WO2019228351A1 - 一种提高cvd单晶金刚石硬度及韧性的方法 - Google Patents

一种提高cvd单晶金刚石硬度及韧性的方法 Download PDF

Info

Publication number
WO2019228351A1
WO2019228351A1 PCT/CN2019/088829 CN2019088829W WO2019228351A1 WO 2019228351 A1 WO2019228351 A1 WO 2019228351A1 CN 2019088829 W CN2019088829 W CN 2019088829W WO 2019228351 A1 WO2019228351 A1 WO 2019228351A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
toughness
nitrogen
hardness
diamond
Prior art date
Application number
PCT/CN2019/088829
Other languages
English (en)
French (fr)
Inventor
李成明
赵云
刘金龙
郑宇亭
陈良贤
魏俊俊
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2019228351A1 publication Critical patent/WO2019228351A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery

Definitions

  • the invention relates to the technical field of mechanical properties of microwave plasma chemical vapor deposition (MPCVD) inorganic materials, in particular to a method for improving the hardness and toughness of CVD single crystal diamond.
  • MPCVD microwave plasma chemical vapor deposition
  • Diamond is the hardest natural material with remarkable hardness and durability. It is used in mechanical, biomedical, electronic and photonic applications. Diamond has extremely high hardness and stability, but if the diamond is deformed, it will cause brittle fracture. Due to the poor deformability and relatively high brittleness of diamond, the mechanical properties of diamond are poor. These limitations of diamond have stimulated people to study the mechanism of diamond's large elastic deformation.
  • the emergence of single crystal diamond synthesized by microwave plasma chemical vapor deposition has opened up a broad prospect for the application of single crystal diamond.
  • the grown CVD layer has high fracture toughness, and has extremely high fracture toughness and abnormally high strength after high temperature and high pressure heat treatment.
  • the advent of heat treatment introduced a novel method of hardening CVD single crystal diamond.
  • Doping boron in CVD single crystal diamond can significantly enhance its fracture toughness without affecting its high hardness ( ⁇ 78 GPa). Boron is more easily doped into diamond, but when nitrogen is present, boron doping is suppressed. Spectral test results confirm the coexistence of boron and nitrogen in the diamond structure, which explains the reason for the enhanced fracture toughness of diamonds (Q.Liang, CSYan, Y.Meng, J.Lai, S.Krasnicki, HKMao, & R.J.Hemley Enhancing the mechanical properties of single-crystal CVD diamond, Journal of Physicals: Condensed Matter, 21 (2009) 364215.).
  • diamond single crystal has become the key to further improve the performance of the tool. While increasing the hardness, it is extremely important to improve its toughness, and it can significantly improve the mechanical properties of CVD single crystal diamond.
  • the purpose of the present invention is to provide a method for improving the hardness and toughness of CVD single crystal diamond, which method comprises using microwave plasma chemical vapor deposition (MPCVD) or hot wire chemical vapor deposition (HFCVD) or DC arc plasma spraying (DC Arc Plasma Jet CVD) to grow single crystal diamond, intermittently pass nitrogen or a mixed gas of nitrogen and oxygen or boron-containing gas.
  • MPCVD microwave plasma chemical vapor deposition
  • HFCVD hot wire chemical vapor deposition
  • DC Arc Plasma Jet CVD DC Arc Plasma Jet CVD
  • the CVD single crystal diamond has an increase in Vickers hardness of 5% -25%, and an increase in fracture toughness of 4% -56%.
  • the hardness and toughness of the CVD single crystal diamond grown by applying the present invention are significantly improved.
  • a method for improving the hardness and toughness of CVD single crystal diamond which is characterized by:
  • the interval between the introduction of nitrogen or a mixed gas of nitrogen and oxygen or a boron-containing gas is 3-5 minutes;
  • the flow rate of nitrogen or a mixed gas of nitrogen and oxygen or a boron-containing gas is 0.03-0.15 sccm;
  • the thickness of the doped layer formed is from 5 nm to 800 nm;
  • each pair of the doped layer and the non-doped layer constitutes a period, and the alternate growth period of the doped layer and the non-doped layer is 30-50.
  • the hardness and toughness of CVD single crystal diamond can be improved by applying the present invention.
  • the Vickers hardness is increased by 5% -25%
  • the fracture toughness is increased by 4% -56%.
  • the hardness and toughness of the multi-layered CVD single crystal diamond grown by applying the present invention are significantly improved.
  • FIG. 1 is a schematic structural diagram of growing a CVD single crystal diamond by intermittently introducing a doping gas according to the present invention.
  • FIG. 2 is a cross-sectional Raman mapping diagram of a sample with a nitrogen-doped layer thickness of 760 nm;
  • FIG. 3 is a Vickers hardness indentation diagram of a nitrogen-doped layer with a thickness of 760 nm;
  • FIG. 4 is a cross-sectional Raman mapping diagram of a sample with a nitrogen-doped layer thickness of 500 nm;
  • FIG. 5 is a Vickers hardness indentation diagram of a sample with a nitrogen-doped layer thickness of 500 nm.
  • FIG. 1 it is a schematic structural diagram of a CVD single crystal diamond grown by intermittently introducing a doping gas according to the present invention. Using the present invention, a doped layer 2 and a non-doped layer are alternately grown on a seed substrate 1. Miscellaneous layer 3.
  • Figure 3 shows the indentation morphology of the grown sample after the Vickers hardness test. The test load is 1 Kg.
  • the Vickers hardness of the sample is measured at 100 GPa and the fracture toughness is 7.8 MPa m 1/2 .
  • the non-nitrogen-doped CVD layer (Vickers hardness of 80 GPa and fracture toughness of 5.0 MPa m 1/2 ) grown by the method increased the Vickers hardness by 25% and the fracture toughness by 56%.
  • Figure 5 shows the indentation morphology of the grown sample after the Vickers hardness test. The test load is 1 Kg.
  • the measured Vickers hardness of the sample is 100 GPa and the fracture toughness is 5.9 MPa m 1/2 .
  • the N-doped CVD layer (Vickers hardness of 80 GPa and fracture toughness of 5.0 MPa m 1/2 ) grown by the method increased the Vickers hardness by 25% and the fracture toughness by 18%.
  • the present invention uses microwave plasma chemical vapor deposition (MPCVD) or hot-wire chemical vapor deposition (HFCVD) or DC arc plasma spray (DC Arc Plasma Jet CVD) to grow single crystal diamond intermittently.
  • Nitrogen or a mixed gas of nitrogen and oxygen or a boron-containing gas through the growth of the doped layer and the non-doped layer alternately, change the thickness of the doped layer and the flow rate of the doped gas through the doped layer to simultaneously increase the CVD single crystal Diamond hardness and fracture toughness.
  • the method has the advantages of simple process and low production cost, and can be used as a new technical application in enhancing mechanical properties of diamond.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种提高CVD单晶金刚石硬度及韧性的方法,属于金刚石材料领域。所述方法包括采用微波等离子体化学气相沉积(MPCVD)或者热丝化学气相沉积(HFCVD)或者直流电弧等离子喷射(DC Arc Plasma Jet CVD)来生长单晶金刚石时,间断性地通入氮气或者氮气和氧气的混合气体或者含硼气体。通过不同掺杂层金刚石的交替生长,实现纳米多层化界面结构的增强和增韧效应。通过上述方法生长的CVD单晶金刚石与非掺杂生长的CVD单晶金刚石相比,维氏硬度提升了5%-25%,断裂韧性提升了4%-56%。应用本发明所生长多层化的CVD单晶金刚石的硬度和韧性都得到了显著提高。

Description

一种提高CVD单晶金刚石硬度及韧性的方法 技术领域
本发明涉及微波等离子体化学气相沉积(MPCVD)无机材料力学性能技术领域,尤其涉及一种提高CVD单晶金刚石硬度及韧性的方法。
技术背景
金刚石是最硬的天然材料,具有显著的硬度和耐久性,应用于机械、生物医药、电子和光子应用中。金刚石具有超高的硬度和稳定性,但是如果使金刚石变形将会导致脆性断裂。由于金刚石较差的可变形性和相对高的脆性,导致金刚石的机械性能差,金刚石的这些局限性激发人们去研究金刚石超大弹性变形的机理。
通过微波等离子体化学气相沉积方法合成单晶金刚石的出现,为单晶金刚石的应用打开了一个广阔的局面。生长的CVD层具有高的断裂韧性,在高温高压热处理后具有极高的断裂韧性和异常高的强度。热处理的出现引入了一种硬化CVD单晶金刚石的新颖的方法。
在CVD单晶金刚石中掺入硼,能够在不影响其高硬度(~78GPa)的前提下能够显著增强其断裂韧性。硼较容易掺杂进金刚石,但当有氮时,硼掺杂受到抑制。光谱测试结果证实硼和氮共存于金刚石结构中,这解释了金刚石断裂韧性增强的原由(Q.Liang,C.S.Yan,Y.Meng,J.Lai,S.Krasnicki,H.K.Mao,&R.J.Hemley,Enhancing the mechanical properties of single-crystal CVD diamond,Journal of Physics:Condensed Matter,21(2009)364215.)。对于单晶金刚石纳米针,最大的拉伸应变(9%),达到了理论弹性应变,并且最大的拉应力达到~89GPa到98GPa(A.Banerjee,D.Bernoulli,H.Zhang,M.F.Yuen,J.Liu,J.Dong,...&Y.Lu,Ultralarge elastic deformation of nanoscale diamond,Science,360(2018)300.)。该方法把金刚石针高强度和大的弹性应变归因于低的缺陷密度和相对光滑的表面。该发现提供了一种优化金刚石纳米结构的方法,该方法从样品加工到应用都具有一定的难度。控制金刚石的显微结构能进一步的提高其强度和硬度。高温低压热处理能够在不损失金刚石断裂韧性的前提下,将金刚石本征硬度提高两倍。掺杂和金刚石的后处理,可作为增强金刚石机械性能方面的新的技术应用。
金刚石单晶作为微加工刀具韧性的提高成为进一步提高刀具使用性能的关键,在提高硬度的同时,提高其韧性极为重要,并且能够显著提升CVD单晶金刚石的力学性能,因此进行了本发明创造。
发明内容
本发明的目的是提供一种提高CVD单晶金刚石硬度及韧性的方法,所述方法包括采用微波等离子体化学气相沉积(MPCVD)或者热丝化学气相沉积(HFCVD)或者直流电弧等离子喷射(DC Arc Plasma Jet CVD)来生长单晶金刚石时,间断性地通入氮气或者氮气和氧气的混合气体或者含硼气体。通过上述方法生长的CVD单晶金刚石与非掺杂生长的CVD单晶金刚石相比,维氏硬度提升了5%-25%,断裂韧性提升了4%-56%。应用本发明所生长的CVD单晶金刚石的硬度和韧性都得到了显著提高。
本发明采用的技术方案是:
一种提高CVD单晶金刚石硬度及韧性的方法,其特征在于:
采用微波等离子体化学气相沉积(MPCVD)或者热丝化学气相沉积(HFCVD)或者直流电弧等离子喷射(DC Arc Plasma Jet CVD)来生长单晶金刚石时,间断性地通入氮气或者氮气和氧气的混合气体或者含硼气体,通过不同掺杂层金刚石的交替生长,实现纳米多层化界面结构的增强和增韧效应。其生长温度为700-1050℃,压力为6-30KPa,CH 4/H 2=2-12%。
进一步地,通入氮气或者氮气和氧气的混合气体或者含硼气体的间隔时间为3-5分钟;
进一步地,通入氮气或者氮气和氧气的混合气体或者含硼气体的流量为0.03-0.15sccm;
进一步地,所形成的掺杂层厚度从5nm到800nm;
进一步地,每对掺杂层与非掺杂层构成一个周期,掺杂层与非掺杂层交替生长周期为30-50个。
由上述本发明提供的技术方案可以看出,应用本发明能够提高CVD单晶金刚石的硬度和韧性。通过本发明生长的CVD单晶金刚石与非掺杂生长的CVD单晶金刚石相比,维氏硬度提升了5%-25%,断裂韧性提升了4%-56%。应用本发明所生长多层化的CVD单晶金刚石的硬度和韧性都得到了显著提高。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中使用的附图做简要介绍,很显然,下面的附图仅仅是本发明的一个实施例,对于本领域的普通工作人员,还可以根据这个附图获得其他附图。
图1为本发明实施所述通过间断性地通入掺杂气体生长CVD单晶金刚石的结构示意图。
图2为掺氮层厚度为760nm样品的截面Raman mapping图;
图3为掺氮层厚度为760nm样品的维氏硬度压痕图;
图4为掺氮层厚度为500nm样品的截面Raman mapping图;
图5为掺氮层厚度为500nm样品的维氏硬度压痕图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1所示,为本发明实施所述通过间断性地通入掺杂气体所生长CVD单晶金刚石的结构示意图,采用本发明在籽晶衬底1上交替生长掺杂层2和非掺杂层3。
实施例1
采用微波等离子体化学气相沉积系统来生长单晶金刚石,间断性地通入氮气,生长温度为860℃,压力为17KPa,CH 4/H 2=5%,通入氮气的间隔时间为4分钟,通入的氮气的流量为0.12sccm。对生长后样品的截面进行研磨抛光处理,并对截面进行Raman mapping测试,如图2所示,掺氮层约为760nm,交替生长周期为30个,生长CVD层的总厚度约为45μm。图3为生长后样品进行维氏硬度测试后的压痕形貌,试验载荷为1Kg,测得样品的维氏硬度为100GPa,断裂韧性为7.8MPa m 1/2,相比于没有采用本发明方法所生长非掺氮CVD层(维氏硬度为80GPa,断裂韧性5.0MPa m 1/2)的维氏硬度提高了25%、断裂韧性提高了56%。
实施例2
采用微波等离子体化学气相沉积系统来生长单晶金刚石,间断性地通入氮气,生长温度为860℃,压力为17KPa,CH 4/H 2=5%,通入氮气的间隔时间为3分钟,通入的氮气的流量为0.15sccm。对生长后样品的截面进行研磨抛光处理,并对截面进行Raman mapping测试,如图4所示,掺氮层约为500nm,交替生长周期为30个,生长CVD层的总厚度约为33μm。图5为生长后样品进行维氏硬度测试后的压痕形貌,试验载荷为1Kg,测得样品的维氏硬度为100GPa,断裂韧性为5.9MPa m 1/2,相比于没有采用本发明方法所生长非掺氮CVD层(维氏硬度为80GPa,断裂韧性5.0MPa m 1/2)的维氏硬度提高了25%、断裂韧性提高了18%。
综上所述,本发明采用微波等离子体化学气相沉积(MPCVD)或者热丝化学气相沉积(HFCVD)或者直流电弧等离子喷射(DC Arc Plasma Jet CVD)来生长单晶金刚石时,间断性地通入氮气或者氮气和氧气的混合气体或者含硼气体,通过掺杂层与非掺杂层交替生长,改变 掺杂层的厚度以及掺杂层通入的掺杂气体的流量,来同时提高CVD单晶金刚石的硬度和断裂韧性。本发明工艺简单,生产成本低,可作为增强金刚石机械性能方面的新的技术应用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

  1. 一种提高CVD单晶金刚石硬度及韧性的方法,其特征在于:采用微波等离子体化学气相沉积或者热丝化学气相沉积或者直流电弧等离子喷射来生长单晶金刚石时,间断性地通入氮气或者氮气和氧气的混合气体或者含硼气体,生长温度为700-1050℃,压力为6-30KPa,CH 4/H 2=2-12%,通过不同掺杂层金刚石的交替生长,实现纳米多层化界面结构的增强和增韧效应。
  2. 如权利要求1所述提高CVD单晶金刚石硬度及韧性的方法,其特征在于:通入氮气或者氮气和氧气的混合气体或者含硼气体的间隔时间为3-5分钟。
  3. 如权利要求1或2所述提高CVD单晶金刚石硬度及韧性的方法,其特征在于:通入氮气或者氮气和氧气的混合气体或者含硼气体的流量为0.03-0.15sccm。
  4. 如权利要求1所述提高CVD单晶金刚石硬度及韧性的方法,其特征在于:生长单晶金刚石时,所形成的掺杂层厚度从5nm到800nm。
  5. 如权利要求1所述提高CVD单晶金刚石硬度及韧性的方法,其特征在于:每对掺杂层与非掺杂层构成一个周期,掺杂层与非掺杂层交替生长周期为30-50个。
PCT/CN2019/088829 2018-06-01 2019-05-28 一种提高cvd单晶金刚石硬度及韧性的方法 WO2019228351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810556015.4A CN108545738B (zh) 2018-06-01 2018-06-01 一种提高cvd单晶金刚石硬度及韧性的方法
CN201810556015.4 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019228351A1 true WO2019228351A1 (zh) 2019-12-05

Family

ID=63511668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088829 WO2019228351A1 (zh) 2018-06-01 2019-05-28 一种提高cvd单晶金刚石硬度及韧性的方法

Country Status (2)

Country Link
CN (1) CN108545738B (zh)
WO (1) WO2019228351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996209A (zh) * 2021-05-07 2021-06-18 四川大学 一种微波激发常压等离子体射流的结构和阵列结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108545738B (zh) * 2018-06-01 2020-07-10 北京科技大学 一种提高cvd单晶金刚石硬度及韧性的方法
CN111099586B (zh) * 2019-11-27 2022-05-31 中国科学院金属研究所 一种纳米金刚石中高亮度硅空位色心的制备方法
CN111172508A (zh) * 2020-02-24 2020-05-19 北京科技大学 一种提高金刚石对顶压砧压力极限的方法
CN113858036B (zh) * 2021-08-23 2023-04-25 四川纳涂科技有限公司 一种金刚石涂层的硬质合金研磨棒及其制备方法
CN114000120B (zh) * 2022-01-05 2022-03-15 武汉大学 一种基于cvd法的应变金刚石生长掺杂方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084492A (zh) * 2008-05-05 2011-06-01 华盛顿卡耐基研究所 超韧单晶掺硼金刚石
CN107740184A (zh) * 2017-09-30 2018-02-27 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN108545738A (zh) * 2018-06-01 2018-09-18 北京科技大学 一种提高cvd单晶金刚石硬度及韧性的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710748B (zh) * 2013-12-12 2016-04-06 王宏兴 一种单晶金刚石薄膜的生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084492A (zh) * 2008-05-05 2011-06-01 华盛顿卡耐基研究所 超韧单晶掺硼金刚石
CN107740184A (zh) * 2017-09-30 2018-02-27 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN108545738A (zh) * 2018-06-01 2018-09-18 北京科技大学 一种提高cvd单晶金刚石硬度及韧性的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996209A (zh) * 2021-05-07 2021-06-18 四川大学 一种微波激发常压等离子体射流的结构和阵列结构

Also Published As

Publication number Publication date
CN108545738B (zh) 2020-07-10
CN108545738A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2019228351A1 (zh) 一种提高cvd单晶金刚石硬度及韧性的方法
CN103553711B (zh) 一种复合涂层炭/炭复合材料坩埚及其制备方法
US7833581B2 (en) Method for making a highly stable diamond film on a substrate
CN110205604B (zh) 梯度金刚石/石墨复合自润滑减磨工程陶瓷涂层及制法
TWI681928B (zh) 碳化鉭塗層碳材料
CN103757601B (zh) 金刚石涂层高温高压喷雾喷嘴的制备方法
CN104762607A (zh) 一种单颗粒层纳米金刚石薄膜及其制备方法
TW201829857A (zh) 鑽石成膜用基底基板、以及使用其之鑽石基板的製造方法
CN108149183B (zh) 一种表层硬度梯度分布的硬质合金及其制备方法
JP2016530180A (ja) セラミックスマトリックス複合材料及びセラミックスマトリックス複合材料を製造する製造方法
CN105937021A (zh) 一种微型铣刀金刚石复合涂层的制备方法
CN106978593B (zh) 一种顶面为钛掺杂类金刚石多层隔热厚膜的活塞及其制备方法和应用
Peng et al. Study on the effect of Ar-containing work gas on the microstructure and tribological behavior of nanocrystalline diamond coatings
CN110318036A (zh) 碳化钛耐磨陶瓷涂层及其制备方法和应用
WO2013113493A1 (en) Method for the manufacture of composites consisting of carbon nanotubes and crystalline diamond
CN109437975B (zh) 一种耐高温高韧性的SiCf/SiC复合材料预制体复合界面层及其制备方法
CN109295434A (zh) 微孔表面纳米级金刚石涂层
CN106319518A (zh) 金刚石/金属碳化物复合涂层及其制备方法和应用
US20080187685A1 (en) Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
CN111172508A (zh) 一种提高金刚石对顶压砧压力极限的方法
TWI554633B (zh) 類鑽碳膜及其製作方法
CN108624863B (zh) 一种表面硬度增强涂层及其制备方法
CN103658670A (zh) 超细钛粉及其制备方法
Zanin et al. Large-area cylindrical diamond electrodes
JPS62180073A (ja) 非晶質炭素膜およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812400

Country of ref document: EP

Kind code of ref document: A1