CN102034710B - 半导体器件的栅极预掺杂方法 - Google Patents

半导体器件的栅极预掺杂方法 Download PDF

Info

Publication number
CN102034710B
CN102034710B CN2009101964272A CN200910196427A CN102034710B CN 102034710 B CN102034710 B CN 102034710B CN 2009101964272 A CN2009101964272 A CN 2009101964272A CN 200910196427 A CN200910196427 A CN 200910196427A CN 102034710 B CN102034710 B CN 102034710B
Authority
CN
China
Prior art keywords
semiconductor device
grid
polysilicon layer
ion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101964272A
Other languages
English (en)
Other versions
CN102034710A (zh
Inventor
赵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN2009101964272A priority Critical patent/CN102034710B/zh
Publication of CN102034710A publication Critical patent/CN102034710A/zh
Application granted granted Critical
Publication of CN102034710B publication Critical patent/CN102034710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种半导体器件的栅极预掺杂方法,该方法应用于栅极的预掺杂过程,所述半导体器件衬底上依次形成有栅氧化层和多晶硅层,该方法包括:将氟和用于形成非晶态层的无机物离子注入到多晶硅层后,将预掺杂杂质离子注入到多晶硅层;光刻栅氧化层和多晶硅层形成栅极,再次氧化并刻蚀得到偏移量侧墙后,对半导体器件衬底表面及栅极表面进行轻掺杂;快速退火。本发明提供的方法解决的问题为:保证半导体器件性能能满足要求的情况下,在预掺杂过程中防止预掺杂杂质磷穿透栅极;且降低栅极电阻、减少栅氧化层的电学厚度、及改善栅极的耗尽效应。

Description

半导体器件的栅极预掺杂方法
技术领域
本发明涉及半导体制造技术,特别涉及一种半导体器件的栅极预掺杂方法。 
背景技术
随着电子设备的广泛应用,半导体的制造工艺得到了飞速的发展,半导体器件的特征尺寸也越来越小,半导体器件中的栅极特性也变得越来越重要。为了减小半导体器件中的栅极电阻,高浓度掺杂工艺被使用在源漏极的掺杂及栅极的预掺杂过程中。然而,随着半导体器件的特征尺寸(CD)减小,半导体器件的栅极高度也在减小,在栅极的预掺杂过程中采用的高浓度掺杂工艺,会使预掺杂杂质穿透半导体器件衬底,严重影响最终得到半导体器件性能,特别是对N型互补金属氧化物半导体(NMOS)。 
图1a~1f所示为现有技术半导体器件掺杂过程的剖面结构图。现有技术半导体器件的掺杂过程包括以下步骤: 
步骤一,在半导体器件衬底101上进行双阱工艺,定义CMOS的有源区。 
在本步骤中,双阱包括一个N阱和一个P阱,通常采用倒掺杂阱技术进行,也就是在半导体器件衬底101中定义的N阱区域注入磷等掺杂杂质(后续形成PMOS),在定义的P阱区域注入硼等掺杂杂质(后续形成NMOS)。 
由于本中请主要涉及NMOS,所以在这里只对在P阱以及在P阱上形成的结构进行详细介绍,以形成NMOS,而N阱上形成的结构则忽略介绍,图1a所示的为在半导体器件衬底101上形成P阱100。 
步骤二,在半导体器件衬底101上进行浅槽隔离(STI)工艺,隔离CMOS的有源区,即在P阱100中进行隔离以及隔离P阱和N阱,如图1b所示,包括半导体衬底101、P阱100和STI102。 
在本步骤中,形成STI的过程为:先在半导体器件衬底101依次沉积隔离氧化层和氮化物层,采用曝光显影工艺在氮化物层上涂覆的光刻胶层定义出STI图形,将具有STI图形的光刻胶层作为掩膜依次刻蚀氮化硅层、隔离氧化层以及半导体器件衬底101得到STI槽,然后对STI槽进行氧化物填充后,进行氮化物层和隔离氧化物层的抛光处理,在半导体器件衬底101上得到STI102。 
步骤三,参见图1c,在半导体器件衬底101和STI102表面依次沉栅氧化层和多晶硅层后,采用离子注入方法10对多晶硅层进行预掺杂。 
在本步骤中,对于N型COMS来说,掺杂的杂质为磷,目的是为了使得最终制造的半导体器件的栅极导电。 
步骤四,采用光刻工艺得到栅极103后,对栅极103进行再次氧化。 
在本步骤中,采用光刻工艺得到栅极的过程为:涂覆光刻胶层后通过具有栅极图形的光罩对其曝光显影,在光刻胶层形成栅极图形,然后以具有栅极图形的光刻胶层为掩膜,依次刻蚀多晶硅层和栅氧化层,形成栅极103。 
步骤五,对再次氧化的栅极103采用刻蚀方法形成偏移侧墙后,以离子注入20方法对半导体器件衬底101进行轻掺杂,参见图1d。 
在图中,省略了偏移侧墙。 
在该步骤中,轻掺杂采用的杂质可以为砷,使得半导体器件衬底101的上表面成为非晶态,减少源漏极间的沟道漏电流效应。 
偏移侧墙的形成是为了在轻掺杂工艺中防止NMOS沟道长度的减小而增加的源漏间电荷穿通的可能性。 
步骤六,由于栅极103在掺杂的过程中受到注入离子的撞击,导致硅结构的晶格发生损伤,为恢复损伤,离子注入20后进行快速热退火处理。 
步骤七,参见图1e,对栅极103形成氮氧化物侧墙204后,在半导体 器件器件衬底101上就定义出源漏极区域,以离子注入30的方法对栅极103和栅极103两侧的半导体器件衬底101进行掺杂,形成漏极301和源极302。 
步骤八,参见图1f,采用自对准硅化物(SAB)的方法沉积钛,形成钛化硅层401,然后进行快速退火处理后,采用化学方法刻蚀掉未反应的钛。 
本步骤是为了形成接触孔,可以使得有源区形成金属接触。 
这样,就完成半导体器件掺杂。在这个过程的步骤三中,为了防止预掺杂杂质磷穿透栅极103,当采用离子注入方法10进行预掺杂时,采用低能量或/和低浓度的预掺杂杂质磷。但是,这样进行掺杂后,栅极103中的预掺杂杂质会减少且增大栅氧化层102的电学厚度,最终得到的半导体器件工作性能不能满足要求,如阈值电压增大、栅极电阻增大及栅极的耗尽效应(poly depletion)受到影响等。 
发明内容
有鉴于此,本发明提供一种半导体器件的栅极预掺杂方法,该方法解决的问题为:保证半导体器件性能能满足要求的情况下,在预掺杂过程中防止预掺杂杂质磷穿透栅极;且降低栅极电阻、减少栅氧化层的电学厚度、及改善栅极的耗尽效应。 
为达到上述目的,本发明实施例的技术方案具体是这样实现的: 
一种半导体器件的栅极预掺杂方法,该方法应用于栅极的预掺杂过程,所述半导体器件衬底上依次形成有栅氧化层和多晶硅层,该方法包括: 
将氟和用于形成非晶态层的无机物离子注入到多晶硅层后,将预掺杂杂质离子注入到多晶硅层; 
光刻栅氧化层和多晶硅层形成栅极,再次氧化并刻蚀得到偏移量侧墙后,对半导体器件衬底表面及栅极表面进行轻掺杂; 
快速退火。 
所述将氟和用于形成非晶态层的无机物离子注入到多晶硅层的工艺为: 
先将氟离子注入到多晶硅层;然后将用于形成非晶态层的无机物离子注 入到多晶硅层。 
所述将氟和用于形成非晶态层的无机物离子注入到多晶硅层的工艺为:将氟和用于形成非晶态层的无机物同时离子注入到多晶硅层。 
对于N型的场效应管MOS,预掺杂杂质为磷。 
所述用于形成非晶态层的无机物为锗、硅或砷。 
对于N型MOS,所述预掺杂杂质磷的剂量为2.0E15~5.0E15原子/平方厘米; 
所述砷注入的能量为30~50千电子伏特,剂量为5.0E14~1.0E15原子/平方厘米,所述氟注入的能量为6~12千电子伏特,剂量为1.0E14~5E14原子/平方厘米。 
由上述技术方案可见,本发明在进行预掺杂过程中,采用了砷和氟一起和预掺杂杂质磷进行离子注入,预掺杂杂质磷的浓度和离子注入能量不降低。由于离子注入的氟可以填补多栅极103的硅结构中的晶格空隙,从而使在离子注入过程中,预掺杂杂质磷的瞬间增强扩散(TED)被抑制,使预掺杂杂质磷均匀地在栅极103的硅结构中进行注入;由于离子注入的砷分子量比较大,可以使栅极103的下方形成非晶态层,防止了预掺杂杂质磷从栅极103穿通到半导体器件衬底101上。另外,砷还可以采用锗或硅等半导体物质替代。因此,本发明提供的方法在保证半导体器件性能能满足要求的情况下,在预掺杂过程中防止预掺杂杂质磷穿透栅极103。由于在本发明进行预掺杂时,其预掺杂杂质的能量和剂量都没有减小且可以提高,所以使栅极中的预掺杂杂质不会减少,从而降低栅极电阻、减少栅氧化层的电学厚度、及改善栅极的耗尽效应,提高了最终形成的半导体器件工作特性。 
附图说明
图1a~1f所示为现有技术半导体器件掺杂过程的剖面结构图; 
图2a~2g所示的本发明半导体器件掺杂过程的剖面结构图; 
图3为本发明提供的半导体器件掺杂的方法流程图; 
图4为本发明提供的进行栅极掺杂方法和现有技术采用的栅极掺杂方法的数据比较示意图。 
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明作进一步详细说明。 
现有技术在对栅极进行预掺杂过程中,解决预掺杂杂质磷由栅极103穿透进入半导体器件衬底101的方法是降低离子注入的能量或/和减少预掺杂杂质磷的浓度。但是,这是以降低最终形成半导体器件性能为代价的,比如,由于预掺杂杂质在栅极103中的浓度减少,会使得阈值电压变高或栅极的电阻变大,栅极的耗尽效应变差,减少栅极103中的栅氧化层的电学厚度,严重影响最终得到的半导体器件的开关性能。 
因此,本发明提供了一种方法,该方法在不降低预掺杂杂质在栅极103浓度的情况下,解决预掺杂杂质磷由栅极103穿透进入半导体器件衬底101的问题。 
本发明采用的方法为:采用了砷和氟一起和预掺杂杂质磷进行离子注入,进行栅极的预掺杂过程,预掺杂杂质磷的浓度和/或离子注入能量不降低,或者提高预掺杂杂质磷的浓度和/或离子注入能量。这样,就使预掺杂杂质磷的能量和剂量没有减小且能够提高,使栅极中的预掺杂杂质磷不会减少,从而降低栅极电阻、减少栅极103中的栅氧化层的电学厚度、及改善栅极的耗尽效应,提高了最终形成的半导体器件工作特性。 
在现有技术中,预掺杂杂质由栅极103穿透进入半导体衬底101的原因主要是:一方面,由于栅极103的硅结构中的晶格之间存在缝隙,所以在预掺杂杂质磷采用离子注入方法进行预掺杂时,尤其是预掺杂杂质磷的浓度和/或离子注入能量比较大时,就会在栅极103中出现TED,通过缝隙穿透到半导体器件衬底101中;另一方面,由于栅极103的硅结构中的晶格之间存在缝隙,上下层的缝隙也可能会形成沟道到半导体器件衬底101,在采用离 子注入方法进行预掺杂时,预掺杂杂质磷穿透缝隙形成的沟道就渗透到半导体器件衬底101中了。因此,本发明在对栅极进行预掺杂过程中,一方面先采用离子的方式注入氟,使其填补栅极103的硅结构中的晶格之间的缝隙,预掺杂杂质磷在栅极103中的TED被抑制,使预掺杂杂质磷均匀地在栅极103的硅结构中进行离子注入;另一方面,采用离子注入的方式注入砷,由于其分子量比较大,在栅极103中形成非晶态层,阻挡栅极103的硅结构缝隙所形成的沟道,预掺杂杂质磷在栅极103不会通过沟道从栅极103穿透到半导体器件衬底101上。 
另外,砷还可以采用锗或硅等半导体物质替代。 
结合图2a~2g所示的本发明半导体器件掺杂过程的剖面结构图,说明本发明提供的半导体器件的栅极掺杂的方法。 
图3为本发明提供的半导体器件掺杂的方法流程图,其具体步骤为: 
步骤301,在半导体器件衬底101上进行双阱工艺,定义CMOS的有源区。 
在本步骤中,双阱包括一个N阱和一个p阱,通常采用倒掺杂阱技术进行,也就是在半导体器件衬底101中定义的N阱区域注入磷等掺杂杂质(后续形成PMOS),在定义的P阱区域注入硼等掺杂杂质(后续形成NMOS)。 
由于本申请主要涉及NMOS,所以在这里只对在P阱以及在P阱上形成的结构进行详细介绍,以形成NMOS,而N阱上形成的结构则忽略介绍,图2a所示的为在半导体器件衬底101上形成P阱100。 
步骤302,在半导体器件衬底101上进行浅槽隔离(STI)工艺,隔离CMOS的有源区,即在P阱100中进行隔离以及隔离P阱和N阱,如图2b所示,包括半导体衬底101、P阱100和STI102。 
在本步骤中,形成STI的过程为:先在半导体器件衬底101依次沉积隔离氧化层和氮化物层,采用曝光显影工艺在氮化物层上涂覆的光刻胶层定义出STI图形,将具有STI图形的光刻胶层作为掩膜依次刻蚀氮化硅层、隔离 氧化层以及半导体器件衬底101得到STI槽,然后对STI槽进行氧化物填充后,进行氮化物层和隔离氧化物层的抛光处理,在半导体器件衬底101上得到STI102。 
步骤303,参见图2c,在半导体器件衬底101和STI102表面依次沉栅氧化层和多晶硅层后,采用离子注入方法10’对多晶硅层进行预掺杂,预掺杂的杂质为砷和氟。 
在本步骤中,预掺杂的杂质可以同时注入,也可以先离子注入氟后,再离子注入砷。或者先离子注入砷后,再离子注入氟。 
步骤304,采用预掺杂的杂质磷,通过离子注入方法10对多晶硅层进行预掺杂,参见图2d。 
在本步骤中,对于N型COMS来说,掺杂的杂质为磷,目的是为了使得最终制造的半导体器件的栅极导电。 
步骤305,采用光刻工艺得到栅极103后,对栅极103进行再次氧化。 
在本步骤中,采用光刻工艺得到栅极的过程为:涂覆光刻胶层后通过具有栅极图形的光罩对其曝光显影,在光刻胶层形成栅极图形,然后以具有栅极图形的光刻胶层为掩膜,依次刻蚀多晶硅层和栅氧化层,形成栅极103。 
步骤306,对再次氧化的栅极103采用刻蚀方法形成偏移侧墙后,以离子注入20方法对半导体器件衬底101进行轻掺杂,参见图2e。 
在图中,省略了偏移侧墙。 
在该步骤中,轻掺杂采用的杂质可以为砷,使得半导体器件衬底101的上表面成为非晶态,减少源漏极间的沟道漏电流效应。 
偏移侧墙的形成是为了在轻掺杂工艺中防止NMOS沟道长度的减小而增加的源漏间电荷穿通的可能性。 
步骤307,由于栅极103在掺杂的过程中受到注入离子的撞击,导致硅结构的晶格发生损伤,为恢复损伤,离子注入20后进行快速热退火处理。 
步骤308,参见图2f,对栅极103形成氮氧化物侧墙204后,在半导体器件器件衬底101上就定义出源漏极区域,以离子注入30的方法对栅极103 和栅极103两侧的半导体器件衬底101进行掺杂,形成漏极301和源极302。 
步骤309,参见图2g,采用SAB的方法沉积钛,形成钛化硅层401,然后进行快速退火处理后,采用化学方法刻蚀掉未反应的钛。 
本步骤是为了形成接触孔,可以使得有源区形成金属接触。 
在图3所述的过程中,基于在栅极103生成非晶态层的原理,还可以将砷替换为可以在多晶硅层103生成非晶态层的无机物,如硅或锗等。在本发明中,可以将锗、硅或砷统一称为形成非晶态层的无机物,其就是用于在栅极103的硅结构中形成非晶态层。 
举一个例子说明一下,对于制造特征尺寸为65微米的半导体器件,栅极的厚度为0.93微米~0.1微米时,依据图3所述的方法,在步骤304时,对于N型MOSFET,其需要的预掺杂杂质磷的剂量为2.0E15~5.0E15原子/平方厘米。在步骤303中,所述砷注入的能量为30~50千电子伏特,剂量为5.0E14~1.0E15原子/平方厘米,氟注入的能量为6~12千电子伏特,剂量为1.0E14~5E14原子/平方厘米。 
图4为本发明提供的进行栅极掺杂方法和现有技术采用的栅极掺杂方法的数据比较示意图,其中,横坐标为在制成的NMOS半导体器件上的栅极所施加的电压Vg,单位为伏特,纵坐标为在为栅极施加电压后,得到的电容值Cgg,单位为E15法/平方微米。用实线标注的为采用本发明提供的方法得到的栅极电容性能,用虚线标注的为采用现有技术提供的方法得到的栅极性能。可以看出,在半导体器件所附加的电压强反型后,比如升高到1伏~2伏时,采用本发明提供的方法得到的栅极的电容值保持平稳,基本消除了多晶硅耗尽效应,栅氧化层电学厚度降低,明显改善了采用了采用现有技术方法得到的栅极特性(电容值下降,耗尽效应明显)。说明本发明提供的方法制造的栅极在性能上优于现有技术制造的栅极。 
以上举较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换和 改进等,均应包含在本发明的保护范围之内。 

Claims (6)

1.一种半导体器件的栅极预掺杂方法,该方法应用于栅极的预掺杂过程,所述半导体器件衬底上依次形成有栅氧化层和多晶硅层,该方法包括:
将氟和用于形成非晶态层的无机物离子注入到多晶硅层后,将预掺杂杂质离子注入到多晶硅层;
光刻栅氧化层和多晶硅层形成栅极,再次氧化并刻蚀得到偏移量侧墙后,对半导体器件衬底表面及栅极表面进行轻掺杂;
快速退火。
2.如权利要求1所述的方法,其特征在于,所述将氟和用于形成非晶态层的无机物离子注入到多晶硅层的工艺为:
先将氟离子注入到多晶硅层;然后将用于形成非晶态层的无机物离子注入到多晶硅层。
3.如权利要求1所述的方法,其特征在于,所述将氟和用于形成非晶态层的无机物离子注入到多晶硅层的工艺为:将氟和用于形成非晶态层的无机物同时离子注入到多晶硅层。
4.如权利要求1、2或3所述的方法,其特征在于,对于N型的场效应管MOS,预掺杂杂质为磷。
5.如权利要求4所述的方法,其特征在于,所述用于形成非晶态层的无机物为锗、硅或砷。
6.如权利要求5所述的方法,其特征在于,对于N型MOS,所述预掺杂杂质磷的剂量为2.0E15~5.0E15原子/平方厘米;
所述砷注入的能量为30~50千电子伏特,剂量为5.0E14~1.0E15原子/平方厘米,所述氟注入的能量为6~12千电子伏特,剂量为1.0E14~5E14原子/平方厘米。
CN2009101964272A 2009-09-25 2009-09-25 半导体器件的栅极预掺杂方法 Active CN102034710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101964272A CN102034710B (zh) 2009-09-25 2009-09-25 半导体器件的栅极预掺杂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101964272A CN102034710B (zh) 2009-09-25 2009-09-25 半导体器件的栅极预掺杂方法

Publications (2)

Publication Number Publication Date
CN102034710A CN102034710A (zh) 2011-04-27
CN102034710B true CN102034710B (zh) 2012-02-08

Family

ID=43887422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101964272A Active CN102034710B (zh) 2009-09-25 2009-09-25 半导体器件的栅极预掺杂方法

Country Status (1)

Country Link
CN (1) CN102034710B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709314A (zh) * 2012-05-22 2012-10-03 上海华力微电子有限公司 物理隔离的硅纳米晶双位存储结构及其制备方法
CN109119326B (zh) 2017-06-22 2022-04-19 联华电子股份有限公司 半导体结构及其制造方法
CN109904231B (zh) * 2017-12-11 2022-03-29 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
CN109920731B (zh) * 2019-03-20 2021-03-19 上海华虹宏力半导体制造有限公司 多晶硅薄膜晶体管及其制作方法
CN114005744A (zh) * 2020-07-28 2022-02-01 长鑫存储技术有限公司 半导体结构的形成方法
CN112635403B (zh) * 2021-03-09 2021-05-28 晶芯成(北京)科技有限公司 静态随机存储器的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747135A (zh) * 2004-09-08 2006-03-15 上海宏力半导体制造有限公司 改善栅极多晶硅层电阻值的方法
US7018880B2 (en) * 2003-12-22 2006-03-28 Texas Instruments Incorporated Method for manufacturing a MOS transistor having reduced 1/f noise
CN1848390A (zh) * 2005-04-05 2006-10-18 联华电子股份有限公司 降低多晶耗尽效应的制作多晶硅栅极晶体管的方法
CN101295642A (zh) * 2007-04-27 2008-10-29 联华电子股份有限公司 栅介电层的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018880B2 (en) * 2003-12-22 2006-03-28 Texas Instruments Incorporated Method for manufacturing a MOS transistor having reduced 1/f noise
CN1747135A (zh) * 2004-09-08 2006-03-15 上海宏力半导体制造有限公司 改善栅极多晶硅层电阻值的方法
CN1848390A (zh) * 2005-04-05 2006-10-18 联华电子股份有限公司 降低多晶耗尽效应的制作多晶硅栅极晶体管的方法
CN101295642A (zh) * 2007-04-27 2008-10-29 联华电子股份有限公司 栅介电层的制造方法

Also Published As

Publication number Publication date
CN102034710A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
CN103545213B (zh) 半导体器件及其制造方法
US7816744B2 (en) Gate electrodes of HVMOS devices having non-uniform doping concentrations
US6221724B1 (en) Method of fabricating an integrated circuit having punch-through suppression
KR101373534B1 (ko) 반도체 장치 및 제조 방법
US7550804B2 (en) Semiconductor device and method for forming the same
CN102034710B (zh) 半导体器件的栅极预掺杂方法
US10062704B2 (en) Buried-channel MOSFET and a surface-channel MOSFET of a same type and fabrication method thereof
CN1423837A (zh) 用单附加掩模注入操作制造双阈值电压n沟道和p沟道mosfet的方法
CN101894749B (zh) 半导体器件的栅极掺杂方法
EP0368444A1 (en) Semiconductor device, e.g. field-effect transistor, and method of producing the same
CN101136409A (zh) 双栅cmos半导体器件及其制造方法
CN102097379A (zh) 制造半导体器件层的方法
CN101174567A (zh) 半导体结构及其制造方法
US20170077233A1 (en) Multi-gate semiconductor devices with improved hot-carrier injection immunity
KR100463044B1 (ko) 반도체장치의 제조방법
CN112309853A (zh) 屏蔽栅极沟槽结构的制备方法
WO2015084414A1 (en) Termination structure and fabrication method thereof
CN108574014B (zh) Ldmos器件及其制造方法
US20120161236A1 (en) Electrostatic discharge protection device and manufacturing method thereof
CN102054699B (zh) 改善半导体器件结深特性的方法
WO2014051911A1 (en) Extended source-drain mos transistors and method of formation
CN102054698B (zh) 提高半导体器件阈值电压的方法
KR101131965B1 (ko) 반도체 장치 제조방법
CN109103261B (zh) 半导体器件和集成电路
KR100223994B1 (ko) 고집적 엔형 전계효과 금속산화물반도체 구조 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant