydrogen Using Low-Energy Solar Energy
CN101213679A (zh) * 2005-06-28 2008-07-02 Bsst有限责任公司 用于可变热功率源的热电发电机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739115A (zh) * 2012-06-11 2012-10-17 华北电力大学 一种利用建筑物内外环境温差的发电系统
CN103607139A (zh) * 2013-12-05 2014-02-26 华北电力大学 浪涌和太阳能联合发电系统
CN103607139B (zh) * 2013-12-05 2014-07-09 华北电力大学 浪涌和太阳能联合发电系统
WO2016074319A1 (zh) * 2014-11-10 2016-05-19 江苏创兰太阳能空调有限公司 一种太阳能中央空调
CN108266791A (zh) * 2016-12-30 2018-07-10 百吉瑞(天津)新能源有限公司 一种熔盐储能和电锅炉互补供暖系统
CN110794887A (zh) * 2019-10-09 2020-02-14 江苏奥畋工程科技有限公司 一种用于低温冷链运输的环境温度控制装置

Also Published As

Publication number Publication date
BRPI0915029A2 (pt) 2012-12-25
US8614390B2 (en) 2013-12-24
US20090301687A1 (en) 2009-12-10
EP2310762A4 (en) 2013-11-06
US20090301541A1 (en) 2009-12-10
EP2397790A3 (en) 2014-03-05
CN102881816A (zh) 2013-01-16
US20090301539A1 (en) 2009-12-10
EP2310762A1 (en) 2011-04-20
EP2397790A2 (en) 2011-12-21
BRPI0923671A2 (pt) 2013-07-30
WO2009152218A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
CN102112821A (zh) 用于整栋住宅或建筑物的集成能量系统
US10571135B2 (en) Renewable energy hot water heater with heat pump
Calise et al. A solar-driven 5th generation district heating and cooling network with ground-source heat pumps: a thermo-economic analysis
RU2350847C1 (ru) Система автономного теплоснабжения потребителей с использованием низкопотенциального источника тепла и электроснабжения от возобновляемых источников энергии
US12050035B2 (en) Grid interactive water heater
CN113819510B (zh) 一种中深层地热能耦合太阳能的零排放供热系统
US20130266295A1 (en) Hybrid Gas-Electric Hot Water Heater
US20200182558A1 (en) Method for thermal energy storage and management for building and module and system
WO2015063170A1 (en) Power generation system
CN107178910A (zh) 一种基于cpvt和梯级蓄热的太阳能供热系统
KR20150028491A (ko) 태양열원 및 지열원 복합 냉난방 시스템 제어장치 및 방법
CN102705931A (zh) 一种多功能太阳能空调系统
CN215675924U (zh) 一种中深层地热地埋管双蓄热热泵供热装置
US20170005609A1 (en) Solar operated domestic water heating system
Østergaard et al. Smart district heating and electrification
CN213040627U (zh) 一种地暖模块化电加热器
CN107911046B (zh) 一种适用于农村地区的热发电系统
CN103851798B (zh) 一种光伏驱动的太阳能主动循环式热水系统
CN111981545A (zh) 智能控制土壤蓄热型太阳能供热综合系统
CN218955189U (zh) 一种太阳能热电冷联供系统
RU2535899C2 (ru) Система автономного электро- и теплоснабжения жилых и производственных помещений
CN110030613A (zh) 基于太阳能的采暖系统
EP4056922A1 (en) High efficiency solar pvt trigeneration system
KR102462637B1 (ko) 태양열 예열기를 적용한 주택용 고효율 태양열 집열시스템
KR102615368B1 (ko) 다이렉트 솔라 하이브리드 pvt를 이용한 난방 및 온수 공급 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110629