CN102022989B - 一种基于指数积模型的机器人标定方法 - Google Patents

一种基于指数积模型的机器人标定方法 Download PDF

Info

Publication number
CN102022989B
CN102022989B CN2010102959664A CN201010295966A CN102022989B CN 102022989 B CN102022989 B CN 102022989B CN 2010102959664 A CN2010102959664 A CN 2010102959664A CN 201010295966 A CN201010295966 A CN 201010295966A CN 102022989 B CN102022989 B CN 102022989B
Authority
CN
China
Prior art keywords
robot
joint
coordinate system
theta
world coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102959664A
Other languages
English (en)
Other versions
CN102022989A (zh
Inventor
王海霞
卢晓
张志献
林青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Zhuo Xintong Intelligent Technology Co ltd
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN2010102959664A priority Critical patent/CN102022989B/zh
Publication of CN102022989A publication Critical patent/CN102022989A/zh
Application granted granted Critical
Publication of CN102022989B publication Critical patent/CN102022989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于指数积模型的机器人标定方法,包括步骤:提供工业机器人、独立于机器人的测量仪器、末端立体成像设备及一立体标定块;根据旋量理论与指数积相结合的方式建立机器人运动学模型;给出各关节参数的封闭解,利用线性方法直接求出关节旋量参数,并对机器人关节角的名义值进行补偿,避免了机器人坐标系与测量坐标系的转换,而且标定过程简单,只需各关节旋转一次的同时测量末端n(n≥3)个标记点的坐标值即可实现标定。本发明是一种实现简单、稳定性好、引入外界误差小的机器人标定方法。

Description

一种基于指数积模型的机器人标定方法
技术领域
本发明涉及机器人标定领域,主要研究工业机器人的标定方法,以提高工业机器人的绝对定位精度。
背景技术
机器人标定包括本体标定和外部标定,本体标定是各关节参数的标定,外部标定是机器人坐标系与世界坐标系之间变换关系的标定。由于机器人标定涉及参数多、模型建立困难、机器人坐标系难以精确测量等因素导致很难给出好的标定方法,但这部分却是影响机器人最终定位精度的主要因素。因此,提高机器人绝对定位精度的关键问题是给出一种好的机器人标定方法。
影响机器人标定精度的主要因素有两方面:机器人运动模型的建立和标定方法。机器人运动模型建立的目标是使其具有完备性和连续性;而标定方法的目标则是尽量减少外界误差的引入,以求得精确的模型参数,最终得到高的定位精度。目前,机器人运动模型有很多种,比如:D-H模型,MD-H模型,CPC模型,零参考位置模型,指数积模型等,针对这些模型有很多标定方法,但这些方法无不假设机器人外部姿态是可以精确标定的、机器人码盘输出的角度也是精确的、误差模型利用线性简化模型来代替等;但实际中机器人基座是无法精确测量的、关节间隙往往造成关节角度误差、线性模型不能准确的定义机器人的非线性耦合误差模型,这些假设和简化导致标定方法中引入太多的外界误差信息,很难得到高精度的标定结果。因此,需要一种有效的标定方法解决目前机器人定位精度低的问题。
发明内容
本发明的目的是针对目前标定方法的不足,提供一种基于指数积模型的机器人标定方法。
其技术解决方案是:
一种基于指数积模型的机器人标定方法,包括如下步骤:
(1)提供工业上使用的机器人、独立于机器人的测量仪器、末端立体成像设备及一立体标定块;末端立体成像设备采取可拆分式连接方式安装于机器人末端,测量仪器安装在标定现场的地面支架上,立体标定块位于标定现场测量仪器与末端立体成像设备均能检测的部位;
(2)在测量仪器上建立世界坐标系,并表示为{W},在末端立体成像设备上建立工具坐标系,并表示为{T};设定机器人有6个串联的旋转关节,根据旋量理论与指数积相结合的方式建立机器人运动学模型,得到机器人末端工具坐标系与世界坐标系之间的变换关系,根据指数积公式,该运动学模型与各关节运动旋量有如下关系:
g wt ( θ ) = e θ 1 ξ ^ 1 e θ 2 ξ ^ 2 e θ 3 ξ ^ 3 e θ 4 ξ ^ 4 e θ 5 ξ ^ 5 e θ 6 ξ ^ 6 g wt ( 0 )
其中向量θ=[θ1,...,θ6]T是机器人各关节的旋转角度,可从机器人控制器中读取,称为机器人关节角名义值,gwt(θ)和gwt(0)分别表示机器人在任意位置时和参考位置时世界坐标系与工具坐标系之间的变换关系,由旋转矩阵和平移向量组成,表现为4×4的矩阵,
Figure BSA00000288605100022
为运动旋量,表现为4×4的矩阵,
Figure BSA00000288605100023
的指数矩阵,也表现为4×4的矩阵,
Figure BSA00000288605100025
包括旋量参数ωi和ri,其中ωi和ri分别为关节轴的单位方向矢量和位置矢量,ωi和ri都是三维向量,i=1,...,6;
(3)根据机器人标定现场选择适合的姿态作为机器人参考位置,首先利用测量仪器获得立体标定块上的点在世界坐标系下的坐标值,然后利用末端立体成像设备采集立体标定块的图像来标定参考位置时工具坐标系与世界坐标系的变换关系gwt(0);
(4)在机器人末端上设计点数为n且n≥3的末端标记点,并利用测量仪器测得这些末端标记点在世界坐标系下的坐标,记为Xw1,Xw1为n个标记点的齐次坐标表示,为4×n的矩阵;以机器人第i关节为例,首先控制机器人从参考位置开始绕第i关节旋转θ角度,然后利用测量仪器再次测得末端标记点在世界坐标系下的坐标值,记为Xw2,矩阵大小同Xw1;最后利用Xw1和Xw2求出第i关节的的运动旋量
Figure BSA00000288605100026
以及旋转角度的测量值θ′;
(5)重复上述步骤(4)直至标定机器人所有关节参数;
(6)利用步骤(4)或(5)中获得的旋转角度的测量值θ′,及机器人关节角名义值θ计算各关节旋转角的误差即Δθ=θ′-θ,根据每个关节角的误差Δθi(i=1,...,6)补偿任意位置下机器人旋转角的名义值θi得到θi+Δθi,最终得到任意位置下精确的变换关系gwt(θ+Δθ)。
本发明具有以下有益技术效果:
1、精度高、稳定性好。标定方法给出各关节参数的封闭解,利用线性方法直接求出关节参数。
2、实现简单。每个关节只需旋转一次的同时测量末端n(n≥3)个标记点的坐标值便可获得所有关节参数。
3、引入误差小。避免机器人坐标系与测量坐标系的转换,并对机器人关节角的名义值进行补偿。
附图说明
下面结合附图与具体实施方式对本发明作进一步说明:
图1为本发明一种实施方式的标定现场的场景图。
图2示出了本发明中机器人定位时的情形。
图3示出了本发明中的机器人的旋量参数。
图4示出了本发明中机器人各关节运动旋量的标定过程。
具体实施方式
参看图1,一种基于指数积模型的机器人标定方法,提供工业上使用的机器人1、独立于机器人的测量仪器3、末端立体成像设备2及立体标定块4。末端立体成像设备采取可拆分式连接方式安装于机器人末端,测量仪器安装在标定现场的地面支架上,立体标定块位于标定现场测量仪器与末端立体成像设备均能检测的部位。
结合图2,{W}表示世界坐标系,建立在测量仪器上,{T}表示工具坐标系建立在末端立体成像设备上。机器人定位的目的是确定空间点P在世界坐标系下的坐标,其齐次坐标表示为Xw,而目标点在工具坐标系下的坐标为Xt,则Xw和Xt之间存在如下关系:
Xw=gwtXt                        (1)
其中Xt可通过相机标定得到,则当工具坐标系与世界坐标系之间的变换gwt已知时,空间点的世界坐标Xw便可以确定,而gwt可通过机器人标定获得。
根据旋量理论与指数积相结合的方式建立机器人运动学模型,得到机器人末端工具坐标系与世界坐标系之间的变换关系,模型参数由各关节的运动旋量组成。对于6个串联关节的旋转机器人来说,每个关节的运动旋量
Figure BSA00000288605100031
由关节轴的单位方向矢量ωi和其位置矢量ri组成,ωi和ri都是三维向量,被称为旋量参数,i=1,...,6,结合图3,表示如下:
ξ ^ = [ ω ] × υ 0 1 - - - ( 2 )
其中[ω]×表示ω的反对称矩阵:
[ ω ] × = 0 - ω z ω y ω z 0 - ω x - ω y ω x 0 - - - ( 3 )
ω=[ωxωyωz]T,υ=r×ω
运动旋量的指数矩阵可表示为:
e θ ξ ^ = e θ [ ω ] × ( I - e θ [ ω ] × ) r 0 1 = R t 0 1 , ω ≠ 0 - - - ( 4 )
根据指数积公式,机器人的运动学模型如下:
g wt ( θ ) = e θ 1 ξ ^ 1 e θ 2 ξ ^ 2 e θ 3 ξ ^ 3 e θ 4 ξ ^ 4 e θ 5 ξ ^ 5 e θ 6 ξ ^ 6 g wt ( 0 ) - - - ( 5 )
其中gwt(0)表示在参考位置时机器人工具坐标系与世界坐标系之间的变换关系,可通过标定相机外参数获得;gwt(θ)是机器人处于θ姿态时工具坐标系与世界坐标系之间的变换关系,θ是由6个关节角θi(i=1,...,6)组成,可从机器人中自动读取,被称为名义值。其中的运动旋量
Figure BSA00000288605100043
就是机器人要标定的参数。
选择一个合适的姿态作为参考位置,首先利用测量仪器获得立体标定块在世界坐标系下的坐标值,并利用末端立体成像设备采集立体标定块的图像,标定参考位置下工具坐标系与世界坐标系的变换关系gwt(0);然后在机器人末端设计点数为n的标记点5,n≥3,以方便测量仪器测量,并利用测量仪器测得这些点在世界坐标系下的坐标,记为Xw1,Xw1是n个点的齐次坐标表示,为4×n的矩阵。
接下来以机器人第i关节为例介绍关节参数的标定过程。如图4中所示,控制机器人第i个关节从参考位置开始旋转θ角度,其他关节的旋转角都为0,则公式(5)变为:
g wt ( θ ) = e θ ξ ^ i g wt ( 0 ) - - - ( 6 )
则上式可变换为:
e θ ξ ^ i = g wt ( θ ) g wt ( 0 ) - 1 - - - ( 7 )
关节轴旋转后利用测量仪器再次测得末端标记点在世界坐标系下的坐标值,记为Xw2,矩阵大小同Xw1;这些点在工具坐标系下的坐标Xt不随机器人的旋转而发生变化,则Xw1和Xw2分别与Xt有如下关系,
Xw1=gwt(0)Xt                  (8)
Xw2=gwt(θ)Xt                 (9)
由于gwt(0)是可逆的,公式(8)可变为:
Xt=gwt(0)-1Xw1                (10)
将式(10)与(9)得:
Xw2=gwt(θ)gwt(0)-1Xw1                     (11)
比较(7)和(11)得:
X w 2 = e θ ξ ^ i X w 1 - - - ( 12 )
根据(4)式,将上式变为:
x w 2 i = Rx w 1 i + t , i = 1 , . . . , n - - - ( 13 )
其中
Figure BSA00000288605100053
Figure BSA00000288605100054
分别是Xw1和Xw2的非齐次坐标,n同前,
Figure BSA00000288605100055
Figure BSA00000288605100056
分别记为xw1和xw2的均值。利用xw1和xw2中的每一个点减去它们的均值得:
b=Ra                                       (14)
b = x w 2 i - x ‾ 2 , a = x w 1 i - x ‾ 1 , i = 1 , . . . , n
根据Cayley变换有:
R=(I+[w]×)-1(I-[w]×)                     (15)
其中I为3×3的单位矩阵,w是Cayley表达,将上式代入(14)得:
(I+[w]×)b=(I-[w]×)a                      (16)
化简为:
[w]×(b+a)=a-b                             (17)
根据反对称矩阵的性质可得:
[b+a]×w=b-a                               (18)上式未知向量w有三个未知数,[b+a]×的秩为2,无法求解,而上式由两个点的数据获得,需要再增加一个点得到另外一组方程可求解Cayley表达w,并将w代入(15)获得R,然后将R及xw1和xw2中的任意一点对代入(13)中求出t。则由以上过程求出,且至少需要3个标记点。
则根据公式(4):
e θ [ ω i ] × = R - - - ( 19 )
( I - e θ [ ω i ] × ) r i = t - - - ( 20 )
利用Cayley变换可从(19)中求出ωi和旋转角度θ′,公式如下:
[w]x=(I+R)-1(I-R)                          (21)
ωi=w/‖w‖                        (22)
θ′=-2atan(‖w‖)                 (23)
根据旋转矩阵的性质可知公式(20)左边的
Figure BSA00000288605100061
是秩是2,无法唯一确定ri,因此需要增加约束条件,根据旋量定义,ri是ωi轴上任意一点,特别的取ri与ωi互相垂直,即:
ω i T r i = 0 - - - ( 24 )
则联立(20)和(24)能够唯一确定轴位置ri。至此关节轴的旋量参数及旋转角即为所求。
其他关节轴的标定方法与此相同,如图4展示了机器人第1、2、3、5关节标定过程,其中图4a为绕1轴旋转之情形,图4b为绕2轴旋转之情形,图4c为绕3轴旋转之情形,图4d为绕5轴旋转之情形,即每次将机器人恢复到参考位置,然后控制机器人绕关节轴旋转一次,最后利用测量仪器测量末端标记点旋转前后的坐标即可实现标定。
利用旋转角度的测量值θ′和名义值θ获得各关节旋转角的误差Δθ=θ′-θ,利用每个关节角的误差Δθi(i=1,...,6)补偿任意位置下机器人旋转角的名义值得到θ′=θ+Δθ,并将标定好的的运动旋量
Figure BSA00000288605100063
和gwt(0)带入(1)中得到任意位置下精确的工具坐标系与世界坐标系之间的变换关系:
g wt ( θ ′ ) = e θ ′ 1 ξ ^ 1 e θ ′ 2 ξ ^ 2 e θ ′ 3 ξ ^ 3 e θ ′ 4 ξ ^ 4 e θ ′ 5 ξ ^ 5 e θ ′ 6 ξ ^ 6 g wt ( 0 ) - - - ( 25 )
最后,通过实验证明利用该方法标定机器人,使机器人的绝对定位误差从原来的4~7mm提高到0.5~2mm。
需要说明的是,在本说明书的教导下本领域技术人员所作出的任何等同替代方式,或明显变型方式均应在本发明的保护范围内。

Claims (1)

1.一种基于指数积模型的机器人标定方法,其特征在于包括如下步骤:
(1)提供工业上使用的机器人、独立于机器人的测量仪器、末端立体成像设备及一立体标定块;末端立体成像设备采取可拆分式连接方式安装于机器人末端,测量仪器安装在标定现场的地面支架上,立体标定块位于标定现场测量仪器与末端立体成像设备均能检测的部位;
(2)在测量仪器上建立世界坐标系,并表示为{W},在末端立体成像设备上建立工具坐标系,并表示为{T},目标点在世界坐标系下的坐标为Xw,在工具坐标系下的坐标为Xt
Xw和Xt之间存在如下关系:
Xw=gwtXt
设定机器人有6个串联的旋转关节,根据旋量理论与指数积相结合的方式建立机器人运动学模型,得到机器人末端工具坐标系与世界坐标系之间的变换关系,根据指数积公式,该运动学模型与各关节运动旋量有如下关系:
g wt ( θ ) = e θ 1 ξ ^ 1 e θ 2 ξ ^ 2 e θ 3 ξ ^ 3 e θ 4 ξ ^ 4 e θ 5 ξ ^ 5 e θ 6 ξ ^ 6 g wt ( 0 )
其中向量θ=[θ1,...,θ6]T是机器人各关节的旋转角度,可从机器人控制器中读取,称为机器人关节角名义值,gwt(θ)和gwt(0)分别表示机器人在任意位置时和参考位置时世界坐标系与工具坐标系之间的变换关系,由旋转矩阵和平移向量组成,表现为4×4的矩阵,为运动旋量,表现为4×4的矩阵,
Figure FSB00000651800900013
Figure FSB00000651800900014
的指数矩阵,也表现为4×4的矩阵,
Figure FSB00000651800900015
包括旋量参数ωi和ri,其中ωi和ri分别为关节轴的单位方向矢量和位置矢量,ωi和ri都是三维向量,i=1,...,6;
(3)根据机器人标定现场选择适合的姿态作为机器人参考位置,首先利用测量仪器获得立体标定块上的点在世界坐标系下的坐标值,然后利用末端立体成像设备采集立体标定块的图像来标定参考位置时工具坐标系与世界坐标系的变换关系gwt(0);
(4)在机器人末端上设计点数为n且n≥3的末端标记点,并利用测量仪器测得这些末端标记点在世界坐标系下的坐标,记为Xw1,Xw1为n个标记点的齐次坐标表示,为4×n的矩阵;以机器人第i关节为例,首先控制机器人从参考位置开始绕第i关节旋转θ角度,然后利用测量仪器再次测得末端标记点在世界坐标系下的坐标值,记为Xw2,矩阵大小同Xw1;最后利用Xw1和Xw2求出第i关节的运动旋量
Figure FSB00000651800900016
以及旋转角度的测量值θ′;
(5)重复上述步骤(4)直至标定机器人所有关节参数;
(6)利用步骤(4)或(5)中获得的旋转角度的测量值θ′,及机器人关节角名义值θ计算各关节旋转角的误差即Δθ=θ′-θ,根据每个关节角的误差Δθi(i=1,...,6)补偿任意位置下机器人旋转角的名义值θi得到θi+Δθi,最终得到任意位置下精确的变换关系gwt(θ+Δθ)。
CN2010102959664A 2010-09-29 2010-09-29 一种基于指数积模型的机器人标定方法 Active CN102022989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102959664A CN102022989B (zh) 2010-09-29 2010-09-29 一种基于指数积模型的机器人标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102959664A CN102022989B (zh) 2010-09-29 2010-09-29 一种基于指数积模型的机器人标定方法

Publications (2)

Publication Number Publication Date
CN102022989A CN102022989A (zh) 2011-04-20
CN102022989B true CN102022989B (zh) 2012-03-21

Family

ID=43864572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102959664A Active CN102022989B (zh) 2010-09-29 2010-09-29 一种基于指数积模型的机器人标定方法

Country Status (1)

Country Link
CN (1) CN102022989B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692873A (zh) * 2012-05-07 2012-09-26 上海理工大学 工业机器人定位精度标定方法
CN103115615B (zh) * 2013-01-28 2015-01-21 山东科技大学 一种基于指数积模型的手眼机器人全自动标定方法
CN103954245A (zh) * 2014-03-21 2014-07-30 北京信息科技大学 一种用于关节式坐标测量机的精度标定板
CN104833324A (zh) * 2015-01-28 2015-08-12 江南大学 一种基于测量头的机器人标定方法
CN105066808B (zh) * 2015-07-14 2017-10-31 安徽工业大学 一种工业机器人运动学参数简易标定装置及其标定方法
CN106426158A (zh) * 2015-08-11 2017-02-22 冯黎 一种与三维测量组合应用的机器人作业程序自动修正系统
CN107636418B (zh) * 2016-01-26 2019-12-24 深圳配天智能技术研究院有限公司 一种机器人控制方法、控制设备及系统
CN105598957A (zh) * 2016-01-27 2016-05-25 国机集团科学技术研究院有限公司 一种工业机器人运动学建模方法及系统
CN106845037B (zh) * 2017-03-21 2018-07-24 山东科技大学 一种五自由度串联机器人的逆运动学通用求解方法
CN107042528B (zh) * 2017-06-01 2019-06-21 中国科学院宁波材料技术与工程研究所 一种工业机器人的运动学标定系统及方法
CN110312979A (zh) * 2018-02-01 2019-10-08 深圳市大疆创新科技有限公司 多关节机构标定的方法、装置和计算机系统
CN108775882B (zh) * 2018-06-01 2019-06-14 山东科技大学 爬行机器人在圆柱类物体表面运动位置的描述方法
CN108994830A (zh) * 2018-07-12 2018-12-14 上海航天设备制造总厂有限公司 用于打磨机器人离线编程的系统标定方法
CN112105484B (zh) * 2019-05-24 2023-05-05 深圳配天智能技术研究院有限公司 机器人运动学参数自标定方法、系统及存储装置
CN110202582B (zh) * 2019-07-03 2021-11-26 桂林电子科技大学 一种基于三坐标平台的机器人标定方法
CN112873204B (zh) * 2021-01-13 2022-08-05 深圳瀚维智能医疗科技有限公司 机器人标定方法、装置、设备及计算机可读存储介质
CN114521960B (zh) * 2022-02-25 2023-04-07 苏州康多机器人有限公司 一种腹腔手术机器人的全自动实时标定方法、装置及系统
CN114571436B (zh) * 2022-04-15 2023-06-02 易思维(杭州)科技有限公司 一种不依赖于地轨绝对精度的机器人外参标定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239469A (zh) * 2007-02-05 2008-08-13 发那科株式会社 机器人机构的校准装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274558B2 (ja) * 2004-09-15 2009-06-10 富士フイルム株式会社 キャリブレーション方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239469A (zh) * 2007-02-05 2008-08-13 发那科株式会社 机器人机构的校准装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2006-82170A 2006.03.30

Also Published As

Publication number Publication date
CN102022989A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
CN102022989B (zh) 一种基于指数积模型的机器人标定方法
CN100429476C (zh) 一种双传感器激光视觉三维测量系统校准方法
CN107175660B (zh) 一种基于单目视觉的六自由度机器人运动学标定方法
US10641617B2 (en) Calibration device and calibration method
CN104833372A (zh) 一种车载移动测量系统高清全景相机外参数标定方法
CN103353388B (zh) 一种具摄像功能的双目体式显微成像系统标定方法及装置
CN104897060A (zh) 采用坐标跟踪控制板的大视场全局测量方法
US9916659B2 (en) Operating device, operating method, and program therefor
CN105424024B (zh) 一种基于全站仪的空间目标的位置和朝向标定方法
CN109242918B (zh) 一种直升机机载双目立体视觉标定方法
CN104634246B (zh) 目标空间坐标的浮动式立体视觉测量系统及测量方法
CN101629822B (zh) 振动环境中的多相机动态摄影测量方法
CN104268876A (zh) 基于分块的摄像机标定方法
CN108180881B (zh) 建筑物变形实时测量系统
CN101271573B (zh) 一种与摄影设备无关的影像畸变标定方法
CN105444696A (zh) 一种基于透视投影直线测量模型的双目匹配方法及其应用
CN102207380B (zh) 一种高精度的横轴倾斜误差补偿方法
TWI557522B (zh) 校正方法與校正設備
CN111562563A (zh) 激光雷达转台标定方法、装置和计算机可读存储介质
CN102692183B (zh) 多台摄像机的初始位置和姿势的计量方法
CN106671081B (zh) 一种基于单目视觉的少自由度机器人运动学标定方法
CN105628052B (zh) 基于控制直线的光学卫星传感器在轨几何定标方法及系统
CN104697552A (zh) 一种二维自准直仪的失准角标定方法
CN106225671B (zh) 一种大型浮空器囊体体积测量装置的现场校准方法
CN109342008B (zh) 基于单应性矩阵的风洞试验模型迎角单相机视频测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220614

Address after: 266590 room 402, industrialization building, 579 qianwangang Road, Huangdao District, Qingdao City, Shandong Province

Patentee after: Qingdao Zhuo Xintong Intelligent Technology Co.,Ltd.

Address before: 266510, No. 579, Bay Road, Qingdao economic and Technological Development Zone, Shandong

Patentee before: SHANDONG University OF SCIENCE AND TECHNOLOGY