CN102026634B - 诱导肿瘤缺氧以治疗癌症 - Google Patents

诱导肿瘤缺氧以治疗癌症 Download PDF

Info

Publication number
CN102026634B
CN102026634B CN200980102782.7A CN200980102782A CN102026634B CN 102026634 B CN102026634 B CN 102026634B CN 200980102782 A CN200980102782 A CN 200980102782A CN 102026634 B CN102026634 B CN 102026634B
Authority
CN
China
Prior art keywords
tumor
hypoxia
stilbene
tirapazamine
amido
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980102782.7A
Other languages
English (en)
Other versions
CN102026634A (zh
Inventor
R·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Virginia Commonwealth University
Original Assignee
Virginia Commonwealth University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virginia Commonwealth University filed Critical Virginia Commonwealth University
Priority to CN201310699012.3A priority Critical patent/CN104043125B/zh
Publication of CN102026634A publication Critical patent/CN102026634A/zh
Application granted granted Critical
Publication of CN102026634B publication Critical patent/CN102026634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Abstract

本发明提供用于增加低氧激活的生物还原剂杀死实体瘤内的肿瘤细胞的能力的方法和组合物。在肿瘤内或含有肿瘤的区域内创造局部低氧区域,导致增强该局部区域内低氧激活的生物还原剂(例如替拉扎明)的活化。该被激活的低氧激活的生物还原剂是通过催化肿瘤细胞内DNA链断裂以杀死该低氧区内的肿瘤细胞。因为该活性是局部性的,因此全身性施用生物还原剂所导致的典型副作用得到了减少。

Description

诱导肿瘤缺氧以治疗癌症
技术领域
本发明涉及提高低氧激活的生物还原剂的能力,以杀死实体瘤内肿瘤细胞的组合物和方法。特别的,本发明提供在肿瘤内或含有肿瘤的区域中创造局部低氧区的方法和组合物,以提高该局部区域内的低氧激活的生物还原剂的活性及肿瘤细胞杀死率。
背景技术
肿瘤生长需要发展新血管形成网络以供应氧和营养并排除毒性代谢物。肿瘤的新血管系统与正常血管系统极为不同(1,2)。肿瘤新血管系统在结构和功能上是异常、紊乱且不完整的,而且某些数据说明,与正常组织中微管蛋白和肌动蛋白两者作为细胞骨架相比,肿瘤血管可能更依赖微管蛋白作为细胞骨架支撑物(3)。标靶肿瘤血管已经成为开发新的癌症治疗方法的有用策略(4)。现今有两种方法用于标靶肿瘤血管。一种方法利用阻断血管生成因子或其受体以防止血管生成过程,从而防止新血管的生成。此类治疗方法的代表是贝伐单抗(bevacizumab),即一种抵御血管内皮细胞生长因子(VEGF)的单克隆抗体,及索拉非尼(sorafenib)或舒尼替尼(sunitinib),VEGF受体酪胺酸激酶的小分子抑制剂(4-8)。
第二种标靶肿瘤血管的策略是直接杀死肿瘤内存在的内皮细胞。此类化合物被称为血管破坏剂(VDA)(9,10)。该血管破坏剂的机理是杀死存在于肿瘤血管的内皮细胞,使肿瘤无法得到充足的血液供应,进而导致肿瘤局部缺血及最终引起肿瘤坏死。这类制剂的代表是几种小分子,包括考布他汀(combretastatin) A4 (CA4)、ZD6126、AVE8062、Oxi4503及1,2-二苯乙烯(stilbene)衍生物(9-13)。这些小分子通过在秋水仙素位点干扰微管的聚合,以杀死肿瘤内皮细胞。几种秋水仙素位点微管蛋白抑制剂现今正开发为VDA。
肿瘤低氧的诱导及补偿反应的形成
依靠抗血管生成剂和血管破坏剂,这些肿瘤血管标靶剂的主要目标是破坏肿瘤细胞的血管支持,致使肿瘤呈现低氧状态,随后坏死。因此,肿瘤内低氧的形成是诱导肿瘤细胞死亡的关键条件。然而,肿瘤低氧并不足以诱导细胞死亡,因为低氧状态下的肿瘤细胞能形成各种低氧反应,例如低氧诱发因子(HIF)1-α(14,15)的稳定化,该HIF 1-α能引起糖酵解酶的产生,而该酶能使肿瘤细胞在低氧环境下存活,或产生VEGF和其他血管生成因子而生成新血管。一氧化氮(NO)是在低氧状态下肿瘤细胞能够产生的另一因子,它能引起血管扩张并因此改善肿瘤血液的供应(16,17)。NO与血管生成(18,19)也有密切关系。因此,这些补偿机制能导致抵御抗血管生成剂和VDA的药物抗性。
增强疗效的策略
有几种可能的策略用于增强标靶肿瘤血管系统的疗效。一种是将制剂与传统的化疗相结合,该策略是目前用于抗血管生成剂的常用策略。贝伐单抗,一种抵御VEGF的单克隆抗体,通常与化疗相结合以治疗结肠直肠癌、非小细胞肺癌和乳腺癌。VDA目前处于用于各种实体瘤治疗的第二实验阶段,但迄今没有获得FDA的许可。一种新策略是将抗血管生成剂与VDA相结合。这种结合是基于观察到VDA会引起VEGF的升高,VEGF随后调动骨髓内皮起始细胞进入循环系统,并因此负责受损肿瘤血管的修复(20)。使用VEGF通路抑制剂可能可以阻断此调动并增强疗效(11,20),但是这种策略尚未在临床中被证实。
替拉扎明(tirapazamine;SR4233;3-胺基-1,2,4-苯并三嗪-1,4-二-N-氧化物)是一种仅在低氧环境下有效的生物还原剂,已被测试可作为一种抗癌剂(21)。替拉扎明通过单电子反应被细胞色素P450还原酶激活,因而产生硝基氧(nitroxide)自由基。在缺氧情况下,硝基氧自由基可引起DNA的单链和双链断裂,从而引起细胞死亡。因为这个特性,与充分供氧的细胞替拉扎明对低氧细胞显出15至200倍的毒性。替拉扎明也已被证明是一种辐射激活剂,在癌症治疗过程中与铂化合物协同作用 (22,23)。
替拉扎明的作用机理
替拉扎明作用的假设机理如图所示(24-28)。由包括细胞色素P-450、NADH-细胞色素P-450还原酶及其它黄素(flavo)蛋白或金属蛋白在内的酶的还原激活,引起替拉扎明的单电子还原反应。单电子转移反应的产物是自由基(I或II),该自由基可被氧氧化而生成超氧化物和原药(parent drug)替拉扎明。或者,该自由基(I或II)能通过去除氢反应的中间产物(III)获得第二个电子,生成稳定的单-N-氧化物(SR4317)。这些不同的机理使得低氧环境下,替拉扎明具有选择性代谢的作用。从大分子获得的第二个电子被认为是对低氧细胞造成致命损害的原因。另一个可能的途径是从中间产物II释出羟基自由基,直接生成SR4317,SR4317可进一步通过类似的反应中代谢为SR4330。
在所有器官中,肝脏是替拉扎明的代谢的最重要器官。Costa等人利用经培养的老鼠肝细胞检验替拉扎明的毒性(29),该老鼠肝细胞被短暂地培育于氧浓度为1%、2%、4%、10%及20%的低氧环境下。替拉扎明剂量对单层肝细胞的反应曲线显著地偏向左边,表示当氧浓度降低时,肝细胞更容易死亡(P<0.05)。在4%氧浓度下2小时导致50%细胞死亡的替拉扎明浓度比在10%或20%氧浓度下所需的替拉扎明浓度低10倍以上。在2%氧浓度下导致50%细胞死亡所需的替拉扎明浓度比在20%氧浓度下致使相同程度的细胞死亡所需的替拉扎明浓度低15倍。当氧浓度进一步降低至1%时,导致50%细胞死亡所需的替拉扎明浓度比于20%氧浓度下所需的替拉扎明浓度低50倍。这些结果表明,替拉扎明在2%和 1%氧浓度下的功效,比在20%正常氧环境下分别强15倍和50倍。
替拉扎明的临床前和临床进展
替拉扎明在临床前和临床皆已有显著进展。替拉扎明的动物研究显示,替拉扎明可能的副作用包括骨髓毒性、嗅觉神经坏死及视网膜退化(21)。通过每3周静脉内注射替拉扎明的第I期临床研究显示,最大耐受剂量(MTD)为390 mg/m2,当剂量超过330 mg/m2时,会产生有限的毒性,包括可逆性耳毒性和暂时性视觉异常(30,31)。其他非特异性毒性包括肌肉痛性痉挛、恶心、呕吐及腹泻。在一位接受剂量450 mg/m2的患者身上观察到一级血小板减少症,没有在任何患者身上观察到白血球减少症(30)。
替拉扎明的第II期研究已在肺癌、子宫颈癌、卵巢癌、黑色素瘤及头颈癌进行,获得了有前景的结果(32-35)。在第III期,对第IV阶段非小细胞肺癌随机研究,367位患者被随机地分配接受顺铂(carboplatin)、紫杉醇及替拉扎明(第1疗程260 mg/m2,且若第1疗程可忍受,则在第2至6疗程增加至330 mg/m2)(n=181);或顺铂、紫杉醇及安慰剂(n=186)。不幸地,结果令人失望,因为接受替拉扎明的组在反应率、整体存活率或无进展存活率方面没有显现出优异性。相反地还观察到全身性毒性增加,如腹部疼痛性痉挛、疲劳、暂时性听力丧失、发热伴随嗜中性白血球减少症、低血压、肌痛及皮疹,导致许多患者退出该研究(36)。经中途分析后,该试验被提前中止,中途分析显示存活率将不会达到预期的37.5%的提高率。另一个大型的第III期随机研究正在盆腔约束的宫颈癌中进行,其中患者接受带有或不带有替拉扎明的顺铂和放射治疗,但目前尚未有结果。
很明显,对改良的癌症治疗方法有一种持续的需求。特别是以一种优化的,可以提高其疗效、降低其毒副作用的方式使用已知的制剂提供癌症治疗方法更有优势。
发明内容
本发明是基于方法和组合物的改进,即增加低氧激活的生物还原剂(HABA)的抗肿瘤活性,同时将因全身性使用该药剂所可能产生的副作用减少或减至最小。氧存在时,HABA是不具活性的前药;HABA仅在低氧条件下被激活。本发明的用药策略涉及在局部区域,例如肿瘤内或含有肿瘤的区域,创造足以激活HABA的低氧区。当HABA也存在于该局部低氧区域时,HABA将被激活并发挥杀死该区域内细胞(例如肿瘤细胞)的作用,而对该生物体产生全身性的有害作用。
已经开发出了施用这种技术的两种一般方法。在一种方法中,生物还原剂是在血管的直接机械性闭合,如栓塞之前或同时施用。栓塞能被局限于一个隔离的、标记的区域,引起隔离的标记区域形成低氧状态,从而激活HABA。在第二种方法中,将HABA与一种或多种低氧诱发剂,如血管破坏剂(VDA)和抗血管生成剂(AAA)相结合施用于肿瘤。相对于采用用机械性栓塞的直接物理性闭合,因该方法使用VDA和AAA(化学药剂)达到血管闭合的目的,这种低氧诱发剂也被视为“化学栓塞”剂。然而,在本文中,为清楚起见,标准栓塞剂(例如碘化油Lipiodol)将仅认为是那些施用机械栓塞手术时所使用的栓塞剂,反之,给药后但没有产生栓塞(VDA和AAA)的,被称为“低氧诱发剂”。(请注意,在一些实例中,在机械性栓塞手术中,也可选择性地采用低氧诱发剂。)在机械栓塞的情况下,局部或全身性给药,比如VDA和AAA及HABA一起使用,在肿瘤内选择性地创造一种局部低氧环境,在低氧环境中HABA被激活并杀死周围的肿瘤细胞,但该HABA将会以非活化的前药形式全身性地残留在非低氧区域。因此,这种有害的副作用得以避免。在本发明的一些实例中,这些方法是结合在一起的,例如AAA和/或VDA、和/或直接机械性栓塞,与所提供的HABA一起被采用或实行,所以选择性的低氧区被这些方法诱发而导致HABA的激活。这些具有发明性的技术的整体功效能够迅速、有效且协同破坏局部区域内的肿瘤细胞,而无广泛地全身性扩散和有害的副作用。
本发明的目的是使用各种不同的方法在肿瘤隔离区域或该肿瘤周围区域诱发低氧。这些方法包括单独地或组合使用栓塞、血管破坏剂或抗血管生成剂。该方法是结合施用低氧激活的生物还原剂,该生物还原剂仅限于在低氧区域被激活,诱导肿瘤细胞死亡。全身性毒性作用也将以最小的代价获得最大的益处。
本发明由此提供一种选择性杀死动物体内肿瘤细胞的方法。该方法包括步骤:1)对该动物提供低氧激活的生物还原剂;及2)在肿瘤内或含有一个或多个肿瘤的原位区域内,局部形成氧含量为10%或更低的低氧区。该低氧激活的生物还原剂被激活,用于杀死该肿瘤或指定区域内的低氧区域中的肿瘤细胞。在一个实例中,局部形成低氧区的步骤是通过对动物提供一种或多种血管破坏剂和抗血管生成剂(即一种或多种血管破坏剂或一种或多种抗血管生成剂,或一种或多种血管破坏剂,或一种或多种抗血管生成剂的组合)得以实现的。在一些实例中,对该动物提供一种或多种血管破坏剂和抗血管生成剂的步骤是经由全身性施用。在其他实例中,对该动物提供一种或多种血管破坏剂和抗血管生成剂的步骤是在该区域内局部施用的。此外在其他实例中,局部形成低氧区的步骤在提供低氧激活的生物还原剂的步骤之后施用。或者,局部形成低氧区的步骤与提供低氧激活的生物还原剂的步骤同时施用。在本发明的一些实例中,所述局部形成的步骤使用一种或多种血管破坏剂,这些血管破坏剂选自考布他汀(combretastatin)、考布他汀衍生物,(5S)-5-(乙酰胺基)-9,10,11-三甲氧基-6,7-二氢-5H-二苯并[a,c]环庚烯-3-基磷酸二氢酯(ZD6126)、DMXAA (5,6-二甲基呫吨酮-4-乙酸)、(N-[2-[4-羟基苯基]胺基]-3-吡啶基)-4-甲氧基苯磺酰胺)(E7010或ABT-751)、1,2-二苯乙烯(stilbene)衍生物比如顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)和顺式-3,4’,5-三甲氧基-3’-羟基-1,2-二苯乙烯(1,2-二苯乙烯6c)或或其衍生物,及1,2-二苯乙烯5c衍生的前药N-吗啉基-胺甲酸酯前药。在相同或其他实例中,局部形成步骤提供一种或多种抗血管生成剂,这些抗血管生成剂选自贝伐单抗(bevacizumab)、索拉非尼(sorafenib)、舒尼替尼(sunitinib)、阿柏西普(aflibercept)、IMC-1C11、瓦他拉尼(vatalanib;PTK-87)、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)氨基]-3-吡啶羧酰胺(AMG 706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺(CP-547,632)、帕唑帕尼(pazopanib;GW-786034)、N-(4-(3-氨基-1H-吲唑-4-基)苯基)-N'-(2-氟-5-甲基苯基)脲(ABT-869)或西地尼布(cediranib;AXD-2171)。在一些实例中,所述低氧激活的生物还原剂是替拉扎明,且所述局部形成步骤包括提供顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)的步骤。而在其他实例中,所述局部形成步骤包括提供贝伐单抗。当采用血管破坏剂和抗血管生成剂两者时,所述局部形成步骤可包括先使用一种或多种血管破坏剂,随后再使用一种或多种抗血管生成剂的步骤。
本发明的其他实例中,局部形成低氧区的步骤是通过栓塞施用。栓塞可包括施用一种或多种栓塞剂的步骤。在一些实例中,使用栓塞剂的步骤是在所述局部形成步骤之前施用。在其他实例中,使用栓塞剂的步骤是与所述局部形成步骤同时施用。在本发明的实例中,所述低氧激活的生物还原剂可为替拉扎明、班诺沙酮(banoxantrone;AQ4N)、N-甲基丝裂霉素(porfiromycin)、阿帕兹喹酮(apaziquone;EO9)、1,2-双(甲基磺酰基)-1-(2-氯乙基)-2-[[1-(4-硝基苯基)乙氧基]羰基]肼(KS119)、二硝基苯酰胺芥子(dinitrobenzamide mustard)衍生物(比如PR104)或4-[3-(2-硝基-1-咪唑基)-丙基胺基]-7-氯喹啉氢氯化物(NLCQ-1, NSC709257)。
在本发明的一些实例中,所述区域位于所述动物的肝脏。本发明的一些实例中,所述低氧区中的氧量为5%或更低。在本发明的一些实例中,提供低氧区的步骤是经局部施用的,然而在其他实例中,该提供低氧区的步骤是全身性施用的。
本发明还包括一种用于选择性杀死动物体内的肿瘤细胞的组合物或套装。该组合物或套装包括1)替拉扎明,和2)一种或多种抗血管生成剂和血管破坏剂。一种或多种抗血管生成剂和血管破坏剂选自贝伐单抗、索拉非尼、舒尼替尼、阿柏西普、IMC-1C11、瓦他拉尼(PTK-87)、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)胺基]-3-吡啶羧酰胺(AMG 706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺(CP-547,632)、帕唑帕尼(GW-786034)、N-(4-(3-胺基-1H-吲唑-4-基)苯基)-N'-(2-氟-5-甲基苯基)脲(ABT-869)、西地尼布(AXD-2171)、考布他汀、考布他汀衍生物、(5S)-5-(乙酰胺基)-9,10,11-三甲氧基-6,7-二氢-5H-二苯并[a,c]环庚烯-3-基磷酸二氢酯(ZD6126)、DMXAA(5,6-二甲基呫吨酮-4-乙酸)、(N-[2-[4-羟基苯基]胺基]-3-吡啶基)-4-甲氧基苯磺酰胺(E7010或ABT-751)、1,2-二苯乙烯衍生物(诸如顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)和顺式-3,4’,5-三甲氧基-3’-羟基-1,2-二苯乙烯(1,2-二苯乙烯6c)或彼等之衍生物)或1,2-二苯乙烯5c的前药N-吗啉基-胺甲酸酯衍生物。在一实例中,一种或多种抗血管生成剂和血管破坏剂包括顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)。在另一实例中,一种或多种抗血管生成剂和血管破坏剂包括贝伐单抗。
附图说明
图1A和B,在钆注射后30分钟,使用钆累积值研究肿瘤灌注(perfusion)。(A)是同一老鼠1,2-二苯乙烯5c处理前后的T1加权(weighted)图像。利用DCE-MRI分析已患有皮下UCI101肿瘤异种移植(xenografts)的裸鼠的肿瘤灌注。在注射钆(OmniScan)至尾静脉后,收集DCE-MRI图像达30分钟。对同一老鼠在1,2-二苯乙烯5c处理前后进行研究以避免个体差异。左边组显示的是钆注射之前的T1加权图像。右边组显示的是钆注射后30分钟的图像。上方组显示的是在1,2-二苯乙烯5c处理前,老鼠肿瘤和肾中钆的富集量。下方组显示的是肾的富集量保持不变,与1,2-二苯乙烯5c处理前相类似。然而,与右上图的1,2-二苯乙烯5c处理前相比,1,2-二苯乙烯5c处理显著地降低了肿瘤中钆的富集量(右下图)。在每张图像中,大箭头所指的是肿瘤,而小箭头所指的是肾脏。显示的是用于研究的6只老鼠中的一只的代表性图像。(B)是1,2-二苯乙烯5c处理前后肿瘤和肌肉内计算得到的钆的平均浓度。相同的实验在6只老鼠中进行以用于统计分析。用于计算组织钆浓度显示组织灌注时,使用注射钆前后30 分钟获得的T1图。经过1,2-二苯乙烯5c处理后,肿瘤信号平均降低至62.8%;然而,经过1,2-二苯乙烯5c处理后,肌肉没有显著的改变。
图2,1,2-二苯乙烯5c的处理减少了肿瘤微血管的密度,但不会减少正常器官的微血管密度。对已患有UCI肿瘤异种移植的裸鼠腹腔注射10%的DMSO或50 mg/kg的1,2-二苯乙烯5c。老鼠在注射后4小时后处死,收集各个器官和肿瘤用于固定和标准的苏木紫和伊红(H&E)染色。利用抗-CD34抗体对每一部分进行免疫组织化学染色以定量微血管密度。在原始免疫染色部分中,褐色表示CD34染色的阳性信号。(A)显示的是放大200倍的黑白图。每张CD34染色图中阳性信号的数目经过计算并显示在每张图的右下角。(B)显示最富含微血管密度的4个不同区域的平均值和标准差用柱状图表示。肾部分不可计数,因为图中肾小管周围的所有血管交织成一个大网络。这个结果说明了肿瘤血管密度显著地减少接近4倍,而其他器官、心、肝、脑及肾没有受1,2-二苯乙烯5c处理的影响。
图3,肿瘤的血流量和肿瘤内的氧含量。使用OxyFlo和OxyLite系统(Optronix, 牛津, 英国)监测氧和血流。用氟烷麻醉小鼠并将可记录温度、氧及血流的三重传感器插入肿瘤中且进行1小时的记录。所显示的是患有源自UCI-101卵巢癌细胞的类似大小皮下肿瘤的3只小鼠的结果。上边的图表示氧浓度,下边的图表示肿瘤血流量。1,2-二苯乙烯5c的注射时间也标记了。
图4,1,2-二苯乙烯5c在体内的功效及贝伐单抗影响增强其功效。对裸鼠进行皮下注射UCI-101细胞并令老鼠自周一至周五使用1,2-二苯乙烯5c ,用量是20 mg/kg/天,并使用或不使用10 mg/kg的贝伐单抗进行每周处理两次。肿瘤体积通过长短轴算出。每组有8只老鼠,按天绘出平均肿瘤体积和标准偏差图。
图5A-D。替拉扎明与1,2-二苯乙烯5c的协同作用。患有UCI-101肿瘤异种移植的裸鼠分别用载体(5A, 对照组)、单独替拉扎明(5B)、单独1,2-二苯乙烯5c(5C, 50 mg/kg)或替拉扎明(60 mg/kg)及随后使用1,2-二苯乙烯5c(50 mg/kg)(5D)处理以诱发肿瘤低氧。三天后处死老鼠,摘取肿瘤进行H&E染色。所示的是肿瘤部分的低倍数图像。染色较深的肿瘤部分是存活的,而较淡色部分是坏死区域。注意该组合组右下图的肿瘤部分。大部分肿瘤坏死,而仅有位于肿瘤中心和周边的小部分仍然存活。该中心存活部分接近较大血管分支处。
图6,1,2-二苯乙烯5c与替拉扎明的协同作用。患有皮下肿瘤的裸鼠于第8、10及12天分别进行腹腔内注射(1)生理食盐水对照组、(2)50 mg/kg 的1,2-二苯乙烯、(3)60 mg/kg的替拉扎明、(4)1,2-二苯乙烯5c与替拉扎明的组合。然后,老鼠在第14天因体重减少而被处死。测量肿瘤的长短轴以计算肿瘤大小并按天绘图。每个试验组中有6只小鼠。
图7,替拉扎明与贝伐单抗的结合。患有皮下肿瘤的裸鼠系分别用(1)生理食盐水对照组、(2)在第8、10及12天用60 mg/kg的替拉扎明、(3)在第8、10及12天用替拉扎明且在第8和11天用贝伐单抗(10 mg/kg)的结合处理。然后,老鼠在第14天被处死。测量肿瘤的长短轴以计算肿瘤大小并按天绘图。每个试验组中有6只小鼠。
具体实施方式
本发明提供新颖的、协同治疗组合物以杀死实体瘤癌细胞,并使用该新颖的治疗组合治疗恶性或癌性实体瘤的方法。该新颖组合物能局部增加低氧激活的生物还原剂(HABA),比如替拉扎明的抗肿瘤活性,并同时减少或最小化因全身性使用HABA所引起的副作用。在氧存在的情形下,该生物还原剂是一种不具有活性的前药;在低氧(hypoxia)情况下才能被转化为活性形式。依据本发明,所述生物还原剂的活性形式可被有效地被局限于指定作用的区域,例如在肿瘤内或包括一个或多个肿瘤的界定区域内。两种常用方法已经被开发出来,这两种方法都涉及创造一种局部低氧区,所述生物还原剂在所述局部低氧区内被激活。第一种方法,通过机械性栓塞供应目标区域的一条或多条血管实现,通常采用使用栓塞剂,由放射科医师通过导管植入血管机械性阻塞。第二种方法,局部或全身性地使用一种或多种低氧诱发剂,比如血管破坏剂(VDA及/或)抗血管生成剂(AAA),以创造一种局部低氧区,且在该局部低氧区内激活同时使用的HABA。这些方法的各种组合(例如栓塞加上一种或多种低氧诱发剂)也能达到预期的整体功效,局部提供活化生物还原剂,及有效杀死标靶部位的肿瘤细胞而不产生通常因全身性曝露在生物还原剂下所引起的副作用。这种增强效果也可使用较低剂量的生物还原剂,同时维持杀死肿瘤细胞的充足而有效的效力,从而进一步降低副作用。
“低氧区”,指区域内氧浓度为至少低于或不超过约10%,优选低于或不超过约5%。例如,低氧区的氧浓度可为约10、9、8、7、6、5、4、3、2或1%。通常,氧浓度约为10%或低于10%,优选的,约为5%或低于5%,足以激活低氧激活的生物还原剂(如替拉扎明),使其活性比其前药形式至少大10倍的水平。本领域的技术人员熟悉如何测量生物系统中的氧浓度,也知道氧测量可以用“毫米汞柱(mmHg)”表示,其中,例如,10%O2等于76 mmHg,1%O2等于7.6 mmHg。
本领域的技术人员清楚数种低氧激活的生物还原剂的存在,并且可用于本发明,这些低氧激活的生物还原剂的实例包括但不限于替拉扎明、班诺沙酮(AQ4N)、N-甲基丝裂霉素、阿帕兹喹酮(EO9)、1,2-双(甲基磺酰基)-1-(2-氯乙基)-2-[[1-(4-硝基苯基)乙氧基]羰基]肼(KS119)、二硝基苯酰胺芥子衍生物(诸如PR104)及4-[3-(2-硝基-1-咪唑基)-丙基胺基]-7-氯喹啉氢氯化物(NLCQ-1, NSC709257)(37-39)。
“增强”或“增加”低氧激活的生物还原剂的活性,指当对实体瘤或含有实体瘤的区域施用定量的低氧激活的生物还原剂时,当依照本发明所述方法施用时(例如,根据本发明描述的方法,当在肿瘤或含有肿瘤的区域内产生局部低氧区域时),实体瘤中的肿瘤细胞死亡率更大,也比在实体瘤或含有实体瘤的区域内施用相同剂量的低氧激活的生物还原剂大,但低氧区域并非通过在此所述的方法获得。通常,活性提高至少约10倍或大于10倍,提高的程度可以更大,例如从大约20-200倍、或从大约50-200倍或100-200倍起的增加。
本发明的一个实例中,在本发明的实施中,使用是传统的、最具有临床优势的生物还原剂替拉扎明,或其一种或多种衍生物。替拉扎明在临床开发上远未成功。在第I期和第II期试验中,替拉扎明本身的可忍受剂量达390 mg/m2。对失败的第III期临床试验的详细检验显示,替拉扎明是与化疗剂,比如顺铂和紫杉醇相结合(36)。过去的假设认为治疗的肿瘤具有灌注良好区和灌注不佳区,而传统的化疗(顺铂/紫杉醇)将作用于灌注良好区,而替拉扎明在灌注不佳的低氧区显现细胞毒性作用。然而,铂化合物和替拉扎明联用后,在有氧和缺氧环境里都检测到有增加的细胞毒性(36),虽然该作用对低氧细胞更为明显。实际输送到每个患者的低氧肿瘤中的药物量是完全未知的。因此,该试验的目的使接受治疗的患者通过全身性给药而承受不必要的替拉扎明,进而得出一般地全身性毒性结果。该试验也采取增加替拉扎明的剂量至接近其最大忍受剂量的标准方法,由此造成许多非特异性毒性的问题,比如嗜中性白血球减少症、低血压、疲劳、神经病变,听力丧失等。化疗与替拉扎明组合的全身性分布解释了这种组合增强的全身性副作用。
考虑上述结果,并基于相对于充分供氧的细胞,替拉扎明对低氧细胞具有约15至200倍的更大的细胞毒性这一事实,本发明提供能改善替拉扎明的功效,并同时减小已知的有害副作用新型方法。
栓塞
“栓塞”指一种用于由可辩认的动脉分枝供应血流的肿瘤或含有肿瘤区域的局部治疗,例如,供应肝癌的肝动脉,通过注射药物(碘化油、胶泡绵(gelfoam)或血块等)以导致供给该区域的动脉分枝闭塞,使得该肿瘤细胞不能得到足够的血流而坏死。该区域和周围正常器官或组织的血液供应的解剖结构决定了该部位周围的器官或组织,是否会因为闭塞后缺乏血液供应而遭受显著的损伤。例如,正常肝脏是由双重血管,肝动脉和肝门静脉供应血流,使得肝动脉或其分枝的闭塞不会造成正常肝脏显著损伤。这种手术通常由介入放射科医生实施,该医生自腹股沟的股动脉植入导管并在荧光镜X射线导引下将该导管的尖端推进至供应肿瘤血流的肝动脉分枝处。一旦通过注射显影剂确认供应肿瘤血流的动脉分枝后,则注射栓塞剂如碘化油或胶泡绵以使该分枝闭塞。此手术是治疗肝癌的标准局部区域治疗法(40-43)。
本发明的一个实例中,低氧激活的生物还原剂(HABA)如替拉扎明,与栓塞结合用于治疗局部区域内的肿瘤。与理论不相违背,此方法的有三个理论依据。首先,栓塞提供低氧肿瘤环境以提高替拉扎明的功效。其次,与栓塞一起施用替拉扎明可限制替拉扎明分散在栓塞的血管供应区域。第三,因为栓塞诱发的低氧效果仅限于被栓塞的血管所供应的组织,未引起全身性低氧,从而避免了因激活的替拉扎明所造成的全身性中毒。在本发明的一个实例中,替拉扎明被混合或溶解于常用作标准栓塞的药剂,如碘化油。共同使用这两种药剂的结果是替拉扎明与栓塞剂如碘化油被局限于肿瘤内。其结果是激活的替拉扎明持续释放至低氧肿瘤内并因而产生毒性作用。一旦替拉扎明从栓塞逸出,替拉扎明在肝脏内被迅速代谢,失去活性。因此,替拉扎明的全身性毒性减至最小。这种独特的组合因此具有替拉扎明杀死细胞的显著优势,且完全去除了先前的临床研究中观察到的全身性毒性的问题(36),而在先前的临床研究中替拉扎明通过静脉注射单独使用用于化疗。
碘化油(Lipiodol)是最常用的栓塞剂。其他可用于实施本发明的栓塞剂包括但不限于,胶泡绵、血块、纳米颗粒或任何在临床中被证明具有血管闭塞作用的机械作用剂。栓塞剂和低氧激活的生物还原剂(HABA)能用任何适当的方式来施用。例如,可在使用栓塞剂之前(例如之前约1至120分钟)施用HABA,且随后使用栓塞剂令HABA“局限”于该区域内。或者,这两种药剂一起施用(例如使用包括该两种药剂的混合物制剂)。通常,对于采用此方法进行治疗的患者而言,HABA(例如替拉扎明)的投服剂量将介于大约1至大约200 mg,优选地为大约5至约50 mg之间;并且投服的栓塞剂(例如碘化油)的剂量介于大约5至40 ml,而优选地为大约20至30 ml之间。使用足量的栓塞剂,使得在荧光镜X光检查下,可以完全封闭期望的血管分枝,确保了在栓塞区域内创造低氧区或低氧环境。栓塞剂的施用通常采用动脉注射。或者,栓塞可采用其他方式如使用小颗粒进行,引起闭塞。
可采用这种方法治疗的各种癌症包括体内可用栓塞隔离任何发病位置,例如肝癌、胆管癌及自大肠或其他胃肠器官的转移性癌症。此方法可用于通过栓塞治疗的任何癌症,或任何位于可被栓塞的体内区域中的肿瘤,但不会过度地伤害患者,如肢体肉瘤。特别地,此技术用于治疗肝细胞肿瘤,因为此类癌症通常采用栓塞治疗。化疗也是常用的施用方法,称为化学栓塞(chemoembolization),其中化疗和栓塞剂同时使用以使化疗剂完全局限在栓塞区域内,从而使全身性毒性减至最小并提高疗效。再者,多数情况下,机械性栓塞并不是持久的,而通过适当选择栓塞剂可控制血管闭塞的时间,进而允许被活化的HABA作用一段时间以达到杀死肿瘤的功效,并随后当该区域的血流恢复,对该区域输入氧以使HABA失去活性。机械性栓塞加上施用HABA的效果对于杀死肿瘤细胞具有协同增效作用,这种组合治疗所造成的杀死肿瘤细胞的数量大于基于单个方法单独使用时所能预期的总和,即该效果并非仅仅是叠加(additive)。
使用例如替拉扎明和栓塞或化学栓塞治疗例如肝癌的癌细胞具有几个优点。在所有的人类恶性肿瘤中,当替拉扎明由肝动脉注射且配合栓塞使用时,替拉扎明特别适用于治疗肝细胞肿瘤或初期肝癌。原因之一是替拉扎明需要P450以进行激活,而P450富含于肝脏中。其次,替拉扎明在低氧条件下作用,而该低氧条件由肝动脉的栓塞所引起。替拉扎明局限于肝脏内并随后被缓慢释出至肝细胞肿瘤。栓塞后,多余的替拉扎明将于肝脏内被迅速代谢,因而避免波及至其他正常器官并使全身性毒性减至最小。此外,若与VDA结合(如下所述),VDA对肿瘤血管的相对专一性会对栓塞作用的增强效果亦有助于使全身性毒性减至最小。
低氧激活的生物还原剂与血管破坏剂(VDA)的组合
本发明的其他实例中,低氧激活的生物还原剂与VDA结合使用用于诱发低氧。可用于施用本发明的VDA包括但不限于考布他汀衍生物(9)、(5S)-5-(乙酰胺基)-9,10,11-三甲氧基-6,7-二氢-5H-二苯并[a,c]环庚烯-3-基磷酸二氢酯(ZD6126)(44)、DMXAA(5,6-二甲基呫吨酮-4-乙酸)(9)、(N-[2-[4-羟基苯基]胺基]-3-吡啶基)-4-甲氧基苯磺酰胺(E7010或ABT-751)(45)及1,2-二苯乙烯(stilbene)衍生物(比如顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)和顺式-3,4’,5-三甲氧基-3’-羟基-1,2-二苯乙烯(1,2-二苯乙烯6c)或其衍生物和所述前药(N-吗啉基-胺甲酸酯衍生物),例如,美国专利申请案号11/738,813(Lee等人,其所述内容全部纳入此本文作为参考)。如果全身性施用,这些化合物能选择性地在肿瘤内诱发深度低氧(20)。VDA的施用可被视为一种化学栓塞的类型,且相对于上述标准栓塞中直接闭塞血管,该化学栓塞使用化学剂在含有肿瘤的区域内达到选择性栓塞的相同目标。VDA和低氧激活的生物还原剂(如替拉扎明)的组合比预期的基于单独利用还原剂的活性更为有效,即它们的活性具有协同增效(药剂组合的杀死肿瘤的功效大于个别药剂单独的功效的算术总和)。例如,在替拉扎明之后提供VDA会使替拉扎明激活,并增加随后杀死肿瘤细胞的功效,比单独使用个别药剂杀死肿瘤细胞的功效高至少10倍或10倍以上。此方法也可与先前描述的栓塞组合使用,以更有效地诱发肿瘤低氧和替拉扎明活化。
“协同(synergistic)”交互作用或效应,指施用两种(或多种)药剂或共同治疗时,其功效大于每种药剂单独使用所发挥的功效的简单和。换言之,这些药剂以某些方式进行交互作用而增加整体功效,以至于所观察的效果超出了预期值。例如,对实体瘤单独使用替拉扎明明显地导致约10至20%的肿瘤细胞死亡。对实体瘤单独使用VDA也明显地导致约10至20%的肿瘤细胞死亡。然而,当这二者一起使用时,肿瘤细胞杀死量几乎可达70至80%,这个数量大于单独使用替拉扎明和单独使用VDA所能达到的肿瘤细胞杀死量的两者简单算术总和。如果效果是叠加性的,则预期的最大功效约为20至40%。因此,该70至80%的肿瘤细胞杀死量是在如果没有协同增效作用下所能预期的最大肿瘤细胞杀死量的至少约2至4倍。依据本发明的技术内容,当通过HABA结合1)栓塞、2)AAA的使用、或3)VDA的使用,或上述三者中的二种或多种的某些组合以创造局部低氧区时,观察到协同增效。协同增效通常比所预期的高至少约2至5倍(例如2、3、4或5倍),甚至更高(例如6至10倍或更高倍)。
观察到的协同增效的代表性实例如实例5(图5)所示,其中替拉扎明或1,2-二苯乙烯5c(一种VDA)单独使用可诱发10至20%肿瘤坏死;然而,替拉扎明与1,2-二苯乙烯5c的组合诱发肿瘤坏死增加至70至80%。坏死的分布主要位于肿瘤中心,这符合肿瘤坏死是由于抑制肿瘤血流并诱发低氧的观念,因为边缘区的肿瘤可从周围的正常组织经扩散作用得到一些氧供应。
马苏纳加(Masunaga)等人曾研究替拉扎明与ZD6126的组合(46)。然而,马苏纳加等人所描述的投药顺序与本发明所描述的不同。马苏纳加等人先对小鼠通过腹腔内注射施用ZD6126,之后的1和24小时施用替拉扎明。下述实例所提供的证据证实VDA可造成被施药的肿瘤血管立即关闭(例如于数分钟内)。因此,在ZD6126之后施用替拉扎明是一种不正确的投药顺序,因为一旦肿瘤血流被ZD6126所抑制,替拉扎明将不会被输送至肿瘤处。相反地,替拉扎明应在投服VDA之前被输送至肿瘤处,以使替拉扎明分布在肿瘤内。可能是未能把替拉扎明投至肿瘤处的原因,马苏纳加等人所述相反的投药顺序显著地抑制疗效。在此相反顺序下,在使用ZD6126后肿瘤血流被选择性抑制时,替拉扎明将主要分布在非肿瘤组织,这样不仅损害替拉扎明的疗效而且也增加全身性毒性的可能。因此,与马苏纳加等人所描述的方法相比较,本发明的方法提供如下述实例和图3所显示的主要优点,其中在施用VDA后数分钟内可抑制肿瘤血流并形成缺氧。
本发明的这个实例中,如果替拉扎明进行全身性投服时,将被施用的HABA剂量范围将介于约100至约300 mg/m2,且优选地,是介于约150至约250 mg/m2,而将被施用的VDA剂量范围将介于约10至约100 mg/m2,且优选地,是介于约50至约100 mg/ m2,这取决于临床试验中被证实能有效地抑制肿瘤血流的剂量。施用VDA的量足以导致该区域内的氧浓度降低至低于约10%或较佳地低于约5%,该氧浓度能使HABA的活性增强达至少10倍。
施用VDA的方法包括但不局限于静脉内、腹腔内、肌内、皮下、动脉内、直接肿瘤内注射及口服给药。
低氧激活的生物还原剂与抗血管生成剂(AAA)的结合
本发明的另一实例中,一种或多种HABA与AAA结合,例如所述AAA为血管内皮细胞生长因子(VEGF)单株抗体(比如贝伐单抗)或VEGF受体酪胺酸激酶抑制剂(比如索拉非尼或舒尼替尼)。共同施用是通过延长肿瘤低氧期间而引起AAA与HABA在功效上的协同增效并进一步提高HABA的疗效。
可用于实施本发明的AAA包括但不限于贝伐单抗、索拉非尼、舒尼替尼、阿柏西普、IMC-1C11、瓦他拉尼(PTK-87)、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)胺基]-3-吡啶羧酰胺(AMG 706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺(CP-547,632)、帕唑帕尼(GW-786034)、N-(4-(3-胺基-1H-吲唑-4-基)苯基)-N'-(2-氟-5-甲基苯基)脲(ABT-869)及西地尼布(AXD-2171)(47)。
本发明的实例中,如果替拉扎明用作全身性投服时,将被施用的HABA剂量范围将介于约100至约300 mg/m2,且优选地,介于约150至约250 mg/m2,而将被施用的AAA剂量范围对贝伐单抗而言将介于约5至15 mg/m2,对索拉非尼而言将为每天口服两次约200至400 mg。对其他药物而言,剂量可依据所使用药物的功效而加以改变。施用的AAA量足以导致该区域内的氧浓度降低至低于约10%,且优选地,低于约5%,即创造一个低氧区。
AAA结合HABA的使用以诱发肿瘤低氧的特性有两个关键因素。第一个因素是AAA的半衰期。单株抗体如贝伐单抗的半衰期达7天,其作用是中和血管生长因子VEGF。VEGF的失效最终能防止肿瘤内新血管生成,并因该肿瘤内氧消耗的缘故而造成肿瘤低氧(48-50)。小分子化合物如索拉非尼和舒尼替尼的半衰期低于24小时且直接抑制VEGF受体的激酶活性。因此,即使知道药物的半衰期,仍很难控制由AAA所诱发低氧的时间点。与VDA的施用相对比,这种情况是在施用VDA后肿瘤血管于数分钟内立即被关闭且几乎立即发展成低氧状态(实例3)。因替拉扎明在人体内的半衰期约为40分钟,相对于使用AAA的时间点,共同施用替拉扎明的时间点是非常具挑战性的。其次,AAA也能引起肿瘤血管系统的暂时正常化(51-53)并实际上改善肿瘤血流,提高肿瘤内的氧浓度。该理论被用于解释AAA与放射治疗的结合原理,其中足量的氧对于通过放射线杀死肿瘤系是必要的,而低氧会损害放射线功效(51)。AAA所引起的肿瘤血管系统的暂时正常化的功效与替拉扎明的激活或其他HABA所需的低氧环境相反。因此,HABA与AAA单独结合的使用预期极具挑战性。本发明因此提出结合VDA和AAA作为诱发肿瘤低氧的方法。原理是使用VDA以引起肿瘤血流的快速抑制,诱发肿瘤低氧,激活HABA。然而,在诱发肿瘤低氧后,该肿瘤将会产生补偿性低氧反应,比如VEGF的产生或其他血管生成因子,以使内皮原始细胞从骨髓移出以修补受损的肿瘤血管系统(20)。VDA与AAA如贝伐单抗的联用可帮助防止VEGF的补偿性功效并抑制肿瘤血管的修复过程,从而提高VDA使该肿瘤维持在低氧状态的功效(20)。1,2-二苯乙烯5c等VDA与贝伐单抗的协同增效如实例4所示。
因此,本发明所描述的肿瘤组合治疗的成分包括一种或多种抗血管生成剂(AAA)、一种或多种血管破坏剂(VDA)及一种低氧激活的生物还原剂(HABA)。当一起使用时,AAA与VDA的组合能使肿瘤细胞内的低氧状态得以延长,且其本身在杀死肿瘤细胞上显示有一些功效,但是这些药剂在单独施用时,对治疗实体瘤相对是无效的。然而,当AAA和VDA按照本发明所述,与作为抗癌剂的HABA组合一起使用时,它们的活性通过协同增效(非加成)方式显著地被增强。本发明所描述的方法可被视为通过共同投服HABA以增强AAA及/或VDA的抗癌活性的方法,或通过共同投服AAA及/或VDA以增强HABA的抗癌活性的方法。
本发明所述药剂的使用可以被本领域技术人员通过任何合适的方式所施用,需要注意的是所述低氧诱发剂的激活必须尽可能地局限于所需治疗的标靶区,即一个或多个肿瘤,或体内含有一个或多个肿瘤且能与邻近区域分隔的区域。VDA能选择性地抑制肿瘤血流而不显著地损害正常血液循环(11),因此可用作全身性施药。在此状况下,HABA可被局部或全身性施用,因为激活的HABA能在很大程度被局限在由VDA的作用所创造的肿瘤内低氧区。然而,在本发明的一些实例中,施用的VDA和HABA被大大地局限于标靶区,即施药是局部性的,如与栓塞相结合。可通过局部使用这些药剂完成施药,例如由介入性放射科医师采用植入导管通过动脉内注射入供应肿瘤的血管分支。施用这种局部施药可如本发明所述,在接近连续的某一时间使用各种药剂,或使用含有这些药剂的混合物的单一制剂。AAA的施药一般在栓塞后通过口服或静脉内注射进行全身性给药,因为AAA是用于抑制由VDA所引起的肿瘤低氧的补偿效果,该补偿效果能引起全身反应。本发明的其他实例中,所有药剂包括低氧诱发剂(例如AAA及/或VDA)和HABA,为全身性施药,但因为HABA的激活将会因VDA对肿瘤血管的选择性效应,而仅发生在肿瘤的局部低氧区。全身性施药的方法包括但不限于口服、静脉内、腹腔内、肌内、皮下或动脉内给药以及吸入等。在实施栓塞的其他实例中,首先必须施用药剂(例如HABA;或VDA和HABA,含有或不含AAA),使得药剂局限于标靶区内。然而,若低氧由VDA化学性诱发,只要能将药剂局限在标靶区内,那么低氧诱发剂可在HABA之后使用或与HABA同时使用。
施药模式如下。AAA的目的是阻断全身性补偿机制,所以AAA采用全身性施用。对肝细胞癌,HABA和VDA的投药方式有两种。一种是在栓塞或没有栓塞的情况下,通过动脉内给予VDA和HABA并随后全身性给予AAA。此方法主要用于治疗肝细胞癌,且肝细胞癌为现今使用栓塞作为标准疗法的唯一癌症。第二种方法是全身性地给予所有3种药剂,因为即使采用全身性静脉内注射施药,VDA仍能选择性地抑制肿瘤血管。此方法将适用于不能接受栓塞的患者。对于不在肝脏的其他实体瘤,栓塞不是用于治疗这些肿瘤的标准方法,且所有3种药剂(HABA、VDA及AAA)一般采用口服、静脉内、腹腔内或皮下方式全身性施药,通常先使用HABA,随后使用VDA及最后使用AAA。采用此方式,HABA将被分布至肿瘤,然后VDA导致肿瘤血流关闭以诱发低氧。然而,也可考虑局部施用这些药剂。AAA的作用是更为缓慢,且之后,AAA能被用于抑制低氧所诱发的补偿反应。
本发明所述的药剂的制剂或调制剂通常适用于施药于哺乳动物病患者,并与其类似的,因此,例如是生理相容的。这些组合物包括实质上经纯化的药剂形式,及药理上或生理上适合(相容)的载体。这些组合物的制备通常为本领域技术人员所熟知。典型地,这些组合物被制成液体溶液或悬浮液;然而,也可制成固体型式,比如药片、丸、粉末及类似物。也可制成适合于施药前溶解或悬浮于液体中的固体形式。所述制剂还可以是乳化的。活性成分能与药学上可接受且与该活性成分相容的赋形剂混合。合适的赋形剂为,例如水、生理食盐水、D-葡萄糖、甘油、乙醇等,或其组合。此外,该组合物可含有微量的辅助物质,比如润湿剂或乳化剂、pH缓冲剂等。如果想要使用该组合物的口服形式,可加入各种不同的增稠剂、芳香剂、稀释剂、乳化剂、分散助剂或黏合剂等药剂。本发明的组合物可含有任何额外成分,以提供适合使用的组合物形式,例如这些药剂可附着于基质上以提供局部给药。每种药剂在制剂中的最终含量量是可变的。然而,通常,含量将介于约1至99%之间。如本发明在此所述,并取决于治疗方案的细节,所述组合物可含有仅一种药剂,或多种药剂的混合物(即仅HABA或AAA或VDA或化学栓塞剂,或这些药剂中的两种或多种的任何组合)。此外,每种类型的药剂中,超过一种被包含在组合物中被使用,例如一种HABA可与两或多种VDA或两或多种AAA一起使用,或两种或多种HABA一起被使用等。
特别的,本发明提供药理上可接受的组合物及/或包含该组合物的套装,该组合物包括至少一种低氧激活的生物还原剂及诱发低氧的血管破坏剂和抗血管生成剂中至少一者,以及生理上可接受的载体。在其他实例中,也提供组合物,该组合物包含至少一种低氧激活的生物还原剂及在机械栓塞期间所使用的化学栓塞剂,例如碘化油,以及可选地,一种或多种VDA及/或AAA。
本发明提供的方法,用于治疗癌症的类型包括但不限于发展成实体瘤(实体恶性肿瘤)的癌症,例如肝细胞癌、胆管癌、胰脏癌、结肠直肠癌、肛门癌、包括小细胞或非小细胞的肺癌、乳癌、前列腺癌、卵巢癌、睪丸癌、生殖细胞肿瘤、肾细胞癌、神经内分泌肿瘤、胃癌、食道癌、头颈癌、包括鳞状细胞癌或黑色素瘤的皮肤癌、软组织和骨肉瘤、甲状腺癌、胸腺瘤、膀胱癌、子宫颈癌、子宫体癌、中枢神经肿瘤、霍杰金(Hodgkin)式和非霍杰金式淋巴瘤。原发性和转移肿瘤均可由本发明所述方法治疗。
本发明的方法通常是用于治疗哺乳动物,特别是人,但绝非总需如此。也可考虑在兽医上的应用。此外,本领域技术人员应当能了解本发明的方法可与其他治疗用药方式,例如外科手术切除肿瘤或部分肿瘤、各种不同的化学治疗方案,及其他副作用,诸如恶心、食欲激增、维生素等的治疗相结合。
实施例
材料和方法
细胞系(cell lines)和肿瘤异种移植模型
本研究使用的肿瘤细胞系包括UCI-101卵巢癌细胞和Hep3B肝癌细胞。细胞在5%的CO2的潮湿环境下,分别培养在IMEM和DMEM中,IMEM和DMEM中添加有10%的胎牛血清、谷胺酰胺及青霉素/链霉素。当细胞平铺成长至80%时,利用1%胰蛋白酶收集细胞,并使用磷酸缓冲盐液冲洗3次,随后再经皮下注射至裸鼠体内。对小鼠异种移植研究,将2×106个肿瘤细胞经皮下注射至背部。裸鼠购自如所述的NCI Development Therapeutic Program。通过测量口径的长轴和短轴(分别为a和b)监测肿瘤大小并利用公式ab2/2计算肿瘤体积。VDA 顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)(50 mg/kg)替拉扎明(60 mg/kg)在处理时使用腹腔内注射。AAA 贝伐单抗在处理时以10 mg/kg经尾静脉注射。
采用DCE-MRI测量肿瘤与正常器官的灌注
对带有肿瘤异种移植物的裸鼠采用1%异氟烷和混合氧气麻醉。利用专用于小动物成像的实验级磁共振(MR)系统(Bruker, Biospec 2.35T/40 cm)进行DEC-MRI。切开颈静脉以植入对比注射用的IV导管以供急性期研究。第一批老鼠系通过颈静脉导管注射50mL钆(OmniScan),且每秒收集MRI影像以研究立即注射后MRI信号增加的起始率。在建立该起始率后,随后的MRI研究专注于钆信号的持续增加,该钆讯号的持续增加也提供组织灌注的定性和定量信息。为了这个研究,将20μL钆直接注射至尾静脉。老鼠在注射后1分钟内被转移至MRI仪的隧道内。每分钟收集MRI影像,持续30分钟。
组织切片的免疫组织化学研究
小鼠被杀死后,主要器官和肿瘤被切下来并固定在10%福尔马林(formalin)中。将组织包埋于石蜡中并令切片经H&E染色,且经抗CD34抗体染色用于微血管密度的定量。根据韦德尔(Weidner)等人所述方法,利用配备Diagnostic Instruments Spot RT CCD照相机的尼康(Nikon) ECLIPSE E800M显微镜得到放大200倍的图像,通过计算该图像中的CD34阳性信号,得到微血管密度的数据。
VDA治疗后实时测量肿瘤氧浓度和血流的变化
对裸鼠进行皮下注射UCI-101卵巢癌细胞以形成肿瘤异种移植物。当肿瘤的最大处直径为8至10mm时,对肿瘤异种移植物进行氧浓度和血流研究。使用25G针针刺肿瘤以生成用于插入传感器探针的孔道。将传感器探针的尖端置于肿瘤中心处。利用配备“裸纤维(bare-fibre)”型传感器探针的OxyLite 2000双频道监测系统以测量肿瘤氧浓度和血流,该传感器探针使用激光多普勒技术(Doppler technique)(Optonix, Oxford, UK)测量组织氧浓度、温度及血流。测量以实时方式进行(100次测量/秒)并连续记录氧浓度和肿瘤血流。因为由针刺和植入传感器探针所造成的初始创伤能够干扰血流和氧浓度,所以在每只小鼠经腹腔内注射测试用的VDA 顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)(50 mg/kg)之前,首先对未经治疗的每只小鼠进行记录至少20分钟。经处理后,再记录肿瘤血流和氧浓度20分钟。
实例1. 利用1,2-二苯乙烯5c抑制肿瘤血管
检验1,2-二苯乙烯5c是否能抑制肿瘤血流并最终导致肿瘤低氧。快速动力学研究显示钆信号经10分钟的快速增加后,达到稳定期并持续至少30分钟且未减少(11)。选择注射后30分钟用于研究稳定期的图像,并比较1,2-二苯乙烯5c处理前后的相同小鼠的相同肿瘤,以避免老鼠间的任何差异。小鼠首次在没有对照的情况下成像以得到基础(图1,左上角)。切片在肿瘤中心处获取。相同切面内的肾脏用作相同小鼠的肿瘤的内部器官对照组。经通过尾静脉注射20μl钆(OmniScan)后,每分钟使用快速序列MRI分析小鼠,总共持续30分钟。在注射钆后,肿瘤和肾脏皆表现出MRI信号的增强,该MRI信号的增强代表肿瘤和肾脏的血管灌注(图1,右上角)。随后,静置小鼠至少24小时以使钆排出。在第二或第三天,对相同小鼠腹腔内注射50mg/kg的1,2-二苯乙烯5c。注射1,2-二苯乙烯5c后4小时,在经相同的治疗方式注射钆前后,再次对小鼠成像并与经1,2-二苯乙烯5c治疗前的先前一组图像相比较。钆注射前的基础图像与未经治疗的小鼠的基础图像相比较,T1加权图像显示出细微增加的MRI信号(图1,左下角)。该增加的信号可能是因为自前天体内所残留的少量钆导致的。在注射钆后,肾脏和其他正常器官均显示信号的增强。然而,与经1,2-二苯乙烯5c处理前的信号相比较,肿瘤区显示出显著地较少的钆富集(图1,右角),该结果表明1,2-二苯乙烯5c选择性地抑制肿瘤灌注且不影响正常器官。对6只小鼠进行类似的研究,获得每只小鼠的T1图像。从每个图像计算钆浓度,其结果如图1所示。因肾脏信号达到饱和,故该计算方法对肾脏不适用。在1,2-二苯乙烯5c治疗后4小时,肿瘤内钆浓度降低至平均62.8%。相对地,肌肉中钆浓度并未随1,2-二苯乙烯5c的治疗而改变,该结果表示1,2-二苯乙烯5c选择性地抑制肿瘤灌注,而不损害正常血管灌注。
实例2. 使用CD34血管标记对肿瘤和正常器官的切片进行免疫组织化学染色
选用先前采用DCE-MRI研究的组织以研究肿瘤血管密度,并研究其与源自血管灌注研究的DCE-MRI所得结果的相关性。特别地检验心脏和脑的切片,因为在这些部位曾观察到秋水仙素位点抑制剂的毒性。通过免疫组织化学染色,组织切片使用标准H&E和抗CD34(一种血管内皮标记)抗体染色。在1,2-二苯乙烯5c治疗后,该H&E染色在任何主要器官中均未显现任何显著的变化(图2)。肿瘤内也没有显现组织学上的差异。然后使用抗CD34染色以计数肿瘤和各种正常器官内的微血管密度(54,55)。结果表示在每个图的右下角,肾脏因毛细管网络的融合而不是在外观上呈现分离小点或小管的原因,无法计数,排除在外。采用1,2-二苯乙烯5c处理没有改变心脏、肝脏、肾脏及脑的微血管密度,但显著地将肿瘤的微血管密度降低至大约四分之一(图2)。此发现是与MRI结果一致:1,2-二苯乙烯5c选择性地降低肿瘤血管灌注,不损害正常器官灌注。
实例3. 通过代表性的VDA 1,2-二苯乙烯5c诱发肿瘤低氧以促进替拉扎明的激活
本研究中,进行VDA 1,2-二苯乙烯5c的概念研究以证实1,2-二苯乙烯5c能诱发肿瘤低氧。先前,在实例1中,已使用动态对比增强MRI研究以证实1,2-二苯乙烯5c能成功地抑制肿瘤血流。然而,DCE-MRI研究的技术并不能作为连续监测工具,且不能记录1,2-二苯乙烯5c能多快地诱发肿瘤血流的抑制及其能多快地诱发肿瘤低氧。为达到实时监测的目的,使用氧浓度和血流传感器以记录小鼠经1,2-二苯乙烯5c治疗后20分钟内的实时变化。
为了解释结果,有几个问题需要考虑。肿瘤血流和肿瘤氧浓度取决于探针在肿瘤内的位置。探针所在的位置愈接近肿瘤的边缘,则肿瘤血流和氧浓度将会愈高。中心部分血流较少,因此通常更为低氧。因为个体差异和传感器探针植入肿瘤内以进行研究的肿瘤位置不同,比较不同小鼠是极困难的。解释该结果最可靠的方式是使用治疗前的血流和氧浓度作为其本身的对照组而与治疗后的结果相比较,因为该传感器探针置于相同位置上以消除空间差异。因此,对所有小鼠皆进行至少20分钟的记录以作为治疗前的基础值。在基础值研究中,观察到如图3所示的显著的时间变化。该基础氧浓度和肿瘤血流显示随时间同步变化的基础值。当肿瘤血流增加时,氧浓度相应地增加。在连续监测至少20分钟以建立此时间变化后,注射1,2-二苯乙烯5c,随后再连续监测20至30分钟以检验1,2-二苯乙烯5c对于肿瘤氧浓度和血流的实时影响。需要注意的是,不同肿瘤具有极为不同的肿瘤血流和氧浓度,如本实例所使用的3只老鼠所显示(图3)。1号老鼠具有循环样式大波动的基础值,其中血流介于600至1100之间且氧浓度介于15至40mmHg之间。注意,最初10分钟的结果并未被考虑,因为这属于探针插入所造成损伤的调整期。2号老鼠的肿瘤血流介于200至300之间且氧浓度呈现两个稳定期。一个平台是在50至60mmHg之间并随后下降至另一个介于20至30mmHg之间的平台。3号老鼠具有介于2000至3000之间的极高的肿瘤血流及介于35至55mmHg之间的氧浓度。经腹腔内注射1,2-二苯乙烯5c(50mg/kg)后,全部3只老鼠在记录终止前皆显现肿瘤氧浓度显著降低至小于10 mmHg。在对1号和3号老鼠进行1,2-二苯乙烯5c处理前,肿瘤血流降低至低于25%的水平。2号老鼠的肿瘤血流变化在开始时是显著的,但随后回复至某种程度,虽然仍然低于血流基础值。这些结果说明了下述结论:(a)1,2-二苯乙烯5c的治疗能有效地诱发肿瘤低氧;(b)初始肿瘤血流愈低,则1,2-二苯乙烯5c诱发的肿瘤血流的抑制功效愈差。该结果可被解释为:较少的肿瘤血流导致较少的药物被运送至肿瘤灶且在降低肿瘤灌注方面效果更小 ;(c)在肿瘤血流上存在显著的时间和空间差异。我们的研究局限于肿瘤内的一个单一点以消除空间上的差异。
实例4. 通过贝伐单抗提高1,2-二苯乙烯5c的功效
下一步使用卵巢癌UCI-101细胞以研究1,2-二苯乙烯5c在体内的功效。首先,每周进行3次腹腔内注射25mg/kg的1,2-二苯乙烯5c。通过测量长轴和短轴以计算肿瘤体积。不幸地,并未检测到对照组与经1,2-二苯乙烯5c治疗组的小鼠之间在肿瘤生长上的任何差异。此结果说明每周3次使用1,2-二苯乙烯5c可能不是正确的施药方式。该失败可能是因为间歇性用药导致肿瘤边缘存活,该存活是因为肿瘤可以从周围正常血管系统得到营养和血液供应。当VDA治疗停止时,该存活的肿瘤边缘迅速生长。通过转移内皮原始细胞(progenitor)的补充,肿瘤血管系统得以迅速恢复。基于此原理,结合使用1,2-二苯乙烯5c和贝伐单抗,该贝伐单抗用于中和UCI-101肿瘤细胞所分泌的VEGF。为达到较佳的疗效,也增加1,2-二苯乙烯5c的治疗频率至连续5天(周一至周五),每天20mg/kg,持续2周。每周使用10mg/kg的贝伐单抗2次(周一和周五),计5剂量。经单独1,2-二苯乙烯5c治疗的组使肿瘤生长抑制作用达约45%,而经单独贝伐单抗治疗的组使肿瘤生长抑制作用达约25%。经1,2-二苯乙烯5c与贝伐单抗组合治疗的组达到抑制80%的肿瘤生长作用(图4)。在第24天解剖肿瘤后,对肿瘤称重,结果证实了测量结果(数据未显示)。本研究得到2个结论。如果给药较为频繁时,1,2-二苯乙烯5c较为有效,而当与血管生成抑制剂贝伐单抗结合时,1,2-二苯乙烯5c更为有效。
实例5. 结合替拉扎明与1,2-二苯乙烯5c
随后结合替拉扎明与1,2-二苯乙烯5c进行原理证明研究。首先利用腹腔内注射60 mg/kg的替拉扎明以治疗带有已建立的UCI-101肿瘤异种移植物(肿瘤大小之长轴约1cm)的裸鼠。60分钟后,腹腔内使用50mg/kg的1,2-二苯乙烯5c,该剂量已被确定能在数分钟内诱发深度的肿瘤低氧(图3)。如前所述,先给予替拉扎明,使其分布在肿瘤内,然后再给予1,2-二苯乙烯5c来抑制肿瘤灌注,此顺序是绝对重要的。3天后处死小鼠。收获肿瘤并在肿瘤中心部分切开,通过组织切片和H&E染色进行分析。先前已知单独给予70mg/kg的替拉扎明对抑制肿瘤生长没有作用,因此单独给予替拉扎明(图5B)不会有任何作用。如图5所示,对照组肿瘤(图5A)和经过1,2-二苯乙烯5c治疗的肿瘤(图5C)有极小的肿瘤坏死区域。对于结合治疗组,其中替拉扎明是在给予1,2-二苯乙烯5c之前60分钟被给予,该施药方式允许替拉扎明首先分布在肿瘤内,再给予1,2-二苯乙烯5c来诱发肿瘤低氧,观察到肿瘤坏死区域显著增加(图5D)。最重要的是,坏死区域主要位于肿瘤中心而边缘部分仍存活,该结果说明坏死是低氧导致的,因为肿瘤边缘部分能通过扩散作用从周围正常组织得到血液和氧供应。此发现支持我们的理论:先给予替拉扎明随后再给予1,2-二苯乙烯5c以诱发肿瘤低氧的组合,具有协同增效的作用并提高每种药剂的疗效。
其次,在多次给药后,测量肿瘤异种移植物的大小。对裸鼠皮下注射UCI-101细胞,肿瘤在7天后变为肉眼可见。对每个组的6只老鼠,在第8、10及12天经腹腔内注射进行施药治疗。1,2-二苯乙烯5c的剂量是50mg/kg而替拉扎明的剂量是60mg/kg。然而,在第14天,使用替拉扎明治疗的老鼠的两个组出现体重减轻20%的现象,因此处死所有老鼠进行比较。肿瘤体积的结果于图6所示。与对照组的肿瘤大小相比较,采用1,2-二苯乙烯5c或替拉扎明治疗的组的肿瘤大小平均减少大约50%,而采用1,2-二苯乙烯5c和替拉扎明治疗的组的肿瘤大小进一步减少至对照组的27%。此结果说明1,2-二苯乙烯5c和替拉扎明至少具有叠加性的且甚至可能具有协同增效作用。
实例6. 替拉扎明与抗血管生成剂贝伐单抗的组合
基于抗血管生成剂可抑制肿瘤血管系统并导致肿瘤低氧的原理,我们检验在替拉扎明与抗血管生成剂贝伐单抗之间是否存有任何协同增效作用。类似于先前利用替拉扎明与1,2-二苯乙烯5c所进行的研究,采用替拉扎明与贝伐单抗以治疗带有相同UCI-101肿瘤异种移植物的裸鼠。在第8、10及12天采用腹腔内注射替拉扎明以治疗已带有肿瘤的老鼠,并于第8和11天采用尾静脉注射10mg/kg的贝伐单抗。测量肿瘤异种移植物并绘制肿瘤大小如图7。当加入贝伐单抗时,肿瘤大小没什么改变,此结果明显不同于比较单独给予替拉扎明与给予替拉扎明和1,2-二苯乙烯5c之间所产生的差异(图6)。替拉扎明组与替拉扎明和贝伐单抗组之间未存有任何统计意义的显著差异。对此现象有几个可能的解释。一个是抗血管生成剂的活性作用远比血管破坏剂1,2-二苯乙烯5c慢,该1,2-二苯乙烯5c可诱发几乎立即的血管关闭。相对地,贝伐单抗中和VEGF并可能需要较长的治疗期间以导致肿瘤低氧。其次,依据Jain等人的血管正常化理论,抗血管生成剂贝伐单抗首先诱发肿瘤内血管正常化(51-53)。因此,肿瘤氧浓度可改善而非抑制,原因是血管正常化并且不能增强替拉扎明的疗效。采用抗血管生成剂贝伐单抗与替拉扎明将需要与血管破坏剂1,2-二苯乙烯结合,该1,2-二苯乙烯已被证实能较有效地诱发肿瘤生长的抑制作用。一种使用该3种药物组合的可能方法,是初始时使用替拉扎明和1,2-二苯乙烯血管破坏剂,随后再利用贝伐单抗进行维持治疗。
参考文献
Figure 2009801027827100002DEST_PATH_IMAGE002
Figure 761345DEST_PATH_IMAGE003
Figure DEST_PATH_IMAGE004
Figure 158391DEST_PATH_IMAGE005
虽然本发明业已通过优选实例加以说明,本领域技术人员应该知道对于本发明所做的修改,只要不脱离本发明的精神都落入本发明权利要求的保护范围内。因此,本发明将不应限于所述的具体实例,而应进一步包括在本发明所提供的说明书的实质和保护范围内所有修改及等同的替换。

Claims (22)

1.低氧激活的生物还原剂和栓塞剂在制备用于治疗哺乳动物患者的肿瘤的药物中的用途,其中所述药物被制备成所述栓塞剂在所述低氧激活的生物还原剂之后、或者述栓塞剂与所述低氧激活的生物还原剂同时施用给患者,并且其中所述低氧激活的生物还原剂是替拉扎明。
2.如权利要求1所述的用途,其中所述栓塞剂选自以下一种或多种:碘化油、胶泡绵、血块、和纳米颗粒。
3.低氧激活的生物还原剂和1,2-苯乙烯或其衍生物在制备用于治疗哺乳动物患者的肿瘤的药物中的用途,其中所述药物被制备成所述1,2-苯乙烯或其衍生物在所述低氧激活的生物还原剂之后、或者所述1,2-苯乙烯或其衍生物与所述低氧激活的生物还原剂同时施用给患者,并且其中所述低氧激活的生物还原剂是替拉扎明。
4.如权利要求3所述的用途,其中所述1,2-苯乙烯衍生物为顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)、顺式-3,4’,5-三甲氧基-3’-羟基-1,2-二苯乙烯(1,2-二苯乙烯6c)、1,2-二苯乙烯5c的N-吗啉基-胺甲酸酯。
5.如权利要求1或3所述的用途,其中所述替拉扎明的剂量为1mg至200mg。
6.如权利要求1或3所述的用途,其中所述药物还包括抗血管生成剂。
7.如权利要求6所述的用途,其中所述抗血管生成剂选自以下一种或多种:贝伐单抗、索拉非尼、舒尼替尼、阿柏西普、IMC-1C11、瓦他拉尼、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)胺基]-3-吡啶羧酰胺(AMG706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺、帕唑帕尼、N-(4-(3-胺基-1H-吲唑-4-基)苯基)-N’-(2-氟-5-甲基苯基)脲、或西地尼布。
8.替拉扎明和1,2-苯乙烯衍生物在制备用于治疗哺乳动物患者的肿瘤的药物中的用途。
9.如权利要求8所述的用途,其中所述药物还包含抗血管生成剂。
10.如权利要求9所述的用途,其中所述抗血管生成剂选自以下一种或多种:贝伐单抗、索拉非尼、舒尼替尼、阿柏西普、IMC-1C11、瓦他拉尼、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)胺基]-3-吡啶羧酰胺(AMG706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺、帕唑帕尼、N-(4-(3-胺基-1H-吲唑-4-基)苯基)-N’-(2-氟-5-甲基苯基)脲、或西地尼布。
11.一种用于治疗哺乳动物患者的肿瘤的药物制剂,该制剂包含低氧激活的生物还原剂和栓塞剂,并且该制剂被制备成所述栓塞剂在所述低氧激活的生物还原剂之后、或者述栓塞剂与所述低氧激活的生物还原剂同时施用给患者,其中所述低氧激活的生物还原剂是替拉扎明。
12.如权利要求11所述的药物制剂,其中所述栓塞剂选自以下一种或多种:碘化油、胶泡绵、血块、和纳米颗粒。
13.一种用于治疗哺乳动物患者的肿瘤的药物制剂,该制剂包含低氧激活的生物还原剂和1,2-苯乙烯或其衍生物,并且该制剂被制备成所述1,2-苯乙烯或其衍生物在所述低氧激活的生物还原剂之后、或者所述1,2-苯乙烯或其衍生物与所述低氧激活的生物还原剂同时施用给患者,其中所述低氧激活的生物还原剂是替拉扎明。
14.如权利要求13所述的药物制剂,其中所述1,2-苯乙烯衍生物为顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)、顺式-3,4’,5-三甲氧基-3’-羟基-1,2-二苯乙烯(1,2-二苯乙烯6c)、1,2-二苯乙烯5c的N-吗啉基-胺甲酸酯。
15.如权利要求11或13所述的药物制剂,其中所述替拉扎明的剂量为1mg至200mg。
16.如权利要求11或13所述的药物制剂,其中所述药物制剂还包括抗血管生成剂。
17.如权利要求16所述的药物制剂,其中所述抗血管生成剂选自以下一种或多种:贝伐单抗、索拉非尼、舒尼替尼、阿柏西普、IMC-1C11、瓦他拉尼、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)胺基]-3-吡啶羧酰胺(AMG706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺、帕唑帕尼、N-(4-(3-胺基-1H-吲唑-4-基)苯基)-N’-(2-氟-5-甲基苯基)脲、或西地尼布。
18.一种用于治疗哺乳动物患者的肿瘤的药物制剂,该制剂包含替拉扎明和1,2-苯乙烯衍生物。
19.如权利要求18所述的药物制剂,其中所述替拉扎明的剂量为1mg至200mg。
20.如权利要求18所述的药物制剂,其中所述1,2-苯乙烯衍生物为顺式-3,4’,5-三甲氧基-3’-胺基-1,2-二苯乙烯(1,2-二苯乙烯5c)、顺式-3,4’,5-三甲氧基-3’-羟基-1,2-二苯乙烯(1,2-二苯乙烯6c)、1,2-二苯乙烯5c的N-吗啉基-胺甲酸酯。
21.如权利要求18所述的药物制剂,该制剂进一步包含抗血管生成剂。
22.如权利要求21所述的药物制剂,其中所述抗血管生成剂选自以下一种或多种:贝伐单抗、索拉非尼、舒尼替尼、阿柏西普、IMC-1C11、瓦他拉尼、N-(2,3-二氢-3,3-二甲基-1H-吲哚-6-基)-2-[(4-吡啶基甲基)胺基]-3-吡啶羧酰胺(AMG706)、3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯啶-1-基-丁基)-脲基]-异噻唑-4-羧酸酰胺、帕唑帕尼、N-(4-(3-胺基-1H-吲唑-4-基)苯基)-N’-(2-氟-5-甲基苯基)脲、或西地尼布。
CN200980102782.7A 2008-04-10 2009-04-08 诱导肿瘤缺氧以治疗癌症 Active CN102026634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310699012.3A CN104043125B (zh) 2008-04-10 2009-04-08 诱导肿瘤缺氧以治疗癌症

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4396408P 2008-04-10 2008-04-10
US61/043,964 2008-04-10
PCT/US2009/039899 WO2009126705A2 (en) 2008-04-10 2009-04-08 Induction of tumor hypoxia for cancer therapy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310699012.3A Division CN104043125B (zh) 2008-04-10 2009-04-08 诱导肿瘤缺氧以治疗癌症

Publications (2)

Publication Number Publication Date
CN102026634A CN102026634A (zh) 2011-04-20
CN102026634B true CN102026634B (zh) 2014-01-22

Family

ID=41162569

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310699012.3A Active CN104043125B (zh) 2008-04-10 2009-04-08 诱导肿瘤缺氧以治疗癌症
CN200980102782.7A Active CN102026634B (zh) 2008-04-10 2009-04-08 诱导肿瘤缺氧以治疗癌症

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201310699012.3A Active CN104043125B (zh) 2008-04-10 2009-04-08 诱导肿瘤缺氧以治疗癌症

Country Status (7)

Country Link
US (4) US8591921B2 (zh)
JP (2) JP5731372B2 (zh)
KR (1) KR101925436B1 (zh)
CN (2) CN104043125B (zh)
HK (1) HK1202057A1 (zh)
TW (1) TWI504391B (zh)
WO (1) WO2009126705A2 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI1896040T1 (sl) 2005-06-29 2012-12-31 Threshold Pharmaceuticals, Inc. Fosforamidatna alkilatorska predzdravila
CN104043125B (zh) 2008-04-10 2018-01-12 弗吉尼亚州立邦联大学 诱导肿瘤缺氧以治疗癌症
RU2597844C2 (ru) * 2010-07-12 2016-09-20 Тресхолд Фармасьютикалз, Инк. Введение гипоксически активируемых пролекарств и средств, препятствующих ангиогенезу, для лечения рака
EP2407161A1 (en) * 2010-07-13 2012-01-18 Sanofi An antitumoral combination comprising ombrabulin and bevacizumab
US9402820B2 (en) 2011-04-22 2016-08-02 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Use of pyruvate or succinate to enhance the efficacy of a hypoxia activated prodrug for the treatment of tumors
EP2793882A4 (en) 2011-12-22 2015-04-29 Threshold Pharmaceuticals Inc ADMINISTRATION OF HYPOXIA ACTIVATED DRUGS IN COMBINATION WITH CHK1 INHIBITORS FOR THE TREATMENT OF CANCER
CN102512692B (zh) * 2012-01-16 2014-07-16 北京大学 肿瘤靶向栓塞治疗组合物及其制备方法
AU2013204313C1 (en) * 2012-06-01 2016-04-07 Bionomics Limited Combination Therapy
WO2015069489A1 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Predictive biomarker for hypoxia-activated prodrug therapy
EP3068880A4 (en) * 2013-11-11 2017-06-14 University Hospitals Cleveland Medical Center Targeted treatment of anerobic cancer
US9586056B2 (en) * 2014-07-03 2017-03-07 Haniva Llc Combination therapy for treating cancer and method for treating cancer using a combination therapy
ES2822557T3 (es) * 2014-08-08 2021-05-04 Poseida Therapeutics Inc Composiciones y su uso para inducir la embolización microvascular de tumores mediada por nanopartículas
US10076556B2 (en) 2015-01-29 2018-09-18 Oxyrase, Inc. Methods for inhibiting tumor growth
EP3294313A4 (en) * 2015-05-15 2019-04-17 The General Hospital Corporation METHODS ASSOCIATED WITH THE PREVENTION AND AND TREATMENT OF PHARMACORESISTANCE
US10456452B2 (en) 2015-07-02 2019-10-29 Poseida Therapeutics, Inc. Compositions and methods for improved encapsulation of functional proteins in polymeric vesicles
AU2016342039B2 (en) * 2015-10-21 2023-03-09 Teclison, Inc. Compositions and methods for immune-mediated cancer therapy
ES2865481T3 (es) 2016-04-29 2021-10-15 Poseida Therapeutics Inc Micelas basadas en poli(histidina) para la complejación y el aporte de proteínas y ácidos nucleicos
CN108348463A (zh) * 2016-05-13 2018-07-31 泰克利森有限公司 用于治疗肝脏组织的方法
CN107007571B (zh) * 2017-02-24 2020-08-21 福州市传染病医院 肿瘤微酸性敏感的铜-药物共配位自组装纳米粒及应用
CN110051848A (zh) * 2019-05-06 2019-07-26 中国科学院长春应用化学研究所 药物组合、应用以及抗肿瘤的药物
CN110585214A (zh) * 2019-09-25 2019-12-20 湖北大学 一种促进治疗肿瘤效果的纳米粒子及其合成方法
CN110713596B (zh) * 2019-11-08 2022-04-29 西北师范大学 肿瘤无导管栓塞用pH-还原双响应高分子栓塞剂及其合成
CN112961082B (zh) * 2021-02-22 2022-09-06 沈阳药科大学 一种血管阻断剂与双载药仿生脂质体联用的给药系统
CN114344482B (zh) * 2022-01-14 2023-05-12 重庆医科大学附属第二医院 一种基于金属有机骨架的多功能纳米粒及其制备方法与应用
WO2024006901A1 (en) * 2022-06-29 2024-01-04 Diffusion Pharmaceuticals Llc Uses of bipolar trans carotenoids in the treatment of cancer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980779A (en) 1972-02-01 1976-09-14 Bayer Aktiengesellschaft 3-Amino-1,2,4-benzotriazine-1,4-di-N-oxide compositions and method of using same
US5616584A (en) 1986-09-25 1997-04-01 Sri International 1,2,4-benzotriazine oxides as radiosensitizers and selective cytotoxic agents
US5175287A (en) 1986-09-25 1992-12-29 S R I International Process for preparing 1,2,4-benzotriazine oxides
ATE130517T1 (de) * 1990-08-08 1995-12-15 Takeda Chemical Industries Ltd Intravaskulär embolisierendes mittel mit gehalt an einem die angiogenesis hemmenden stoff.
CN100998565A (zh) * 1993-07-19 2007-07-18 血管技术药物公司 抗血管生长组合物及使用方法
US5484612A (en) 1993-09-22 1996-01-16 The Board Of Trustees Of The Leland Stanford Junior University Method of treating a mammal having a solid tumor susceptible to treatment with cisplatin
GB9404400D0 (en) 1994-03-07 1994-04-20 Wood Pauline J Potentiation of bioreductive agents
BR9808221A (pt) 1997-03-07 2000-05-16 Sanofi Winthrop Inc Método de tratamento de tumor.
DE10012120A1 (de) 2000-03-13 2001-09-27 Ktb Tumorforschungs Gmbh Therapeutische und diagnostische Ligandensysteme mit Transportmolekülbindenden Eigenschaften und diese enthaltende Arzneimittel
JP2005504070A (ja) * 2001-09-13 2005-02-10 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー 化学塞栓用油性パクリタキセル組成物及び処方物並びにその製造方法
EP1599196A4 (en) * 2003-01-17 2006-05-31 Threshold Pharmaceuticals Inc ANTICANCER THERAPY
US20060264388A1 (en) 2003-02-26 2006-11-23 Olga Valota Method for treating liver cancer by intrahepatic administration of nemorubicin
ITRM20030355A1 (it) 2003-07-18 2005-01-19 Sigma Tau Ind Farmaceuti Composti ad attivita' citotossica derivati della combretastatina.
US20080108664A1 (en) 2005-12-23 2008-05-08 Liu Belle B Solid-state form of AMG 706 and pharmaceutical compositions thereof
CN104043125B (zh) 2008-04-10 2018-01-12 弗吉尼亚州立邦联大学 诱导肿瘤缺氧以治疗癌症

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
cis-3, 4", 5-Trimethoxy-3"-aminostilbene disrupts tumor vascular perfusion without damaging normal organ perfusion;David Durrant 等;《Cancer Chemother Pharmacology》;20080326;第63卷;第191-200页 *
David Durrant 等.cis-3, 4", 5-Trimethoxy-3"-aminostilbene disrupts tumor vascular perfusion without damaging normal organ perfusion.《Cancer Chemother Pharmacology》.2008,第63卷第191-200页.
Urban Emmenegger等.Low-Dose Metronomic Daily Cyclophosphamide and Weekly Tirapazamine: A Well-Tolerated Combination Regimen with Enhanced Efficacy That Exploits Tumor Hypoxia.《Cancer Research》.2006,第66卷(第3期),第1664-1674页. *

Also Published As

Publication number Publication date
US10159676B2 (en) 2018-12-25
KR20110050583A (ko) 2011-05-16
KR101925436B1 (ko) 2018-12-05
US10426779B2 (en) 2019-10-01
CN102026634A (zh) 2011-04-20
US20120087913A1 (en) 2012-04-12
US20170224693A1 (en) 2017-08-10
US8591921B2 (en) 2013-11-26
CN104043125B (zh) 2018-01-12
WO2009126705A2 (en) 2009-10-15
JP2015110602A (ja) 2015-06-18
WO2009126705A8 (en) 2011-04-14
JP5944018B2 (ja) 2016-07-05
JP2011516565A (ja) 2011-05-26
JP5731372B2 (ja) 2015-06-10
TWI504391B (zh) 2015-10-21
US20140065139A1 (en) 2014-03-06
WO2009126705A3 (en) 2010-02-18
US20180050039A1 (en) 2018-02-22
CN104043125A (zh) 2014-09-17
US9649316B2 (en) 2017-05-16
TW201002312A (en) 2010-01-16
HK1202057A1 (zh) 2015-09-18

Similar Documents

Publication Publication Date Title
CN102026634B (zh) 诱导肿瘤缺氧以治疗癌症
Mandell et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy
Chen et al. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy
Henriksson et al. Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA)
CN109982698A (zh) 治疗癌性肿瘤的方法
Koukourakis et al. Concurrent liposomal cisplatin (Lipoplatin), 5-fluorouracil and radiotherapy for the treatment of locally advanced gastric cancer: a phase I/II study
Indolfi et al. A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma
Symon et al. Selective radioprotection of hepatocytes by systemic and portal vein infusions of amifostine in a rat liver tumor model
WO2013135727A1 (en) Glioma treatment by convection enhanced delivery
JP5642892B2 (ja) 多形膠芽腫の治療のためのマシテンタンを含有する組み合わせ剤
Opitz et al. Intracavitary cisplatin-fibrin chemotherapy after surgery for malignant pleural mesothelioma: A phase I trial
Lee et al. Radiosensitizers in hepatocellular carcinoma
Ch’ang et al. Induction chemotherapy with gemcitabine, oxaliplatin, and 5-fluorouracil/leucovorin followed by concomitant chemoradiotherapy in patients with locally advanced pancreatic cancer: a Taiwan cooperative oncology group phase II study
Wypij et al. Pamidronate disodium for palliative therapy of feline bone-invasive tumors
Avritscher et al. Transcatheter intra-arterial limb infusion for extremity osteosarcoma: technical considerations and outcomes
Shoji et al. Development of new mouse breast cancer model of local bone metastasis and verification using bisphosphonates
Gunn et al. Pancreas tumor model in rabbit imaged by perfusion CT scans
McKenna Investigating a Novel Approach to Prostate Tumour Treatment in Dogs
JP2015091766A (ja) 癌治療支援システム
UA15986U (en) Method for treating patients with non-resectable ovarian cancer metastases to liver
NZ615005B2 (en) Combinations comprising macitentan for the treatment of glioblastoma multiforme

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: LEE PECK-SUN

Effective date: 20130902

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130902

Address after: Virginia

Applicant after: Univ Virginia Commonwealth

Address before: Virginia

Applicant before: Univ Virginia Commonwealth

Applicant before: P .lin

C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: R *li

Inventor after: P *lin

Inventor before: R .li

Inventor after: Li Ruimin

Inventor after: Lin Baisun

Inventor before: R *li

Inventor before: P *lin

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: LEE RONALD LEE PECK-SUN TO: LI RUIMIN LIN BAISUN

Free format text: CORRECT: INVENTOR; FROM: LEE RONALD TO: LEE RONALD LEE PECK-SUN