CN102084492A - 超韧单晶掺硼金刚石 - Google Patents

超韧单晶掺硼金刚石 Download PDF

Info

Publication number
CN102084492A
CN102084492A CN200980125978.8A CN200980125978A CN102084492A CN 102084492 A CN102084492 A CN 102084492A CN 200980125978 A CN200980125978 A CN 200980125978A CN 102084492 A CN102084492 A CN 102084492A
Authority
CN
China
Prior art keywords
diamond
boron
growth
crystal
monocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980125978.8A
Other languages
English (en)
Other versions
CN102084492B (zh
Inventor
梁琦
严智秀
毛和光
罗素·赫姆利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carnegie Institution of Washington
Original Assignee
Carnegie Institution of Washington
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carnegie Institution of Washington filed Critical Carnegie Institution of Washington
Publication of CN102084492A publication Critical patent/CN102084492A/zh
Application granted granted Critical
Publication of CN102084492B publication Critical patent/CN102084492B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及具有至少约22MPa m1/2的韧度的单晶掺硼CVD金刚石。本发明进一步涉及制备单晶掺硼CVD金刚石的方法。该金刚石的生长速率可以是20-100μm/h。

Description

超韧单晶掺硼金刚石
本申请要求2008年5月5日提交的美国临时申请号60/071,524的权益,其全部内容通过参照并入本文。
政府利益声明
本发明是在来自国家科学基金会和美国能源部的美国政府支持下进行的。美国政府对本发明具有一定的权利。
发明背景
技术领域
本发明总体涉及通过化学气相沉积(CVD)制备的单晶金刚石。更具体地,本发明涉及高质量、超韧单晶CVD掺硼金刚石。本发明也涉及其制备方法。
背景技术
以高生长速率制备的高质量单晶CVD金刚石(SC-CVD)的制作已经引起广泛关注(Yah等,Proc.Nat.Acad.Sci.,2002;Liang等,Phys.Lett.,2009)。可以通过优化CVD生长或者通过生长后处理制备这种金刚石材料,以显示出许多光学性能和机械性能。具体地,通过高压/高温(HPHT)退火可以显著提高SC-CVD的硬度(Yan等,Phys.Stat.Sol.,2004)。这种处理也降低测量的断裂韧度并提供调整硬度/韧度的手段。然而金刚石是目前已知的最硬的材料,但金刚石也是脆性的,这限制了某些科学和技术应用。已经努力通过制备金刚石/金属复合材料(Wentorf等,Science,1980)和通过生成多结构金刚石材料(Anthony等,Diam.Rel.Mater.,1997)来提高金刚石的断裂韧度。
金刚石被认可是人类已知的最硬的材料;天然单晶金刚石的本征硬度是大约100GPa。然而,如上所述,金刚石也被认为是脆性材料。据报道,Ia型金刚石的断裂韧度(KIC)在7.0MPa m1/2和8.4MPa m1/2之间;对于IIa型金刚石,KIC是4.2-5.6MPa m1/2(Novikov等,J.Hard Mater.,1993;Patridge等,Materials Science and Technology,1994)。
通过MPCVD(微波等离子体辅助化学气相沉积)工艺生长单晶CVD金刚石(SC-CVD)的改进已使制作大尺寸(市售可得的HPHT合成的Ib金刚石为3ct以上)、高质量金刚石成为可能(Yan等,Physica.Status.Solidi.,2004;Yan等,Proceedings of the National Academy of    Science,2002)。已经将包括H2/CH4/N2/O2的气体化学用于MPCVD工艺中进行金刚石生长。通过改变生长条件(包括基底温度、压力、N2和O2流速)显著增强了(100)生长,并且SC-CVD的颜色从深褐色变化到浅棕色、到几乎无色、到无色。已经报道了这些晶体的超高硬度(>150GPa)和韧度(>30MPa m1/2)(Yan等,Physica.Status.Solidi.,2004)。
也已经报道了优选将硼掺入到宝石级金刚石(Burns等,J.Cryst.Growth,1990)和CVD金刚石(Miyata等,J.Mater.Res.,1993)的(111)扇面中。置换的硼可以将金刚石晶格扩大33.7%,并且其在金刚石中的溶解度可以多达0.9%(Vornov等,Neorganicheskie Materialy,1993;Arima等,J.Crys.Growth,2007)。已经通过HPHT和CVD工艺制备了掺硼单晶金刚石;然而,还没有报道过具有大尺寸(厚度大于2mm)的IIb型金刚石。
美国专利号5,981,057涉及一种CVD金刚石层,其包含浓度为至少0.05原子百分数的硼掺杂原子。成核面受拉伸时金刚石层的平均拉伸断裂强度为至少600MPa,生长面受拉伸时金刚石层的平均拉伸断裂强度为至少300MPa。两个拉伸断裂强度都是通过在长度11mm、宽度2mm和厚度1.4mm以下的样品上进行三点弯曲试验测量的。
美国专利号7,201,886涉及金刚石刀具,其包括具有至少一层单晶重掺杂金刚石的成形金刚石以产生可见光。所述掺杂剂可以是硼。
美国专利号7,160,617涉及通过CVD制备并且总硼浓度均匀的单晶掺硼金刚石层。
通过参照并入本文的Hemley等的美国专利号6,858,078,涉及制备金刚石的装置和方法。所述公开的装置和方法可以制备浅棕色到无色的金刚石。
通过参照并入本文的美国专利申请号10/889,171,涉及退火化学气相沉积金刚石。重要的发明特征包括将CVD金刚石提升至金刚石稳定相之外的至少1500摄氏度的设定温度和至少4.0GPa的压力。
通过参照并入本文的美国专利申请号10/889,170,美国专利号7,115,241,涉及具有改进的硬度的金刚石。该申请公开了硬度大于120GPa的单晶金刚石。
通过参照并入本文的美国专利申请号10/889,169,现在美国专利号7,157,067,涉及具有改进的韧度的金刚石。该申请公开了断裂韧度11-20MPam1/2和硬度50-90GPa的单晶金刚石。
美国专利申请号11/222,224,通过参照并入本文,涉及具有高韧度的退火的单晶CVD金刚石。
所引用的参考文献都不涉及超韧的单晶掺硼CVD金刚石。高韧度是期望的单晶金刚石性质,其用于包括但不限于微米和纳米加工和凿岩的用途。因此,一直需要具有高韧度的单晶金刚石。另外,确实需要具有可调特性包括但不限于颜色的高韧单晶金刚石。因此本发明的一个主要目的是提供这种高韧单晶金刚石。其他目的将从本发明的下述描述变得明显。
发明内容
本发明通过将硼掺入到金刚石中而部分实现其目的。宽泛而言,本发明涉及通过微波等离子体化学气相沉积生长的单晶掺硼金刚石,其具有至少约22MPa m1/2的韧度。
宽泛而言,生长具有高韧度的单晶掺硼金刚石的方法可以包括以下步骤:
i)将金刚石晶种置于吸热支持物中,所述吸热支持物由具有高熔点和高热导率的材料制成,以最小化跨过金刚石的生长面的温度梯度;
ii)控制金刚石的生长面的温度,以便生长的金刚石晶体的温度在约900-1500摄氏度的范围内;和
iii)在沉积室内通过微波等离子体化学气相沉积在金刚石的生长面上生长单晶金刚石,所述沉积室包括5-20%CH4/H2、5-20%O2/CH4、0-20%N2/CH4和硼源。所述金刚石的生长速度为20-100μm/h。
一方面,本发明包括通过微波等离子体化学气相沉积生长的单晶掺硼金刚石,其具有至少约22MPa m1/2的韧度。另一方面,硬度可以大于约60GPa。
附图说明
引入附图以提供对本发明的进一步的理解,并且并入本发明的文字描述中构成其一部分,这些附图说明了本发明的实施例并与说明书共同用于解释本发明的原理。
图1提供了天然Ia、IIa、Ib、CVD单晶和CVD掺硼单晶金刚石的维氏硬度对比断裂韧度的图。
图2描述了各种金刚石的压痕图案。
图3提供了浅棕色、无色、和暗蓝色掺硼SC-CVD金刚石的图片。
图4提供了浅棕色、无色、和暗蓝色掺硼SC-CVD金刚石的光致发光光谱。
图5提供了浅棕色、无色、和暗蓝色掺硼SC-CVD金刚石的吸收系数。
图6提供了浅棕色、无色、和暗蓝色掺硼SC-CVD金刚石的红外光谱。这些光谱不是按比例的。
图7提供了硼/氮掺杂的单晶CVD金刚石的光致发光光谱。
图8提供了改进的Kanda图,其中水平线代表在各种生长扇面(growth sector)中的氮供体(ND)的相对浓度;斜线代表在各种生长扇面中硼受体NA的浓度,其作为加入合成小皿中的硼掺杂剂量的函数。参见参考文献(Burns等,J.Cryst.Growth,1990)。
优选实施方式的详细描述
本发明涉及以高生长速率通过微波等离子体辅助化学气相沉积制作的单晶金刚石的机械性能的进一步改进。在硼和/或氮掺杂后可以观察到这些进一步改进。当硼/氮掺杂与低压/高温(LPHT)退火结合进行时,可以观察到附加的改进,所述低压/高温(LPHT)退火是美国专利申请号12/244,053和美国临时申请号61/108,283的主题,通过参照将这两个申请都并入本文。掺入硼/氮可以显著提高单晶CVD金刚石的韧度,形成可以称为超韧的材料。LPHT退火可以将这种金刚石的固有硬度提高一倍,而不明显降低断裂韧度。金刚石的这种掺杂和生长后处理可能导致需要提高的金刚石机械性能的新技术应用。
在5-20%CH4/H2、5-20%O2/CH4、0-20%N2/CH4、100-400Torr,900摄氏度-1500摄氏度范围内的温度下,通过高密度MPCVD合成了各种含硼单晶金刚石。必须注意的是可以使用其他分子内包含氧的气体代替O2。例子包括二氧化碳、一氧化碳和水蒸气。可以使用任何包含硼的化合物将硼加入该化学反应中;在该分子内的其他原子可以包括以任何相的氮原子、碳原子、氢原子和氧原子中的一种或更多种。可被有效地引入CVD反应室中的含硼化合物的例子包括但不限于二硼烷(B2H6)或硼酸三甲酯(TMB)气体、气化B2O3、或六方氮化硼粉末。这些化合物在等离子体体系中的分解将为掺杂工艺提供足够量的硼。与在富氢CVD工艺中由CHx物类形成金刚石类似,硼和氢之间的反应生成大量BHx(X=0-3)。
Figure BPA00001287184500041
的快速互变反应将生成足够量的BH物类,所述BH物类可被嵌入金刚石结构中(Cheesman等,Phys.Chem.Chem.Phys.,2005)。可以通过以下调节掺杂程度:
1)改变反应中的硼掺杂剂的量;
2)改变氮原料气(Liang等,Appl.Phys.Lett.,2003);
3)改变偏角(off-angle),这也可以改变硼掺入程度--每个晶格面的硼掺入程度不同:(111)>(110)>(100)=(113)(Burns等,J.Cryst.Growth,1990;图27);即偏角(110)方向比偏角(100)方向掺入更多的硼;和
4)改变金刚石生长过程中基底的温度。
用于制造本发明的金刚石的基底是具有(100)面的天然Ia或IIa、HPHT合成的Ib、或SC-CVD。上生长面可以稍微偏离(100)面,优选在0和20度之间,更优选在0-15度之间。当偏轴角小于1度时,具有(111)面的八面体金刚石开始形成,并且(100)不能继续优先生长。生长层不能厚于100微米。当偏轴角高于20度时,会出现分离的(100)柱和梯度。在1度和20度之间的偏角会产生没有小丘的光滑阶梯流动形态学,因此使单晶金刚石增大。记录到了20-100μm/h的生长速率,这与其他B掺杂单晶金刚石生长相比提高了10-100倍(Arima等,J.Crys.Growth,2007)。
通过改变工艺参数(包括但不限于N2原料气速率、B掺杂剂量、偏角和表面温度),从而改变硼和氮含量,掺硼SC-CVD的颜色可从深褐色、浅棕色、几乎无色、无色、暗蓝色调到深蓝色。图3显示了颜色为(a)浅棕色、(b)无色、和(c)暗蓝色的三个样品。
以514nm激光激发的样品a到c的光致发光光谱如图4所示。与没有硼的CVD金刚石相比,掺入硼的CVD金刚石可以提高金刚石质量并最小化金刚石缺陷(Chrenko,PhysicalReview B,1973;Show等,Diamond Relat.Mater.,2000;Locher等,Diamond Relat.Mater.,1995)。掺硼金刚石可以存在或可以不存在氮-空位(N-V)中心。对于韧性和超韧掺硼单晶金刚石,INv@575nm/ID@551nm比在0-100/1之间。根据金刚石颜色等级标准,掺硼单晶金刚石的颜色等级位于D和Z之间。正如缺乏735nm处硅PL峰指示所证明的,引入硼可以完全消除在金刚石结构中掺入硅。这产生了这样的想法:通过将很少量硼应用于反应室内以补偿下列:来自例如CVD室内加热的石英组分的硅污染;可能来自工艺储气罐例如沼气池(具有60ppm氮杂质的研究级4.0)污染的氮污染;来自真空密封的污染;来自通过微波等离子体加热的室壁和基底支持物的污染。
从图5的紫外-可见吸收光谱,棕色掺硼SC-CVD金刚石显示了涉及取代的氮在270nm附近和由于氮空位中心在550nm附近的宽谱带(Martineau等,Gems&Gemology,2004)。无色掺硼SC-CVD金刚石具有低得多的背景并显示了非常低(或没有)痕量的270nm和550nm谱带。对于暗蓝色掺硼SC-CVD金刚石,观察到非常少的(或没有)氮杂质,并且在光谱上观察到蓝色。
如图6所示,进一步由FTIR证实掺入硼;观察到在2800cm-1、2457cm-1(电子激发)和1282cm-1(单声子吸收)处的吸收谱带(Burns等,J.Cryst.Growth,1990;Prelas等,Handbookof Industrial Diamonds and Diamond Films,Marcel Dekker,New York,USA,1998;Gheeraert等,Diamond and Relat.Mater.,1998)。对于具有更高硼浓度的样品,还可以观察到在更高的波数即在3723cm-1、4085cm-1、5025cm-1、5362cm-1处的峰。可以通过SIMS测定硼浓度;也可以由在1282cm-1、2457cm-1和2800cm-1处峰的吸收系数的积分强度确定未补偿的硼(Prelas等,Handbook of Industrial Diamonds and Diamond Films,Marcel Dekker,New York,USA,1998;Gheeraert等,Diamond and Relat.Mater.,1998)。对于CVD掺硼金刚石薄膜,未补偿的硼浓度由以下方程式计算:
[B](cm-3)=1.1×1015I(2880cm-1)(cm-2)                       (3)
基于这个方程式以及韧度对比硬度的图(图1),超韧掺硼金刚石的硼浓度在0到100ppm之间。并且,硼掺入在IR光谱上引入较少的(或者甚至消除)超过5000cm-1的氢电子中心。通过掺入硼的颜色改进进一步由在更高波数的H相关IR峰的最小化证实(Meng等,Proc.Nat.Acad.Sci.U.S.A.,2008)。换言之,可以通过添加硼调整CVD单晶金刚石的棕色。
示例1
正如利用双色红外高温计测量的,在5-20%CH4/H2、0-0.2%N2/CH4,在150-220torr并且在1100摄氏度-1300摄氏度的温度下,通过高密度微波等离子体化学气相沉积(MPCVD)合成了单晶金刚石。将六方氮化硼(h-BN)粉末选作该掺杂剂并引入到CVD体系中。h-BN在等离子体体系内的分解提供了用于掺杂工艺的足够量的硼。记录到20-100μm/h的生长速率。生长后,用Q-开关Nd:YAG激光器,将CVD层与基底分开,接着是精抛光以除去所有残留的碳。选择没有尺寸范围为0.2mm到6mm的可见缺陷的无掺杂SC-CVD晶体用于LPHT退火。6kW 2.45GHz MPCVD反应器用于退火,该退火在1600-2200摄氏度的测量金刚石表面温度下,在150torr和300torr之间的气体压力下进行。
量化机械性能例如材料例如金刚石的断裂韧度是具有挑战性的。在历史上,已经使用维氏显微硬度测试技术来估计金刚石的硬度和断裂韧度(Novikov等,Diam.Rel.Mater.,1993;Drory等,Appl.Phys.Lett.,1995)。然而,当使用维氏硬度计压头对着硬度与压头材料相当或者超过压头材料的材料(即单晶金刚石)时,会产生模糊。发生压痕机尖变形的高于120GPa的硬度值是不现实的(Brazhkin等,Nature Materials,2004)。然而,得到的值与其他类型金刚石的一致性说明这种方法能够提供有用的结果,已经通过各种方法测定了所述其他类型金刚石的机械性能。这种方法还提供了用于整体研究超硬材料的机械性能的重要的可比较结果(Yan等,Phys.Stat.Sol.,2004)。在本研究中,使用相同的方法来研究掺硼和LPHT处理的SC-CVD金刚石的硬度/韧度。
天然Ia型、IIa型、合成Ib型、SC-CVD、LPHT处理的SC-CVD、和硼/氮掺杂的SC-CVD的硬度-断裂韧度数据绘制在图1中。由施加的负荷P和压痕尺寸2a根据下式确定硬度Hv
Hv=1.854P/a2,a=(a1+a2)/2                                  (1)
其中使用从压痕角扩展的辐射状裂缝的平均长度来估计断裂韧度(Yan等,Physica.StatusSolidi.,2004;Miyata等,J.Mater.Res.,1993;Cheesman等,Phys.Chem.Chem.Phys.,2005)
KIc=0.016(E/Hv)0.5P/c1.5,                                    (2)
其中C是从锯齿形中心测量的辐射状裂缝的长度,c=(c1+c2)/4,并且E是杨氏模量(Liang等,Appl.Phys.Lett.,2003)。为了防止塑性变形,使用在1kg和3kg之间的负荷。为了使这些压痕结果有效,在每个金刚石压痕前后在显微镜下观察所有的压头并在抛光的金属面上测试所有的压头。使用相同的维氏硬度计压头仪进行所有的测试;显示了天然Ia、天然IIa、合成Ib、和对SC-CVD金刚石的选择的以前的测量结果(Yah等,Physica.Status Solidi.,2004)。虽然为了与其他类型的测量结果比较而量化硬度/韧度值需要详细的分析(Prelas等,Handbook of Industrial Diamonds and Diamond Films,Marcel Dekker,New York,USA,1998;Hemley等,美国专利申请公布号2006065187),该数据集为这里研究的金刚石材料提供了硬度/韧度的定量相对测量。
这里测量的Ia和IIa型金刚石的KIC值为8(±4)MPa m1/2,并且I-b型合成金刚石的KIC值为10(±2)MPa m1/2。在没有掺杂硼的情况下,用H2/CH4/N2化学生长的SC-CVD金刚石的维氏断裂韧度量为15(±5)MPa m1/2,比I-b型合成金刚石高50%。相反,掺硼SC-CVD金刚石的计算断裂韧度高于22MPa m1/2。与无掺杂SC-VCD金刚石得到的值相比,这种材料具有在该等级上高度增强的断裂韧度,而没有降低硬度[78(±12)GPa]。
据认为金刚石内最强的结合位于{100}方向,其中{111}面是裂开面(Chrenko,PhysicalReview,1973)。对于在本研究中测量的晶体,仅仅在天然和Ib型晶体内观察到沿{100}、{111}、和{110}方向的十字形的裂缝。对于SC-CVD(生成态(as-grown)和退火的),压痕标志沿较软的{110}和{111}方向显示出正方形裂缝分布图。然而,对于许多硼/氮掺杂的金刚石样品,沿压痕凹陷完全没有裂缝痕迹。对于金刚石,以前似乎没有报道过这个值得注意的结果(图2)。这个观察结果显然妨碍使用维氏硬度计技术来量化断裂韧度。的确,可能会有人柱状对具有高于30MPa m1/2的断裂韧度的材料的定量测量超过了压痕技术的极限。然而,我们还是强调这里研究的金刚石材料的行为是定性地不同的。
这些测量结果进一步显示了LPHT退火的SC-CVD在没有显著降低韧度(KIC=12-16MPa m1/2)的情况下显示出超硬特性(测量的硬度为至少~125GPa)。这与以前得到的经过高压/高温(HPHT)退火的SC-CVD的结果相反(Yan等,Phys.Stat.Sol.,2004)。最近,在低压/高温(LPHT)条件(>1600摄氏度,<300torr;即,在金刚石的稳定区域之外)下对这些金刚石的退火研究显示了光学性质的主要变化,包括可见吸收的减少(Meng等,Proc.Nat.Acad.Sci.U.S.A.,2008)。已经报道了通过离子注入(Anderson等,Nucl.Methods Phys.Res.,1993)或表面热扩散(Meng等,美国专利号6322891)的金刚石表面韧化工艺。在压痕之前将本研究中检测的所有CVD金刚石晶体彻底抛光,这说明了韧度增加是整体性质。LPHT处理的SC-CVD材料具有较高硬度的其他证据是对于掺杂的SC-CVD维氏压头典型地在大约10次测量之后才破裂,但是对于退火的金刚石晶体仅仅在1-2压痕之后就破裂。
所研究金刚石材料的代表性光致发光光谱和图像如图7所示。高质量金刚石晶体显示出显著的二阶拉曼特征。在575nm附近指定给NV0中心和在637nm附近指定给NV-中心的谱带说明在金刚石结构内掺入了氮。LPHT退火后红外光谱的变化与HPHT处理后的得到的结果类似(Meng等,Proc.Nat.Acad.Sci.U.S.A.,2008)。不受理论的约束,迄今为止的测量使发明人提出氮、硼和邻近的碳原子之间的相互作用导致韧度的提高。
在目前结果的基础上,提出本文所描述金刚石材料的提高的光学性质和机械性能可能在下列中发现有用的应用:作为恶劣环境中的光学窗口、力学试验、磨削加工、激光光学、和透明屏蔽和MEMS装置。该低成本、大面积LPHT退火工艺可能代替HPHT退火并可具有重要的工业用途。
超韧掺硼金刚石用途的例子包括但不限于下列:非铁材料加工、微加工和纳米加工(在汽车工业中的石墨、高硅合金加工);需要很高韧度金刚石的凿岩/石油钻井;具有可调的电导率和较高的韧度以在高压极限下发挥作用的高压铁砧;和高温和恶劣环境电传感器。这些掺硼金刚石的高韧度也使它们是用于航空和航天工业的钛加工的潜在的候选者。
在不背离本发明的精神或者主要特点的情况下本发明可以用几种不同的形式实施,也必须理解上述的实施例不能被前述说明书的任何细节所限制,除非特别限定,而是应该被广义理解成如所附权利要求限定的其精神和范围之内,因此,所有落入权利要求的边界和范围之内的所有这些改动和修改、或者这些边界和范围的等同物将被所附权利要求所包含。
引用的参考文献:
1.Anderson等,Nucl.Methods Phys.Res.B 80-81,1451(1993)
2.Anstis等,J.Am.Ceram.Soc.64,533(1981)
3.Anthony等,Diam.ReI.Mater.6,120(1997)
4.Arima等,″Effects of vicinal angles from(001)surface on the Boron-doping features ofhigh-quality homoepitaxial diamond films grown by the high-power microwave plasmachemical-vapor-deposition method″,J.Crys.Growth,309,pp 145-152(2007)
5.Brazhkin等,″From our readers:What does′harder than diamond′mean?″NatureMaterials,3(9),576(2004)
6.Burns″Growth-Sector Dependence of Optical Features in Large Synthetic Diamonds″,Journal of Crystal Growth″,J.Cryst.Growth,104,257-279(1990)
7.Charles等,″Characterization of nitrogen doped chemical vapor deposited single crystaldiamond before and after high pressure,high temperature annealing″,Phys.Stat.Sol.,201(11),2473-2485(2004)
8.Cheesman等,″Computational studies of elementary steps relating to boron doping duringdiamond chemical vapour deposition″,Phys.Chem.Chem.Phys.,7,1121-1126(2005)
9.Chrenko等,″Boron,the Dominant Acceptor in Semiconducting Diamond″,PhysicalReview,7(10),456-4567,(1973)
10.Davies等,″The toughness of free-standing CVD diamond″,J.Mater.Sci.,39(5),1571-1574(2004)
11.Drory等,″Fracture of Synthetic Diamond″,Appl.Phys.Lett.78,3083(1995)
12.Gheeraert等,Diamond and Relat.Mater.,7,1509(1998)
13.Hemley等,U.S.Patent Application Publication No.20060065187
14.Jiang等,″Accurate measurement of fracture toughness of free standing diamond filmsby three-point bending tests with sharp pre-cracked specimens″,Diam.ReI.Mater,9,1734-1738(2000)
15.Liang等,″Effect of nitrogen addition on the morphology and structure of boron-dopednanostructured diamond films″,Appl.Phys.Lett.,83,5047(2003)
16.Liang,CS.Yan,Y.F.Meng,J.Lai,S.Krasnicki,H.K.Mao and RJ.Hemley,to bepublished.
17.Liang等,″Enhanced growth of high quality single crystal diamond by microwaveplasma assisted chemical vapor deposition at high gas pressures″,Appl.Phys.Lett.,94,024103(2009)
18.Locher R,Wagner J.,Fuchs F.,Maier M.,Gonon P.,Koidl P.,Diamond Relat.Mater.4,678(1995)
19.Martineau  等,″Identification of synthetic  diamond grown using chemical vapordeposition(CVD)″,Gems&Gemology,60,2-25(2004)
20.Meng等,United States Patent No.6322891(2001)
21.Meng等,″From the Cover:Enhanced optical properties of chemical vapor depositedsingle crystal diamond by low-pressure/high-temperature annealing″,Proc.Nat.Acad.Sci.U.S.A.105(46),17620(2008)
22.Miyata等,″Morphology of heavily B-doped diamond films″,J.Mater.Res.,8(11),2845-2857(1993)
23.Mora等,″Direct evidence of interaction between dislocations and point defects indiamond″,Phys.Stat.Sol.,202,R69-R71(2005)
24.Novikov等,J.Hard.Mater.,4(1),19-27(1993)
25.Novikov等,″Mechanical properties of diamond and cubic BN at different temperaturesand deformation rates″,Diam.ReI.Mater.,2,1253-1256(1993)
26.Patridge等,″Potential for diamond fibres and diamond fibre composites″,MaterialsScience and Technology,10,505-512(1994)
27.Prelas等,Handbook of Industrial Diamonds and Diamond Films,Marcel Dekker,NewYork,USA(1998)
28.Prelas,G Popovici,and L.K.Bigelow,Handbook of Industrial Diamonds and DiamondFilms(Marcel Dekker,New York,USA 1998)
29.Quinn等,J.Am.Ceram.Soc.90(3),673(2007)
30.Show等,″changes in CVD diamond film by boron and nitrogen doping″,Diamond Relat.Mater.,9,PP 337-340(2000)
31.Sumiya等,″Indentation hardness of nano-polycrystalline diamond prepared fromgraphite by direct conversion″,Diam.ReI.Mater.,13(10),1771-1776(2004)
32.Telling等,″Theoretical Strength and Cleavage of Diamond″,Phys Rev.Lett.,84,5160-5163(2000)
33.Vornov等,Neorganicheskie Materialy,29(5),PP 543(1993)
34.Wentorf等,″Sintered Superhard Materials″,Science,208(4446),873-880(1980)
35.Yan等,″Very high growth rate chemical vapor deposition of single-crystal diamond″,Proceedings of the National Academy of Science,99(20),R25-R27(2002)
36.Yan等,″Ultrahard diamond single crystals from chemical vapor deposition″,Phys.Stat.Sol.,201(4),R25-R27(2004)
37.Yan等,″Very high growth rate chemical vapor deposition of single-crystal diamond″,Proceedings of the National Academy of Science,99,12523-12525(2002)

Claims (17)

1.通过微波等离子体化学气相沉积生长的单晶掺硼金刚石,其具有至少约22MPam1/2的韧度。
2.根据权利要求1所述的单晶掺硼金刚石,其中所述韧度在约22MPa m1/2和约35MPam1/2之间。
3.根据权利要求1所述的单晶掺硼金刚石,其中所述硬度大于约60GPa。
4.根据权利要求1所述的单晶掺硼金刚石,其中所述硬度在约60GPa和约85GPa之间。
5.根据权利要求1所述的单晶掺硼金刚石,其中根据金刚石颜色等级标准,所述单晶掺硼金刚石的颜色等级在D-Z的范围内。
6.根据权利要求1所述的单晶掺硼金刚石,其中INV@575nm/ID@551nm比在0和100/1之间。
7.根据权利要求1所述的单晶掺硼金刚石,其中所述金刚石在金刚石结构中基本上不含硅。
8.根据权利要求1所述的单晶掺硼金刚石,其中硼浓度在0和100ppm之间。
9.生长具有高韧度的单晶掺硼金刚石的方法,其包括:
i)将金刚石晶种置于吸热支持物中,所述吸热支持物由具有高熔点和高热导率的材料制成,以最小化跨过所述金刚石的生长面的温度梯度;
ii)控制所述金刚石的生长面的温度,以便所述生长的金刚石晶体的温度在约900-1500摄氏度的范围内;和
iii)在沉积室内通过微波等离子体化学气相沉积在所述金刚石的生长面上生长单晶金刚石,所述沉积室包括5-20%CH4/H2、5-20%O2/CH4、0-20%N2/CH4和硼源。
10.根据权利要求9所述的方法,其中所述沉积室内的压力为约100-400Torr。
11.根据权利要求9所述的方法,其中所述硼源是二硼烷、六方氮化硼粉末、硼酸三甲酯气体、气化B2O3、或者它们的混合物。
12.根据权利要求9所述的方法,其中所述金刚石的生长速率为约20-100μm/h。
13.根据权利要求9所述的方法,其进一步包括退火所述单晶金刚石以提高其韧度。
14.根据权利要求9所述的方法,其中所述吸热支持物由钼制成。
15.通过微波等离子体化学气相沉积生长的单晶掺硼金刚石,所述单晶掺硼金刚石具有至少约22MPa m1/2的韧度并且通过以下方法生长:
i)将金刚石晶种置于吸热支持物中,所述吸热支持物由具有高熔点和高热导率的材料制成,以最小化跨过所述金刚石的生长面的温度梯度;
ii)控制所述金刚石的生长面的温度,以便使生长的金刚石晶体的温度在约900-1500摄氏度的范围内;和
iii)在沉积室内通过微波等离子体化学气相沉积在所述金刚石的生长面上生长单晶金刚石,所述沉积室包括5-20%CH4/H2、5-20%O2/CH4、0-20%N2/CH4和硼源。
16.根据权利要求9所述的方法,其中所述O2源是一氧化碳、二氧化碳、水蒸气或者它们的混合物。
17.根据权利要求9所述的方法,其中所述单晶金刚石晶种的取向是偏离{100}面0-15度。
CN200980125978.8A 2008-05-05 2009-05-05 超韧单晶掺硼金刚石 Expired - Fee Related CN102084492B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7152408P 2008-05-05 2008-05-05
US61/071,524 2008-05-05
PCT/US2009/002753 WO2009137020A1 (en) 2008-05-05 2009-05-05 Ultratough single crystal boron-doped diamond

Publications (2)

Publication Number Publication Date
CN102084492A true CN102084492A (zh) 2011-06-01
CN102084492B CN102084492B (zh) 2013-09-11

Family

ID=41264865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980125978.8A Expired - Fee Related CN102084492B (zh) 2008-05-05 2009-05-05 超韧单晶掺硼金刚石

Country Status (6)

Country Link
US (1) US9023306B2 (zh)
EP (1) EP2286459A4 (zh)
JP (1) JP5539968B2 (zh)
CN (1) CN102084492B (zh)
TW (1) TWI457475B (zh)
WO (1) WO2009137020A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395508B (zh) * 2012-06-29 2016-12-21 住友电气工业株式会社 金刚石单晶、其制造方法以及单晶金刚石工具
CN107740184A (zh) * 2017-09-30 2018-02-27 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN108103571A (zh) * 2018-01-11 2018-06-01 宁波晶钻工业科技有限公司 一种单晶金刚石制备装置以及方法
CN109574666A (zh) * 2018-12-30 2019-04-05 南方科技大学 纳米结构含硼六方金刚石聚晶超硬复合材料及其制备方法和应用
WO2019228351A1 (zh) * 2018-06-01 2019-12-05 北京科技大学 一种提高cvd单晶金刚石硬度及韧性的方法
CN115261984A (zh) * 2022-09-29 2022-11-01 北京芯美达科技有限公司 一种单晶金刚石晶格外延补偿方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509831A (ja) * 2008-11-25 2012-04-26 カーネギー インスチチューション オブ ワシントン 急速成長速度における単結晶cvdダイヤモンドの製造
TW201204863A (en) 2010-05-17 2012-02-01 Carnegie Inst Of Washington Production of large, high purity single crystal CVD diamond
GB201114379D0 (en) 2011-08-22 2011-10-05 Element Six Abrasives Sa Temperature sensor
RU2484189C2 (ru) * 2011-08-24 2013-06-10 Игорь Владимирович Федосеев Способ получения алмазов с полупроводниковыми свойствами
JPWO2013105348A1 (ja) * 2012-01-10 2015-05-11 住友電工ハードメタル株式会社 ダイヤモンド被覆工具
JP6232817B2 (ja) * 2013-08-05 2017-11-22 住友電気工業株式会社 ナノ多結晶ダイヤモンドおよびこれを備える工具
US10316430B2 (en) * 2014-07-15 2019-06-11 Sumitomo Electric Industries, Ltd. Single crystal diamond, method for manufacturing single crystal diamond, and tool containing single crystal diamond
WO2017070571A2 (en) 2015-10-23 2017-04-27 Landers James P Devices, systems and methods for sample detection
CA3098964A1 (en) 2018-05-08 2019-11-14 M7D Corporation Diamond materials comprising multiple cvd grown, small grain diamonds, in a single crystal diamond matrix
US20210222324A1 (en) * 2020-01-17 2021-07-22 J2 Materials, Llc Multi-doped diamond formation
CN113046725B (zh) * 2021-05-27 2021-11-16 武汉大学深圳研究院 一种氮化硼表层覆盖的nv色心金刚石、其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260470A (ja) * 1989-03-30 1990-10-23 Sumitomo Electric Ind Ltd 発光素子
EP0543392A3 (en) * 1991-11-21 1993-10-20 Canon Kk Diamond semiconductor device and method of producing the same
GB9616043D0 (en) 1996-07-31 1996-09-11 De Beers Ind Diamond Diamond
US6582513B1 (en) * 1998-05-15 2003-06-24 Apollo Diamond, Inc. System and method for producing synthetic diamond
US6322891B1 (en) 2000-04-28 2001-11-27 General Electric Company Thermally-diffused boron diamond and its production
EP1415022A1 (en) * 2001-08-08 2004-05-06 Apollo Diamond, Inc. System and method for producing synthetic diamond
UA81614C2 (ru) 2001-11-07 2008-01-25 Карнеги Инститьюшн Ов Вашингтон Устройство для изготовления алмазов, узел удержания образца (варианты) и способ изготовления алмазов (варианты)
GB0130005D0 (en) 2001-12-14 2002-02-06 Diamanx Products Ltd Boron doped diamond
US7157067B2 (en) * 2003-07-14 2007-01-02 Carnegie Institution Of Washington Tough diamonds and method of making thereof
JP4385764B2 (ja) * 2003-12-26 2009-12-16 住友電気工業株式会社 ダイヤモンド単結晶基板の製造方法
EP1807346A4 (en) * 2004-09-10 2010-04-28 Carnegie Inst Of Washington ULTRADUR VAPOR PHASE CHEMICAL DEPOSITED DIAMOND (CVD) AND THREE-DIMENSIONAL GROWTH OF THE SAME
EP1907320A4 (en) * 2005-05-25 2010-05-05 Carnegie Inst Of Washington COLORLESS CRYSTALLINE CVD DIAMOND WITH FAST GROWTH RATE
WO2007029269A1 (en) * 2005-09-05 2007-03-15 Rajneesh Bhandari Synthesis of large homoepitaxial monocrystalline diamond
WO2007081492A2 (en) 2006-01-04 2007-07-19 Uab Research Foundation High growth rate methods of producing high-quality diamonds
EP1996751A2 (en) 2006-02-07 2008-12-03 Target Technology Company, LLC. Materials and methods for the manufacture of large crystal diamonds

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395508B (zh) * 2012-06-29 2016-12-21 住友电气工业株式会社 金刚石单晶、其制造方法以及单晶金刚石工具
CN106884202A (zh) * 2012-06-29 2017-06-23 住友电气工业株式会社 金刚石单晶和单晶金刚石工具
CN107740184A (zh) * 2017-09-30 2018-02-27 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN107740184B (zh) * 2017-09-30 2019-07-19 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN108103571A (zh) * 2018-01-11 2018-06-01 宁波晶钻工业科技有限公司 一种单晶金刚石制备装置以及方法
WO2019228351A1 (zh) * 2018-06-01 2019-12-05 北京科技大学 一种提高cvd单晶金刚石硬度及韧性的方法
CN109574666A (zh) * 2018-12-30 2019-04-05 南方科技大学 纳米结构含硼六方金刚石聚晶超硬复合材料及其制备方法和应用
CN115261984A (zh) * 2022-09-29 2022-11-01 北京芯美达科技有限公司 一种单晶金刚石晶格外延补偿方法

Also Published As

Publication number Publication date
US20100123098A1 (en) 2010-05-20
TW201005139A (en) 2010-02-01
WO2009137020A1 (en) 2009-11-12
EP2286459A4 (en) 2014-03-12
EP2286459A1 (en) 2011-02-23
JP2011519814A (ja) 2011-07-14
TWI457475B (zh) 2014-10-21
JP5539968B2 (ja) 2014-07-02
CN102084492B (zh) 2013-09-11
US9023306B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
CN102084492B (zh) 超韧单晶掺硼金刚石
US7594968B2 (en) Ultratough CVD single crystal diamond and three dimensional growth thereof
Achard et al. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD
Liang et al. Recent advances in high-growth rate single-crystal CVD diamond
US7713507B2 (en) Tough diamonds and method of making thereof
US5628824A (en) High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition
EP2376681B1 (en) Production of single crystal cvd diamond rapid growth rate
US7820131B2 (en) Diamond uses/applications based on single-crystal CVD diamond produced at rapid growth rate
CN101827959A (zh) 对钻石退火的低压方法
McCauley et al. Homoepitaxial diamond film deposition on a brilliant cut diamond anvil
KR20170126926A (ko) 단결정 다이아몬드 및 이것을 성장시키는 방법
Liang et al. Enhancing the mechanical properties of single-crystal CVD diamond
WO2011146460A1 (en) Production of large, high purity single crystal cvd diamond
Liang et al. Developments in synthesis, characterization, and application of large, high-quality CVD single crystal diamond
Xiao-Bing et al. HPHT Synthesis of high-quality diamond single crystals with micron grain Size
Zhao et al. Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers
Fan Diamond film deposition using laser-assisted combustion flames
GAO et al. Hetero-epitaxial diamond single crystal growth on surface of cBN single crystals at high pressure and high temperature
Feng et al. Hetero-epitaxial diamond single crystal growth on surface of cBN single crystals at high pressure and high temperature
Misra Deposition of Single Crystal Diamond in Multiple Cavities of 1mm Dimensions on a Single Crystal Diamond Substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911